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INTRODUCTION 

Ant Colony Optimization (ACO) is a relatively new computational 

intelligence paradigm inspired by the behaviour of natural ants (Dorigo & Stutzle, 

2004). Ants often find the shortest path between a food source and the nest of the 

colony without using visual information. In order to exchange information about 

which path should be followed, ants communicate with each other by means of a 

chemical substance called pheromone. As ants move, a certain amount of 

pheromone is dropped on the ground, creating a pheromone trail. The more ants 



follow a given trail, the more attractive that trail becomes to be followed by other 

ants. This process involves a loop of positive feedback, in which the probability 

that an ant chooses a path is proportional to the number of ants that have already 

passed by that path. 

Hence, individual ants, following very simple rules, interact to produce an 

intelligent behaviour at the higher level of the ant colony. In other words, 

intelligence is an emergent phenomenon. 

In this article we present an overview of Ant-Miner, an ACO algorithm for 

discovering classification rules in data mining (Parpinelli, Lopes & Freitas, 

2002a; Parpinelli, Lopes & Freitas, 2002b), as well as a review of several Ant-

Miner variations and related ACO algorithms. 

All the algorithms reviewed in this article address the classification task of 

data mining. In this task each case (record) of the data being mined consists of 

two parts: a goal attribute, whose value is to be predicted, and a set of predictor 

attributes. The aim is to predict the value of the goal attribute for a case, given 

the values of the predictor attributes for that case (Fayyad, Piatetsky-Shapiro & 

Smyth, 1996). 

 

BACKGROUND 

An ACO algorithm is essentially a computational system inspired by the 

behavior of natural ants and designed to solve real-world optimization problems. 

The basic ideas of ACO algorithms are as follows (Dorigo & Stutzle, 2004): 



• Each ant incrementally constructs a candidate solution to a given optimization 

problem. That candidate solution is associated with a path in graph 

representing the search space; 

• When an ant follows a path, the amount of pheromone deposited on that path 

is proportional to the quality of the corresponding candidate solution; 

• At each step during the incremental construction of a candidate solution, an 

ant typically has to choose which solution component should be added to the 

current partial solution (i.e., how to extend the current path), among several 

solution components. In general the probability of a given component being 

chosen is proportional to the product of two terms: (a) the amount of 

pheromone associated with that component; and (b) the value of a (problem-

dependent) heuristic function for that component. 

As a result, due to a continuous increase of the pheromone associated with the 

components of the best candidate solutions considered by the algorithm, the ants 

usually converge to the optimum or near-optimum solution for the target problem. 

The motivation for applying ACO algorithms to the discovery of 

classification rules and related data mining tasks is as follows. Many projects in 

the field of data mining proposed deterministic rule induction algorithms. These 

algorithms typically are greedy, and so they are susceptible to find only locally-

optimal (rather than globally optimal) classification rules. By contrast, ACO 

algorithms try to mitigate this drawback using a combination of two basic ideas. 

First, these algorithms have a stochastic aspect, which helps them to explore a 

larger area of the search space. Second, they use an iterative adaptation procedure 



based on positive feedback (the gradual increase of the pheromone associated 

with the best solution components) to continuously improve candidate rules. 

Combining these basic ideas, in general ACO algorithms perform a more global 

search in the space of candidate rules than typical deterministic rule induction 

algorithms, which makes the former an interesting alternative to be considered in 

rule induction. 

The first ACO algorithm proposed for discovering classification rules was 

Ant-Miner (Parpinelli, Lopes & Freitas, 2002a). In Ant-Miner each artificial path 

constructed by an ant represents a candidate classification rule of the form:  

IF <term1 AND term2 AND … > THEN < class >. 

Each term is a triple <attribute, operator, value>, where value is one of the 

values belonging to the domain of attribute. An example of a term is: <Sex = 

female>. Class is the value of the goal attribute predicted by the rule for any case 

that satisfies all the terms of the rule antecedent. An example of a rule is:  

IF <Salary = high> AND <Mortgage = No> THEN <Credit = good>. 

In the original version of Ant-Miner the operator is always “=”, so that Ant-

Miner can cope only with categorical (discrete) attributes. Continuous attributes 

would have to be discretized in a preprocessing step. 

The pseudocode of Ant-Miner is described, at a very high level of abstraction, 

in Algorithm 1. Ant-Miner starts by initializing the training set to the set of all 

training cases, and initializing the discovered rule list to an empty list. Then it 

performs an outer loop where each iteration discovers a classification rule.  



The first step of this outer loop is to initialize all trails with the same amount 

of pheromone, which means that all terms have the same probability of being 

chosen – by an ant – to incrementally construct a rule. This is done by an inner 

loop, consisting of three steps. First, an ant starts with an empty rule and 

incrementally constructs a classification rule by adding one term at a time to the 

current rule. In this step a term i j – representing a triple <Attribute i = Valuej> – is 

chosen to be added to the current rule with probability proportional to the product 

of η i j × τ i j(t), where η i j is the value of a problem-dependent heuristic function for 

term i j and τi j(t) is the amount of pheromone associated with term i j at iteration 

(time index) t. More precisely, η i j is essentially the information gain associated 

with term i j – see (Cover & Thomas, 1991) for a comprehensive discussion on 

information gain. The higher the value of η i j the more relevant for classification 

term i j is and so the higher its probability of being chosen. τ ij(t) corresponds to the 

amount of pheromone currently available in the position i,j of the trail being 

followed by the current ant. The better the quality of the rule constructed by an 

ant, the higher the amount of pheromone added to the trail positions (“terms”) 

visited (“used”) by the ant. Therefore, as time goes by, the best trail positions to 

be followed – i.e., the best terms to be added to a rule – will have greater and 

greater amounts of pheromone, increasing their probability of being chosen. 

The second step of the inner loop consists of pruning the just-constructed 

rule, i.e., removing irrelevant terms. This is done by using the same rule-quality 

measure used to update the pheromones of the trails, as defined later. In essence, 



a term is removed from a rule if this operation does not decrease the quality of 

the rule. 

 

TrainingSet = {all training cases}; 

DiscoveredRuleList = [];   /* initialized with empty list */ 

REPEAT 

   Initialize all trails with the same amount of pheromone; 

   REPEAT 

      An ant incrementally constructs a classification rule; 

      Prune the just-constructed rule; 

      Update the pheromone of all trails; 

   UNTIL (stopping criteria) 

   Choose the best rule out of all constructed rules; 

   Add the chosen rule to DiscoveredRuleList; 

   TrainingSet = TrainingSet – {cases correctly covered by the chosen rule}; 

UNTIL (stopping criteria) 

Algorithm 1: High-level pseudocode of Ant-Miner 

 

The third step of the inner loop consists of updating the pheromone of all 

trails by increasing the pheromone in the trail followed by the ant, proportionally 

to the quality of the rule. In other words, the higher the quality of the rule, the 

higher the increase in the pheromone of the terms occurring in the rule 

antecedent. The quality (Q) of a rule is measured by the equation: 

Q = Sensitivity × Specificity, 



where Sensitivity = TP / (TP + FN) and Specificity = TN / (TN + FP). The 

acronyms TP, FN, TN and FP stand for the number of true positives, false 

negatives, true negatives and false positives, respectively (Parpinelli, Lopes, 

Freitas, 2002a). 

The inner loop is performed until some stopping criterion(a) is(are) satisfied, 

e.g., until a maximum number of candidate rules has been constructed. 

Once the inner loop is over, the algorithm chooses the highest-quality rule out 

of all the rules constructed by all the ants in the inner loop, and then it adds the 

chosen rule to the discovered rule list. Next, the algorithm removes from the 

training set all the cases correctly covered by the rule, i.e., all cases that satisfy 

the rule antecedent and have the same class as predicted by the rule consequent. 

Hence, the next iteration of the outer loop starts with a smaller training set, 

consisting only of cases which have not been correctly covered by any rule 

discovered in previous iterations. The outer loop is performed until some 

stopping criterion is satisfied, e.g., until the number of uncovered cases is smaller 

than a user-specified threshold.  

Hence, the output of Ant-Miner is the list of classification rules contained in 

discovered rule list. 

(Parpinelli, Lopes & Freitas, 2002a; Parpinelli, Lopes & Freitas, 2002b) have 

performed computational experiments comparing Ant-Miner with two well-known 

rule induction algorithms, namely CN2 (Clark & Niblett, 1989) and C4.5 

(Quinlan, 1993) in several public-domain data sets. In a nutshell, the results 

showed that Ant-Miner is competitive with both C4.5 and CN2 concerning 

predictive accuracy on the test set. However, Ant-Miner discovered rule lists 



much simpler (i.e., smaller) than the rule sets discovered by C4.5 and the rule 

lists discovered by CN2. This is an advantage in the context of data mining, 

where discovered knowledge is supposed to be comprehensible to the user – in 

order to support the user's intelligent decision making (Fayyad, Piatetsky-Shapiro 

& Smyth, 1996). 

 

 

ANT-MINER VARIATIONS AND RELATED ALGORITHMS 

 

(a) Fixing in Advance the Class Predicted by a Rule 

In Ant-Miner, each ant first constructs a rule antecedent. Next, the majority 

class among all cases covered by the rule is assigned to the rule consequent. The 

fact that the class predicted by a rule is not known during rule construction has 

two important consequences. First, the heuristic function is based on reducing the 

entropy associated with the entire class distribution, rather than using a heuristic 

function specific to the class to be predicted by the rule. Second, the pheromone 

associated with each term represents the relevance of that term with respect to the 

overall discrimination between all classes, rather than with respect to a specific 

class. 

In order to make the heuristic function and pheromone values have a more 

focused relevance, variations of Ant-Miner have been proposed where all the ants 

in the population construct rules predicting the same class, so that the class to be 

assigned to a rule is known during rule construction (Chen, Chen & He, 2006; 



Galea & Shen, 2006; Martens et al., 2006; Smaldon & Freitas, 2006). This 

naturally leads to new heuristic functions and new pheromone update methods, as 

discussed in items (b) and (e). 

 

(b) New Class-Specific Heuristic Functions 

Several Ant-Miner variations have replaced the entropy reduction heuristic 

function by a simpler heuristic function whose value is specific for each class 

(Chen, Chen & He, 2006; Liu, Abbass & McKay, 2004; Martens et al., 2006;  

Oakes, 2004; Smaldon & Freitas, 2006; Wang & Feng, 2004). Typically, in these 

Ant-Miner variations, the value of the heuristic function for a termi j is based on 

the relatively frequency of the class predicted by the rule among all the cases that 

have the term i j. This modification is particularly recommended when the class 

predicted by a rule is fixed in advance before rule construction, unlike the 

situation in the original Ant-Miner – as discussed in item (a).  

It has also been argued that a simpler heuristic function based on the relative 

frequency of the rule's predicted class has the advantage of being computationally 

more efficient without sacrificing the predictive accuracy of the discovered rules, 

since hopefully the use of pheromones should compensate for the less accurate 

estimate of the simpler heuristic function. Note, however, that there is no 

guarantee that the use of pheromones would completely compensate the use of a 

less effective heuristic function. A more important issue seems to be whether or 

not the rule's predicted class is known during rule construction, as discussed 

earlier. In addition, note that in Ant-Miner the heuristic function values are 

computed just once in the initialization of the algorithm, and in principle the 



heuristic function values for all terms can be computed in linear time with respect 

to the number of cases and attributes (Parpinelli, Lopes & Freitas, 2002a). Hence, 

the time complexity of the heuristic function of Ant-Miner does not seem a 

significant problem in the context of the entire algorithm.  

 

(c) Using the Pseudorandom Proportional Transition Rule 

As explained earlier, Ant-Miner adds a term i j to a rule with a probability 

proportional to the product η i j × τi j(t). This kind of transition rule is called the 

random proportional transition rule (Dorigo & Stutzle, 2004). Several variants of 

Ant-Miner use instead a pseudorandom proportional transition rule (Chen, Chen 

& He, 2006; Liu, Abbass & McKay, 2004; Wang & Feng, 2004). In this transition 

rule, in essence, there is a probability q0 that the term to be added to the current 

partial rule will be deterministically chosen as the term ij with the greatest value 

of the product of η i j ×  τ i j(t); and there is a probability 1 – q0 that the term to be 

added to the rule will be probabilistically chosen by the random proportional rule. 

This transition rule has the advantage that it allows the user to have an explicit 

control over the exploitation vs. exploration trade-off (Dorigo & Stutzle, 2004), 

which of course comes with the need to choose a good value for the parameter q0 

– normally chosen in an empirical way. 

 

(d) New Rule Quality Measures 

Ant-Miner's rule quality is based on the product of sensitivity and specificity. 

(Chen, Chen & He, 2006) and (Martens et al., 2006) proposed to replace Ant-



Miner's rule quality measure by measures that are essentially based on the 

confidence and coverage of a rule. Coverage is equivalent to sensitivity, so the 

main idea introduced in these Ant-Miner variations is to replace specificity by 

confidence in the rule quality measure. Given the importance of rule quality – on 

which pheromone updating is based – it would be interesting to perform extensive 

experiments comparing the effectiveness of these two kinds of rule quality 

measures, something missing in the literature. 

 

(e) New Pheromone Updating Procedures 

Several variants of Ant-Miner use an explicit pheromone evaporation rate – 

this is a predefined parameter in (Liu, Abbass & McKay, 2004), (Martens et al., 

2006) and a self-adaptive parameter in (Wang & Feng, 2004). Note that this new 

parameter is not necessary in the original Ant-Miner, where pheromone 

evaporation is implicitly performed by normalizing all pheromone values after 

increasing the pheromone of the terms used in the just-constructed rule.  

In addition, (Liu, Abbass & McKay, 2004), (Wang & Feng, 2004) and 

(Smaldon & Freitas, 2006) proposed different equations or procedures to update 

pheromone as a function of rule quality. These new approaches address the issue 

that Ant-Miner's original equation for pheromone updating does not work well 

when the quality of a rule is close to zero. Note, however, that in the original 

Ant-Miner the value of the rule quality measure will be close to zero only in rare 

situations. This is due to the fact that the best possible class for the current rule is 

always chosen to be added to the rule consequent after the rule antecedent has 

been fully constructed, which should result in a rule of at least reasonable quality 



in most cases. On the other hand, in Ant-Miner variants where the class of all 

constructed rules is predetermined – see the discussion in item (a) – rules with 

very low quality will be less rare, especially in early iterations of the algorithm, 

before the pheromone of good terms has been significantly increased. In such 

Ant-Miner variants it is indeed important to change the original Ant-Miner's 

equation to update pheromone in order to cope better with low-quality rules.  

 

(f) Coping with Categorical Attributes Having Ordered Values  

Ant-Miner copes only with categorical (nominal or discrete) attributes. 

Hence, continuous (real-valued) attributes have to be discretized in a 

preprocessing step. Some categorical attributes have unordered values (e.g., the 

attribute "gender" can take the values "male" or "female"), whilst other 

categorical attributes have ordered values (e.g., the attribute "number of children" 

could take the values "0", "1", "2", "3" or "more than 3"). Ant-Miner does not 

recognize this distinction. It produces only terms (rule conditions) of the form 

"attribute = value", using the "=" operator.  

Both (Oakes, 2004) and (Martens et al., 2006) proposed Ant-Miner variants 

that can cope with ordered values of categorical (but not continuous) attributes. 

These variants can discover rules containing terms of the form "attribute op 

value" where op can be a relational comparison operator such as "<", ">", "≤" or 

"≥". This allows the discovery of simpler (smaller) rule sets. For instance, a 

single condition like "number of children < 3" is shorter than the disjunction of 



conditions: "number of children = 0" or "number of children = 1" or "number of 

children = 2".  

 

(g) Dropping the Rule Pruning Procedure 

(Martens et al., 2006) proposed an Ant-Miner variant (Ant-Miner+) which 

does not perform rule pruning. In order to mitigate the need for pruning, the 

domain of each attribute was extended with a dummy value, hereafter called the 

"any" value. Hence, for each attribute i  with k values, there is a set of k+1 terms 

that can be chosen to be added to the current partial rule, where the term i ,k+1 is 

the "any" value for attribute i. Adding an "any" value term to a rule means that 

the attribute in question can have any value when the rule is evaluated, which 

effectively means that attribute is not present in the rule antecedent. The authors 

argue that, using this approach, pruning is superfluous because the dummy values 

already lead to shorter rules. The removal of pruning has the advantage of making 

Ant-Miner+ significantly faster than Ant-Miner, since rule pruning tends to be the 

most computational expensive and least scalable part of Ant-Miner (Parpinelli, 

Lopes & Freitas, 2002a).  

On the other hand, from the point of view of predictive accuracy of the 

discovered rules, it is not very clear if rule pruning is really superfluous due to 

the use of dummy "any" values to make rules shorter. In the original Ant-Miner 

rule pruning is performed by a deterministic procedure that iteratively removes 

one term at a time from the rule as long as rule quality is improved. This kind of 

local search not only reduces the discovered rules' size, but also tends to improve 

the predictive accuracy of those rules (Parpinelli, Lopes & Freitas, 2002a). It 



would be interesting to evaluate if, despite the relatively short size of the rules 

discovered by Ant-Miner+, the predictive accuracy of those rules could be 

increased by the use of a deterministic rule pruning procedure driven by rule 

quality. 

 

(h) Discovering Fuzzy Classification Rules 

(Galea & Shen, 2006) proposed a new ACO algorithm – called FRANTIC-

SRL (Fuzzy Rules from ANT-Inspired Computation – Simultaneous Rule 

Learning) – that discovers fuzzy classification rules, rather than the crisp rules 

discovered by Ant-Miner. FRANTIC-SRL maintains multiple populations of ants, 

where each population is in charge of discovering rules predicting a different 

class. Hence, the class predicted by a rule is fixed in advance for all ants in each 

of the populations – see item (a).  

Each ant constructs a fuzzy rule by adding one linguistic term (a fuzzy 

condition) at a time to the current partial rule. This involved replacing the 

heuristic function of Ant-Miner by a function based on fuzzy systems' theory. The 

new function is class-specific, i.e., the heuristic function of a term depends on the 

class predicted by the rule – see item (b). At each iteration, instead of evaluating 

each candidate rule separately, FRANTIC-SRL evaluates each candidate rule set 

containing one rule from each of the ant colony populations – i.e., each candidate 

rule set containing one rule for each class. Hence, at each iteration the number of 

evaluated rule sets is numAnts
numClasses

, where numAnts is the number of ants in 

each population and numClasses is the number of classes. To speed up this step, 

the number of evaluated rule sets could be reduced by considering only 



combinations of the best rules (rather than all rules) from each population, as 

pointed out by the authors.  

 

(i) Discovering Rules for Multi-Label Classification 

Multi-label classification involves the simultaneous prediction of the value of 

two or more class attributes, rather than just one class attribute as in conventional 

classification. (Chan & Freitas, 2006) proposed a major extension of Ant-Miner 

to cope with multi-label classification, called MuLAM (Multi-Label Ant-Miner). 

In MuLAM, each ant constructs a set of rules – rather than a single rule – where 

different rules predict different class attributes. A rule can predict a single class 

attribute or multiple class attributes, depending on which option will lead to 

better rules for the data being mined. MuLAM uses a pheromone matrix for each 

of the class attributes. Hence, when a rule is built, the terms in its antecedent are 

used to update only the pheromone matrix(ces) of the class attribute(s) predicted 

by that rule.  

 

 

FUTURE TRENDS 

In the last few years there has been an increasing interest in specialized types of 

classification problems which tend to be particularly challenging, such as multi-

label classification – where a single rule can predict multiple classes; hierarchical 

classification – where the classes to be predicted are arranged in a hierarchy; and 

the discovery of fuzzy classification rules. Recently, the first variations of Ant-



Miner for some of these challenging classification problems have been proposed, 

as discussed earlier (see also Conclusions), and it seems that a future trend could 

be the development of more sophisticated Ant-Miner variations or related 

algorithms for these types of problems. 

 

 

CONCLUSIONS 

This article has reviewed Ant-Miner, the first ant colony algorithm for 

discovering classification rules in data mining, as well as a number of variations 

of the original algorithm. Some of the proposed variations were relatively simple, 

in the sense that they did not affect the type of classification rules discovered by 

the algorithm. However, some variations were proposed to cope with attributes 

having ordered categorical values, somewhat improving the flexibility of the rule 

representation language. Even more significant variations were also proposed. In 

particular, Ant-Miner variations have been proposed to discover multi-label 

classification rules and to discover fuzzy classification rules. The problem of 

extending Ant-Miner to cope with continuous attributes on-the-fly, during the run 

of the algorithm (rather than requiring continuous attributes to be discretized in a 

preprocessing phase) remains an open problem and an interesting future research 

direction. 
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KEY TERMS 



 

Classification Rule: A rule of the form: IF (conditions) THEN (class), 

meaning that if a case (record) satisfies the rule conditions, it is predicted to have 

the class specified in the rule. 

 

Data Mining: A research field where the goal is to discover accurate, 

comprensible knowledge (or patterns) in data. 

 

Rule List: An order list of IF-THEN classification rules discovered by the 

algorithm during training. When the rules are applied to classify a testing case, 

they are applied in order, so that the first rule matching the testing case is used to 

classify that case. 

 

Testing case: Each of the cases (records) of the test set. 

 

Test Set: A set of cases unseen during the training of the algorithm. The test 

set is used to measure the predictive accuracy (generalisation ability) of the rules 

discovered during training. 

 

Training case: Each of the cases (records) of the training set.  

 

Training Set: A set of cases used by the algorithm to discover classification 

rules. 


