
Distinct Chains for Different Instances:
an Effective Strategy for

Multi-label Classifier Chains

Pablo Nascimento da Silva1, Eduardo Corrêa Gonçalves1, Alexandre Plastino1,
and Alex A. Freitas2

1 Fluminense Federal University, Institute of Computing, Niteroi RJ, Brazil
{psilva,egoncalves,plastino}@ic.uff.br

2 University of Kent, School of Computing, UK
a.a.freitas@kent.ac.uk

Abstract. Multi-label classification (MLC) is a predictive problem in
which an object may be associated with multiple labels. One of the most
prominent MLC methods is the classifier chains (CC). This method in-
duces q binary classifiers, where q represents the number of labels. Each
one is responsible for predicting a specific label. These q classifiers are
linked in a chain, such that at classification time each classifier considers
the labels predicted by the previous ones as additional information. Al-
though the performance of CC is largely influenced by the chain ordering,
the original method uses a random ordering. To cope with this problem,
in this paper we propose a novel method which is capable of finding a
specific and more effective chain for each new instance to be classified.
Experiments have shown that the proposed method obtained, overall,
higher predictive accuracies than the well-established binary relevance,
CC and CC ensemble methods.

Keywords: Multi-Label Classification; Classifier Chains; Classification

1 Introduction

Multi-label classification (MLC) is the supervised learning problem of automat-
ically assigning multiple labels to objects based on the features of these objects.
An example of practical application is semantic scene classification [1], where
the goal is to assign concepts to images. For instance, a photograph of the sun
rising taken from a beach can be classified as belonging to the concepts “sky”,
“sunrise”, and “ocean” at the same time. Other examples of important applica-
tions of MLC include text classification [16] (associating documents to various
subjects), music categorization [17] (labeling songs with music genres or con-
cepts) and functional genomics [3] (predicting the multiple biological functions
of genes and proteins), just to name a few.

The multi-label classification problem can be formally defined as follows. Let
L = {l1, ..., lq} be a set of q class labels, where q ≥ 2. Given a training set
D = {(x1, Y1), (x2, Y2), ..., (xN , YN)} where each instance i is associated with a

2 Silva et al.

feature vector xi = {(x1, ..., xd)} and a subset of labels Yi ⊆ L, the goal in the
multi-label classification task is to learn a classifier h(X) → Y from D that,
given an unlabeled instance E = (x, ?), is capable of predicting its labelset Y .

MLC problems tend to be more challenging than traditional single-label clas-
sification problems (SLC), where objects can be associated with only a single
target class label. This mainly occurs due to the existence of label correlations
in most MLC problems. For instance, in scene classification, an image labeled as
“ocean” is more likely to also be associated to labels such as “ship” or “beach”,
since these concepts are positively correlated. Similarly, an image associated to
the label “desert” is less likely to also be associated to the label “snow”, as these
concepts are negatively correlated. Therefore, intuitively, it is expected that MLC
methods which are able to identify and model label correlations should be more
accurate. A large body of recent work [2, 9, 14, 15, 20, 24, 26, 27] has primarily
concentrated efforts to tackle this problem by using a wide range of different
heuristics and statistical techniques.

Proposed in [14, 15], the classifier chains method (CC) is one of the simplest
and most prominent of such methods. The CC method involves the training of
q single-label binary classifiers y1, y2, ..., yq where each one will be responsible
for predicting a specific label in {l1, l2, ..., lq}. These q classifiers are linked in
a randomly-ordered chain {y1 → y2 → ... → yq}, such that, at classification
time, each binary classifier yj incorporates the labels predicted by the previous
y1, ..., yj−1 classifiers as additional information. This is accomplished using a
simple trick: in the training phase, the feature vector associated to each classifier
yj is extended with the binary values of the labels l1, ..., lj−1. Although it employs
a simple approach to deal with label dependencies, CC has proved to be one of the
best methods for multi-label learning in terms of both efficiency and predictive
performance, having become a recommended benchmark algorithm [12, 28].

However, there is a drawback in the CC approach even noted by its authors
in [14, 15]: the fact that the label ordering is decided at random. It is intuitive
that an inadequate label ordering can potentially decrease accuracy, as the first
binary classifiers could frequently output wrong predictions at classification time,
thus resulting in significant error propagation along the chain. However, finding
an optimized label sequence is a difficult problem because of the enormous search
space of q! different existing label permutations. In order to cope with this issue,
the authors of CC suggest combining random orders via an ensemble of classifier
chains (ECC) with the expectation that the effect of poorly ordered chains in
predictive accuracy could be mitigated. Recently, other variations of the CC
basic approach have been proposed in the literature [6, 10, 13, 25], which are not
based on ensembles. These novel techniques rely on the use of either statistical
tests of correlation or heuristic search techniques (such as genetic algorithms
and beam search) with the goal of finding a single sequence that leads to an
improvement on the predictive accuracy of the CC model (i.e., an optimized
label sequence). After being determined, this unique optimized chain should be
used in the training and classification steps of the multi-label classifier chain
model.

Distinct Chains for Different Instances 3

Nevertheless, none of the proposed CC variations have yet explored the idea
of using a distinct label sequence for each new instance to be classified. In this
concept, the aim is to construct a model which uses a specific label sequence
tailored to each new instance at classification time. The main contribution of this
paper is to demonstrate that this approach leads to a significant improvement
in the predictive accuracy of the CC model. We propose a novel method called
OOCC (One-to-One Classifier Chains) that addresses this problem by assigning
a label sequence to a new instance in the test set based on the label sequences
that perform well in training instances similar to the new instance, where such
similar training instances are found using a conventional nearest neighbor (lazy
learning) method. As a secondary contribution, this paper also aims at improving
the fundamental understanding of the CC model. In this regard, we report the
results of an experiment that, for the first time, investigated in depth the effect
of different label sequences on the effectiveness of the CC method.

The remainder of this paper is organized as follows. Section 2 presents a brief
overview on multi-label classification and discusses the original CC conceptual
model, highlighting its main advantages and disadvantages. Section 3 presents an
experiment that investigated the influence of the label sequence in the predictive
accuracy of CC models. Section 4 is the main section of this work, where the
OOCC algorithm is formalized and explained. Section 5 revises the related work.
In Section 6, experimental results of OOCC and other MLC algorithms are
presented. Conclusions and research directions are given in Section 7.

2 Multi-Label Classification

2.1 Evaluation Measures

Several evaluation metrics have been proposed to evaluate multi-label classifiers
[12, 18, 28]. This subsection presents the ones used in this paper. In the definitions
throughout the text we adopted the following notation: n is number of test
instances; q is the number of labels; Yi and Zi represents, respectively, the actual
and the predicted labelset of the ith test instance.

The Exact Match (EM) measure, defined in Equation 1, assesses the propor-
tion of instances that were fully correctly predicted in the test set. In Equation
1, I(true) = 1 and I(false) = 0.

EM =
1

n

n∑
i=1

I(Yi = Zi) (1)

The Accuracy (ACC) and F-Measure (FM) measures, respectively defined in
Equations 2 and 3, are less strict than EM, providing the user with information
about the proportion of correct predictions, meanwhile taking into consideration
results that are partially correct.

ACC =
1

n

n∑
i=1

|Zi ∩ Yi|
|Zi ∪ Yi|

(2)

4 Silva et al.

FM =
1

n

n∑
i=1

2× |Zi ∩ Yi|
|Zi|+ |Yi|

(3)

The Hamming Loss (HL) measure, defined in Equation 4, gives the average
percentage of wrong label predictions to the total number of labels. The expres-
sion Yi4Zi represents the symmetric difference between Yi and Zi. Since HL is
a loss function, its optimal value is zero.

HL =
1

n

n∑
i=1

|Zi 4 Yi|
q

(4)

2.2 Basic Approaches for Multi-label Learning

Existing methods for MLC can be divided into two main categories: algorithm de-
pendent or independent [18, 28]. Algorithm dependent methods extend or adapt
an existing single-label algorithm for the task of MLC. E.g., in [22] the authors
developed a special topology and a new inference procedure for Bayesian net-
works so as to allow their use in multi-label problems.

By contrast, algorithm independent methods transform the multi-label prob-
lem into one or more single-label classification (SLC) problems. Then, any ex-
isting SLC algorithm can be directly applied by simply mapping its single label
predictions into multi-label predictions. This enables abstraction from the under-
lying base algorithm, which is an important advantage since different classifiers
achieve better performance in different application domains. There are a few dis-
tinct strategies to perform the transformation, being the binary relevance (BR)
[11, 15] approach the most commonly adopted. This method works by decompos-
ing the multi-label problem into q independent single-label binary problems. In
the training phase, one binary classifier is independently learned for each label.
The labels of new instances are predicted by combining the outputs produced
by each classifier.

The BR strategy presents some advantages: (i) it is simple and algorithm
independent; (ii) it scales linearly with q; (iii) it can be easily parallelized. How-
ever, a serious disadvantage lies in that it is based on the assumption that all
labels are independent. Each classifier works independently, disregarding the
possible occurrence of relationships among labels. As a consequence, potentially
important predictive information may be ignored.

2.3 Classifier Chains

The classifier chains model [14, 15], briefly introduced in Section 1, represents a
direct extension to the BR approach which is able to exploit label correlations.
As with BR, the CC method involves the training of q single-label binary clas-
sifiers y1, y2, ..., yq where each one will be solely and respectively responsible for
predicting a specific label in {l1, l2, ..., lq}. The difference is that, in CC, these q
classifiers are linked in a chain {y1 → y2 → ...→ yq}. The first binary classifier

Distinct Chains for Different Instances 5

in the chain, y1, is trained using solely the attributes that compose the feature
set X as its input attributes to predict the first label l1. The second binary clas-
sifier, y2, is trained using X augmented with l1, which corresponds to the label
associated to the classifier y1. Each subsequent classifier yj is trained using X
augmented with the information of j−1 labels (the labels associated to the pre-
vious j − 1 classifiers in the chain). Once the model is trained, the classification
step should also be performed in a chained way. To predict the labelset of a new
object, q binary classifications are needed, with the process beginning at y1 and
going along the chain. In this procedure, the classifier yj predicts the relevance
of label lj , given the feature space augmented by the predictions carried out by
the previous j − 1 classifiers.

The CC conceptual model has many appealing properties. First, it is theo-
retically simple. While most MLC methods invest in complex probabilistic ap-
proaches to model label dependencies, CC adopts a quite straightforward strat-
egy: it just passes label information between classifiers. It is also relatively effi-
cient, since it scales linearly with q. Finally and more importantly, the method
has proved to be highly effective. A comprehensive recent empirical study [12]
comparing several state-of-the-art methods for MLC reported that CC is among
the top best performing algorithms in terms of predictive performance. However,
there is an important drawback in the basic CC approach: the label ordering is
decided at random instead of being selected in a data-driven fashion. This issue
is carefully investigated in the next section.

3 The Label Sequence Issue

In the basic CC model, the label sequence is decided at random. This has often
been considered a major drawback, even noted by the authors of CC themselves,
which deemed that if the first members of the chain have low accuracy (i.e., if
they output many wrong predictions), error propagation will occur along the
chain causing a significant decrease in predictive accuracy [14, 15]. In a similar
vein, [10, 13] argued that different label orderings can lead to different results in
terms of predictive accuracy mainly due to noisy data and finite sample effects.
For example, if a label lj is rare, then its binary model may be misestimated
depending on the position of lj in the chain. Nonetheless, the authors of [19] have
a completely different belief. They consider that the effect of the chain order will
often be very small when the number of features in the dataset is much higher
than the number of labels (which corresponds to the most typical situation).

Nevertheless, [2] realized that “the effect of different orders on the prediction
performance of the (CC) algorithm has not yet been studied in depth”. Motivated
by this consideration and by the conflicting views of [19] and [10, 13–15], we
decided to carry out an experiment to investigate the following questions:

1. Does finding a single optimized label sequence for the entire dataset indeed
significantly improve the effectiveness of CC?

2. Does finding different optimized label sequences for distinct instances im-
prove even more the effectiveness of CC?

6 Silva et al.

The experiment consisted in assessing the predictive accuracy of CC consid-
ering all q! label permutations of three benchmark datasets using the following
single-label base algorithms: k-NN, C4.5, Näıve Bayes, and SMO [23]. The main
goal is to observe the differences in predictive accuracy between the best (most
accurate) chain and the worst chain for each of those base classifiers. If most of
the differences are large, then there is evidence that the label sequence is actu-
ally important. In the experiment the predictive performance is determined in
terms of the Accuracy measure (a brief note on results for other measures will
be mentioned later).

The experiment was implemented in Java, within the MULAN tool [21], an
open source platform for the evaluation of multi-label algorithms that works on
the top of the WEKA API [7]. The datasets “emotions” (q = 6), “scene”(q = 6)
and “flags” (q = 7), obtained from the MULAN repository were used in this
experiment. Since they have a small number of labels, it became feasible to
build and test CC models for all possible label permutations. These models were
evaluated by applying the holdout method with the use of the training and test
parts supplied with the datasets.

Tables 1, 2 and 3, respectively present the results for the datasets “emotions”,
“scene” and “flags” in terms of Accuracy. These tables are divided into four main
columns. The first indicates the name of the base algorithm (the acronym “x-NN”
is used to refer to the k-NN algorithm configured with k = x). The second main
column indicates the obtained Accuracy values when a unique chain is selected
for the training and testing of all instances. It is divided into sub-columns {1},{2}
and {3}, which respectively present the performance of the best label sequence,
the performance of the worst label sequence and the difference in the Accuracy
value between the best and the worst sequences. The third main column indicates
the obtained Accuracy values when different label sequences are used for different
instances. It is also divided into three sub-columns, labeled as {4}, {5} and {6}.
Sub-column {4} presents the Accuracy value that is obtained when the best label
sequence associated with each instance is selected. Sub-column {5} presents
the computed Accuracy value when the worst sequence associated with each
instance is selected. Sub-column {6} simply shows the difference between the
values in {4} and {5}. Finally, the fourth main column presents the improvement
in performance obtained when the best chain for each instance is selected in
relation to the use of a unique best chain for the entire dataset (the best chain
on average). In Sub-columns {3}, {6}, and {7}, the numbers between brackets
in each cell denote the rank of the corresponding difference values.

The results revealed that: (i) using a single optimized label sequence indeed
has a strong effect on predictive accuracy; and (ii) finding different optimized
label sequences for distinct instances is even more effective. For example, consider
the performance of the C4.5 algorithm in Table 3. Note that the difference in
Accuracy between the model built with the best single chain (i.e., the best chain
on average considering the entire dataset) and the model built with the worst
single chain reached 12.65% (Sub-column {3}). However, the difference in the
predictive performance between selecting the best chain for each instance and

Distinct Chains for Different Instances 7

Table 1: Results of the exhaustive experiment in terms of Accuracy values for
the emotions dataset.

Classifier
One chain for the dataset One chain for each instance Improvement

Best {1}Worst {2} Diff {3} Best {4}Worst {5} Diff {6} {7}={4}−{1}
1-NN 0.4926 0.4926 0.0000 (7) 0.4926 0.4926 0.0000 (7) 0.0000 (7)
3-NN 0.5837 0.4983 0.0854 (5) 0.6885 0.3879 0.3006 (3) 0.1048 (5)
5-NN 0.5957 0.5314 0.0643 (3) 0.7227 0.3982 0.3245 (5) 0.1270 (4)
7-NN 0.6021 0.5307 0.0714 (4) 0.7244 0.3916 0.3328 (4) 0.1223 (3)
C4.5 0.5380 0.4059 0.1321 (1) 0.9059 0.0724 0.8335 (1) 0.3679 (1)
NB 0.5436 0.5184 0.0252 (6) 0.5840 0.4656 0.1184 (6) 0.0404 (6)

SMO 0.6167 0.4864 0.1303 (2) 0.7805 0.3426 0.4380 (2) 0.1638 (2)

Table 2: Results of the exhaustive experiment in terms of Accuracy values for
the scene dataset.

Classifier
One chain for the dataset One chain for each instance Improvement

Best {1}Worst {2} Diff {3} Best {4}Worst {5} Diff {6} {7}={4}−{1}
1-NN 0.6368 0.6368 0.0000 (7) 0.6368 0.6368 0.0000 (7) 0.0000 (7)
3-NN 0.6785 0.6575 0.0210 (5) 0.7103 0.6315 0.0787 (5) 0.0318 (5)
5-NN 0.6898 0.6522 0.0376 (3) 0.7429 0.6196 0.1233 (3) 0.0531 (3)
7-NN 0.6819 0.6487 0.0332 (4) 0.7277 0.6116 0.1161 (4) 0.0458 (4)
C4.5 0.5993 0.5376 0.0617 (2) 0.8822 0.1564 0.7259 (1) 0.2829 (1)
NB 0.4415 0.4358 0.0057 (6) 0.4473 0.4309 0.0164 (6) 0.0058 (6)

SMO 0.6915 0.6069 0.0846 (1) 0.9034 0.3537 0.5497 (2) 0.2119 (2)

selecting the worst chain for each instance is 54.24% (Sub-column {6}). More
interestingly, note that the choice of the most accurate chain for each instance
lead to an Accuracy value 18.67% higher than that achieved by the one obtained
by the model built with the best single chain for the entire dataset (Sub-column
{7}). The same characteristic can be also observed for the two other datasets
(Tables 1 and 2) and nearly all base algorithms evaluated in the experiments,
with the exception of 1-NN (for which there is no improvement in Sub-column
{7} across Tables 1, 2 and 3).

Additionally, it is also evident that the different base (single-label) algo-
rithms, due to their own characteristics, are affected to different degrees by the
label ordering. The effect tends to be very large when the base algorithms are
C.45 and SMO, but it can be rather small for Näıve Bayes. The k-NN presented
large differences for some configurations of k and small differences for others.

We also ran the same experiment using the measures of Exact Match and
Hamming Loss and the results were similar: they evidenced that building a model
which uses a specific and more effective label sequence for each new instance
at classification time can largely improve the predictive performance of CC.
Motivated by this empirical finding, in the next section we propose a novel

8 Silva et al.

Table 3: Results of the exhaustive experiment in terms of Accuracy values for
the flags dataset.

Classifier
One chain for the dataset One chain for each instance Improvement

Best {1}Worst {2} Diff {3} Best {4}Worst {5} Diff {6} {7}={4}−{1}
1-NN 0.5305 0.5305 0.0000 (7) 0.5305 0.5305 0.0000 (7) 0.0000 (7)
3-NN 0.6223 0.5159 0.1064 (5) 0.6964 0.4154 0.2810 (2) 0.0741 (5)
5-NN 0.6277 0.5343 0.0934 (4) 0.7487 0.4225 0.3262 (4) 0.1210 (4)
7-NN 0.6143 0.5102 0.1041 (3) 0.7394 0.4104 0.3290 (3) 0.1251 (3)
C4.5 0.6222 0.4957 0.1265 (1) 0.8089 0.2665 0.5424 (1) 0.1867 (1)
NB 0.5759 0.4873 0.0886 (6) 0.6291 0.4179 0.2112 (5) 0.0532 (6)

SMO 0.6068 0.5220 0.0848 (2) 0.7712 0.3751 0.3962 (6) 0.1644 (2)

method that addresses this problem by assigning a label sequence to a new
instance based on the label sequences that perform well in the training instances
that are most similar to the new instance being classified.

4 One-to-One Classifier Chains (OOCC)

In this section we present a novel method called One-To-One Classifier Chains
(OOCC), which assigns a label sequence to each new instance t in the test set
based on the label sequences that perform well in training instances similar to
t. The basic ideas of our OOCC method are as follows. First, we find the one or
more label sequences that perform well for each training instance (see Subsection
4.1). Then we use a k-NN (k-nearest neighbors) algorithm to retrieve the k
training instances that are most similar to the instance t being classified, and
assign, to t, the label sequence that was found to perform best for the training
instances. Due to the similarity between testing instance t and its nearest training
instances, it is expected that an effective label sequence for instance t’s nearest
neighbors will also be an effective label sequence for instance t.

In order to measure the predictive accuracy associated with each candidate
label sequence for a given training instance, we compute the quality function in
Equation 5. This function (originally proposed in [6]) determines the quality of
prediction performed by a CC model with regard to the instance t, by taking
into account the measures of Exact Match, Accuracy and Hamming Loss.

Quality(t, CC) =
(1−HL) + ACC + EM

3
(5)

The OOCC method modifies both the training and the classification steps of
the original CC method. These changes are explained in the next subsections.

4.1 OOCC’s Training Procedure

Algorithm 1 describes the algorithm used in the OOCC’s training step. This
algorithm produces as output an array named bestChains, which is responsible

Distinct Chains for Different Instances 9

Algorithm 1 OOCC’s training procedure

Input : D (training set), m (number of data partitions), r (number of label sequences)
Output: bestChains (an array containing the best chains for each training instance)

1: Divide the training set D into m folds {D1, D2, ..., Dm}
2: bestChains→ new Array(N)
3: for all folds Dv ∈ D do
4: CCModels← ∅
5: Dst ← {D −Dv}, where Dv = validation set, Dst = sub-training set
6: RS ← generateRandomSequences(r)
7: for all label sequences ls ∈ RS do
8: CC ← buildCC(Dst, ls)
9: CCModels← CCModels ∪ CC

10: end for
11: for all instances I ∈ Dv do
12: bestQuality ← −1
13: for all classifier chain models CC ∈ CCModels do
14: ls ← label sequence associated to the model CC
15: curQuality ← Quality(I, CC)
16: if curQuality > bestQuality then
17: bestQuality ← curQuality
18: bestChains(I)← {ls, curQuality}
19: else if curQuality = bestQuality then
20: bestChains(I)← bestChains(I) ∪ {ls, curQuality}
21: end if
22: end for
23: end for
24: end for
25: return bestChains

for storing the best label sequence(s) associated to each training instance at the
end of processing. First, the training dataset is partitioned into m distinct subsets
(line 1), where m is a user-provided parameter. Each of the m subsets represents
a different validation set (denoted as Dv within the algorithm specification).
These validation sets are processed in turn in the FOR loop that encompasses
lines 3 to 24. This FOR loop is divided into two phases: building CC models
with random chains (lines 4 to 10) and selection of the best label sequences for
each instance (lines 11 to 23).

The first phase works as follows. During each iteration, the data partition Dv

is assigned r distinct random label sequences, where r is specified by the user.
Next (lines 7 to 10), r CC models are induced, one for each distinct sequence,
using a sub-training set Dst formed by the remainder m−1 data partitions (i.e.,
all data partitions except Dv). These models are stored in the array CCModels.

Once the models are built, it becomes possible to identify the best label
sequences associated to each instance I of the data partition Dv. This is done in
the second phase of the OOCC’s training procedure. In this phase, all r trained

10 Silva et al.

Algorithm 2 OOCC’s classification procedure

Input : D (training set), t (instance to be classified), k (number of neighbors)
Output: Z (the predicted labelset for instance t)

1: NN ← find the k closest neighbors to t in D.
2: S ← ∅
3: bestQuality ← −1
4: for all neighbors I ∈ NN do
5: chains← label sequences stored in bestChains(I)
6: curQuality ← Quality of the label sequences stored in bestChains(I)
7: if curQuality > bestQuality then
8: bestQuality ← curQuality
9: S ← chains

10: else if curQuality = bestQuality then
11: S ← S ∪ chains
12: end if
13: end for
14: if S.size = 1 then
15: ls ← the label sequence stored in S
16: else
17: ls ← randomly-choose a label sequence from S
18: end if
19: CC ← buildCC(D, ls)
20: Z ← classify(t,CC)
21: return Z

models contained in CCModels are used to evaluate the Quality of each instance
I from Dv with the use of the function defined in Equation 5 (lines 14-15). The
label sequence which achieves the highest value of Quality for an instance I must
be stored in the output array bestChains, along with their associated Quality
value (lines 16-21). Since for some instances, more than one label sequence may
achieve the same best value of Quality, it is possible to store more than one label
sequence for I.

4.2 OOCC’s Classification Procedure

The OOCC method employs a lazy procedure to classify a new test instance t,
which is described in the algorithm shown in Algorithm 2. This procedure can
be divided into three phases which are explained below.

Phase 1 (line 1) consists in finding the k instances more similar to t in the
training set, where k is a user-specified parameter. In Phase 2 (lines 3 to 13),
the algorithm examines the best label sequences associated to each neighbor
instance (which were found in the OOCC’s training step and are stored in the
bestChains set). At the end of this phase, the highest-quality sequence(s) will be
stored in the S set. Phase 3 (lines 14 to 21) actually performs the classification
of t. First, an optimized label sequence ls is selected from S. A CC model is
induced using the training set D and ls. This model is then used to classify t.

Distinct Chains for Different Instances 11

5 Related Work

The authors of the original CC method were the first to propose a method to ad-
dress the label ordering issue. They suggested the use of an ensemble of classifier
chains (ECC) [14, 15] in order to cope with that issue. In this approach the indi-
vidual classifiers vote and the output labelset for a new instance is determined
based on the collection of votes.

The techniques proposed in [6, 10, 13, 25] are based on the search for a sin-
gle optimized label sequence rather than using an ensemble approach. In [25],
the authors present the Bayesian Chain Classifier (BCC) algorithm. In this ap-
proach, the first step is to induce a maximum weighted spanning tree, according
to the mutual dependence measure between each pair of labels. Then, different
optimized sequences may be generated according to the selection of a distinct
node as the root node. The algorithm presented in [10] tackles the label sequence
optimization problem by performing a beam search over a tree in which every
distinct path represents a different label permutation. Since the construction of
a tree with q! paths is infeasible even for moderate sizes of q, the algorithm em-
ploys a user adjustable input parameter b (beam width) to reduce the number
of paths (at each level, only the top-b vertices in terms of predictive accuracy
are maintained in the tree). The M2CC algorithm, described in [13], employs
a double-Monte Carlo optimization technique to efficiently generate and eval-
uate a small population of distinct label sequences. The algorithm starts with
a randomly chosen sequence, s0. During the algorithm execution this sequence
is modified with the aim of finding, at least, a local maximum of some payoff
function (e.g.: Exact Match). Finally, the work of [6] proposes GACC – a genetic
algorithm to solve the label sequence optimization problem. In this strategy, each
chromosome represents a different label sequence and the fitness function is the
same defined in Equation 5. The crossover operation works by transferring sub-
chains of random length between pairs of individuals. The proposed GA follows
the wrapper approach [5], evaluating the quality of an individual (candidate la-
bel sequence) by using the target MLC algorithm (i.e. the CC algorithm). All
these proposals aim at finding a unique label sequence that is used to train a CC
model for all instances in the training dataset. Differently, the OOCC method
proposed in this work is capable of selecting a distinct and more effective chain
for each instance of the training dataset.

The PCC algorithm, introduced in [4], represents a technique to improve CC
through the use of inference optimization. The PCC’s training step is identical
to the CC’s one: a label sequence is randomly chosen and used to train a CC
model. However, its classification step works differently. According to the label
sequence used in the training step, the PCC classifier aims at maximizing the
posterior probability of the predicted labelset for each test instance. However,
differently of our approach, the PCC requires a probabilistic single-label base
classifier. Moreover, it has the disadvantage of employing an exhaustive search
in the space of 2q possible label combinations. Thus, its practical applications
are restricted to problems where q is small.

12 Silva et al.

6 Experiments

We implemented our OOCC method within the MULAN platform [21]. The
proposed method was evaluated on nine distinct benchmark datasets, which
were obtained from the Mulan repository. A holdout evaluation was performed
to assess the predictive performance of the multi-label methods, by using the
training and test parts that come with these datasets. We compared OOCC
to the algorithms BR, CC and ECC. The WEKA’s SMO implementation with
default parameters was used as the base single-label classification algorithm for
all evaluated methods, although other algorithms could have been used. The
parameter values used in OOCC were k = 5, m = 5 and r = 15. For ECC, the
number of members in the ensemble was set to 10.

The predictive performance of the algorithms was evaluated in terms of Ac-
curacy, F-Measure, Hamming Loss and Exact Match. To determine whether the
differences in performance for each measure are statistically significant, we ran
the Friedman test and the Nemenyi post-hoc test, following the approach de-
scribed in [8]. First, the Friedman test is executed with the null hypothesis that
the performances of all methods are equivalent. Whenever the null hypothesis
is rejected at the 95% confidence level, we ran the Nemenyi post-hoc multiple
comparison test, which assesses if there is a statistically significant difference in
the performances of each pair of methods.

The results for the measures of Accuracy, F-Measure, Hamming Loss and
Exact Match are respectively presented in Tables 4, 5, 6 and 7. In these tables,
N , d and q represent, respectively, the number of instances, attributes and labels
for each dataset. The best results for each dataset are highlighted in bold type.
The obtained rank for each method in each dataset is presented in parenthesis.
In the lines right below Tables 4, 5 and 6, the symbol � represents a significant
difference between one or more methods, such that {a} � {b, c} shows that the
method a is significantly better than b and c.

Table 4: Performance of BR, CC, ECC and OOCC in terms of Accuracy.

Dataset (N , d, q)
Accuracy

BR CC ECC OOCC

flags (194, 19, 7) 0.5938 (1.0) 0.5560 (4.0) 0.5748 (2.5) 0.5748 (2.5)
cal500 (502, 68, 174) 0.2017 (2.0) 0.1765 (4.0) 0.2007 (3.0) 0.2113 (1.0)
emotions (593, 72, 6) 0.4835 (4.0) 0.5202 (3.0) 0.5653 (2.0) 0.5866 (1.0)
birds (645, 300, 19) 0.5669 (3.0) 0.5623 (4.0) 0.5682 (1.0) 0.5672 (2.0)
genbase (662, 1186, 27) 0.9908 (2.5) 0.9908 (2.5) 0.9908 (2.5) 0.9908 (2.5)
medical (978, 1449, 45) 0.6990 (4.0) 0.7134 (3.0) 0.7161 (2.0) 0.7220 (1.0)
enron (1702, 1001, 53) 0.4063 (3.0) 0.4053 (4.0) 0.4501 (1.0) 0.4129 (2.0)
scene (2407, 294, 6) 0.5711 (4.0) 0.6598 (3.0) 0.6654 (2.0) 0.6702 (1.0)
yeast (2417, 103, 14) 0.5018 (3.0) 0.4892 (4.0) 0.5333 (2.0) 0.5429 (1.0)

rank sums 26.5 31.5 18.0 14.0

{OOCC} � {BR,CC,ECC}, {ECC} � {BR,CC}, {BR} � {CC}

Distinct Chains for Different Instances 13

Table 5: Performance of BR, CC, ECC and OOCC in terms of F-Measure.

Dataset (N , d, q)
F-Measure

BR CC ECC OOCC

flags (194, 19, 7) 0.7139 (1.0) 0.6764 (4.0) 0.7020 (2.0) 0.6927 (3.0)
cal500 (502, 68, 174) 0.3297 (2.0) 0.2919 (4.0) 0.3251 (3.0) 0.3375 (1.0)
emotions (593, 72, 6) 0.5556 (4.0) 0.5979 (3.0) 0.6429 (2.0) 0.6627 (1.0)
birds (645, 300, 19) 0.6061 (1.0) 0.5976 (4.0) 0.6039 (2.5) 0.6039 (2.5)
genbase (662, 1186, 27) 0.9940 (2.5) 0.9940 (2.5) 0.9940 (2.5) 0.9940 (2.5)
medical (978, 1449, 45) 0.7273 (4.0) 0.7409 (3.0) 0.7436 (2.0) 0.7472 (1.0)
enron (1702, 1001, 53) 0.5152 (4.0) 0.5110 (3.0) 0.5575 (1.0) 0.5197 (2.0)
scene (2407, 294, 6) 0.5985 (4.0) 0.6761 (3.0) 0.6870 (2.0) 0.6883 (1.0)
yeast (2417, 103, 14) 0.6101 (3.0) 0.5904 (4.0) 0.6361 (2.0) 0.6436 (1.0)

rank sums 25.5 30.5 19.0 15.0

{OOCC} � {BR,CC,ECC}, {ECC} � {BR,CC}, {BR} � {CC}

The results presented in Tables 4 and 5 show that the OOCC performance
is, in the majority of the datasets, superior to all other methods with respect
to the Accuracy and F-Measure metrics. Note that the obtained rank sums are
always smaller (indicating a better result) for the OOCC method. Actually,
the Friedman test reported a significant difference between the methods. The
Nemenyi post-hoc test indicated that OOCC is significantly better than CC,
BR and ECC for both Accuracy and F-Measure, at the 95% confidence level.

The results in Table 6 indicate that ECC obtained the best results in terms
of Hamming Loss, being significantly superior to all other methods. For this
measure, the OOCC method performed fairly well, as it is significantly better
than CC and equivalent to BR. Finally, Table 7 presents the results regarding
the Exact Match measure. Although the Friedman and Nemenyi tests indicated
that no statistically significant differences exist between the Exact Match values
achieved by the four methods, it is possible to observe that the OOCC algorithm

Table 6: Performance of BR, CC, ECC and OOCC in terms of Hamming Loss.

Dataset (N , d, q)
Hamming Loss

BR CC ECC OOCC

flags (194, 19, 7) 0.2637 (1.0) 0.3011 (4.0) 0.2813 (2.0) 0.2835 (3.0)
cal500 (502, 68, 174) 0.1375 (1.0) 0.1527 (3.0) 0.1458 (2.0) 0.1635 (4.0)
emotions (593, 72, 6) 0.2145 (3.0) 0.2376 (4.0) 0.2137 (2.0) 0.2063 (1.0)
birds (645, 300, 19) 0.0658 (3.0) 0.0668 (4.0) 0.0595 (1.0) 0.0619 (2.0)
genbase (662, 1186, 27) 0.0007 (2.5) 0.0007 (2.5) 0.0007 (2.5) 0.0007 (2.5)
medical (978, 1449, 45) 0.0117 (4.0) 0.0115 (3.0) 0.0111 (1.5) 0.0111 (1.5)
enron (1702, 1001, 53) 0.0572 (2.0) 0.0585 (4.0) 0.0512 (1.0) 0.0573 (3.0)
scene (2407, 294, 6) 0.1144 (3.0) 0.1154 (4.0) 0.1026 (1.0) 0.1116 (2.0)
yeast (2417, 103, 14) 0.1997 (1.0) 0.2109 (4.0) 0.2024 (3.0) 0.2014 (2.0)

rank sums 20.5 32.5 16.0 21.0

{ECC} � {BR,CC,OOCC}, {OOCC} � {CC}, {BR} � {CC}

14 Silva et al.

has the smallest rank sum (i.e., the best overall result), having obtained the best
results for five of the nine evaluated datasets.

Our empirical results indicate that the proposed OOCC method exhibits
a very competitive performance, obtaining results significantly superior to the
other evaluated methods, according to two of the four evaluated measures of pre-
dictive accuracy. It is also worth noting that the original CC method performed
rather poorly in terms of Accuracy, F-Measure and Hamming Loss, presenting
a performance significantly inferior to ECC, OOCC and even to the baseline
BR method (the CC method performed better than BR only in terms of Exact
Match, however without statistical significance). This confirms that the use of
a single randomly-generated label sequence seems to be an ineffective approach
for multi-label chain classifiers, reinforcing the importance of either using an
ensemble or searching for an optimized label sequence.

Table 7: Performance of BR, CC, ECC and OOCC in terms of Exact Match.

Dataset (N , d, q)
Exact Match

BR CC ECC OOCC

flags (194, 19, 7) 0.1538 (1.5) 0.1231 (3.5) 0.1231 (3.5) 0.1538 (1.5)
cal500 (502, 68, 174) 0.0000 (2.5) 0.0000 (2.5) 0.0000 (2.5) 0.0000 (2.5)
emotions (593, 72, 6) 0.2525 (4.0) 0.2822 (3.0) 0.3267 (2.0) 0.3465 (1.0)
birds (645, 300, 19) 0.4630 (3.5) 0.4722 (1.5) 0.4722 (1.5) 0.4630 (3.5)
genbase (662, 1186, 27) 0.9799 (2.5) 0.9799 (2.5) 0.9799 (2.5) 0.9799 (2.5)
medical (978, 1449, 45) 0.6140 (4.0) 0.6326 (3.0) 0.6357 (2.0) 0.6465 (1.0)
enron (1702, 1001, 53) 0.1209 (4.0) 0.1313 (2.0) 0.1503 (1.0) 0.1295 (3.0)
scene (2407, 294, 6) 0.4908 (4.0) 0.6112 (2.0) 0.6012 (3.0) 0.6162 (1.0)
yeast (2417, 103, 14) 0.1603 (4.0) 0.1952 (3.0) 0.2148 (2.0) 0.2399 (1.0)

rank sums 30.0 23.0 20.0 17.0

No significance differences according to the Friedman test

7 Conclusions and Future Work

The classifier chains approach has become one of the most influential methods for
multi-label classification. It is distinguished from other methods by its simple and
effective approach to exploit label dependencies. However, the basic CC model
suffers from an important drawback: it decides the label sequence at random. The
main contribution of this paper was the proposal of a novel multi-label classifier
chain method called One-to-One Classifier Chains (OOCC), which is capable of
finding, at classification time, a specific and more accurate label sequence for each
new instance in the test set. The OOCC method was compared against the well-
established BR, CC and ECC methods. The obtained results show that OOCC
significantly outperformed all these three methods in terms of Accuracy and
F-Measure. In terms of Hamming Loss, OOCC significantly outperformed CC
and was significantly outperformed by ECC. There was no significant difference
among the four methods in terms of the Exact Match measure.

Distinct Chains for Different Instances 15

Additionally, we contributed to a better understanding of the underlying
principles of the CC method by reporting the results of a study that evidenced
that: (i) finding a single optimized label sequence has a strong effect on predictive
accuracy; (ii) finding different optimized label sequences for distinct instances is
even more effective; and (iii) the different base (single-label) algorithms, due to
their own characteristics, are affected to different degrees by the label ordering.

For future research, we first intend to perform a detailed analysis on the
sensivity of the results to the parameters r, m and k. The main goal is to
determine the best set of parameters for the OOCC algorithm, using the training
set to optimize the parameters. We also intend to evaluate other approaches to
determine the label sequence of a new instance to be classified (which may not be
necessarily based on the Quality measure). Finally, we plan to compare OOCC
against some of the methods described in Section 5 and to develop an ensemble
version of the proposed OOCC method.

Acknowledgments. This work was supported by CAPES research grant BEX
1642/14-6 (Eduardo Corrêa Gonçalves), CNPq and FAPERJ research grants
(Alexandre Plastino) and CAPES DS scholarship (Pablo Nascimento da Silva).

References

1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning Multi-Label Scene Clas-
sification. Pattern Recognition, 37(9), 1757–1771 (2004).

2. Cherman, E.A., Metz, J., Monard, M.C.: Incorporating Label Dependency into the
Binary Relevance Framework for Multi-label Classification. Expert Systems with
Applications, 39(2), 1647–1655 (2012).

3. Clare, A., King, R.: Knowledge Discovery in Multi-label Phenotype Data. In: 5th
European Conf. on Principles of Data Mining and Knowledge Discovery (PKDD
2001), pp. 42-53, Freiburg, 2001.

4. Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes Optimal Multilabel Classifi-
cation via Probabilistic Classifier Chains. In: 27th Intl. Conf. on Machine Learning
(ICML’10), pp. 279–286, Haifa, 2010.

5. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms. Natural Computing Series, Springer (2002).

6. Gonçalves, E.C., Plastino, A., Freitas, A.A.: A Genetic Algorithm for Optimizing
the Label Ordering in Multi-Label Classifier Chains. In: IEEE 25th Intl. Conf. on
Tools with Artificial Intelligence (ICTAI’13). pp. 469–476, Herndon, 2013.

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten,
I.H.: The WEKA Data Mining Software: an Update. ACM SIGKDD Exploration
Newsletter, 11(1), 10–18, (2009).

8. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Per-
spective. Cambridge University Press (2011).

9. Li, N. and Zhou, Z.-H.: Selective ensemble of classifier chains. In: Proceedings of
the 11th International Workshop on Multiple Classifier Systems (MCS’13). pp.
146–156, Nanjing, 2013.

10. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Beam Search Algorithms for Mul-
tilabel Learning. Machine Learning, 92(1), 65–89 (2013).

16 Silva et al.

11. Luaces, O., Dı́ez, J., Barranquero, J., Coz, J. J., Bahamonde, A.: Binary Rele-
vance Efficacy for Multilabel Classification. Progress in Artificial Intelligence, 1(4),
Springer-Verlag, 303–313 (2012).

12. Madjarov, G., Kocev, D., Gjorgjevikj, D. Džeroski, S.: An Extensive Experimen-
tal Comparison of Methods for Multi-label Learning, Pattern Recognition, 45(9),
3084–3104 (2012).

13. Read, J., Martino, L., Luengo, D.: Efficient Monte Carlo Methods for Multi-
dimensional Learning with Classifier Chains. Pattern Recognition, 47(3), 1535–
1546 (2014).

14. Read, J., Pfahringer, B., Holmes, G. Frank, E.: Classifier Chains for Multi-label
Classification. In: 20th European Conf. on Machine Learning (ECML 2009), pp.
254–269, Bled, 2009.

15. Read, J., Pfahringer, B., Holmes, G. Frank, E.: Classifier Chains for Multi-label
Classification. Machine Learning, 85(3), 333–359 (2011)

16. Schapire, R.E., Singer, Y.: BoosTexter: A Boosting-based System for Text Cate-
gorization. Machine Learning, 39(2-3), 135–168 (2000).

17. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-Label Classifica-
tion of Music into Emotions. In: 9th Intl. Conf. on Music Information Retrieval
(ISMIR’08), pp. 325–330. Philadelphia, 2008.

18. Tsoumakas, G., Katakis I., Vlahavas, I.: Mining Multi-Label Data. Data Mining
and Knowledge Discovery Handbook, pp. 667–685, Springer US, 2010.

19. Tenenboim-Chekina, L., Rokach, L., Shapira, B.: Identification of Label Depen-
dencies for Multi-label Classification. In: 2nd Intl. Workshop on Learning from
Multi-Label Data (MLD’10), pp. 53–60. Haifa, 2010

20. Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: An Ensemble Method for Mul-
tilabel Classification. In: 18th European Conf. on Machine Learning (ECML’07),
pp. 406–417. Warsaw, 2007.

21. Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.P.: MULAN: A Java Library
for Multi-Label Learning. JMLR, 12, 2411–2414 (2011).

22. van der Gaag, L., de Waal, P.R,.: Multi-dimensional Bayesian Network Classifiers,
In: 3rd European Workshop on Probabilistic Graphical Models (PGM’06) pp. 107–
114, Prague, 2006.

23. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques: Practical Machine Learning Tools and Techniques, 3rd ed.,
Elsevier Science, (2011).

24. Yua, Y., Pedryczb, W., Miao, D.: Multi-label Classification by Exploiting Label
Correlations. Expert Systems with Applications, 41(6), 2989–3004 (2014).

25. Zaragoza, J.H., Sucar, L.E., Morales, E.F., Bielza, C., Larrañaga, P.: Bayesian
Chain Classifiers for Multidimensional Classification. In: 22nd Intl. Joint Conf. on
Artificial Intelligence (IJCAI’11), pp. 2192–2197, Barcelona, 2011.

26. Zhang, M.-L, Zhang, K.: Multi-label Learning by Exploiting Label Dependency.
In: 16th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
(KDD’10), pp. 999–1008. Washington D.C., 2010.

27. Zhang, M.-L., Zhou, Z.-H.: ML-KNN: A Lazy Learning Approach to Multi-label
Learning. Pattern Recognition, 40(7), 2038–2048 (2007).

28. Zhang, M.-L., Zhou, Z.-H.: A Review On Multi-Label Learning Algorithms. IEEE
Transactions on Knowledge and Data Engineering, 99(PrePrints) (2013).

