
Probabilistic Clustering for
Hierarchical Multi-Label Classification of

Protein Functions

Rodrigo C. Barros1, Ricardo Cerri1,
Alex A. Freitas2, and André C. P. L. F. de Carvalho1

1 Universidade de São Paulo, São Carlos-SP, Brazil
{rcbarros,cerri,andre}@icmc.usp.br

2 University of Kent, Canterbury, Kent, UK
A.A.Freitas@kent.ac.uk

Abstract. Hierarchical Multi-Label Classification is a complex classifi-
cation problem where the classes are hierarchically structured. This task
is very common in protein function prediction, where each protein can
have more than one function, which in turn can have more than one
sub-function. In this paper, we propose a novel hierarchical multi-label
classification algorithm for protein function prediction, namely HMC-
PC. It is based on probabilistic clustering, and it makes use of cluster
membership probabilities in order to generate the predicted class vec-
tor. We perform an extensive empirical analysis in which we compare
our new approach to four different hierarchical multi-label classification
algorithms, in protein function datasets structured both as trees and di-
rected acyclic graphs. We show that HMC-PC achieves superior or com-
parable results compared to the state-of-the-art method for hierarchical
multi-label classification.

Keywords: Hierarchical Multi-Label Classification; Protein Function
Prediction; Probabilistic Clustering

1 Introduction

Classification is the well-known machine learning task whose goal is to assign
instances to predefined categories. Classification algorithms are given as input a
set of N n-dimensional training instances X = {x1,x2, ...,xN}, as well as their
respective set of class labels C = {Cx1

, Cx2
, ..., CxN }, in which Cxi ∈ {C1, ...Ck}

in a k-class problem.
The vast majority of classification problems require the association of each

instance with a single class, which means Cxi is a single categorical value in
{C1, ...Ck}. This particular kind of problem is regarded as flat or non-hierarchical
classification. Notwithstanding, there are problems in which the classes are or-
ganized in a hierarchical structure — a tree or a directed acyclic graph (DAG)
— and each instance may be associated to multiple classes in multiple paths of
this hierarchy. The difference between the tree and DAG hierarchies is that, in a

2 R.C. Barros et al.

tree, each class can have only one superclass, which implies there is just one path
between the root node and the class node. In a DAG hierarchy, each class can
have more than one superclass at the same time, which means that there can be
multiple paths from the root node to a class node. As an example, consider the
dotted nodes in Fig. 1. While in Fig. 1(a) there is just one possible path between
the root node and the dotted nodes (1/2 and 2/2/1) (tree structure), we can see
that in Fig. 1(b) (DAG structure) we can reach the dotted node at the second
level by two paths (1/2 and 2/2). The same can be observed at the dotted node
located in the third level, which can be reached by two different paths (2/1/1
and 2/2/1).

1 2

1/1 1/2

1/1/1 1/1/2

2/1 2/2

2/2/1 2/2/2

root

1 2

1/1 (1,2)/2

1/1/1 1/1/2

2/1 2/2

(2/1,2/2)/1 2/2/2

root

(a) (b)

Fig. 1. Example of class hierarchy.

Either structured as a DAG or tree, this particularly complex problem is
known as hierarchical multi-label classification (HMC), and is the primary sub-
ject of this paper. In a HMC problem, the set of class labels can be represented
as a matrix V = {vx1

,vx2
, ...,vxN }, in which vxi is the c-dimensional binary

class vector associated with instance xi, in a hierarchy with c nodes (classes).
Each position of the class vector vxi represents a class, and it is set to 1 if xi
belongs to that respective class, or 0 otherwise.

Two important examples of HMC problems are the tasks of text classification
[29, 30, 25] and protein function prediction [4, 6, 31]. The latter is an increasingly
important research field by itself, given the recent availability of unknown pro-
teins for analysis and determination of their respective biological functions. Pro-
tein function prediction can be seen as a predictive problem in which each protein
is a dataset instance, whereas different protein features are used as predictive
attributes, and ultimately the goal is to classify these proteins according to differ-
ent functions they can perform. Since a protein can perform multiple functions,
and these functions are usually organized in a hierarchical structure (e.g., the
FunCat [26] and Gene Ontology [3] protein functional-definition schemes), the
protein function prediction can be regarded as a typical HMC problem.

There has been an increasing number of machine learning approaches for hier-
archical multi-label classification of protein functions. Roughly speaking, these

Probabilistic Clustering for Protein Function Prediction 3

approaches can be divided into local and global approaches. In the local ap-
proach, conventional (flat) classification algorithms such as decision trees or
support vector machines are trained to produce a hierarchy of classifiers, which
are then executed following a top-down strategy to classify unlabeled instances
[11]. In this approach, local information about the class hierarchy is used during
the training process of each base classifier. Such local information can be used
in different ways, depending on how the local classifiers are induced [28]. Dif-
ferently from the local approach, the global approach induces a single classifier
using all classes of the hierarchy at once. After the training process, the classifi-
cation of a new instance occurs in just one step [31]. As global methods induce
a single classifier to consider the specificities of the classification problem, they
usually do not make use of conventional classification algorithms, unless these
are heavily adapted to consider the hierarchy of classes.

In this paper, we propose a novel global hierarchical multi-label classification
algorithm that is based on probabilistic clustering, namely Hierarchical Multi-
label Classification with Probabilistic Clustering (HMC-PC). HMC-PC works
according to the following assumption: instances that belong to a given cluster
have similar class vectors, and hence the training instances are clustered follow-
ing an expectation-maximization scheme [13], and the average class vector of the
training instances from a given cluster is used to classify new unseen instances as-
sociated to the same cluster. The cluster membership probabilities are also used
to tune the average class vector in each cluster. HMC-PC offers the advantages
of the global methods, namely: (a) reduced time complexity when compared to
the execution of multiple classifiers in the local approach; and (b) it does not
suffer the problem of error propagation across levels, since the classification of a
given hierarchical level is not done separately from the other levels. Finally, we
show that HMC-PC presents competitive results when compared with the state
of the art decision-tree-based method Clus-HMC [31].

This paper is organized as follows. Section 2 discusses related work on ma-
chine learning approaches for protein function prediction. Section 3 details HMC-
PC, our novel global algorithm for hierarchical multi-label classification. Sec-
tion 4 depicts the methodology employed for the experimental analysis of pro-
tein function prediction, which is in turn presented in Section 5. We present our
conclusions and future work opportunities in Section 6.

2 Related Work

One of the first HMC algorithms was proposed by Clare and King [10], namely
HMC4.5, which is a global method based on decision-tree induction algorithms.
It is a variant of C4.5 [24] with modifications in the calculation of class entropy.
The proposed modification uses the sum of the number of bits needed to describe
membership or non-membership of each class, and also the information related
to the size of the tree rooted by a given class. The method was used in tree-
structured hierarchies.

4 R.C. Barros et al.

In [18] and [19], the authors proposed a global method for the classifica-
tion of Gene Ontology (GO) [3] genes based on the classification of documents
from the MedLine repository that describe these genes. This method expands
the sets of classes by including their ancestor classes and then applies the Ad-
aBoost algorithm [27] in the modified dataset. Inconsistent predictions that may
have occurred are corrected.

In [4], the authors proposed a local method that uses a hierarchy of SVM
classifiers for the prediction of gene functions structured according to the GO.
The classifiers are trained separately for each class, and the predictions are then
combined using Bayesian Networks [16], aiming at finding the most probable
consistent set of predictions.

In the work of Vens et al. [31], three methods based on the concept of Predic-
tive Clustering Trees (PCT) were extensively compared. The authors make use
of the global Clus-HMC method [5] that induces a single decision tree to cope
with the entire hierarchical multi-label classification problem. They compared
its performance with two local methods. The first one, Clus-SC, induces an in-
dependent decision tree for each class of the hierarchy, ignoring the relationships
between classes. The second, Clus-HSC, explores the hierarchical relationships
between the classes to induce a decision tree for each class. The authors em-
ployed the above-mentioned methods to hierarchies structured both as trees and
DAGs, and discussed the modifications needed so that the algorithms could cope
with both types of hierarchical structures. While in [31] the authors used the Eu-
clidean distance to calculate the similarities and dissimilarities between instances
in the decision tree, Aleksovski et al. [2] expanded this study by investigating
the use of other distance measures, namely Jaccard, SimGIC, and ImageClef.

In [22], Otero et al. proposed hAnt-Miner, a global method for hierarchical
single-label classification using Ant Colony Optimization (ACO) [15, 14]. The
authors later extended this method [23] to allow multi-label classification, con-
sidering both tree- and DAG-structured hierarchies.

Cerri et al. [8] proposed a global method that employs a Genetic Algorithm
(GA) to produce HMC rules. The GA evolves the antecedents of classification
rules, in order to optimize the level of coverage of each antecedent. The employed
fitness (evaluation) function gives a better reward to rules with the antecedents
that cover a higher number of instances. Then, the set of optimized antecedents
is selected to build the corresponding consequent of the rules (set of classes to
be predicted). The method was used in hierarchies structured as trees.

Both in [21] and [1], the authors propose methods that employ clustering as a
substep of classification, though these approaches only deal with flat multi-label
data and not with hierarchical multi-label data.

Finally, Cerri et al. [7, 9] proposed a local approach that employs a sequence
of connected artificial neural networks for protein function prediction. Each net-
work is associated to a hierarchical level, and the output of the network in level
l is used as the input of the network in level l + 1. A strategy for avoiding in-
consistent predictions is employed, since a given neural network may predict a

Probabilistic Clustering for Protein Function Prediction 5

class whose superclass had not been predicted before. The method is tested over
a hierarchy structured as a tree.

3 HMC-PC

In this paper, we propose Hierarchical Multi-label Classification with Probabilis-
tic Clustering (HMC-PC), which is a novel global HMC algorithm. The general
rationale behind HMC-PC is the assumption that we can discover the most fit-
ting probability distribution for each particular group of training instances, and
that those instances that were generated by the same distribution also share sim-
ilar class vectors. Hence, once we have discovered the set of k distributions from
the training set, a new unseen instance can be easily classified by performing two
procedures: (i) discovering the distribution that most probably has generated it
— i.e., discovering which cluster it belongs to; and (ii) assigning to this new
instance the average class vector of the training instances that were generated
by the same distribution (cluster).

HMC-PC can roughly be divided into three mains steps:(i) cluster generation;
(ii) class vector generation; and (iii) classification.

1. Cluster generation: the training dataset is arranged into different clusters
following a probabilistic expectation-maximization (EM) scheme [13];

2. Class vector generation: for each cluster, the class vectors of the training
instances that surpass a given probability threshold are averaged, and later
used to classify unseen instances;

3. Classification: each test instance is assigned to the cluster it most probably
belongs to. Then, the cluster’s average class vector generated in the previous
step is assigned to the test instance as the final prediction.

3.1 Cluster Generation

The first step of HMC-PC is to generate clusters from the training dataset X,
which is comprised of n attributes and N instances. In this step, the class vector
of each instance xi ∈ X, i = 1...N is not used during cluster generation.

Each cluster in HMC-PC is assumed to be generated by a distinct Gaussian
probability distribution. HMC-PC clustering iterates over the steps of expecta-
tion and maximization, much the same as the well-known EM algorithm [13].
We make the further näıve assumption of attribute independence, which means
we are only interested in the diagonal of the covariance matrix Σi from the ith

Gaussian. This assumption is intended to speed-up the algorithm, avoiding the
cost of computing the inverse of Σi, which is usually O(n3).

In the expectation step, the cluster membership of each instance xi regarding
each Gaussian distribution (cluster) Cj is computed, assuming the parameters
of each of the k distributions are already known:

Pr[Cj |xi] =
Pr[xi|Cj]× Pr[Cj]

Pr[xi]
(1)

6 R.C. Barros et al.

where Pr[xi|Cj] = N (xi|µj ,Σj), and Pr[Cj] is estimated as
∑N
i=1 Pr[Cj |xi]/N .

Note that Pr[xi] can simply be replaced by the sum of Pr[xi|Cj] × Pr[Cj] for
the k distributions.

The maximization step is performed by simply updating the parameters of
the k distributions, taking into account the recently computed values of Pr[C|x]:

Nj =

N∑
i=1

Pr[Cj |xi] (2)

Pr[Cj] =
Nj
N

(3)

µj =
1

Nj

N∑
i=1

Pr[Cj |xi]× xi (4)

Σj =
1

Nj

N∑
i=1

Pr[Cj |xi]× (xi − µj)(xi − µj)T (5)

The iteration between the expectation and maximization steps is performed
until one of the two conditions occurs:

– the maximum number of 100 iterations is reached; or
– the difference between the log-likelihood of two consecutive steps is smaller

than 1× 10−6.

The log-likelihood is computed after each expectation step:

LL =

N∑
i=1

ln

 k∑
j=1

Pr[Cj]× Pr[xi|Cj]

 (6)

Since we have to assume that either the cluster memberships Pr[Cj |xi] or
the distribution parameters µj ,Σj are informed before the beginning of the
expectation-maximization iterations, HMC-PC executes the well-known k-means
algorithm [20] 10 times varying the random initialization. The partition with the
smallest value of the squared error is employed to initialize the parameters of
the k distributions.

The only problem that remains is the definition of the number of Gaussian
distributions (clusters). In order to avoid the use of a user-defined parameter,
we propose the following methodology for automatically defining the value of k:

1. Set k = 1;
2. Run the expectation-maximization iterations with 10-fold cross-validation

over the training set, i.e., in each run EM is applied to 9 of the 10 training
folds and the log-likelihood is assessed on the hold-out fold, averaging the
results over the 10 runs.

3. If the log-likelihood has increased, increase the value of k by 1 and the
procedure continues in step 2.

Probabilistic Clustering for Protein Function Prediction 7

After the algorithm has converged and the final parameters of the k clusters
are known, the N training instances are assigned to their most probable cluster,
i.e.:

Cxi = argmax
Cj

(
Pr[xi|Cj]× Pr[Gj]

Pr[xi]

)
(7)

3.2 Class Vector Generation

Once the training instances have been distributed throughout the clusters, HMC-
PC generates one class vector per cluster. The rationale behind this step is that
a future test instance will be assigned to its most probable cluster according to
Eq. (7), and then classified according to the class vector generated from that
cluster. HMC-PC offers two strategies to generate one class vector per cluster:

1. The class vector of cluster Cj is generated as the average class vector of the
training instances that were assigned to cluster Cj , i.e.:

v̄Cj =
1

N

∑
xi∈Cj

vxi (8)

2. The class vector of cluster Cj is generated as the average class vector of
the training instances that were assigned to cluster Cj and whose cluster
membership probability surpass a given previously-defined threshold ∆j ,
i.e.:

v̄Cj =
1

N

∑
xi∈Cj∧

Pr[Cj |xi]≥∆j

vxi (9)

Note that strategy 1 is a special case of strategy 2 in which ∆ = 0 for
all clusters. The second strategy, on the other hand, makes use of the cluster
memberships to define the average class vectors. The disadvantage of the second
strategy is the need of defining threshold values ∆ for each cluster. In order
to overcome this problem, we propose an adaptive threshold selection strat-
egy as follows. First, the training set is divided into two subsets: sub-training
and validation. The sub-training set is used as before to generate the clusters,
and its instances are distributed throughout the discovered clusters. Next, we
also distribute the validation instances to their most probable cluster, also ac-
cording to Eq. (7). Then, for each cluster, we evaluate the classification per-
formance of the validation instances with the area under the precision-recall
curve (AUPRC, more details in Section 4) by building the average class vec-
tor following Eq. (9). For that, we have to try different values of ∆j , i.e.,
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The average class vector built accord-
ing to the threshold value that yielded the largest AUPRC value is then chosen
to classify the test instances that are assigned to cluster Cj .

The pseudo-code of HMC-PC with the adaptive threshold selection strat-
egy is presented in Alg. 1. The main difference between the adaptive threshold

8 R.C. Barros et al.

Algorithm 1 HMC-PC with adaptive threshold selection.

Require: Training dataset X
Require: Threshold set ts = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
1: Divide X in sub-training Xt and validation Xv sets
2: k ← CV (Xt)
3: partition← EM(Xt, k)
4: for xi ∈ Xt do
5: Cxi ← Eq. (7)
6: end for
7: for xi ∈ Xv do
8: Cxi ← Eq. (7)
9: end for

10: for cluster Cj ∈ partition do
11: bestAUPRC ← 0
12: for ∆j ∈ ts do
13: v̄Cj ← Eq. (9)
14: AUPRC ← classify({xv

i|xv
i ∈ Cj}, v̄Cj)

15: if AUPRC ≥ bestAUPRC then
16: bestAUPRC ← AUPRC
17: thresholdsj ← ∆j

18: end if
19: end for
20: end for
21: partition← EM(Xt ∪Xv, k)
22: return thresholds, partition

strategy and the threshold-free strategy is the need for a validation set to au-
tomatically select the value of ∆j for cluster Cj . Note that both training and
validation data are distributed throughout the clusters (lines 5 and 8). The
main loop in line 10 performs the adaptive threshold selection by evaluating the
validation data that were assigned to a given cluster Cj with regard to the differ-
ent threshold values. The algorithm stores in vector thresholds the optimized
threshold value per cluster. These thresholds were the ones that maximized the
AUPRC generated by Eq. (9) (line 13). Therefore, even with the threshold ∆
possibly assuming different values for each cluster, the user is not required to
set any ad-hoc parameter during the whole execution of HMC-PC. Finally, the
method performs the expectation-maximization steps once again (line 21) with
the full training set (sub-training + validation).

3.3 Classification

The last step of HMC-PC is to classify unseen instances. The classification pro-
cess is straightforward: (i) assign each test instance to its most probable cluster
according to Eq. (7); (ii) assuming test instance xi was assigned to cluster Cj ,
make use of class vector v̄Cj computed from the training instances that belong
to cluster Cj and have cluster membership probability greater than thresholdsj
as the class prediction for test instance xi.

Probabilistic Clustering for Protein Function Prediction 9

4 Experimental Methodology

4.1 Baseline Algorithms

We employ four of the methods reviewed in Section 2 as the baseline algo-
rithms during the experiments performed in this work. We make use of the
global decision-tree based method Clus-HMC, which is considered the state-of-
the-art method in the literature, since it obtained the best results so far, and we
also make use of its local variants Clus-HSC and Clus-SC. The three methods
are detailed in [31]. We also employ the Ant Colony Optimization-based method
hmAnt-Miner [23], which is a global method that obtained competitive results
when compared to Clus-HMC. We decided to select these algorithms because
they were all applied to the same protein function prediction datasets used in
the experiments (both for tree and DAG structures). In addition, they all pro-
duce the same type of output provided by HMC-PC, and their performance were
analyzed with the same evaluation measure we use in this paper.

We evaluated HMC-PC’s performance with the two alternative class-vector
generation mechanisms presented in Section 3.2. The first version will be re-
garded as HMC-PC whereas the second version will be regarded as HMC-PC∆.

4.2 Datasets

Ten freely-available numeric datasets3 related to protein function prediction are
used in the experiments, namely: cellcycle, derisi, eisen, gasch1, and gasch2
(FunCat-annotated and Gene Ontology-annotated). The option for all-numeric
datasets is because the current version of HMC-PC can only cope with numeric
attributes. Dealing with nominal attributes is a topic left for future work.

These datasets are related to issues like phenotype data and gene expression
levels. They are organized according to two different class hierarchy structures:
tree structure (FunCat-annotated data sets) and directed acyclic graph structure
(Gene Ontology-annotated data sets).

Table 1 summarizes the main characteristics of the training, validation, and
test datasets employed in the experiments. In the particular case of hmAnt-
Miner and HMC-PC, the training and validation datasets are merged and used
together to generate the predictive models. The PCT-based methods and HMC-
PC∆ make use of the validation datasets to optimize parameters during their
executions.

A detailed description of each dataset can be found in [31]. For executing
HMC-PC in these datasets, all missing values were replaced with the mean value
of the respective attribute.

4.3 Evaluation Measures and Statistical Analysis

Considering that all algorithms tested in this paper output a vector of class
probabilities for each instance being predicted, we make use of the area under
the average PR-curve (AU(PRC)) as the evaluation measure to compare them.

3 http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets.html

10 R.C. Barros et al.

Table 1. Summary of datasets: number of attributes (|A|), number of classes (|C|),
total number of instances (Total) and number of multi-label instances (Multi).

Structure Dataset |A| |C| Training Validation Test
Total Multi Total Multi Total Multi

Tree

Cellcycle 77 499 1628 1323 848 673 1281 1059
Derisi 61 499 1608 1309 842 671 1275 1055
Eisen 79 461 1058 900 529 441 837 719
Gasch1 173 499 1634 1325 846 672 1284 1059
Gasch2 52 499 1639 1328 849 674 1291 1064

DAG

Cellcycle 77 4125 1625 1625 848 848 1278 1278
Derisi 61 4119 1605 1605 842 842 1272 1272
Eisen 79 3573 1055 1055 528 528 835 835
Gasch1 173 4125 1631 1631 846 846 1281 1281
Gasch2 52 4131 1636 1636 849 849 1288 1288

To obtain a PR-curve for a given algorithm, different thresholds ranging
within [0, 1] are applied to the outputs of the methods, and thus different values
of precision and recall are obtained, one for each threshold value. Each threshold
value then represents a point within the PR space. The union of these points
forms a PR-curve. In order to calculate the area below the PR-curve, the PR-
points must be interpolated [12]. This interpolation guarantees that the area be-
low the curve is not artificially increased, which would happen if the curves were
constructed just connecting the points without interpolation. Given a thresh-
old value, a precision-recall point (Prec,Rec) in the PR-space can be obtained
through Eq. (10) and (11), corresponding to the micro-average of precision and
recall, where i ranges from 1 to c, and TP, FP, and FN stand, respectively, for
the number of true positives, false positives, and false negatives.

Prec =

∑
i TPi∑

i TPi +
∑
i FPi

(10) Rec =

∑
i TPi∑

i TPi +
∑
i FNi

(11)

In order to provide some reassurance about the validity and non-randomness
of the results, we employed the Friedman and Holm statistical tests, recom-
mended for comparisons when a control classifier is compared against other
classifiers [17]. We employed a confidence level of 95% in the statistical tests.

5 Results and Discussion

Table 2 presents the comparison among the two HMC-PC versions and the base-
line methods Clus-HMC, Clus-HSC, Clus-SC, and hmAnt-Miner. Given that
hmAnt-Miner is a non-deterministic method, its results are averages over 15
executions. Both versions of HMC-PC and the PCT-based methods are deter-
ministic algorithms and thus require a single execution. We highlight in bold the
best absolute values for each dataset, and we provide at the end of the table the
average rank of each method, following the Friedman statistical test.

Probabilistic Clustering for Protein Function Prediction 11

Table 2. AU(PRC) values for the comparison of HMC-PC with hmAnt-Miner, Clus-
HMC, Clus-HSC, Clus-SC.

HMC-PC HMC-PC∆ Clus-HMC Clus-HSC Clus-SC hm-Ant-Miner

DAG
Cellcycle 0.368 0.369 0.357 0.371 0.252 0.332
Derisi 0.341 0.344 0.355 0.349 0.218 0.334
Eisen 0.396 0.398 0.380 0.365 0.270 0.376
Gasch1 0.381 0.382 0.371 0.351 0.239 0.356
Gasch2 0.369 0.367 0.365 0.378 0.267 0.344

Tree
Cellcycle 0.200 0.187 0.172 0.111 0.106 0.154
Derisi 0.163 0.163 0.175 0.094 0.089 0.161
Eisen 0.211 0.214 0.204 0.127 0.132 0.180
Gasch1 0.212 0.210 0.205 0.106 0.104 0.175
Gasch2 0.196 0.197 0.195 0.121 0.119 0.152

Average Rank 2.15 1.85 2.80 4.00 5.90 4.30

We can observe that both HMC-PC versions are the best-ranked among all
methods. It is interesting to see that the threshold-based version HMC-PC∆,
which takes into consideration the cluster membership probability to build the
average class vectors, is slightly better ranked than HMC-PC. This is coherent
with our initial hypothesis that the cluster membership probabilities can be used
to tune the cluster class vector generation process, improving the prediction of
unseen instances. Indeed, by making use of the cluster memberships, HMC-PC∆
was capable of detecting the training instances that could bring more precise
information within each cluster.

Regardless of the HMC-PC version employed, we can see that it provides
better results than hm-Ant-Miner for all ten datasets. The same can be said
regarding Clus-SC, which is outperformed by either version of HMC-PC by a
large margin.

In the comparison against Clus-HSC, we can notice that HMC-PC and HMC-
PC∆ outperform it in 7 out of 10 datasets, and they are outperformed by it in
the remaining three. It should be noticed that the performance of Clus-HSC in
the datasets structured as a tree is very poor, which seems to be a problem that
both local PCT-based methods share.

Finally, when comparing HMC-PC and HMC-PC∆ with Clus-HMC, we can
see that both versions outperform Clus-HMC in 8 out of 10 datasets, being
outperformed in only two datasets, which is quite a considerable difference con-
sidering the fact that Clus-HMC is the best-performing method in the literature.

For assessing the statistical significance of the results, we first consider the
p-value provided by the Friedman test: 3.15 × 10−6, which states that the null
hypotheses in which all methods perform similarly should be rejected. Then,
we take the best-ranked method as the control algorithm, and a set of pairwise
adjusted comparisons according to Holm’s procedure are performed.

Table 3 presents the p-values and adjusted α values for the Holm pos-hoc
pairwise comparisons, bearing in mind that HMC-PC∆ is the control algorithm.
The statistical test rejects those hypotheses that have a p-value ≤ 0.025. Note

12 R.C. Barros et al.

Table 3. Holm’s procedure for α = 0.05. HMC-PC∆ is the control algorithm.

i Algorithm z = (R0 − Ri)/SE p-value Holm’s adjusted α

5 Clus-SC 4.84 1.29 ×10−6 0.0100

4 hm-Ant-Miner 2.93 3.40 ×10−3 0.0125

3 Clus-HSC 2.57 1.02 ×10−2 0.0167

2 Clus-HMC 1.14 2.56 ×10−1 0.0250

1 HMC-PC 0.36 0.72 ×10−1 0.0500

that HMC-PC∆ outperforms with statistical significance all methods but Clus-
HMC and HMC-PC.

Since Clus-HMC is the best-performing baseline algorithm, we now compare
it with HMC-PC∆ in specific classes of the hierarchy in order to examine their
behavior when predicting classes at different hierarchical levels. For selecting
these specific classes, we used the following methodology: we selected ten classes
from each dataset in which Clus-HMC presented the best per-class AUPRC
values in the training set. We compare the test per-class AUPRC values between
HMC-PC∆ and Clus-HMC in the DAG-structured datasets and in the tree-
structured datasets (Table 4).

By careful inspection of Table 4, we can observe that in the datasets in which
HMC-PC∆ outperformed Clus-HMC in AU(PRC), it also outperformed Clus-
HMC in the majority of the classes regarding the per-class AUPRC. The only
exception was the Gasch2 dataset organized as a DAG, in which Clus-HMC
and HMC-PC∆ tied 5-5 in the 10 selected classes. Overall, HMC-PC∆’s good
performance is consistent across hierarchical levels.

For exemplifying this scenario, we can notice that HMC-PC outperformed
Clus-HMC in several classes that lie deep in the hierarchy. Recall that these
classes are associated with more specific protein functions, and the more specific
the function, the more useful the information about the protein. Also, recall
that the deeper the class, the fewer the number of instances assigned to it.
As an example, we can cite the case of the GO term (class) GO:0006412 in
datasets Cellcycle, Eisen, Gasch1, and Gasch2 (GO-annotated), in which HMC-
PC∆ consistently outperforms Clus-HMC. Figure 2 shows how deep in the DAG-
structured hierarchy the GO term GO:0006412 lies.

GO:0006412

GO:0044267 GO:0009059

GO:0019538 GO:0044260

GO:0044238 GO:0043170 GO:0044237 GO:0009058

GO:0008152 GO:0009087

GO:0008150

Fig. 2. Hierarchical paths that lead to term GO:0006412.

Probabilistic Clustering for Protein Function Prediction 13

Table 4. Per-class AUPRC values for 10 specific classes in each dataset. Classes that
start with “GO:” belong to DAG-structured datasets, whereas the remaining belong
to tree-structured datasets.

Dataset Class Clus-HMC HMC-PC∆ Class Clus-HMC HMC-PC∆

Cellcycle

GO:0044464 0.967 0.961 GO:0044424 0.898 0.921
GO:0009987 0.860 0.876 GO:0008152 0.726 0.767
GO:0003735 0.404 0.649 GO:0044237 0.676 0.699
GO:0044238 0.650 0.677 GO:0044444 0.586 0.624
GO:0043170 0.580 0.632 GO:0006412 0.361 0.599

Eisen

GO:0044464 0.981 0.983 GO:0044424 0.926 0.929
GO:0009987 0.916 0.909 GO:0003735 0.692 0.713
GO:0008152 0.808 0.840 GO:0044445 0.636 0.687
GO:0006412 0.607 0.652 GO:0044237 0.751 0.770
GO:0044238 0.716 0.726 GO:0043170 0.664 0.720

Derisi

GO:0044464 0.965 0.974 GO:0044424 0.888 0.880
GO:0009987 0.849 0.838 GO:0008152 0.736 0.731
GO:0044237 0.674 0.668 GO:0044238 0.643 0.640
GO:0044444 0.582 0.555 GO:0003735 0.462 0.293
GO:0043170 0.585 0.556 GO:0043226 0.525 0.540

Gasch1

GO:0044464 0.963 0.978 GO:0044424 0.912 0.927
GO:0009987 0.855 0.875 GO:0003735 0.659 0.614
GO:0008152 0.733 0.754 GO:0044237 0.674 0.699
GO:0006412 0.574 0.583 GO:0044238 0.660 0.671
GO:0044444 0.647 0.639 GO:0043170 0.616 0.659

Gasch2

GO:0044464 0.966 0.961 GO:0044424 0.910 0.926
GO:0009987 0.863 0.850 GO:0003735 0.622 0.609
GO:0008152 0.741 0.739 GO:0044237 0.696 0.682
GO:0006412 0.521 0.536 GO:0044238 0.667 0.668
GO:0043170 0.655 0.669 GO:0044422 0.601 0.619

Cellcycle

1 0.402 0.432 12.01 0.330 0.425
10 0.335 0.349 12.01.01 0.326 0.351

10.01 0.195 0.200 14 0.303 0.329
11 0.371 0.351 16 0.261 0.276
12 0.304 0.424 20 0.252 0.254

Eisen

1 0.392 0.462 12.01 0.582 0.650
2 0.420 0.301 12.01.01 0.609 0.722
10 0.352 0.364 14 0.396 0.370
11 0.394 0.369 14.13.01 0.177 0.082
12 0.508 0.650 16 0.270 0.250

Derisi

1 0.376 0.400 12.01 0.376 0.235
2 0.238 0.215 12.01.01 0.385 0.234
10 0.240 0.278 14 0.280 0.278
11 0.264 0.337 16 0.237 0.232
12 0.366 0.259 20 0.259 0.248

Gasch1

1 0.444 0.454 12.01 0.635 0.590
2 0.285 0.190 12.01.01 0.660 0.593
10 0.326 0.367 14 0.329 0.362
11 0.363 0.439 16 0.279 0.259
12 0.566 0.587 20 0.300 0.302

Gasch2

1 0.451 0.470 12.01.01 0.627 0.478
10 0.286 0.290 14 0.342 0.352
11 0.409 0.400 16 0.248 0.283
12 0.562 0.546 20 0.253 0.261

12.01 0.634 0.525 42 0.236 0.251

14 R.C. Barros et al.

We conclude by stating that HMC-PC seems to be a good alternative to
Clus-HMC for the following reasons: (i) it performs better in the majority of
the datasets; (ii) it is a parameter-free algorithm; (iii) it provides good AUPRC
values for both shallow and deep classes in the hierarchy; and (iv) its time
complexity is linear in all its input variables.

6 Conclusions

In this paper, we present a novel global hierarchical multi-label classification
algorithm based on probabilistic clustering for the task of protein function pre-
diction. The method is named Hierarchical Multi-Label Classification with Prob-
abilistic Clustering (HMC-PC). We present two different versions of HMC-PC,
namely HMC-PC and HMC-PC∆.

HMC-PC works by clustering the protein function datasets in k clusters fol-
lowing an expectation-maximization scheme [13]. Then, for each of the k clusters,
the average class vector is generated based on the training instances that were
(hard-)assigned to each cluster. The choice of which instances will be used to
define the per-cluster average class vector is based on the probabilities of cluster
membership. The threshold-free version of HMC-PC assumes all instances that
were assigned to a given cluster should be used for generating the cluster’s av-
erage class vector, whereas HMC-PC∆ employs an adaptive threshold selection
strategy based on validation data to select the best value for ∆ in each cluster.

We performed experiments using ten protein function prediction datasets
(five of them structured as trees and five of them structured as DAGs). We
compared HMC-PC versions with four well-known HMC algorithms: two decision
tree-based local methods, namely Clus-HSC and Clus-SC; one decision tree-
based global method, namely Clus-HMC; and one global method based on Ant
Colony Optimization, namely hmAnt-Miner. Among all the methods previously
proposed in the literature, Clus-HMC has been considered so far the state-of-
the-art method for hierarchical multi-label classification [31]. We evaluated the
methods using the area under the average PR-curve (AU(PRC)).

The comparison with the baseline methods shows that HMC-PC — particu-
larly its threshold-based version HMC-PC∆ — outperforms them in the major-
ity of the datasets. We also compared HMC-PC∆ and Clus-HMC in individual
hierarchical classes, and showed that HMC-PC∆ often obtained the best perfor-
mance, including in classes that lie deep in the class hierarchy. This is particularly
important, since deep class predictions tend to be more useful to biololgists than
shallow class predictions.

As future work, we intend to extend HMC-PC so it can also deal with cate-
gorical attributes. We also intend to perform a deeper analysis to verify whether
the thresholds in the different clusters are correlated to each other in any sense.
Finally, we plan to investigate the use of the complete covariation matrix, so
we do not have to make the näıve assumption of attribute independence. Never-
theless, such a modification will lead to an increased time complexity, since the

Probabilistic Clustering for Protein Function Prediction 15

complexity of finding the inverse of a n×n matrix is O(n3), whereas the current
version of HMC-PC is linear in all its input variables.

Acknowledgment

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP), Brazil, for funding this research.

References

1. Ahmed, M.S.: Clustering guided multi-label text classification. Ph.D. thesis, Uni-
versity of Texas at Dallas (2012)

2. Aleksovski, D., Kocev, D., Dzeroski, S.: Evaluation of distance measures for hi-
erarchical multilabel classification in functional genomics. In: 1st Workshop on
Learning from Multi-Label Data (MLD) held in conjunction with ECML/PKDD.
pp. 5–16 (2009)

3. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nature Genetics 25, 25–29 (2000)

4. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label pre-
diction of gene function. Bioinformatics 22, 830–836 (2006)

5. Blockeel, H., Bruynooghe, M., Dzeroski, S., Ramon, J., Struyf, J.: Hierarchical
multi-classification. In: Workshop on Multi-Relational Data Mining. pp. 21–35
(2002)

6. Blockeel, H., Schietgat, L., Struyf, J., Dzeroski, S., Clare, A.: Decision trees for hi-
erarchical multilabel classification: A case study in functional genomics. In: Knowl-
edge Discovery in Databases. pp. 18–29 (2006)

7. Cerri, R., Barros, R.C., Carvalho, A.C.P.L.F.: Hierarchical multi-label classification
for protein function prediction: A local approach based on neural networks. In:
Intelligent Systems Design and Applications (ISDA). pp. 337 –343 (nov 2011)

8. Cerri, R., Barros, R.C., Carvalho, A.C.P.L.F.: A genetic algorithm for hierarchical
multi-label classification. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing. pp. 250–255. SAC ’12, ACM, New York, NY, USA (2012)

9. Cerri, R., Barros, R.C., Carvalho, A.C.P.L.F.: Hierarchical multi-label classification
using local neural networks. Journal of Computer and System Sciences. In press.
(2013)

10. Clare, A., King, R.D.: Predicting gene function in saccharomyces cerevisiae. Bioin-
formatics 19, 42–49 (2003)

11. Costa, E.P., Lorena, A.C., Carvalho, A.C.P.L.F., Freitas, A.A.: Comparing sev-
eral approaches for hierarchical classification of proteins with decision trees. In:
II Brazilian Symposium on Bioinformatics. Lecture Notes in Bioinformatics, vol.
4643, pp. 126–137. Springer-Verlag, Berlin, Heidelberg (2007)

12. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: International Conference on Machine Learning. pp. 233–240 (2006)

13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society 39(1), 1–38
(1977)

14. Dorigo, M.: Optimization, Learning and Natural Algorithms. Ph.D. thesis, Dipar-
timento di Elettronica, Politecnico di Milano, IT (1992)

16 R.C. Barros et al.

15. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Tech.
rep., Dipartimento di Elettronica, Politecnico di Milano, IT (1991)

16. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2-3), 131–163 (1997)

17. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Information Sciences 180(10),
2044–2064 (May 2010)

18. Kiritchenko, S., Matwin, S., Famili, A.: Functional annotation of genes using hier-
archical text categorization. In: Proc. of the ACL Workshop on Linking Biological
Literature, Ontologies and Databases: Mining Biological Semantics (2005)

19. Kiritchenko, S., Matwin, S., Nock, R., Famili, A.: Learning and evaluation in the
presence of class hierarchies: Application to text categorization. In: Lamontagne,
L., Marchand, M. (eds.) Advances in Artificial Intelligence, Lecture Notes in Com-
puter Science, vol. 4013, pp. 395–406. Springer Berlin Heidelberg (2006)

20. Lloyd, S.P.: Least squares quantization in pcm. IEEE Transactions on Information
Theory 28(2), 129–137 (1982)

21. Nasierding, G., Tsoumakas, G., Kouzani, A.Z.: Clustering based multi-label classi-
fication for image annotation and retrieval. In: IEEE International Conference on
Systems, Man and Cybernetics. pp. 4514–4519 (2009)

22. Otero, F.E.B., Freitas, A.A., Johnson, C.: A hierarchical classification ant colony
algorithm for predicting gene ontology terms. In: European Conference on Evo-
lutionary Computation, Machine Learning and Data Mining in Bioinformatics.
Lecture Notes in Computer Science, vol. 5483, pp. 68–79. Springer (2009)

23. Otero, F.E.B., Freitas, A.A., Johnson, C.: A hierarchical multi-label classification
ant colony algorithm for protein function prediction. Memetic Computing 2, 165–
181 (2010)

24. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1993)

25. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of
hierarchical multilabel classification models. Journal of Machine Learning Research
7, 1601–1626 (2006)

26. Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko,
I., Güldener, U., Mannhaupt, G., Münsterkötter, M., Mewes, H.W.: The funcat, a
functional annotation scheme for systematic classification of proteins from whole
genomes. Nucleic Acids Research 32(18), 5539–5545 (October 2004)

27. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. In: Machine Learning. vol. 37, pp. 297–336. Kluwer Academic Pub-
lishers, Hingham, MA, USA (1999)

28. Silla, C., Freitas, A.A.: A survey of hierarchical classification across different ap-
plication domains. Data Mining and Knowledge Discovery 22, 31–72 (2011)

29. Sun, A., Lim, E.P.: Hierarchical text classification and evaluation. In: Fourth IEEE
International Conference on Data Mining. pp. 521–528 (2001)

30. Sun, A., Lim, E.P., Ng, W.K., Srivastava, J.: Blocking Reduction Strategies in
Hierarchical Text Classification. IEEE Transactions on Knowledge and Data En-
gineering 16, 1305–1308 (2004)

31. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Machine Learning 73, 185–214 (2008)

