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Abstract. This paper proposes a constrained-syntax genetic programming (GP) 
algorithm for discovering classification rules in medical data sets. The proposed 
GP contains several syntactic constraints to be enforced by the system using a 
disjunctive normal form representation, so that individuals represent valid rule 
sets that are easy to interpret. The GP is compared with C4.5 in a real-world 
medical data set. This data set represents a difficult classification problem, and a 
new preprocessing method was devised for mining the data. 

1 Introduction 

Classification is an important problem extensively studied in several research areas, 
such as statistical pattern recognition, machine learning and data mining [Hand 1997]. 
The basic idea is to predict the class of an instance (a record of a given data set), based 
on the values of predictor attributes of that instance. 

This paper proposes a genetic programming (GP) system for discovering simple 
classification rules in the following format: IF (a-certain-combination-of-attribute-
values-is-satisfied) THEN (predict-a-certain-class). Each individual represents a set of 
these IF-THEN rules. This rule format has the advantage of being intuitively 
comprehensible for the user. Hence, he/she can combine the knowledge contained in 
the discovered rules with his/her own knowledge, in order to make intelligent decisions 
about the target classification problem – for instance, medical diagnosis. 

The use of GP for discovering comprehensible IF-THEN classification rules is 
relatively little explored in the literature, by comparison with more traditional rule 
induction and decision-tree-induction methods [Witten and Frank 2000]. We believe 
such a use of GP is a promising research area, since GP has the advantage of 
performing a global search in the space of candidate rules. In the context of 
classification rule discovery, in general this makes it cope better with attribute 
interaction than conventional, greedy rule induction and decision-tree-building 
algorithms [Freitas 2002], [Dhar et al. 2000], [Papagelis and Kalles 2001]. 



The GP algorithm proposed in this paper is a constrained-syntax one. The idea of 
constrained-syntax GP is not new [Montana 1995]. However, we believe this paper has 
the contribution of proposing a constrained-syntax GP tailored for the discovery of 
simple classification rules. That is, it enforces several syntactic constraints, so that 
individuals represent rule sets that are valid and easy to interpret, due to the use of a 
disjunctive normal form representation. 

The remainder of this paper is organized as follows. Section 2 describes the 
proposed constrained-syntax GP for discovering classification rules. Section 3 reports 
the results of computational experiments comparing the GP with C4.5. Finally, section 
4 presents the conclusions and future research. 

2 A Constrained-Syntax GP for Discovering Classification Rules 

An individual can contain multiple classification rules, subject to the restriction that all 
its rules have the same consequent – i.e., they predict the same class. In other words, an 
individual consists of a set of rule antecedents and a single rule consequent. The rule 
antecedents are connected by a logical OR operator, and each rule antecedent consists 
of a set of conditions connected by a logical AND operator. Therefore, an individual is 
in disjunctive normal form (DNF) – i.e., an individual consists of a logical disjunction 
of rule antecedents, where each rule antecedent is a logical conjunction of conditions 
(attribute-value pairs). The rule consequent specifies the class to be predicted for an 
instance that satisfies all the conditions of any of the rule antecedents.  

The terminal set consists of the attribute names and attribute values of the data set 
being mined. The function set consists of logical operators (AND, OR) and relational 
operators (“=“, “z“, “d“, “>“). 
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Figure 1 – Example of an individual. 



 
Figure 1 shows an example of the genetic material of an individual. Note that the 

rule consequent is not encoded into the genetic material of the individual. Rather, it is 
chosen by a deterministic procedure, as will be explained later. In the example of 
Figure 1 the individual contains two rules, since there is an OR node at the root of the 
tree. Indeed, the tree shown in that figure corresponds to the following two rule 
antecedents: IF (A1 d 2)   OR   IF ((A3 z 1) AND (A5 > 1)). 

Once the genetic material (set of rule antecedents) of an individual is determined, 
the rule consequent (predicted class) associated with the individual is chosen in such a 
way that the fitness of the individual is maximized. More precisely, for each class, the 
system computes what would be the fitness of the individual if that class were chosen 
to be the class predicted by the individual. Then, the system chooses the class that 
leads to the best fitness value for the individual. 

As mentioned above, all the rules of an individual have the same rule consequent – 
i.e., they predict the same class. This leaves us with the problem of how to discover 
rules predicting different classes. The most common solution for this problem in the 
literature is to run the GP k times, where k is the number of classes [Kishore et al. 
2000]. In the i-th  (i=1,...,k) run, the GP discovers rules predicting the i-th class. 
Instead of using this conventional approach, our system works with a population of 
individuals where different individuals may have different rule consequents. Hence, in 
our approach an entire solution for the classification problem consists of k individuals, 
each of them predicting a different class. In other words, at the end of the evolution, 
the solution returned by GP will consist of k individuals, each of them being the best 
individual (the one with the best fitness value) for a different class. 

To summarize, in our individual representation each individual consists of a set of 
rules predicting a given class, and an entire solution for the classification problem 
consists of k individuals, each of them predicting a different class.  

One advantage of this approach, by comparison with the previously mentioned 
conventional approach of running the GP once for each class, is that in the former we 
need to run the GP just once to discover rules predicting different classes. Therefore, 
our approach is considerably more efficient, in terms of computational time. 

2.1 Syntactic Constraints on the Individual Representation 

Conventional GP systems must satisfy the property of closure, which means that the 
output of any function of the function set can be used as the input for any other 
function of that set. This property is satisfied, for instance, if the function set contains 
only mathematical operators (like +, -, /, *) and all terminal symbols are real-valued 
variables or constants. However, in a typical data mining scenario the situation is more 
complex, since we often want to mine a data set with a mixing of categorical (nominal) 
and continuous (real-valued) attributes. Hence, our individual representation includes 
several constraints useful for data mining applications, as follows. 

First, we specify, for each function of the function set, what are the data types valid 
for the input arguments and the output of the function. The function set of our GP 
consists of logical operators (AND, OR) and relational operators (“ =”, “z”, “d”, “ >”). 



The valid data types for the input arguments and output of these operators are shown in 
Table 1. Note that all operators of Table 1 take two input arguments, so that each GP 
individual is represented by a binary tree. Our GP can cope with attributes that are 
either categorical (nominal) or continuous (real-valued), which is a desirable flexibility 
in a data mining system. The data type restrictions specified in Table 1 naturally 
suggest an individual representation based on a hierarchy of operators, consisting of 
boolean operators (AND, OR) at the top of the tree, attributes and their values at the 
leaves, and relational operators (“ =” , “z” ,“d” , “ >” ) in the middle of the tree. An 
example of this hierarchical structure was previously shown in Figure 1. Note that the 
individual shown in that Figure satisfies all data type constraints specified in Table 1. 

 
         Table 1: Valid data types for each operator’s input arguments and output 

 
Operator Input arguments Output 
AND, OR (boolean, boolean) boolean 
“ =“ , “z“  (categorical, categorical) boolean 
“d“ , “ >“  (real, real) boolean 

 
In addition to the data type constraints of Table 1, our GP system enforces two other 

constraints. First, an AND node cannot be an ancestor of an OR node. Although this is 
not essential for producing syntactically-valid individuals, it enforces the restriction 
that every individual represents a set of rule antecedents in (DNF). The DNF 
representation is not only intuitively simple, but also facilitates the enforcement of the 
second additional constraint, called “ attribute-uniqueness constraint” . This constraint 
means that an attribute can occur at most once in a rule antecedent. This constraint 
avoids invalid rule antecedents like:  IF (Sex = male) AND (Sex = female).  

2.2 Genetic Operators 

Our GP uses reproduction and crossover operators. The reproduction operator consists 
of passing a copy of an individual to the next generation. The crossover operator used 
here is a variant of the standard tree-crossover operator. In our system that crossover 
operator is adapted to our constrained-syntax individual representation, as follows. 

First, a crossover point (a tree node) is randomly selected in one of the parent 
individuals, here called the first parent. Then the crossover point (tree node) of the 
other parent individual, here called the second parent, is randomly selected among the 
nodes that are compatible with the crossover point of the first parent, i.e., among the 
nodes that return the same data type as the data type returned by the crossover point of 
the first parent. Then the crossover is performed by swapping the subtrees rooted at the 
crossover points of the two parent individuals, as usual.  

Our GP also uses a form of elitism that we call classwise elitism. The basic idea of 
elitism is that the best (or a small set of best) individual(s) of a generation is passed 
unchanged to the next generation, to prevent the stochastic process of evolution from 
losing that individual. Recall that the population contains individuals predicting 



different classes. In our classwise elitism the best individual of each of the k classes is 
chosen to be passed unchanged to the next generation. In other words, k elite 
individuals are passed unaltered to the next generation. The i-th elite individual (i 
=1,...,k) is the best individual among all individuals predicting the i-th class. The 
motivation for this classwise elitism is to avoid that the population converges to a state 
where all individuals represent rule sets predicting the same class. Without classwise 
elitism this would tend to happen, because in general some classes are easier to predict 
than others, i.e., individuals predicting the easiest class would dominate the population. 

2.3 Fitness Function 

The fitness function used in this work is the same as the fitness function proposed in 
[Bojarczuk et al. 2000]. Note, however, that [Bojarczuk et al. 2000] used a simple 
individual representation, working only with boolean attribute values. This required all 
attributes to be booleanized in a preprocessing step, which significantly reduces the 
flexibility and autonomy of the algorithm. By contrast, this work uses a considerably 
more flexible and elaborate individual representation, as discussed earlier. 

The fitness function evaluates the quality of each individual (a rule set where all 
rules predict the same class) according to two basic criteria, namely its predictive 
accuracy and its simplicity. Predictive accuracy is measured by the product Se · Sp, 
where  Se (the sensitivity) is given by Se = tp / (tp + fn) and Sp (the specificity) is given 
by Sp = tn / (tn + fp), where tp, fp, tn and fn denote respectively the number of true 
positives, false positives, true negatives and false negatives observed when a rule is 
used to classify a set of instances [Hand 1997]. 

The second criterion used in the fitness function is the simplicity (Sy) of the rule set 
represented by an individual, given by: Sy = (maxnodes – 0.5·numnodes – 0.5) / 
(maxnodes – 1) where numnodes is the current number of nodes (functions and 
terminals) of an individual (tree), and maxnodes is the maximum allowed size of a tree 
(empirically set to 45). The inclusion of a simplicity term in the fitness function helps 
to produce simpler (shorter) rule sets to be shown to the user, and it also helps to avoid 
code bloat. Finally, the entire fitness function is given by the product of the indicators 
of predictive accuracy and simplicity, i.e.: fitness = Se · Sp · Sy. The motivation for this 
fitness function is explained in [Bojarczuk et al. 2000]. 

2.4 Classification of New Instances 

Recall that, after the GP run is over, the result returned by GP consists of a set of k 
individuals, where k is the number of classes. The i-th returned individual (i=1,...,k) 
consists of a set of rules predicting the i-th class for a data instance (record) that 
satisfies the rule set associated with the individual. An instance is said to satisfy a rule 
set if it satisfies all the conditions of at least one of the rules contained in the rule set. 
Recall that an individual contains a rule set in disjunctive normal form. 



When the set of returned individuals is used to classify a new instance (in the test 
set), the instance will be matched with all the k individuals, and one of the following 
three situations will occur: 

(a) The instance satisfies the rule set of exactly one of the k individuals. In this case 
the instance is simply assigned the class predicted by that individual; 

(b) The instance satisfies the rule set of two or more of the k individuals. In this case 
the instance is assigned the class predicted by the individual with the best fitness value 
(computed in the training set, of course); 

(c) The instance does not satisfy the rule set of any of the k individuals. In this case 
the instance is assigned a default class, which is the majority class, that is the class of 
the majority of the instances in the training set. 

3 Computational Results  

In this section we compare the results of our GP with C4.5, a very well-known decision 
tree algorithm [Quinlan 1993], in a new data set, called Pediatric Adrenocortical 
Tumor, which has not been previously used in any computational classification 
experiment reported in the literature. We emphasize that preparing this data set for data 
mining purposes was a considerable challenge. We had to carry out a significant 
preprocessing of the available data, as described in the following. The data set used in 
our experiments consisted of 124 instances (records) and 10 attributes.  

The first step was to decide which attribute would be used as the goal (or class) 
attribute, to be predicted. Discussing with the user, it was decided to predict how long 
a patient will survive after undergoing a surgery. The corresponding goal attribute is 
hereafter called Survival. The values of this attribute for the instances were not directly 
available in the original data set. It had to be computed in an elaborate way, as follows.  

First the system computed, for each instance (patient), the number of days between 
the date of the surgery and the date of the last follow up of the patient. Then the system 
checked, for each instance, the value of another attribute called Status, whose domain 
contained four values. One of these values indicated that the patient was dead, whereas 
the other three values indicated that the patient was still alive. (The difference in the 
meaning of those three values indicating alive patient reflect different stages in the 
progress of the disease, but this difference is not relevant for our discussion here.)  

A major problem in predicting Survival is that, if the Status of a patient (as recorded 
in the hospital’s database) is different from dead, this does not necessarily means that 
patient is still alive in real life. Maybe the patient actually died, but this information 
was not yet included in the database, due to a loss of contact between the family of the 
patient and the hospital. On the other hand, if the value of Status recorded in the 
hospital’s database is dead, this Status is presumably true. As a result, for many of the 
patients, one cannot be sure about the true value of the Survival attribute. One can be 
sure about this value only when the value of the Status attribute is dead. When Status is 
different from dead, the value of Survival computed as described above is just an 
underestimate of the true value of that attribute. Hence, any attempt to directly predict 
the value of Survival would be highly questionable.  



To circumvent this problem, we transformed the original problem of predicting 
Survival for all patients into three separate problems, each of them carefully defined to 
lead, at least in principle, to more reliable results. We try to predict the value of 
Survival for each of three classes of this attribute separately. These three classes were 
defined by discretizing the Survival attribute (which was previously measured in 
number of days) into three ranges of values, namely less than one year, between one 
and two years, between two and five years. These intervals were determined by the 
user, a medical expert on Pediatric Adrenocortical Tumor. Hereafter these ranges are 
called class 1, class 2 and class 3, respectively, for short. 

This leads to three classification experiments, each of them aiming at discriminating 
between two classes, a “ positive”  class and a “ negative”  class. In the i-th experiment, i 
= 1,2,3, the instances having class i are considered as positive-class instances, and all 
the other instances are considered as negative-class instances. 

The reason why we need to perform three separate classification experiments is as 
follows. As mentioned above, when the patient’ s Status is different from dead, one 
cannot be sure about the true value of the Survival attribute. For instance, suppose that 
a patient underwent surgery one and a half year ago. One cannot be sure if the patient 
has class 2 or 3, since (s)he might or not live until (s)he completes two years of 
survival after surgery. However, one can be sure that this patient does not have class 1. 
So, its corresponding instance can be used as a negative-class instance in the first 
classification experiment, aiming at predicting whether or not a patient has class 1. On 
the other hand, that instance cannot be used in the second or third classification 
experiments, because in those experiments there would be no means to know if the 
instance had a positive class or a negative class.  

The key idea is that an instance is used in a classification experiment only when one 
can be sure that it is either definitely a positive-class instance or definitely a negative-
class instance, and for some instances (those having Status different from dead) this 
depends on the classification experiment being performed. Finally, we now precisely 
specify how we have defined which instances were used as positive-class or negative-
class instances in each of the three classification experiments.  

The first experiment consists of predicting class 1, i.e. Survival less than one year. 
In this experiment the positive-class instances are the patients whose Status is dead and 
whose Survival is less than or equal to one year. The negative-class instances are the 
patients whose Survival is greater than one year. After this instance-filtering process 
the data set contained 22 positive-class instances and 83 negative-class instances. 

The second experiment consists of predicting class 2, i.e. Survival between one and 
two years. In this experiment the positive-class instances are the patients whose Status 
is dead and Survival is greater than one year and less than or equal to two years. The 
negative-class instances are the patients whose Status is dead and Survival is either less 
than one year or greater than two years. After this instance-filtering process the data set 
contained 8 positive-class instances and 86 negative-class instances. 

The third experiment consists of predicting class 3, i.e. Survival between two years 
and five years. In this experiment the positive-class instances are the patients whose 
Status is dead and Survival is greater than two years and less than or equal to five 
years. The negative-class instances are the patients whose Status is dead and Survival 
is either less than two years or greater than five years. After this instance-filtering 



process the data set contained 6 positive-class instances and 62 negative-class 
instances. 

Table 2 reports the accuracy rate obtained by C4.5 and the GP in each of the three 
classification experiments. The numbers after the “r”  symbol denote standard 
deviations. In all the experiments we have used the default parameters of C4.5 and the 
GP, making no attempt to optimize the parameters of the two systems. The default 
parameters of the GP are: population size of 500 individuals, 50 generations, crossover 
probability of 95%, reproduction probability of 5%, initial population generated by the 
ramped half and half method, maximum tree size of 45 nodes. We used roulette wheel 
selection. All results were obtained by performing a 5-fold cross-validation procedure 
[Hand 1997], where each of the 5 iterations of the cross-validation procedure involved 
a single run of both the GP and C4.5. 

Based on the results reported in Table 2, at first glance C4.5 seems to outperform 
our GP system in this data set. In two out of the three classes (namely, classes 2 and 3) 
the accuracy rate of C4.5 is significantly better than the one of the GP – since the 
corresponding accuracy rate intervals (taking into account the standard deviations) do 
not overlap. However, this conclusion would be premature, as we now show.  

 
Table 2: Classification accuracy rate (%) on the test set  

 
Class C4.5 GP 

1 75.7 r 1.22 73.3 r 2.43 
2 88.2 r 0.77 78.8 r 2.81 
3 87.3 r 1.01 67.8 r 6.82 

 
Table 3: Sensitivity (Se) and Specificity (Sp) on the test set 

 
Class C4.5 GP 

 Se Sp Se · Sp Se Sp Se · Sp 

1 0.1 0.916 0.079 0.79 0.725 0.560 
2 0 1 0 0.9 0.781 0.693 
3 0 1 0 0.1 0.735 0.067 

 
The problem with the results of Table 2 is that they are based on classification 

accuracy rate. Although this measure of predictive accuracy is still the most used in the 
literature, it has some drawbacks [Hand 1997]. The most important one is that it is 
relatively easy to achieve a high value of classification accuracy when one class (the 
majority class) has a high relative frequency in the data set, which is the case in our 
data set. In one extreme, suppose that 99% of the examples have a given class c1. In 
this case one can trivially achieve a classification accuracy rate of 99% by “ predicting”  
class c1 for all examples. Does that mean that the classification algorithm (a trivial 
majority classifier) is doing a good job? Of course not. What this means is that the 
measure of classification accuracy rate is too weak in this case, in the sense that it is 



too easy to get a very high value of this measure. One needs a more demanding 
measure of predictive accuracy, which emphasizes the importance of correctly 
classifying examples of all classes, regardless of the relative frequency of each class. 

Indeed, an analysis of the trees induced by C4.5 shows that the results of the last 
two rows of Table 2 (referring to classes 2 and 3) are very misleading. In particular, 
C4.5 is not discovering better rules for these classes. When predicting class 2 and class 
3, C4.5 induces a degenerate, “ empty”  tree with no internal node; i.e., a tree containing 
only one leaf node, predicting the majority class. This has consistently occurred in all 
the five folds of the cross-validation procedure. Clearly, C4.5 opted for an “ easy 
solution”  for the classification problem, favoring the correct prediction of the majority 
of the examples at the expense of making an incorrect prediction of all the minority-
class examples. Such an easy solution is useless for the user, since it provides no rules 
(i.e., no knowledge) for the user. Only when predicting class 1 C4.5 was able to induce 
a non-degenerate, non-empty tree on average. And even for this class an empty tree 
was induced in some folds of the cross-validation procedure. 

By contrast, our GP system discovered, on average, rules with 2, 1.7 and 1.9 
conditions, for rules predicting classes 1, 2 and 3, respectively, which constitute a 
simple  rule set to be shown to the user. Overall, the rules were considered 
comprehensible by the user. We now need to evaluate these rules according to a more 
demanding measure of predictive accuracy, emphasizing the importance of correctly 
classifying examples of all classes, as mentioned above. Hence, we report in Table 3 
the values of sensitivity (Se), specificity (Sp), and the product Se · Sp (see section 2) 
obtained by C4.5 and our GP system in the Pediatric adrenocortical tumor data set. 

As can be observed in this table, both C4.5 and our GP failed to discover good rules 
predicting class 3 but, unlike C4.5, our GP succeeded in discovering good rules (with 
relatively good values of Se and Sp) predicting classes 1 and 2. In addition, in all the 
three classes, the value of the product Se · Sp obtained by our GP considerably 
outperforms the one obtained by C4.5. 

4 Conclusions and Future Research 

As mentioned in the introduction, the idea of constrained-syntax GP is not new. 
However, we believe this paper has the contribution of proposing a constrained-syntax 
GP tailored for the discovery of simple classification rules. This was achieved by 
incorporating into the GP the following mechanisms: 

(a) An individual representation based on disjunctive normal form (DNF). As 
mentioned in section 2.1, the use of DNF has two advantages. First, it is an intuitively 
simple form of rule set presentation to the user. Second, it facilitates the enforcement 
of the attribute-uniqueness constraint – i.e., an attribute can occur at most once in a 
rule antecedent. (In passing note that, although most of the data type constraints 
enforced by our GP could alternatively be represented in a grammar-based GP, the 
attribute-uniqueness constraint cannot be directly represented in a grammar-based GP.) 

(b) A result designation scheme where the solution for the classification problem 
consists of k individuals (where k is the number of classes), each of them predicting a 



different class, and all of them produced in the same run of the GP. This makes the GP 
more efficient, avoiding the need for k runs of the GP, as usual in the literature.  

(c) Classwise elitism, an extension of the basic idea of elitism to the framework of 
classification. In this kind of elitism the best individual of each of the k classes is 
chosen to be passed unchanged to the next generation. This avoids that the population 
converges to a state where all individuals represent rule sets predicting the “ easiest 
class” , and guarantees that the result designation procedure works properly. 

Although each of these ideas is perhaps relatively simple, their combination 
effectively produces a GP tailored for the discovery of classification rules.  

In addition, this paper also offers a contribution from the data mining perspective. 
We have proposed a new way of preprocessing a medical data set for the purpose of 
predicting how long a patient will survive after a surgery.  

The proposed preprocessing method was applied to the Pediatric Adrenocortical 
Tumor data set, but it is a relatively generic method, which could be also applied to 
other medical data sets where one wants to predict how long a patient will survive after 
a given event such as a major surgery. (Of course, the method is not generic enough to 
cover other kinds of prediction, such as medical diagnosis.) 

Furthermore, the GP was compared with C4.5 in a difficult medical classification 
problem. The accuracy rate of C4.5 was found to be significantly better than the one of 
the GP at first glance. However, an analysis of the trees built by C4.5 showed that it 
was not discovering better classification rules. It was just building a degenerate, empty 
tree, predicting the majority class for all data instances. We then performed a more 
detailed analysis of the predictive accuracy of both systems, measuring the sensitivity 
and the specificity rates for each class separately, and showed that, according to this 
measure of predictive accuracy, overall the GP obtained considerably better results 
than C4.5. 

We are currently applying our GP to other data sets. A future research direction 
might consist of performing experiments with other function sets and evaluate the 
influence of the function set of the GP in its performance, across several data sets. 
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