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Abstract Proteins can be grouped into families according to their bio-
logical functions. This paper presents a system, named GAMBIT, which
discovers motifs (particular sequences of amino acids) that occur very
often in proteins of a given family but rarely occur in proteins of other
families. These motifs are used to classify unknown proteins, that is, to
predict their function by analyzing the primary structure. To search for
motifs in proteins, we developed a GA with specially tailored operators
for the problem. GAMBIT was compared with MEME, a web tool for
finding motifs in the TransMembrane Protein DataBase. Motifs found
by both methods were used to build a decision tree and classification
rules, using, respectively, C4.5 and Prism algorithms. Motifs found by
GAMBIT led to significantly better results, when compared with those
found by MEME, using both classification algorithms.

1 Introduction

After unveiling the DNA sequence of an organism, researchers turn to the
laborious task of annotation. Afterwards, the proteome of the organism is seen
as one of the main products of genome sequencing projects. In recent years
researchers have witnessed an exponential growth of biological databases, thanks
to the many genome sequencing projects in the world.

Proteins are essential for life since they are responsible for most functions in
an organism, such as: transport of small molecules (e.g., hemoglobin), regula-
tion (e.g., insulin), sustentation (e.g., collagen), increase of reaction speed (e.g.,
enzymes) and others. Biological organisms have thousands of different types of
proteins, which are constituted basically of amino acids linked in linear chains
through peptide connections. Active intra-molecular forces cause the proteins
to assume specific three-dimensional shapes that are directly related to their
biological functions [8]. Proteins are grouped into super families, families and
subfamilies according to their biological function. The classification of proteins
is an important task for the molecular biologist, and, ultimately, it is aimed to
identify the function of the protein.

There are several protein databases available, for instance, Swiss-Prot and
Protein Data Bank (PDB) [1]. In this work we used the TMPDB (TransMem-
brane Protein DataBase) [13],[7],[6], a transmembrane subset extracted from



some public databases that contains information about the primary structure
of 302 transmembrane proteins. The choice for this subset was due to the ex-
tremely important functions that these proteins plays in life as pumps, channels,
receptors, catalyzers, energy transducers, etc., and have been reported recently
to share approximately 20-30% of genes in a whole genome. The transmembrane
protein molecules are difficult to crystallize due to their amphiphilic charac-
teristics — they present hydrophobic transmembrane segments (TMSs) but also
hydrophilic loops.

The protein-classification problem (PCP) is a very important research area
in bioinformatics. As mentioned before, the many genome sequencing projects
have been unveiling a growing number of gene products whose function is un-
known or barely estimated by homology techniques. The prediction of protein
function has been done basically in two ways: prediction of the protein structure
and then prediction of function from the structure, or else, classifying proteins
into functional families and supposing that similar sequences will have similar
functions. Notwithstanding, most proteins share similar structures (in particular,
considering the primary structure), since many of them have a common evolu-
tionary origin [11]. Common structures may be characteristic of a given family
of proteins but, on the other hand, unrelated families can also share common
structures. This two-fold characteristic makes the PCP a challenging problem, for
which many methods have been suggested; see, for instance [5],[9],[10],[14],[15].

This paper reports the development and application of a computational tool,
named GAMBIT (Genetic Algorithm-based Motif Browsing and Identification
Tool), specially devised for the automatic discovery of motifs (short sequences of
amino acids). This tool is based on genetic algorithms and uses as input only the
information about the primary structure of proteins. The system finds variable-
length motifs that occur very often in proteins of a given class (family) but rarely
occur in proteins of other classes. Those discovered motifs can be further used to
discriminate families of (known) proteins and for the automatic classification of
unknown proteins. That is, using the motifs discovered by the proposed system,
one can estimate function of an unknown protein by analysing only its primary
structure.

2 Methodology

2.1 Data preprocessing

The version of the TMPDB used in this work was #6.3, from November 2003.
A TMPDB file uses the same format as Swiss-Prot and it has information about
the primary sequence of a protein. For the purposes of this work we used only
the following fields: ID (identification code in other databases), ME (membrane
in which the protein exists) and SQ (Sequence header and its length, followed
by the amino acids sequence).



The TMPDB contributors [6] have collected 1,074 articles reporting TM
topology, by using MEDLINE search using keywords “transmembrane” and “topol-
ogy” and they found 895 articles. By searching the web directly without using
MEDLINE they found 46 articles, and by searching for Swiss-Prot and TrEMBL
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entries whose RP line contains the annotations of “X-ray crystallography”, “struc-
ture by neutron diffraction”; “structure by electron cryomicroscopy”’, “structure
by NMR” or “topology”, they found 133 articles. After the validation of each ar-
ticle, they extracted the 302 experimentally-characterized transmembrane pro-
teins. To obtain the complete sequence, they made a cross-reference to public
databases (using the protein name or the partial sequences). Finally, by combin-
ing the information contained in the articles and other information of the public
databases, they constructed TMPDB.

The transmembrane proteins are distributed across 25 classes. In this work,
aiming to have statistically meaningful results, we used only 6 classes, those with
10 or more proteins. The number of proteins in each class was: 144 proteins in
class Inner Membrane (IM), 64 in class Plasma Membrane (PM), 22 in class
Mitochondrial Inner Membrane (MM), 10 in class Chloroplast Thylakoid Mem-
brane (CM), 25 in class Endoplasmic Reticulum Membrane (EM) and 16 in class
Outer Membrane (OM). Therefore, we used 281 out of 302 proteins of TMPDB,
and this data set is available at http://bioinfo.cpgei.cefetpr.br/en/softwares.

2.2 Encoding and fitness function

Genetic Algorithms (GA) were used in this work due to its ability to perform
adaptive, powerful and robust searches. Besides, their intrinsic parallelism allows
the simultaneous exploration of different regions of the search space. The use of
GA for real-world problems encompasses two important definitions: the encoding
scheme of an individual and the fitness function. In the implemented system,
individuals represent a single motif, that is, a variable-length string of characters,
over the alphabet used for encoding the 20 standard amino acids [8].

Recall that our goal is to find a sequence of amino acids (motif) with a high
discriminatory power — i.e., a pattern that occurs in most proteins of a given
class and occurs in few or no proteins of all other classes. Therefore, this pattern
can be characteristic of a given family, allowing it to be discriminated from all
others — the essence of classification.

In order to discriminate an individual, we developed a special fitness function
that is computed as follows. Given a motif found by the GA, for each class
1, i=1,...,6 (for the transmembrane dataset used in this work), the relative
frequency of occurrence of the motif in that class is computed. This is simply
the number of proteins of the i-th class where the motif occurs anywhere in the
protein ‘s sequence divided by the number of proteins in the i-th class. Next, for
each class 4, a measure of the ability of the motif to discriminate between class
1 and the other classes is given by the equation (1):
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where Fj is the relative frequency of the motif in the i-th class, n is the number
of classes (n = 6 in this work), and & is the number of classes that contain at least
one protein whose primary sequence contains the given motif. The rightmost
term of the formula simply computes the average relative frequency of the motif
in all classes j # 4 containing at least one occurence of the motif. This term
is subtracted from 1, so that the term between brackets is to be maximized.
Similarly, the value of F; is also to be maximized. Therefore, a high value of
Disc; means that the motif occurs very often in class ¢ but rarely in the remaining
classes. If £ = 1, in order to avoid division by zero in equation (1), the fraction in
the formula is considered to collapse to zero, so that the term between brackets
collapses to 1 and Disc; collapses to F;. This reflects the desirable case where
the motif occours only in class i (and in no class 7, j # 4), so that the motif
quality depends only on Fj.

Once the value of Disc; has been computed for all n classes (i = 1,...,n), the
individual is associated with the class having the largest value of Disc;. In other
words, the motif represented by the individual is considered as a characteristic
pattern for proteins of the class with the largest value of Disc;. The proposed
fitness function is normalized in the range [0..1], making the interpretation of
results somewhat easier, since 1 is the best possible value, meaning maximum
discrimination.

2.3 Selection method and genetic operators

In this work, the selection method used was the well-known stochastic tour-
nament (with tournament size k > 2). The usual one-point crossover operator
is stochastically applied with a predefined probability, using two individuals of
the selected pool. Since the length of the chromosome is variable, the traditional
concept of crossover point was slightly modified and adapted to our individual
representation. The crossover point is a percentage (of the length of the individ-
ual) that defines the starting point from where the crossover breaks the string.
The same percentage is used for both parents. For instance, if the percentage is
80%, the rightmost 20% of the amino acids contained in the parents are crossed-
over.

As usual, the mutation operator is used to further explore the search space
and to avoid unrecoverable loss of genetic material that leads to premature
convergence to some local minima. Due to the specific purpose of our system,
we devised four different types of mutation (herein, sub-operations), as follows:

1. Left-adding: one randomly generated character (corresponding to an amino
acid) is added to the left of the motif.

2. Right-adding: one randomly generated character (corresponding to an amino
acid) is added to the right of the motif.



3. Random-changing: all the amino acids from a randomly selected starting
point up to the end of the motif are changed, except the first and the last
position.

4. Cutting-out: it removes a single character from the amino acid sequence.
The removal position is randomly generated.

The mutation probability is a user-defined parameter, as usual in GA. Once
the system has decided to do a mutation, all sub-operations have the same
probability of being chosen, in a random fashion.

Both crossover and mutation operators are also “hill-climbing-based oper-
ators” because they are implemented in such a way that a new individual is
immediately evaluated after it has been created and, if its fitness is lower than
the parent’s fitness, the parent (rather than the child) is copied to the next gen-
eration. This procedure does not increase significantly the computational cost
and makes the evolutionary process faster in terms of number of generations
necessary for convergence, since the generated offspring will be always better
than their parents (or will not be generated otherwise). Hence, after a genetic
operator is selected according to a given probability, it can be applied in the
usual way (inserting the children in the new population regardless of their fit-
ness) or as a hill-climbing-based operator. This choice is done probabilistically
according to another user-defined parameter — hill climbing-based operator rate.

The expansion operator is a new operator specifically designed for the motif
discovery and protein classification problem. This operator starts by accessing
the first protein of the class associated with the individual (this class was deter-
mined during the computation of the fitness) and locating the position, in that
protein, where the individual’s amino acid sequence occurs. Then, it tentatively
adds the immediately preceding amino acid (in the protein) to the individual’s
amino acid sequence (candidate motif). The relative frequency of the individual’s
amino acid sequence in that class is recomputed. If the new relative frequency
is equal to or higher than the previous relative frequency, the just-added amino
acid is effectively added to the motif. This operation corresponds to expan-
sion of the individual’s genotype. This process is iteratively repeated until the
relative frequency becomes lower than the previous one. At this point the above-
described expansion process is applied to the amino acid immediately subsequent
in the protein. Finally, the whole process (expansion to the left and expansion
to the right) is repeated for all the other proteins of the class associated with
the individual. Note that this is a computationally expensive operator, but our
preliminary experiments have shown that it effectively leads to motifs with a
higher predictive power for protein classification.

2.4 Running parameters

The implemented GA has several parameters and many preliminary runs were
done to adjust these parameters. This task was done using an enzyme dataset
with 6 classes and 100 enzimes per class. These results will be published in [14].
In these runs the expansion operator was always turned on, and those tests



produced the following optimal values of parameters: number of generations =
300, population size = 200, hill-climbing-based operator rate = 10%, tournament
size = 1%; crossover probability = 20%; mutation probability = 70%. The hill
climbing-based operator rate is low to avoid losing population diversity and to
prevent a premature convergence.

A conventional GA returns, as its result, the best individual (the one with
highest fitness) found during the run. However, in our system the desired result
is not a single individual, but rather, a set of individuals. That is, each individual
represents a single amino acid sequence (motif), associated with a single class,
and this kind of pattern will be used further to classify proteins. Therefore, it is
necessary to discover many patterns, associated with as many different classes
as possible during the GA search. In each generation, after the fitnesses of all
individuals have been computed, some high-quality motifs for each class are
saved in a separated file, called the set of discovered patterns - SDP. In fact,
the individuals representing those patterns still remain in the population; only a
copy of them is saved into SDP. The criterion to select these individuals is their
fitness — only those with fitness greater than a user-defined minimum quality
threshold will be saved. This procedure results in the discovery of many motifs,
associated with different classes, as desired. However, special care is taken to
prevent adding motifs that are substrings of other motifs already in the SDP.

3 Computational Experiments and Results

Using the data described in Section 2.1, motifs were discovered using two
different tools: GAMBIT and MEME (Multiple EM for Motif Elicitation) [2].
MEME is a well-known freely-available web tool supported by the San Diego Su-
percomputer Center (http://meme.sdsc.edu/meme/website/intro.html). MEME
essentially uses statistical modeling techniques to automatically choose the best
width and description for each motif. In our experiments, we used all default
parameters of MEME, except the number of motifs, set to 15.

After running GAMBIT and MEME, the top fifteen motifs discovered by
each of those tools were set aside as designated results for each of those tools.
The goodness of a motif was measured by its class-discrimination ability, as
defined in equation 1. Recall that both GAMBIT and MEME are intended
to discover motifs in sets of sequences and are not designed as classification
tools. Hence, in order to evaluate the effectiveness of the discovered motifs in
predicting the functional class of proteins, we have used the discovered mo-
tifs as predictor attributes in two classification algorithms available in WEKA
(Waikato Environment for Knowledge Analysis) [16] , version 3.4.3. WEKA is
a well-known Java-based data mining toolkit freely-available on the internet
(http://www.cs.waikato.ac.nz/ml/weka).

The two classification algorithms used in the experiments were J4.8 (the
WEKA implementation of the very well-known C4.5 decision tree induction al-
gorithm [12]) and Prism [4], a rule induction algorithm that discovers classifi-



cation rules directly from the data, without producing a decision tree. In our
experiments, we used the default parameters of both J4.8 and Prism.

The predictive accuracies obtained by J4.8 and Prism were measured using
a well-known 3-fold cross validation procedure [16], as follows. The data set
was partitioned into 3 mutually-exclusive and exhaustive partitions. In the i-th
iteration of the cross-validation procedure, i=1,2,3, the ¢-th partition was used
as the test set and the other two partitions were grouped and used as the training
set. In each of the 3 iterations, first GAMBIT and MEME were used to discover
motifs from the training set. Then, as mentioned earlier, those motifs were used
as predictor attributes in J4.8 and Prism, which were also run on the training
set. Each motif was used as a binary attribute, indicating whether or not the
motif occurred in a given protein (training example).

Note that each of the two classification algorithms, J4.8 and Prism, was run
twice: one run used motifs discovered by GAMBIT, and the other run used motifs
discovered by MEME. This produced four classification models — two decision
trees produced by J4.8 and two rule sets produced by Prism. Finally, the four
classification models were evaluated on the test set — which was never accessed
during training — in order to measure the predictive accuracy (generalization
ability) of the discovered classification models. This procedure was carried out 3
times (corresponding to the 3 iterations of the cross-validation procedure), and
the reported results are the average of the accuracy rate on the test set across
the 3 iterations.

Figure 1 shows the decision tree generated by J4.8 and Table 1 shows the
rules generated by Prism. Due to space limitations, both Figure 1 and Table 1
show only the classification models built from the motifs discovered by GAMBIT.
In Figure 1, each internal node tests for the presence (1) or absence (0) of an
attribute (a motif). Similarly, in Table 1 the conditions in the rule antecedents
refer to the presence or absence (indicated by a “not” operator) of motifs. The
predicted classes — represented in the leaf nodes of the decision tree and in the
consequents of the rules — are the membrane classes defined in Section 2.1. For
instance, the top-right part of the decision tree in Figure 1 corresponds to the
rule: IF motif GHL is absent (0) AND motif AQS is present (1) THEN class =
PM (Plasma Membrane).

Although there are many ways to measure classification accuracy (see, for
instance, [3],[16]), in this work, the final performance was measured using the
accuracy rate. The average accuracy rates (on the test set) computed by the
cross-validation procedure were: 73.4% using J4.8 with motifs found by GAM-
BIT, 58.0% using J4.8 with motifs found by MEME, 99% using Prism with motifs
found by GAMBIT, and 65.4% using Prism with motifs found by MEME.

Therefore, the motifs found by GAMBIT were clearly much more effective in
predicting protein class than the motifs found by MEME, in both the classifica-
tion algorithms used in the experiment (J4.8 and Prism).

Note that Prism obtained considerably better results than J4.8. A likely
explanation for this result is that Prism is more flexible, in the sense that it can
select only one relevant value of an attribute (motif) — either its presence or its



absence. By contrast, J4.8 has to select both values of an attribute (motif) —
both “1” (presence) and “0” (absence) — to be included in the tree (in different
branches coming out from the same parent). In this kind of data set, intuitively
the presence of a motif is a more relevant attribute value than its absence, which
gives an advantage to the more flexible rule representation of Prism. Indeed, out
of the 20 rule conditions in Table 1, only 4 refer to the absence of a motif (using
the operator “not”). The other 16 conditions refer to the presence of a motif. In
addition, note that the class OM does not appear in the decision tree of Figure
1, which is a clear disadvantage of that classification model. Finally, note also
that the decision tree of Figure 1 uses only short motifs (with 3 amino acids),
whereas the rules in Table 1 have a somewhat wider diversity of motif size: two
rules use motifs with four amino acids, and one rule uses a motif with six amino
acids (a motif produced by the expansion operator).

Figurel. Decision tree constructed by J48 using motifs found by GAMBIT.



If (SRR) then IM
If (SNN) then IM
If (APML) then IM
If (MNNM) then IM
If (EWR) then PM
If (LIG and VLG and SLK) then PM
If (LWK and not(MKK)) then MM
If (RGYWQE) then CM
If (VTV and GFV and not(TN)and not(LWA)) then EM
If (VDY and DGD) then OM
If (DPT and LID and not(GDI)) then OM
Tablel. Subset of the best rules found by PRISM using motifs found by GAMBIT.

4 Conclusions and Future Work

We described a system based on a Genetic Algorithm specifically designed
for motif discovery, aiming to classify unknown-class proteins. The system was
evaluated using a transmembrane protein dataset.

The genetic operators of GAMBIT, specifically designed for the PCP, have
played an important role in the positive results achieved, since they allowed the
GA to obtain motifs with high discriminatory power.

Comparing results obtained by GAMBIT with MEME;, it can be seen that
the latter did not find good motifs to discriminate one class from the others.
On the other hand, this is a remarkable characteristic of GAMBIT, an innate
ability accomplished by its fitness function. It is a matter of fact that MEME
was not projected for the same purpose as GAMBIT but, to the best of our
knowledge, it is the tool that most closely can be compared with our system. In
short, MEME discovers motifs in a group of proteins, while GAMBIT discovers
motifs that discriminate a group of proteins from another.

Using the discovered motifs found by both systems, the J48 and Prism al-
gorithms generated comprehensive classifiers, useful to biologists. It is possible
that those discovered motifs are related to known specific secondary or tertiary
structures (this investigation was left to future work).

Finding groups of amino acids that uniquely characterize protein families
is a very important issue in molecular biology. Results for the transmembrane
dataset using GAMBIT and WEKA strongly suggest the efficiency of the method
to find motifs capable of discriminating between groups or proteins, offering a
feasible solution to the PCP.

Future work includes more exhaustive tests of the GA control parameters
for fine-tuning and development of biologically-inspired genetic operators. We
intend to improve GAMBIT so as to find motifs based on regular expressions.
Also, it is intended to apply this system to find motifs for classification of other
protein families of biological interest.
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