A Review of Evolutionary Algorithms
for E-Commerce

Alex A. Freitas

PUC-PR

PRGIA-CCET

R. Imaaulada Conceiceo, 115
Curitiba— PR. 80215-901. Brazl
alex@ppgia.pucpr.br
http://www.ppgia.pucpr.br/~aex

Abstract. Evolutionary Algorithms (EAS) are alaptive algorithms based on the
Darwinian principle of natural seledion. Intuitively, their adaptive nature makes
them suitable for highly dynamic environments, which is often the @se in e
commerceapplications. This chapter presents areview of EAs for e-commerce It
starts by discussng the main characteristics of EAsin general. Then it discusses
several EAs devel oped for e-commerce appli cations, focusing on threekinds of e-
commerce related tasks, namely: information retrieval on the web, discovery of
negotiation strategies and improvement of web-page presentation.

1 Introduction

E-commerce is a relatively new, interdisciplinary field, consisting of the
integration of commercial activities with severa areas of computer science, such
as the world wide web, database systems, metadata axd ontologies, agent-based
systems, multimedia and visualization, information security and privacy, etc.. It
shoud he noted that sometimes the terms e-commerce and e-business are used
with different meanings, with the latter being used as a more general term, which
includes the former. In this chapter we use the terms e-commerce and e-business
interchangeably, following [25]'s chap. 16. To quote from the page 259 o that
reference:

“As far as we are concerned, e-commerce @an be mnsidered to be broad such
as putting up a web page or listening to music on the web o conducting
transadions on the web.”

This means that we are using the term e-commerce to refer not only to the
process of carrying out commercial transactions on the web but also to activities
that give support to this process such as learning, training and entertainment on
the web, displaying information on web pagesin such away that the web pageis
as nice as posshle for the user, retrieving relevant information from the web, etc.

E-commerce is an interesting research topic, not only due to its strategic
eoconomic value [1], but aso to its potential for research in advanced areas of
computer science, such as data mining [14] and artificial intelligence (Al) in
general.

In this chapter we explore the use of a paradigm of artificia intelligence (Al)
techniques, called evolutionary algarithms (EAS), for e-commerce gplications.
The basic motivation, as usua in the ase of an Al paradigm, is to increase the
degree of computationa “intelligence” of a system, making it more aitonamous
and more aaptive to changesin its environment.

The potential of e-commerce for Al reseach stems mainly from two fads.
First, e-commerce sysems are dready automated. This means that many of the
hurdles associated with system building (such as data collection, integration with
other automated systems of the organization, etc.) are significantly lower in e-
commerce, by comparison with the process of automating a manual commercial
system from scratch. Second, e-commerce systems tend to be very dynamic. This
is due to several reasons. For instance, the contents of the web changes very fast.
In addition, in e-commerce aistomers who are currently visting a given
company’s web site @n switch to the web ste of a mmpetitor in a few seconds,
which would be much more difficult in aphysical commerce environment.

Hence, the gplication of EAs techniques in e-commerce seems a promising
research direction. EAs are robust, adaptive techniques, which — at leagt in
principle — have agood patential for coping with dynamic environments.

In this chapter we discuss evolutionary algorithms for three kinds of e-
commerce tasks:

() information retrieval in the web;

(b) discovering negotiation drategies;

(c) improving the presentation of web pages.

Out of these three tasks, the second one — discovering regotiation strategies —
seemsthe most related to the cantral activity of e-commerce, namely carrying out
commercial transactions on the web. Indeed, people like to negotiate prices at e-
stores [16]. The other two tasks are lessrelated to this central goal, but they are
important tasks to support the broader processof e-commerce. Indeed, an attempt
to retrieve relevant information from the web (among the huge anount of
information stored in the web), say relevant information about a given kind o
product, is often one of the firg steps performed by a austomer interested in
buying something on the web. In addition, the layout and other graphical aspects
of aweb page can have asignificant impact on the decision o a customer to buy
or not a product announced in a given web page.

This chapter is organized asfollows. Section 2 presents a brief review of EAs.
Sedion 3 discusses the application of EAsto the three @ove-mentioned tasks of
e-commerce. Finaly, section 4 presents a summary and some conclusions drawn
from the discusdgon of section 3.

2 A Review of Evolutionary Algorithms (EAS)

Evolutionary Algorithms (EAS) is esentialy the name given to a large class of
computational problem-solving algorithms inspired by the principle of natural
selection. The basic ideaisthat a each generation the fittest (the best) individuals
of the current popuation survive and produce off spring resembling them, so that
the population gradually contains fitter and fitter individuds.

This idea is used, at a high level of abstraction, as a basis for designing
computational EAs, as follows. Each “individua” of an evolving population
represents a @ndidate solution to a given problem. Each individual is evaluated
by a fitness function, which measures the quality of its correspondng solution.
Then these individual s evolve towards better and better individuals via operators
based on natural selection, i.e. survival and reproduction of the fittest, and
genetics, e.g. crosover and mutation operators.

There ae several kinds of evolutionary algorithms (EA) proposed in the
literature. For a comprehensive review of several kinds of EA the reader is
referred to [3]. In this chapter we are mainly interested in genetic dgorithms
(GA) and genetic programming (GP), which seam to be the kinds of EA that have
been the most used in eccommerce-related tasks. In particular, most EAs
discussed in this chapter will be GAs, but two GPs will aso be discussed here.

Hence, in the remainder of this section and in the next two subsections we
present a brief introduction to GAs and GP, to make this chapter self-contained.
Aswill be seen in the next subsections, GAs and GP differ mainly with respect to
the representation of an individual, which in turn leads to some differences in
genetic operators. However, both kinds of EA are dill based on the same
principle of natural selection and genetics. Indeed, a a high level of abstradion,
both GAs and GP perform essentially the same sequence of steps, as shown in the
generic pseudacode of Algorithm 1.

createinitia population of individuas;
compute fitnessof each individual;
REPEAT
seled individuals based on fitness
apply genetic operatorsto selected
individuals, creating df spring;
compute fitnessof each dff springindividual;
updite the current population;
UNTIL (stopping criterion)

Algorithm 1: Generic, abstract pseudocode for GA and GP
As sown in this pseudocode, the first sep is to create a population o

individuals. The initial population can be generated at random or by using some
problem-dependent heuristic. Then the individuals of the initia popuation are

evaluated according to a fitnessfunction, and the dgorithm starts the REPEAT-
UNTIL loop.

An important step of this loop isthe selection d individuals based onfitness
In general the better the fitnessof an individual (i.e., the better the quality of its
candidate solution) the higher the probability of an individual being selected.
There ae several different selection methods that can be used to implement this
basic idea. Here we mention just one, tournament selection [5], which is both
simple and effective. For a more comprehensive discusson of selection methods
the reader is referred to [3]. In tournament selection the EA randomly chocses k
individuals from the current popuation, where k is a parameter cdled the
tournament size. Then the k individuals “play a tournament” to decide which of
them will be seledted to produce off spring. The winner of the tournament can be
chosen ether in a deterministic manner or in a probabili stic manner. In the former
case the winner is smply the individual with the best fitness among the k
individuals playing the tournament, whereas in the latter cese each o the k
individuals can be dhosen as the winner with a probability proportional to its
fitness Deterministic tournament seems more common in practice.

Once individuas are selected, the next step of Algarithm 1 isto apply genetic
operators to the selected individuas (parents), in order to produce new
individuals (offspring) that, hopefully, will inherit good genetic material from
their parents. This step will be discussed in sections 2.1 and 2.2 separately for GA
and GP, since these two kinds of EA usually require different genetic operators —
dueto their different individual representations.

Then the fitness of each of the new individuals is computed, and another
iteration of the REPEAT-UNTIL loop is darted. This processis repeated until a
given stopping criterion is satisfied. Typical stopping criteria ae afixed nunber
of iterations (generations) or the generation of an individua representing a very
goodsolution.

It is worthwhile to mention that EAs perform a global search in the space of
candidate solutions, by contrast with the locd search performed by hill climbing-
like, greedy search algorithms [11]. In particular, EAs work with a population o
candidate solutions, rather than working with a singe andidate solution at a
time. This, together with the fact they they use stochastic operators to perform
their seach (as will be seen below), tend to reduce the probability that they will
get stuck in loca maxima, and increase the probability that they will find the
global maximum in the space of candidate solutions.

2.1 Genetic Algorithms

Recall that an individual corresponds to a @ndidate solution to a given problem.
In GAsanindividual isusuadly alinea string of “symbads’, often called “ genes’.
A gene @n be ay kind d symboal, depending on the kind of candidate solution
being represented. For ingtance, in GAs for information retrieval (to be discussed
in section 3.1) agene an be aword found in atext, or a pair composed by a word
anditsimportance weight.

In general the main genetic operator of GAs is the aossver operator. It
esentialy consists of swapping genes between (usudly two) individuals [13],
[18]. Figure 1 illustrates a smple kind of crosover, called one-point crosover.
Figure 1(a) shows two individuds, caled the parents, before crossover. A
crosover point is randomly chosen, represented in the figure by the symbal “|”
between the second and third genes. Then the genes to the right of the crossover
point are swapped between the two parents, yielding the new individuals sown
in Figure 1(b).

X1X2| X3X4 X5 X1X2[Y3 Y4 Y5
Y1Y2 Y3Y4 Y5 Y1Y2l X3 X4 X5

(a) Before crosover (b) After crossover

Figure 1:Example of one-point crossover

xixzxi X4 X5 XihYZY X4 X5
Y1 VY2 Y3 Y4 Y5 YL X2 X3 Y4 Y5

(a) Before qosover (b) After crossover

Figure 2: Example of two-point crosover

Figure 2 illustrates ancther kind of crossover, called two-point crosover.
Now a pair of crosover points is randomly selected in each of two parent
individuals. In each parent the genes lying between the pair of crosover points
are considered a block to be swapped, asawhale, by the crosover operator.

In addition to crosover, which is the main genetic operator in GAs, it is also
common to use mutation. In essence mutation replaces the value of a gene with a
new randomly-generated value (among the values that are valid for the gene in
guestion). Note that mutation can yield gene values that are not present in the
current population, unlike aossover, which swaps existing gene values between
individuals.

Both crossover and mutation are stochastic operators, applied with user-
defined probabilities. In GAs the probability of mutation is usually much lower
than that of crossover, in part due to an anaogy with natural seledion and
genetics, where mutations are rare and usually harmful for the organism.

2.2 Genetic Programming

As mentioned above, the main difference between GAs and GP is in the
individual representation used by each kind of EA, which in turn leads to some
differencesin the genetic operators used by each of them.

First of all, most GP algorithms use atree-based individual representation,
andthiswill be the only kind of GP representation dscussed in this chapter. For a
discusson of other kinds of GP representation the reader is referred to [4]. Each
individual is represented by a tree wnsisting of two kinds of nodes. interna
nodks, containing functions, and terminal (leaf) nodes, containing variables of the
problem being solved or constants.

It should be noted that an individual’s tree @n vary a lot in both size and
shape, unlike the linear strings of “conventional” GAs, which wsualy have a
fixed length (although there are several exceptions, where the length of the string
isvariable). Most important, in GP an individua (candidate solution) consists not
only of problem-specific variables and/or their values (data) but also functions
(operators applied to the variables'values) — unlike GAs, where an individual’s
candidate solution wualy condsts only of variablesvalues. Hence, a GP
individual is often caled a “program”, even though in many cases this term
shoud be interpreted in a loose sense. In any case, the distinction between GA
and GP is blurring as there is a growing tendency towards the unification d the
field of EAs[9].

The set of all functions (or operators) available to be used in internd tree
nodes is called the function set, whereas the set of all variables and/or variable
values available to be used in leaf nodesis called the terminal set.

In general the function set of a GP agorithm must satisfy at least two
properties, namely sufficiency and closure [15]. Sufficiency means that the
function set’s expressve power is good enough to be able to represent a wrrect
solution (or at least a very goad solution) to the target problem. Closure means
that each function of the function set shoud be ale to accept, as input, any
output produced by any function in the function set.

GP crosover esentially swaps two subtrees between two parent individuals.
In each parent the subtreeto be swapped is usualy chosen a random. This kind
of subtree aosver is illustrated in Figure 3, where the “crosover point” is
indicated by a tilted line and the subtrees svapped by crosover are shown in
bald.

In addition to crosver, mutation is also dften used in GP. There are severd
kinds of GP mutation operator. We briefly mention here only two kinds, namely
point mutation and subtree mutation. A more comprehensve discusson on
several kinds of GP mutation operators can be found in [4] (pp. 240-243), [6].

Point mutation is the simplest form of mutation. It replaces a single nodein a
tree with another randomly-generated nock of the same kind. By “same kind” we
mean that an internal node is replaced by ancther internal node (with another
function) and a termina node is replaced by anather terminal node (with another
variable or value). Subtree mutation randomly selects an interna node in the tree,
and then it replaces the subtree rooted at that node with a new randomly-
generated subtree. The new randomly-generated subtree shoud be created subjed

to some redrictions of depth and/or size, to avoid the generation of a too large
subtree.

A R

(8 Two parents before crosover

S

(b) Two children (off spring) produced by crossover

Figure 3: Conventional treecrosover in genetic programming

2.3 Co-Evolution

Co-evolution means the complementary evolution of two o more populations
[21]. In nature atypical exampleisthe a-evolution of predatorsand preys, where
new features developed by predators trigger an evolutionary resporse in the
preys.

In the context of EAS, the basic idea is that the individuals of each population
evolve to be alapted to the individuas of the other population(s). Co-evolution
invalves a dynamic fitnessfunction, where the fitnessof an individual in a given
popuationis determined by how adapted that individual isto individualsin ather
popuation(s). Hence, the same individual can have ahigh value of fitnessin one
generation but a low value of fitnessin another generation, depending onthe
current contents of the other population(s).

This basic concept of co-evolution will be particularly useful to understand
the application of EAs to the problem of evolving negotiation strategies in an e
commerce framework, aswill be seen in section 3.2.

2.4 Interactive Evolutionary Algorithms

In some problems the quality of the candidate solution represented by an
individual isinherently subjective, and it would be very difficult to design a good
fitness function specified by a well-defined, objective mathematical formula. In
such casesit is natural to use an interactive fitnessfunction. The basic ideais that
the fitnessof an individual is directly evaluated by a human user, based on his/her
own subjective preferences.

Two applications of interactive fitness function are briefly mentioned here.
One involves an image-enhancement application [22], where the user drives GP
by deciding which individual should be the winner in tournament selection. The
other application involves attribute selection for the well-known classfication
task of data mining. In this application each individual of a GA represents a
candidate atribute subset [24]. In order to evaluate an individuad its candidate
attribute set is given to an algorithm that discover classfication rules, and the
quality (fitnesg of these rules are interactively and subjectively evaluated by the
user.

In the context of e-commerce an interactive fitness function can be naturally
used, for ingtance, to alow a user to subjectively evaluate how “nice’ a given
web page is. An example of this application will be discussed in section 33.
Ancther example of the use of interactive fitness function will be discussd in
sedion 3.1, ininformation retrieval .

3 Applying Evolutionary Algorithms (EAS) to E-
Commerce

This section is divided into three subsections, according to the kind of e
commerce-related problem for which the EA was designed. Subsection 3.1
discusses EAs for information retrieval in the web. Subsection 32 discusses EAs
for negotiation strategies. Subsection 3.3 discusses EAs for improving the
presentation of web pages.

3.1 Information Retrieval in the Web

In this sedion we discuss evolutionary algorithms (EAS) designed for retrieving
information in the web. In genera the EAs discussed in this £dion are genetic
algorithms (GAs).

Before we procead, we present a brief introduction to information retrieval.
The basc ideais as follows. Given a query, representing the interest of the user,
and aset of documents, the system nust select the documents most relevant to the
user’s query. The query can take different forms, from a small set of keywords to
an entire text. In any case the contents of the query is compared with the ntents
of each document in the document base, and a similarity measure is computed for
each document. The documents most similar (mogt relevant) to the query are
returned to the user, in decreasing order of similarity. In the context of this
sedion, each web page @n be consgdered a document.

One important point in information retrieval is how to represent the cntents
of a document. A popuar form of representation of documents is the vectoria
model [23]. In this model each document is represented by a multi-dimensional
vector, where each dimension corresponds to a term (usually a single word). For
each document, the value of each dimension of itsvector typically depends on the
frequency of occurrence of the corresponding term in the document (the term
frequency) or some related measure. Hence, the similarity between the query and
each document can be naturally measured by the angle formed by the respective
two vectors—i.e., the smaller the angle formed by a query vector and a document
vector, the more similar the query and the document are.

3.1.1 GAs Without Focus on Web Page Structure

In this subsection we discusstwo GAs for information retrieval in the web with
two different individual representations. However, both GAs have in common the
fact that they do not focus on the use of information about web-page structure. By
contrast, in subsection 3.1.2 we will discuss a GA that focus on the use of
information about web-page structure.

In [2] an individual represents the profile of a user’s interest, consisting of a
set of terms and their corresponding weights. Hence, the GA tries to find the best
posshble combination of terms (words) and term weights that al ow the retrieva
of documents relevant for the user.

More precisaly, an individual consists of a variable-length list of genes. Each
gene is aterm-weight pair, i.e. aterm and its associated weight. This structure is
illugrated in Figure 4. This representation also includes an intuitive semantic-
integrity constraint, namely the fad that a given term can occur at most once in
the genome of agiven individual. We wil | call this aterm-uniquenessconstraint.

m

termlé weight, e . term éweightm

Figure 4: Genome mnsisting o term-weight pairs for information retrieval

In GAs constraints can be handled in at least three ways: (a) pendizing the
fitness of “invalid” individuals, i.e., individuas that violate the cnstraint; (b)
using specia repair operators that transform an invalid individua into a valid
one; or (c) avoiding the creation of an invalid individua atogether, by not
applying a genetic operator when it would produce an invalid individua. The
third approach (c) seams to be the one used in [2]. Crosover and mutation are
performed only if they produce valid offspring, respecting the term-uniqueness
constraint.

The crosover operator is based on the idea of two-point crosover, as
discussed in section 2.1.

There ae two kinds of mutation operator, weight mutation and term mutation.
Weight mutation randomly modifies the value of the weight in a gene. Term
mutation randomly modifies both the term and its weight value in agene.

We now turn to the work of [20]. In thiswork an individual aso represents a
kind of profile of a user's interet, like in [2]. In both systems an individud
esentialy represents a query, but there ae two important diff erences between
these systems, as foll ows.

1) In the former an individual consists of only a set of terms of a query,
whereas in the latter an individual consists of a set of terms and their
correspondng weights, as discussed above.

2) The GA propcsed by Morgan & Kilgour was designed to support on-line
information retrieval in a dynamic environment where user interests are
continuowdy changing, whereas the GA proposed by Atsumi seems to cope with
a somewhat lessdynamic environment.

Let usdiscusseach of these pointsin turn. First, Morgan & Kilgour's GA use
an individual representation conssting of a set of query terms, such as
{“philosophy”, “science”, “induction’}. Note that this representation does not
include term weights. Each individual is represented by a fixed-length list of
terms (genes), but some genes can contain a speda symba dencting an “empty”
gene, with no associated term. Therefore, each individual eff ectively represents a
variable number of terms. For instance, the &ove-mentioned individual,
containing a set of three terms, might be internally represented by a 5-gene
genome such as {“ phil osophy”, “science”, “induction”, [], [}, where the symbaol

“[]” denotes an empty gene. (The number of genes per individua suggested by
theauthorsis 10.)

Seoond, in Morgan & Kilgour's GA the fitness of an individua (query) is
evaluated by the user’s subjective judgement, which is based on the usefulness of
the information retrieved by the query. Note that this is quite different from the
more objective rates of recal and precision used by most information retrieva
systems, including the @ove-described system proposed by [2]. To reduce the
amount of time that the user spends evaluating query results the sysem works
with asmall population of 10 individuals.

The system is an interactive GA (section 2.4) that continuoudly interacts with
the user, as follows. Sincethe GA isrun online, the user can submit new queries
to the database of texts during the GA run. Whenever the user submits a new
guery, that query is added to the arrent population of system-created queries
maintained bythe GA. The new individua (query) is assgned a maximum value
of fitness based on the assumption that user-created queries are the most
important kind of information for buil ding a profile of a user’ sinteres.

Both user-created queries and system-created queries are used to produce the
next population of (system-created) queries via the conventional process of
selection, crosover and mutation. An one-point crosover operator (section 21)
recombines the terms of two parentsto produce two offspring.

There ae two kinds of mutation, namely random mutation and synornym
mutation. The former replaces terms by randomly-chasen words from the UNIX
spell dictionary. The latter replaces terms by one of their synonyms from the
WordNet synorym dictionary [10]. The system uses high rates of mutation — m
the order of 50%. Hence, in this yystem mutation is a major operator to explore
the search space — unlike mnventional GAs, where mutation is usually a minor
seach operator.

3.1.2 A GA with Focus on Web Page Structure

In the previous subsection we have discussed two projects which proposed GAs
for information retrieval in the web. However, in both projeds the use of
information abou web page structure was limited. We now discuss a GA for
information retrieval on the web with considerable more focus on the use of web
page structure [7].

The basc idea isto take into accourt not only the frequency of termsin web
pages, but aso information abou the relative importance of each term as
indicated by the web page structure. More precisaly, for each term the GA takes
into count the kind of HTML tag in which that term occurs. Cutler et a. grouped
HTML tagsinto six classes, namely: Plain Text, Strong, List, Header, Anchor and
Title. Intuitively, the relative importance of a term, for information retrieval
purposes, depends on the dassof tag in which that term occurs. For instance, a
term occurring in a Title tag tends to be more important than aterm occurring in a
Plain Text tag. The question is how to quantify the importance of each tag class
Thisisessentidly the task addressed bythe GA.

Each individual of the GA represents a vector of six weights, called a dass
importance vector (CIV). Each position i (i=1,...,6) of this vector, correspording

to a gene, contains the importance weight assgned to the i-th tag class Hence,
the GA tries to find the best possble combination of tag-class importance
weights.

In order to evaluate the fitnessof an individual, the information in its CIV has
to be combined with information about term frequencies in web pages. This is
dore as follows. For each term and for each web page in which that term occurs
the system computes a term frequency vector (TFV). Each pationi (i=1,...,6) of
this vector contains the frequency of occurrence of the term in the i-th tag class
When an information retrieval query is submitted, the system computes the
weight of termsin web pages according to the formulas:

w=tf . idf,
where idf is the well-known inverse document frequency [23] and tf (term
frequency), which represents the importance of a given term to a given document,
isgivenby tf = TFV . CIV, where “.” denctes the inner product of the two vectors
TFV andCIV.

Hence, the better the CIV represented by an individual, the better the results
of the information retrieval query will be. The fitness of an individua is
computed by an information retrieval metric based on recall and precision.
Hence, the fitnessmeasure is objective, likein [2] but unlike in [20].

Computational experiments showed that the terms in the Strong and Anchor
classes had the highest weightsin the best CIV evolved by the GA. Hence, these
two classes of tags were found to be the most useful ones for improving the
eff ectivenessof information retrieval in the performed experiments.

3.2 Co-Evolving Negotiation Strategies

In this sedion we discuss two evolutionary algorithms for evolving negotiation
strategies. Both algorithms are based on the use of co-evolution, as discussed in
sedion 2.3.

[8] studied the m-evolution of agents representing bargaining strategies. Their
study involved a simple, artificial game problem consisting d three agents which
competitively negotiate to form a two-agent coalition. The aents bargain with
each other to decide which two-agent coalition will be formed and how the points
constituting the coalition's value will be divided between the two agents forming
the coalition. The agent who is excluded from the coalition receives zero.

For ingtance, in a given game the value v of each of the three possble
codlitions are & follows V(AB) = 18, V(AC) = 24, v(BC) = 30, where A, B, C
denate the three agents and v(X,Y) denates the value of the coalition formed by
agents X,Y O {A, B, C}. If, say, A proposes to form a coalition with B, A makes
an offer to B. Such an offer specifies how the 18 points of the codlition are to be
divided between A and B.

Hence, a game proceeds as follows. An agent (the initiator) makes an offer to
another agent (the responder). If the resporder accepts the offer the game ends,
and each of those two agents receives a part of the coalition points, as Pecified in
the offer, while the third agent receives zero. If the resporder does not accept the
offer then it becomes the initiator and makes an offer to either of the two other

agents. The game proceeds in this fashion until an ofer is accepted or a
maximum number of offers has been rejected —in which case all three agents
receive zeo.

Each agent consists of a set of aternative strategies for playing the above-
described game. Each agent’s drategies are represented by a population o 50
genetic programming (GP) individuals. In esence, each individud (strategy) is
an IF-THEN-EL SE gtatement of the form:

IF {condition} THEN {action-1} ELSE {action-2}.

The condition part of the grategy is atriple of the form {Player, LB, UP},
which evaluates to true if, in the arrent received offer, the amount of points
assgned to Player is between the values LB (Lower Bound) and (Upper Bound),
inclusive. Otherwise the condition evauates to false. Action-1 and action-2 can
be one of the following three statements: (a) the ACCEPT symbol, indicating that
the offer is accepted and the game ends; (b) an doffer; or (c) another IF-THEN-
ELSE statement — so that complex srategies can be specified by nesting IF-
THEN-ELSE statements. An dfer isapair of the form { Player, V}, meaning that
the current agent offers to Player (anather agent) V points.

For ingtance, suppase that agent B is respondng to an offer with the srategy
IF{B 4 9% THEN {ACCEPT} ELSE {A 10}. If the anount of points assgned to
B in the received dffer is between 4 and 9 (inclusive) then B accepts the offer.
Otherwiseit offers A 10 paints.

Recall that an agent (player) is represent by a popuation of 50 individuas
(strategies). In order to compute the fitness of an individual, its strategy plays
against a number of combinations of strategies of the two other agents (players).
In aher words, the fitness of a given individua in a given population is
determined by how adapted that individual is to the individuals in the other two
popuations (representing ather players drategies), characterizing a @-evolution
scheme — see section 23.

It should be noted that, although the above-described coalition game simulates
an environment with competing kergaining strategies found in e-commerce
applications, the smulation is dill oversmplified, for several reasons, including
the following ones.

First, the number of points assgned to an agent is a singe scdar vaue. In
reaity agents are likely to be interested in maximizing the value of severa
different, posshbly-conflicting aspects (or isaues) of a cmmercia agreement.
Such aspects may include the price of a product, its quality, time to delivery, etc.
Seoond, it ignares important factors of real-world commercial agreements, such
asthe length of time available for an agent to reach an agreement.

We now discussa project where the problem being solved is aless smplified,
more redlistic model of e-commerce applications. In this project [17] each agent
has a negotiation strategy that takes into account the vaues of several different
issues. More precisely, each agent a has a scoring function V,; for each issue j.
This function determines the score (in the interval [0,1]) that agent a assgns to
the value x of isaue] specified in a given offer. An offer consists essentially of a
vector of values, one vaue for each isaie. When an agent receives an offer, it
rates it by using a utility function V,(x) that is a linear combination of the values
of the isaues specified in the offer, i.e.:

Vi = 2wV, 06),

where w, is the importance (weight) of issie j for agent a. If the value of this
utility function for the received offer is greater than the crresponding value of
the counter offer that the agent would send a this point, then the offer is
accepted. Otherwise a ourter offer is sibmitted — unlessthe dealline assgned
for negatiation has been reached.

The question is how to generate an offer or a cunter offer. In essnce,
(counter) offers are generated by linear combinations of functions called tactics.
Each tactic generates a value for a Sngle negotiation isue based on a single
criterion. There ae 3 basic aiteria used by tactics, namely the time remaining for
reaching an agreement, the amount of resources remaining and the behavior of
the opponent (which is determined by its tactics). In general as the deadline for
reaching an agreement approaches and the quantity of resources is reduced an
agent becomes progressvely more likely to concede. Behavior-dependent tadics
are variations of tic-for-tat that differ with respect to which aspect of the
opporent’s behavior they imitate andto what extent.

Each tactic is asggned an importance weight. For each negatiation isaue, its
valuein an offer is gecified byalinear, weighted combination of tactics. In ather
words, an agent can use adifferent weighted combination o tactics for each
negatiation isaue. Finaly, each agent is asciated with a strategy which, over
time, varies the weights of the different tadics for each of the negotiation issues
in order to adapt to changing environmental conditions — such as the observed
behavior of the oppaent.

Thisis where aGA comes in. The GA evolves a popuation of individuals,
where each individual represents an agent. The genetic material of an individual
represents the parameters of the negatiation tactics and their importanceweights.

The fitness of an individual (agent) is determined by how well that individual
performs with respect to ather individuals. More precisely, there ae two kinds of
agents, buyers and sellers. To compute an agent’s fitnessthe system performs a
roundrobin tournament where each buyer negotiates with eeach seller, following
the basic idea of co-evolution discussed in section 23.

3.3 EAs for Improving the Presentation of Web Pages

In this sedion we discusstwo GAs developed for improving the presentation o
web pages. The first one is an interactive GA for generating HTML style sheets
that are as nice as posshle from the (subjective) viewpoint of a user, whereas the
seoond one is a GA for improving the layout of a web page in more objective
terms. Both systems asaime that the contents of a web page has already been
determined. What the systems try to find is the best visua presentation d that
contents.

Let us start with the GA for generating HTML style sheets proposed by [19].
Each individual of the GA population represents an HTML style sheet. The
genetic material of an individual consists of 26 characterigtics determining the

look of a web site. Each characteristic is represented by a gene. These
characteristics can be divided into two broad groups, namely:

() 5 global characterigtics of an HTML page: the background, color of links,
rules, bulletsand arrows (“badk”, “next”, “home”); and

(b) 21 characteristics determining the gppeaance of the text and paragraphs —
theseinclude, for instance, the font and color of text in title and paragraph tags.

The main question is how to compute the fitnessof an individual —i.e., how
to evaluate the “quality” of a style sheet. The author’s proposed solution for this
problem isto use an interactive GA. The motivation for this is that the quality of
a style sheet strongly depends on subjective preferences of the user, which could
hardly be mathematically defined. Hence an individual’s fitness is computed by
presenting its tyle sheet to the user in a graphical way and letting the user
explicitly select the style sheetsthat (s)he favors.

In order to facilitate the comparison o individuals (style sheets) by the user
the system displays the whole population o individuas simultaneously. Of
course, this severely limits the number of individuals in the popdation. In order
to solve this problem the authors use anonsandard GA which uses a vector of
probabilitiesto model an infinite popuation.

The basic ideais that the GA explicitly manages the probability of occurrence
of each gene value. Let L be the number of genes of an individud. As discussd
above, L = 26. Let k, i=1,...L, be the number of possble values of the i-th gene,
and let p(V,) be the probability that the i-th gene has its j-th vaue, i=1,...L and
j=1,....k. The GA initializes the probability values that, for each gene, al its
values are egualy likely to occur. Mathematically, p(V;) = 1/ k, [i,j. Then 12
individuals are generated, and their style sheets are gplied to the web pages
provided by the user, producing 12 peges that are simultaneoudy shown to the
user. Next, the user sdlects the individuals corresponding to the style sheets that
(s)he likes the most. (The user may aso drectly modify the genes of an
individual in order to improve its style sheet. Such modifications are cnsdered
mutations.) The set of individuals seleded by the user, which are suppaed to
contain the best gene values (characteristics of style sheets), are then used to
update the probability values p(V;). Thisis donein such away that the probability
values p(V,) for the gene values occurring in the selected individuals isincreased.
Once the new values of p(V,) have been computed the next generation of
individualsis generated. This new generation includes dl individuals slected by
the user in the previous generation, without modification, and the remaining
individuals are generated based on the updated probability values p(V;). This
iterative process is repeated until the user is satisfied with the style sheets
propcsed by the GA.

Let us now discussthe GP to automate the layout of web pages proposed by
[12]. The system was designed to optimize the layout of web pages consisting
mainly of pictures in the form of rectangles. The problem isto arrange n = 1
rectangles (pictures) r,,...,r, on alarger rectangle (web page) R in such a way that
some layout-quality criterion (discussed later) is optimized.

A layout for the web page is obtained by subdvidingit into n rectangles using
a reaursive binary-partition method. Hence, a layout is represented by a binary
tree with n leaves, each of them representing a rectangle r,. A simple example is

shown in Figure 5, invadving three rectangles r,, r,, r,. Figure 5(a) shows a
possble layout arranging those three rectangles on the larger rectangle, and
Figure 5(b) shows a high-level view of the GP individua — in the form of a
binary tree — representing the solution shown in Figure 5(a). The root node
indicates that the rectangle R is horizontally partitioned, at coordinate h,, into two
subrectangles. The first of these subrectangles is smply r,, as indicated by the
roat’sleft child (aled node). The root’sright child isan interna node, indicating
that the second subrectangle is verticaly partitioned, at coordinate v,, into two
subrectangles. These subrectangles are smply r, and r,, since both children of this
interna node ae led nodes.

r

Vl
(a) A candidate layout (b) GPindividual representing layout in (a)

Figure5: Arranging threerectangles on alarger rectangle via GP

In order to put a rectangle r, into a given subrectangle produced by a GP
individual it might be necessry to scale down r, - i.e. to reduce its width and
length in order for it to fit into the crresponding subrectangle. As pointed out by
Fuchs, in the context of web pages such scaling down is posshle and sensible, as
long asthe amount of scaling down is not excessve.

The question is how to determine the fitness function for this layout-
optimization problem. The basic idea is that the fitness function must take into
accourt two kinds of factor, namely the anount of left-over blank space in the
layout (i.e. space in the web page that is not used by any picture) and the amount
of scaling down used to fit the pictures into the web page. Both factors are to be
minimized —i.e. the samaler their values, the better the arresponding candidate
layout.

4 Summary and Discussion

In this sedion we summarize the main characterigtics of the EAs reviewed in the
previous sction and provide a comparative analysis of thase dgorithms.

Table 1 summarizes the main characteristics of the @ove-discussed EAs. This
table contains seven rows, one for each of those dgorithms. The table cntains
five columns. The first column simply mentions the bibliographical reference for
the corresponding EA. The dgorithms are listed in the table in the same order as
they were discussed in section 3.

Table 1: Summary of EAsfor E-Commerce-related tasks

Reference EA | Task Individual Fitness
representation
2] GA | information | a set of term- | objective,
retrieval weight pairs static
[20 GA | information | aset of terms subjective,
retrieval interactive,
dynamic
[7 GA | information | a st of tag- | objective,
retrieval classweights static
[8] GP | negdtiation anegotiation competitive,
strategy dynamic
[17] GA | negdtiation parameters of competitive,
negoatiation dynamic
tactics
[19 GA* | web page an HTML style | subjective,
presentation | shed interactive,
dynamic
[12) GP | web page the layout of a | objective,
presentation | web page static

* non-gandard GA, using a vector of probabilities to modd apopuation

The second column specifies the kind of EA, either a GA or GP. As can ke
observed in the table, most systems are GAs, but there are dso two GP systems.
We amphasize that the ategorizations used in the @lls of Table 1 are not
absolute. They serve as rough approximations of their corresponding
characteristics, for pedagogical purposes. For instance, as mentioned above, the
distinction between GA and GP is blurring. In addition, the GA used in [19] isa
non-standard, different kind d GA, sinceit usesavector of probahilitiesto model
a population. In any case, we believe the contents of Table 1 — particularly the
fourth and fifth columns — are useful to draw some conclusions about trends and
important isaues in the gplication of EAs to the e-commerce-related tasks
studied in this chapter.

The third column of Table 1 specifies the task being performed by the
correspondng EA, which is either information retrieval in the web (subsection

3.1), or evolving negatiation strategies (subsection 32), or improving web page
presentation (subsedion 33).

The fourth column indicates the individual representation used by the
correspondng EA. Of course, the individua representation depends on the kind
of task being performed, and even within the same kind of task there ae
significant differences between the representations of different algorithms. Two
interesting remarks can ke made aout the contents of this column. First, out of
the three GAs for information retrieval in the web mentioned in the table, only the
one propcsed by [7]) focus on the use of information about web-page structure.
More precisely, this system identifies $x classes of tags found in web pages:.
Plain Text, Strong, List, Header, Anchor and Title. The system takes into accourt
the dassof tag in which each term (word) occurs, and explicitly seaches for an
optimum vector of importance weights for the tag classes. Seaond, the two EAs
for evolving negatiation strategies use quite different individua representations,
although their target task is quite similar. One of these EAsisa GP system, where
a negotiation strategy is a (possbly nested, complex) lig of IF-THEN-ELSE
statements, whereas the other EA is a relaively smple GA, where only
parameters of negatiation tactics (rather than the structure of a negdtiation
strategy itself) are evolved. On the other hand, the problem being solved by the
GA seems to a more “redistic’ model (athough ill just a model) of an e
commerce environment. The problem being solved by the GP seems to be
“overamplified”, ignaing severa important isaues of a real-world e-commerce
environment. In the future it would be interesting to see the use of GP to search
for negatiation strategiesin a more realistic e.commerce model.

Finally, the fifth column of Table 1 indicates the kind of fitnessfunction used
by the corresponding EA. There ae three possble values for the @&lls of this
column: an objedive, static fitness function; a subjective, interactive, dynamic
one; or a competitive, dynamic ore. It isinteresting to note that, out of the seven
EAs, only three use an objective, static fitnessfunction. The term “datic” is used
here to indicate that the fitnessof an individua has the same value regardless of
the time (generation number) in which it is computed and regardless of the other
individuals in the popuation(s). By contrast, the value of a dynamic fitness
function for an individual can change depending on the time in which it is
computed and/or on the other individuals in the popuation(s). Four out of the
seven EAs — i.e. the mgjority of them — use some kind of dynamic fitness
function, more precisdly either a competitive fitness function (in a m-evolution
framework) or a subjective, interactive fitnessfunction (whose value is explicitly
determined by the user). Note that in the c-evolution frameworks studied here
the fitness function is naturally dynamic, since the fitness of an individud (a
negotiation strategy or parameters of a negotiation tadic) is determined by how
adapted that individual is to individuals in the other population. Similarly, a
subjective, interactive fitnessfunction is naturally a dynamic one, since a user's
interests and evauations are continuowsly changing — and can even be
inconsistent from one generation to ancther or among a group of individuals of a
given generation.

To summarize this important conclusion: dynamic fitness functions — either
competitive ones in a a-evolution framework or interactive ones — tend to have
an important role in several e-commerce gplications, due to the inherently

dynamic nature of this kind d application. In particular, co-evolution seems
naturally useful for evolving negotiation strategies, and subjective, interactive
fitness functions are intuitively useful in tasks such as improving web-page
presentation.

As a final remark, the patentiad of EA for e-commerce gplications goes
considerably beyond what has been discused in this chapter. The area of
“evolutionary e-commerce systems’ is dill in its infancy, and it is likely that
significant progresswill be made in the next few years, motivated by at least two
factors: (a) a growing interest in both e-commerce and evolutionary algorithms —
from bath academia and industry; (b) the need for robust, adaptive Al techniques
(such as EA) that can significantly increase the degree of automation and
computational “intelligence” of e-commerce systems, making them better
prepared for eff ectively coping with the dynamic environments typically found in
e-commerce applications.

References

1. Akkermans H. (200]) Intelligent E-Business from techndogy to value. Guest
Editor’s Introduction. IEEE Intelligent Systems, July/August 2001, pp 8-10.

. Atsumi M. (1997 Extraction of user's interests from web pages based on
genetic dgorithm. English version of the origina Japanese paper published
in IPS) SG Notes (Information Processng Society of Japan, The Special
Interest Groups Notes), 97(51), pp 1318.

. Back T, Fogel DB and Michaewicz T. (Eds) (2000 Evolutionary Computation
1: Basic Algorithms and Operators. Ingtitute of Physics Publishing, Bristol.

4. Banzhaf W, Nordin P, Keller RE, and Francone FD. (1998) Genetic
Programning ~ an Introduction: On the Automatic Evolution o Computer
Programs and Its Applications. Morgan Kaufmann, San Mateo, CA.

5. Blickle T. Tournament selection. (2000 In: Back T, Fogel DB and
Michalewicz T. (Eds) Evolutionary Computation 1: Basic Algorithms and
Operators, pp 181-186. Ingtitute of Physics Publishing, Bristol.

6. Cavaretta MJ and Chellapilla K. (1999) Data mining using genetic
programming: the implications of parsimony on generalization error. Proc.
1999 Congesson Evolutionary Computation (CEC-99), pp 1330-1337. IEEE
Press Piscataway, NJ.

7. Cutler M, Deng H, Maniccam SSand Meng W. (1999) A new study on wsing
HTML structures to improve retrieval. Proc. 11th IEEE Int. Conf. on Tools
with Artificial Intelligence, pp 406409. |IEEE Press, Piscataway, NJ.

8. Dworman G, Kimbrough SO and Laing JD. (1996) Bargaining by artificid
agents in two coalition games: a study in genetic programming for electronic
commerce. Genetic Programming 1996 Proc. 1st Annual Conf. (GP-96).
Morgan Kaufmann, San Mateo, CA.

9. De Jong K. (2000 Evolutionary computation: an unified overview. 2000
Genetic and Evolutionary Computation Conf. Tutorial Program, pp 471-479.
LasVegas, NV.

N

w

10. Fellbaum C. (Ed) (2000) WordNet: an Electronic Lexical Database. MIT
Press Cambridge, MA.

11 Freitas AA. (2001) Understanding the aucial role of attribute interaction in
datamining. Artificial Intelligence Review, 16(3), pp 177-199, Nov 200L.

12. Fuchs MM. (2000) An evolutionary approach to support web page design.
Proc. 2000 Congess on Evolutionary Computation (CEC-2000), pp 13D-
1319 IEEE Press Piscataway, NJ.

13 Goldberg DE. (1989 Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wedey, Reading, MA.

14. Kohavi R. and Provost F. (Eds) (2001) Specia Isaue on Applications of data
mining to eectronic commerce. Data Mining and Knowledge Discovery
5(1/2), pp 5-10. 20. Jan/Apr 2001.

15. Koza JR. (1992 Genetic Programming: on the programning o computers by
means of natural selection. MIT Press Cambridge, MA.

16. Lina F-R and Chang K-Y. (2001) A multiagent framework for automated
online bargaining. |EEE Intelli gent Systems, pp 41-47, July/August 2001

17. Matos N, Sierra C, Jennings NR. (1998) Determining succes<ul negotiation
strategies: an evolutionary approach. Proc. 1998 Int. Conf. on Multi-Agent
Systems (ICMAS-98), pp 182-189.

18 Michalewicz Z. (199%) Genetic Algorithms + Data Sructures = Evolution
Programs. 3rd Ed. Springer-Verlag, Berlin.

19. Monmarche N, Nocent G, Simane M, Venturini G and Santini P. (1999)
Imagine: atool for generating HTML style sheets with an interactive genetic
algorithm based on genes frequencies. Proc. 1999 |EEE Int. Conf. on Systems,
Man and Cybernetics (SMC' 99), pp 640645. |EEE Press Piscataway, NJ.

20. Morgan JJand Kilgour AC. (1996) Personalising ontli ne information retrieval
suppat with a genetic dgorithm. In: Moscardini AO & Smith P. (Eds.)) Proc.
of PolyModel 16: applications of artificial intelligence, pp 142-149.

21. Paredis J (2000 Co-evolutionary agorithms. In: Back T, Fogel DB and
Michalewicz Z. (Eds) Evolutionary computation 2: Advanced Algorithms and
Operators, pp 224-238. Ingtitute of Physics Publishing, Bristol.

22. Poli R and Cagnoni S. (1997) Genetic programming with user-driven
selection: experiments on the evolution of agorithms for image enhancement.
Genetic Programning 1997: Proc. 2nd Annua Conf., pp 269277. Morgan
Kaufmann, San Mateo, CA.

23. Salton G and Buckley C. (1998) Term-weighting approaches in automatic text
retrieval. Information Processng andManagement 24, 513-523. Reprinted in:
Sparck Jones K and Willet P. (Eds) Readings in Information Retrieval, pp
323-328. Morgan Kaufmann, San Mateo, CA.

24. Terano T and Ishino Y. (1998 Interadive genetic dgorithm based feature
selection and its application to marketing deta analysis. In: Liu H and Motoda
H. (Eds) Feature Extraction, Construction ard Selection, pp 393-406. Kluwer,
Boston.

25. Thuraisingham B. (2000 Web Data Management and Electronic Commerce.
CRCPress

