
An innovative application of a constrained-syntax
genetic programming system to the problem of

predicting survival of patients

Celia C. Bojarczuk1, Heitor S. Lopes2 and Alex A. Freitas3

1 Departamento de Eletrotecnica, CEFET-PR.
Av. 7 de setembro, 3165, Curitiba. 80230-901. Brazil. celia@cpgei.cefetpr.br

2 CPGEI, CEFET-PR.
Av. 7 de setembro, 3165, Curitiba. 80230-901. Brazil. hslopes@cpgei.cefetpr.br

3 Computing Laboratory, University of Kent.
Canterbury, CT2 7NF. UK. A.A.Freitas@ukc.ac.uk. www.cs.ukc.ac.uk/people/staff/aaf

Abstract. This paper proposes a constrained-syntax genetic programming (GP)
algorithm for discovering classification rules in medical data sets. The proposed
GP contains several syntactic constraints to be enforced by the system using a
disjunctive normal form representation, so that individuals represent valid rule
sets that are easy to interpret. The GP is compared with C4.5 in a real-world
medical data set. This data set represents a difficult classification problem, and a
new preprocessing method was devised for mining the data.

1 Introduction

Classification is an important problem extensively studied in several research areas,
such as statistical pattern recognition, machine learning and data mining [Hand 1997].
The basic idea is to predict the class of an instance (a record of a given data set), based
on the values of predictor attributes of that instance.

This paper proposes a genetic programming (GP) system for discovering simple
classification rules in the following format: IF (a-certain-combination-of-attribute-
values-is-satisfied) THEN (predict-a-certain-class). Each individual represents a set of
these IF-THEN rules. This rule format has the advantage of being intuitively
comprehensible for the user. Hence, he/she can combine the knowledge contained in
the discovered rules with his/her own knowledge, in order to make intelligent decisions
about the target classification problem – for instance, medical diagnosis.

The use of GP for discovering comprehensible IF-THEN classification rules is
relatively little explored in the literature, by comparison with more traditional rule
induction and decision-tree-induction methods [Witten and Frank 2000]. We believe
such a use of GP is a promising research area, since GP has the advantage of
performing a global search in the space of candidate rules. In the context of
classification rule discovery, in general this makes it cope better with attribute
interaction than conventional, greedy rule induction and decision-tree-building
algorithms [Freitas 2002], [Dhar et al. 2000], [Papagelis and Kalles 2001].

The GP algorithm proposed in this paper is a constrained-syntax one. The idea of
constrained-syntax GP is not new [Montana 1995]. However, we believe this paper has
the contribution of proposing a constrained-syntax GP tailored for the discovery of
simple classification rules. That is, it enforces several syntactic constraints, so that
individuals represent rule sets that are valid and easy to interpret, due to the use of a
disjunctive normal form representation.

The remainder of this paper is organized as follows. Section 2 describes the
proposed constrained-syntax GP for discovering classification rules. Section 3 reports
the results of computational experiments comparing the GP with C4.5. Finally, section
4 presents the conclusions and future research.

2 A Constrained-Syntax GP for Discovering Classification Rules

An individual can contain multiple classification rules, subject to the restriction that all
its rules have the same consequent – i.e., they predict the same class. In other words, an
individual consists of a set of rule antecedents and a single rule consequent. The rule
antecedents are connected by a logical OR operator, and each rule antecedent consists
of a set of conditions connected by a logical AND operator. Therefore, an individual is
in disjunctive normal form (DNF) – i.e., an individual consists of a logical disjunction
of rule antecedents, where each rule antecedent is a logical conjunction of conditions
(attribute-value pairs). The rule consequent specifies the class to be predicted for an
instance that satisfies all the conditions of any of the rule antecedents.

The terminal set consists of the attribute names and attribute values of the data set
being mined. The function set consists of logical operators (AND, OR) and relational
operators (“=“, “z“, “d“, “>“).

 OR

 d AND

 A1 2 z >

 A3 1 A5 1

Figure 1 – Example of an individual.

Figure 1 shows an example of the genetic material of an individual. Note that the

rule consequent is not encoded into the genetic material of the individual. Rather, it is
chosen by a deterministic procedure, as will be explained later. In the example of
Figure 1 the individual contains two rules, since there is an OR node at the root of the
tree. Indeed, the tree shown in that figure corresponds to the following two rule
antecedents: IF (A1 d 2) OR IF ((A3 z 1) AND (A5 > 1)).

Once the genetic material (set of rule antecedents) of an individual is determined,
the rule consequent (predicted class) associated with the individual is chosen in such a
way that the fitness of the individual is maximized. More precisely, for each class, the
system computes what would be the fitness of the individual if that class were chosen
to be the class predicted by the individual. Then, the system chooses the class that
leads to the best fitness value for the individual.

As mentioned above, all the rules of an individual have the same rule consequent –
i.e., they predict the same class. This leaves us with the problem of how to discover
rules predicting different classes. The most common solution for this problem in the
literature is to run the GP k times, where k is the number of classes [Kishore et al.
2000]. In the i-th (i=1,...,k) run, the GP discovers rules predicting the i-th class.
Instead of using this conventional approach, our system works with a population of
individuals where different individuals may have different rule consequents. Hence, in
our approach an entire solution for the classification problem consists of k individuals,
each of them predicting a different class. In other words, at the end of the evolution,
the solution returned by GP will consist of k individuals, each of them being the best
individual (the one with the best fitness value) for a different class.

To summarize, in our individual representation each individual consists of a set of
rules predicting a given class, and an entire solution for the classification problem
consists of k individuals, each of them predicting a different class.

One advantage of this approach, by comparison with the previously mentioned
conventional approach of running the GP once for each class, is that in the former we
need to run the GP just once to discover rules predicting different classes. Therefore,
our approach is considerably more efficient, in terms of computational time.

2.1 Syntactic Constraints on the Individual Representation

Conventional GP systems must satisfy the property of closure, which means that the
output of any function of the function set can be used as the input for any other
function of that set. This property is satisfied, for instance, if the function set contains
only mathematical operators (like +, -, /, *) and all terminal symbols are real-valued
variables or constants. However, in a typical data mining scenario the situation is more
complex, since we often want to mine a data set with a mixing of categorical (nominal)
and continuous (real-valued) attributes. Hence, our individual representation includes
several constraints useful for data mining applications, as follows.

First, we specify, for each function of the function set, what are the data types valid
for the input arguments and the output of the function. The function set of our GP
consists of logical operators (AND, OR) and relational operators (“ =”, “z”, “d”, “ >”).

The valid data types for the input arguments and output of these operators are shown in
Table 1. Note that all operators of Table 1 take two input arguments, so that each GP
individual is represented by a binary tree. Our GP can cope with attributes that are
either categorical (nominal) or continuous (real-valued), which is a desirable flexibility
in a data mining system. The data type restrictions specified in Table 1 naturally
suggest an individual representation based on a hierarchy of operators, consisting of
boolean operators (AND, OR) at the top of the tree, attributes and their values at the
leaves, and relational operators (“ =” , “z” ,“d” , “ >”) in the middle of the tree. An
example of this hierarchical structure was previously shown in Figure 1. Note that the
individual shown in that Figure satisfies all data type constraints specified in Table 1.

 Table 1: Valid data types for each operator’s input arguments and output

Operator Input arguments Output
AND, OR (boolean, boolean) boolean
“ =“ , “z“ (categorical, categorical) boolean
“d“ , “ >“ (real, real) boolean

In addition to the data type constraints of Table 1, our GP system enforces two other

constraints. First, an AND node cannot be an ancestor of an OR node. Although this is
not essential for producing syntactically-valid individuals, it enforces the restriction
that every individual represents a set of rule antecedents in (DNF). The DNF
representation is not only intuitively simple, but also facilitates the enforcement of the
second additional constraint, called “ attribute-uniqueness constraint” . This constraint
means that an attribute can occur at most once in a rule antecedent. This constraint
avoids invalid rule antecedents like: IF (Sex = male) AND (Sex = female).

2.2 Genetic Operators

Our GP uses reproduction and crossover operators. The reproduction operator consists
of passing a copy of an individual to the next generation. The crossover operator used
here is a variant of the standard tree-crossover operator. In our system that crossover
operator is adapted to our constrained-syntax individual representation, as follows.

First, a crossover point (a tree node) is randomly selected in one of the parent
individuals, here called the first parent. Then the crossover point (tree node) of the
other parent individual, here called the second parent, is randomly selected among the
nodes that are compatible with the crossover point of the first parent, i.e., among the
nodes that return the same data type as the data type returned by the crossover point of
the first parent. Then the crossover is performed by swapping the subtrees rooted at the
crossover points of the two parent individuals, as usual.

Our GP also uses a form of elitism that we call classwise elitism. The basic idea of
elitism is that the best (or a small set of best) individual(s) of a generation is passed
unchanged to the next generation, to prevent the stochastic process of evolution from
losing that individual. Recall that the population contains individuals predicting

different classes. In our classwise elitism the best individual of each of the k classes is
chosen to be passed unchanged to the next generation. In other words, k elite
individuals are passed unaltered to the next generation. The i-th elite individual (i
=1,...,k) is the best individual among all individuals predicting the i-th class. The
motivation for this classwise elitism is to avoid that the population converges to a state
where all individuals represent rule sets predicting the same class. Without classwise
elitism this would tend to happen, because in general some classes are easier to predict
than others, i.e., individuals predicting the easiest class would dominate the population.

2.3 Fitness Function

The fitness function used in this work is the same as the fitness function proposed in
[Bojarczuk et al. 2000]. Note, however, that [Bojarczuk et al. 2000] used a simple
individual representation, working only with boolean attribute values. This required all
attributes to be booleanized in a preprocessing step, which significantly reduces the
flexibility and autonomy of the algorithm. By contrast, this work uses a considerably
more flexible and elaborate individual representation, as discussed earlier.

The fitness function evaluates the quality of each individual (a rule set where all
rules predict the same class) according to two basic criteria, namely its predictive
accuracy and its simplicity. Predictive accuracy is measured by the product Se · Sp,
where Se (the sensitivity) is given by Se = tp / (tp + fn) and Sp (the specificity) is given
by Sp = tn / (tn + fp), where tp, fp, tn and fn denote respectively the number of true
positives, false positives, true negatives and false negatives observed when a rule is
used to classify a set of instances [Hand 1997].

The second criterion used in the fitness function is the simplicity (Sy) of the rule set
represented by an individual, given by: Sy = (maxnodes – 0.5·numnodes – 0.5) /
(maxnodes – 1) where numnodes is the current number of nodes (functions and
terminals) of an individual (tree), and maxnodes is the maximum allowed size of a tree
(empirically set to 45). The inclusion of a simplicity term in the fitness function helps
to produce simpler (shorter) rule sets to be shown to the user, and it also helps to avoid
code bloat. Finally, the entire fitness function is given by the product of the indicators
of predictive accuracy and simplicity, i.e.: fitness = Se · Sp · Sy. The motivation for this
fitness function is explained in [Bojarczuk et al. 2000].

2.4 Classification of New Instances

Recall that, after the GP run is over, the result returned by GP consists of a set of k
individuals, where k is the number of classes. The i-th returned individual (i=1,...,k)
consists of a set of rules predicting the i-th class for a data instance (record) that
satisfies the rule set associated with the individual. An instance is said to satisfy a rule
set if it satisfies all the conditions of at least one of the rules contained in the rule set.
Recall that an individual contains a rule set in disjunctive normal form.

When the set of returned individuals is used to classify a new instance (in the test
set), the instance will be matched with all the k individuals, and one of the following
three situations will occur:

(a) The instance satisfies the rule set of exactly one of the k individuals. In this case
the instance is simply assigned the class predicted by that individual;

(b) The instance satisfies the rule set of two or more of the k individuals. In this case
the instance is assigned the class predicted by the individual with the best fitness value
(computed in the training set, of course);

(c) The instance does not satisfy the rule set of any of the k individuals. In this case
the instance is assigned a default class, which is the majority class, that is the class of
the majority of the instances in the training set.

3 Computational Results

In this section we compare the results of our GP with C4.5, a very well-known decision
tree algorithm [Quinlan 1993], in a new data set, called Pediatric Adrenocortical
Tumor, which has not been previously used in any computational classification
experiment reported in the literature. We emphasize that preparing this data set for data
mining purposes was a considerable challenge. We had to carry out a significant
preprocessing of the available data, as described in the following. The data set used in
our experiments consisted of 124 instances (records) and 10 attributes.

The first step was to decide which attribute would be used as the goal (or class)
attribute, to be predicted. Discussing with the user, it was decided to predict how long
a patient will survive after undergoing a surgery. The corresponding goal attribute is
hereafter called Survival. The values of this attribute for the instances were not directly
available in the original data set. It had to be computed in an elaborate way, as follows.

First the system computed, for each instance (patient), the number of days between
the date of the surgery and the date of the last follow up of the patient. Then the system
checked, for each instance, the value of another attribute called Status, whose domain
contained four values. One of these values indicated that the patient was dead, whereas
the other three values indicated that the patient was still alive. (The difference in the
meaning of those three values indicating alive patient reflect different stages in the
progress of the disease, but this difference is not relevant for our discussion here.)

A major problem in predicting Survival is that, if the Status of a patient (as recorded
in the hospital’s database) is different from dead, this does not necessarily means that
patient is still alive in real life. Maybe the patient actually died, but this information
was not yet included in the database, due to a loss of contact between the family of the
patient and the hospital. On the other hand, if the value of Status recorded in the
hospital’s database is dead, this Status is presumably true. As a result, for many of the
patients, one cannot be sure about the true value of the Survival attribute. One can be
sure about this value only when the value of the Status attribute is dead. When Status is
different from dead, the value of Survival computed as described above is just an
underestimate of the true value of that attribute. Hence, any attempt to directly predict
the value of Survival would be highly questionable.

To circumvent this problem, we transformed the original problem of predicting
Survival for all patients into three separate problems, each of them carefully defined to
lead, at least in principle, to more reliable results. We try to predict the value of
Survival for each of three classes of this attribute separately. These three classes were
defined by discretizing the Survival attribute (which was previously measured in
number of days) into three ranges of values, namely less than one year, between one
and two years, between two and five years. These intervals were determined by the
user, a medical expert on Pediatric Adrenocortical Tumor. Hereafter these ranges are
called class 1, class 2 and class 3, respectively, for short.

This leads to three classification experiments, each of them aiming at discriminating
between two classes, a “ positive” class and a “ negative” class. In the i-th experiment, i
= 1,2,3, the instances having class i are considered as positive-class instances, and all
the other instances are considered as negative-class instances.

The reason why we need to perform three separate classification experiments is as
follows. As mentioned above, when the patient’ s Status is different from dead, one
cannot be sure about the true value of the Survival attribute. For instance, suppose that
a patient underwent surgery one and a half year ago. One cannot be sure if the patient
has class 2 or 3, since (s)he might or not live until (s)he completes two years of
survival after surgery. However, one can be sure that this patient does not have class 1.
So, its corresponding instance can be used as a negative-class instance in the first
classification experiment, aiming at predicting whether or not a patient has class 1. On
the other hand, that instance cannot be used in the second or third classification
experiments, because in those experiments there would be no means to know if the
instance had a positive class or a negative class.

The key idea is that an instance is used in a classification experiment only when one
can be sure that it is either definitely a positive-class instance or definitely a negative-
class instance, and for some instances (those having Status different from dead) this
depends on the classification experiment being performed. Finally, we now precisely
specify how we have defined which instances were used as positive-class or negative-
class instances in each of the three classification experiments.

The first experiment consists of predicting class 1, i.e. Survival less than one year.
In this experiment the positive-class instances are the patients whose Status is dead and
whose Survival is less than or equal to one year. The negative-class instances are the
patients whose Survival is greater than one year. After this instance-filtering process
the data set contained 22 positive-class instances and 83 negative-class instances.

The second experiment consists of predicting class 2, i.e. Survival between one and
two years. In this experiment the positive-class instances are the patients whose Status
is dead and Survival is greater than one year and less than or equal to two years. The
negative-class instances are the patients whose Status is dead and Survival is either less
than one year or greater than two years. After this instance-filtering process the data set
contained 8 positive-class instances and 86 negative-class instances.

The third experiment consists of predicting class 3, i.e. Survival between two years
and five years. In this experiment the positive-class instances are the patients whose
Status is dead and Survival is greater than two years and less than or equal to five
years. The negative-class instances are the patients whose Status is dead and Survival
is either less than two years or greater than five years. After this instance-filtering

process the data set contained 6 positive-class instances and 62 negative-class
instances.

Table 2 reports the accuracy rate obtained by C4.5 and the GP in each of the three
classification experiments. The numbers after the “r” symbol denote standard
deviations. In all the experiments we have used the default parameters of C4.5 and the
GP, making no attempt to optimize the parameters of the two systems. The default
parameters of the GP are: population size of 500 individuals, 50 generations, crossover
probability of 95%, reproduction probability of 5%, initial population generated by the
ramped half and half method, maximum tree size of 45 nodes. We used roulette wheel
selection. All results were obtained by performing a 5-fold cross-validation procedure
[Hand 1997], where each of the 5 iterations of the cross-validation procedure involved
a single run of both the GP and C4.5.

Based on the results reported in Table 2, at first glance C4.5 seems to outperform
our GP system in this data set. In two out of the three classes (namely, classes 2 and 3)
the accuracy rate of C4.5 is significantly better than the one of the GP – since the
corresponding accuracy rate intervals (taking into account the standard deviations) do
not overlap. However, this conclusion would be premature, as we now show.

Table 2: Classification accuracy rate (%) on the test set

Class C4.5 GP

1 75.7 r 1.22 73.3 r 2.43
2 88.2 r 0.77 78.8 r 2.81
3 87.3 r 1.01 67.8 r 6.82

Table 3: Sensitivity (Se) and Specificity (Sp) on the test set

Class C4.5 GP

 Se Sp Se · Sp Se Sp Se · Sp

1 0.1 0.916 0.079 0.79 0.725 0.560
2 0 1 0 0.9 0.781 0.693
3 0 1 0 0.1 0.735 0.067

The problem with the results of Table 2 is that they are based on classification

accuracy rate. Although this measure of predictive accuracy is still the most used in the
literature, it has some drawbacks [Hand 1997]. The most important one is that it is
relatively easy to achieve a high value of classification accuracy when one class (the
majority class) has a high relative frequency in the data set, which is the case in our
data set. In one extreme, suppose that 99% of the examples have a given class c1. In
this case one can trivially achieve a classification accuracy rate of 99% by “ predicting”
class c1 for all examples. Does that mean that the classification algorithm (a trivial
majority classifier) is doing a good job? Of course not. What this means is that the
measure of classification accuracy rate is too weak in this case, in the sense that it is

too easy to get a very high value of this measure. One needs a more demanding
measure of predictive accuracy, which emphasizes the importance of correctly
classifying examples of all classes, regardless of the relative frequency of each class.

Indeed, an analysis of the trees induced by C4.5 shows that the results of the last
two rows of Table 2 (referring to classes 2 and 3) are very misleading. In particular,
C4.5 is not discovering better rules for these classes. When predicting class 2 and class
3, C4.5 induces a degenerate, “ empty” tree with no internal node; i.e., a tree containing
only one leaf node, predicting the majority class. This has consistently occurred in all
the five folds of the cross-validation procedure. Clearly, C4.5 opted for an “ easy
solution” for the classification problem, favoring the correct prediction of the majority
of the examples at the expense of making an incorrect prediction of all the minority-
class examples. Such an easy solution is useless for the user, since it provides no rules
(i.e., no knowledge) for the user. Only when predicting class 1 C4.5 was able to induce
a non-degenerate, non-empty tree on average. And even for this class an empty tree
was induced in some folds of the cross-validation procedure.

By contrast, our GP system discovered, on average, rules with 2, 1.7 and 1.9
conditions, for rules predicting classes 1, 2 and 3, respectively, which constitute a
simple rule set to be shown to the user. Overall, the rules were considered
comprehensible by the user. We now need to evaluate these rules according to a more
demanding measure of predictive accuracy, emphasizing the importance of correctly
classifying examples of all classes, as mentioned above. Hence, we report in Table 3
the values of sensitivity (Se), specificity (Sp), and the product Se · Sp (see section 2)
obtained by C4.5 and our GP system in the Pediatric adrenocortical tumor data set.

As can be observed in this table, both C4.5 and our GP failed to discover good rules
predicting class 3 but, unlike C4.5, our GP succeeded in discovering good rules (with
relatively good values of Se and Sp) predicting classes 1 and 2. In addition, in all the
three classes, the value of the product Se · Sp obtained by our GP considerably
outperforms the one obtained by C4.5.

4 Conclusions and Future Research

As mentioned in the introduction, the idea of constrained-syntax GP is not new.
However, we believe this paper has the contribution of proposing a constrained-syntax
GP tailored for the discovery of simple classification rules. This was achieved by
incorporating into the GP the following mechanisms:

(a) An individual representation based on disjunctive normal form (DNF). As
mentioned in section 2.1, the use of DNF has two advantages. First, it is an intuitively
simple form of rule set presentation to the user. Second, it facilitates the enforcement
of the attribute-uniqueness constraint – i.e., an attribute can occur at most once in a
rule antecedent. (In passing note that, although most of the data type constraints
enforced by our GP could alternatively be represented in a grammar-based GP, the
attribute-uniqueness constraint cannot be directly represented in a grammar-based GP.)

(b) A result designation scheme where the solution for the classification problem
consists of k individuals (where k is the number of classes), each of them predicting a

different class, and all of them produced in the same run of the GP. This makes the GP
more efficient, avoiding the need for k runs of the GP, as usual in the literature.

(c) Classwise elitism, an extension of the basic idea of elitism to the framework of
classification. In this kind of elitism the best individual of each of the k classes is
chosen to be passed unchanged to the next generation. This avoids that the population
converges to a state where all individuals represent rule sets predicting the “ easiest
class” , and guarantees that the result designation procedure works properly.

Although each of these ideas is perhaps relatively simple, their combination
effectively produces a GP tailored for the discovery of classification rules.

In addition, this paper also offers a contribution from the data mining perspective.
We have proposed a new way of preprocessing a medical data set for the purpose of
predicting how long a patient will survive after a surgery.

The proposed preprocessing method was applied to the Pediatric Adrenocortical
Tumor data set, but it is a relatively generic method, which could be also applied to
other medical data sets where one wants to predict how long a patient will survive after
a given event such as a major surgery. (Of course, the method is not generic enough to
cover other kinds of prediction, such as medical diagnosis.)

Furthermore, the GP was compared with C4.5 in a difficult medical classification
problem. The accuracy rate of C4.5 was found to be significantly better than the one of
the GP at first glance. However, an analysis of the trees built by C4.5 showed that it
was not discovering better classification rules. It was just building a degenerate, empty
tree, predicting the majority class for all data instances. We then performed a more
detailed analysis of the predictive accuracy of both systems, measuring the sensitivity
and the specificity rates for each class separately, and showed that, according to this
measure of predictive accuracy, overall the GP obtained considerably better results
than C4.5.

We are currently applying our GP to other data sets. A future research direction
might consist of performing experiments with other function sets and evaluate the
influence of the function set of the GP in its performance, across several data sets.

References

[Bojarczuk et al. 2000] C.C. Bojarczuk, H.S. Lopes, A.A. Freitas. Genetic programming for
knowledge discovery in chest pain diagnosis. IEEE Engineering in Medicine and Biology
magazine - special issue on data mining and knowledge discovery, 19(4), 38-44, July/Aug.
2000.

[Dhar et al. 2000] V. Dhar, D. Chou and F. Provost. Discovering interesting patterns for
investment decision making with GLOWER – a genetic learner overlaid with entropy
reduction. Data Mining and Knowledge Discovery Journal 4 (2000), 251-280.

[Freitas 2002] A.A. Freitas. Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer, 2002.

[Hand 1997] D.J. Hand. Construction and Assessment of Classification Rules. Chichester: John
Wiley & Sons, 1997.

[Kishore et al. 2000] J.K. Kishore, L.M. Patnaik, V. Mani and V.K. Agrawal. Application of
genetic programming for multicategory pattern classification. IEEE Transactions on
Evolutionary Computation 4(3) (2000), 242-258.

[Montana 1995] D.J. Montana. Strongly typed genetic programming. Evolutionary Computation
3 (1995), 199-230.

[Papagelis and Kalles 2001] A. Papagelis and D. Kalles. Breeding decision trees using
evolutionary techniques. Proc. 18th Int. Conf. on Machine Learning, 393-400. San Mateo:
Morgan Kaufmann, 2001.

[Quinlan 1993] J.R. Quinlan. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1993.

[Witten and Frank 2000] I.H. Witten and E. Frank. Data Mining: practical machine learning
tools and techniques with Java implementations. San Mateo: Morgan Kaufmann, 2000.

