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Abstract. For a given data set, its set of attributes defireedata space repre-
sentation. The quality of a data space representataeisf the most important
factors influencing the performance of a data miningrélyn. The attributes
defining the data space can be inadequate, making it diffcudiscover high-
quality knowledge. In order to solve this problem, this pgpeposes a Genetic
Programming algorithm developed for attribute constructibinis algorithm
constructs new attributes out of the original attributbethe data set, perform-
ing an important preprocessing step for the subsequent aioplicha data min-
ing algorithm.

1 Introduction

This paper addresses the classification task of data miningn[Biisltask the goal of
a data mining algorithm is to predictive the class of an exafaptecord, or data
instance), given the values of a set of attributes for that example.

For a given data set, its set of attributes defines itsqetee representation. The
quality of a data space representation is one of the most importans faiieencing
the performance of a data mining algorithm. The attributes defthimglata space
can be inadequate, making it difficult to discover high-quality kndgée However,
when the original attributes are individually inadequate, it isngfessible to com-
bine them in order to construct new attributes with greater pregligpwer than the
original attributes, facilitating the discovery of knowledgehwdt high predictive
accuracy.

This paper proposes a Genetic Programming (GP) algorithm devétopeitib-
ute construction (also called constructive induction). This algorithmstcucts new
attributes out of the original attributes of the data set, penfigrian important pre-
processing step for the subsequent application of a data mining algorithm.

The main motivation for developing a GP algorithm for this task is thatfinoes
a global search in the space of candidate solutions (new constrtidtades, in our
case). In data mining, this has the advantage of coping betteatitiute interac-
tion, being less likely to get trapped into local maxima in tleeckespace, by com-
parison with greedy, local search-based data mining algorithms [2], [4].



The remainder of this paper is organized as follows. Section @ws\attribute
construction. Section 3 proposes our new GP algorithm for attribute wctitstr
Section 4 reports computational results. Finally, section 5 concludes the paper.

2 A Review of Attribute Construction

The majority of inductive learning algorithms for the clasatiion task discover
rules (or another kind of knowledge representation) involving only figaa attrib-
utes of the data being mined. In addition, the majority of rule inductiethods
analyze the data on a one-attribute-at-a-time basis. Hence,rtbem@nce of these
methods is considerably limited by the predictive power of individttaibutes, so
that these methods do not cope very well with the problem of attribute interaction.

The goal of an attribute construction method is to construct nevwud#si out of
the original ones, transforming the original data representatiominéw one where
regularities in the data are more easily detected by thsifitation algorithm, which
tends to improve the predictive accuracy of the latter.

Attribute construction methods can be roughly divided into two groups, ®4th r
spect to the construction strategy: hypothesis-driven methods andrideta-meth-
ods [6].

Hypothesis-driven methods construct new attributes out of previoustyajed
hypotheses (discovered rules or another kind of knowledge representhtigen-
eral they start by constructing a hypothesis, for instance aiatetise, and then
examine that hypothesis to construct new attributes [13]. These tréwtat are
then added to the set of original attributes, and a new hypothesis is caustruicof
this extended set of attributes. The new hypothesis is used to gemenaattributes,
and so on. This process is repeated until a given stopping critesatised, such
as a satisfactory extended set of attributes has been found. Ndteetparformance
of this strategy is strongly dependent on the quality of the preyidistovered
hypotheses.

By contrast, data-driven methods do not suffer from the problem of depeanding
the quality of previous hypotheses. They construct new attributesdntlgidetect-
ing relationships in the data. Two examples of data-driven attritnistruction
methods are GALA and GPCI.

GALA [8] constructs new attributes using two logical operatorsDA®d OR.
First, all original attributes are transformed into booleanbaitieis. Then it generates
new attributes by using the AND and OR operators to produce combinafitims
boolean attributes. Although GALA does not use any evolutionary algotittoon-
struct attributes, it is interesting to note that apparenthag the “parent” of GPCI
[7], a GP algorithm for attribute construction.

Like GALA, GPCI starts by transforming all original attribatinto boolean at-
tributes, and then it generates new attributes by using AND andp@Rtors to
produce combinations of the boolean attributes. The difference is Sedrishes for
new attributes by using a GP algorithm. In essence, each indigt@&®PCI repre-



sents a new attribute. The terminal set consists of the booldariginal attributes,
whereas the function set consists of the AND and OR operators.

The process of attribute construction can also be roughly divided iotcw
proaches, namely the interleaving approach and the preprocessing approach.

In the preprocessing approach the process of attribute constructiolependent
of the inductive learning algorithm that will be used to extracivkedge from the
data. In other words, the quality of a candidate new attribute lisated by directly
accessing the data, without running any inductive learning algorithm. In this approach
the attribute construction method performs a preprocessing of theaddtthe new
constructed attributes can be given to different kinds of inductive learning methods.

By contrast, in the interleaving approach the process of attribute construction is i
tertwined with the inductive learning algorithm. The quality ofaadidate new at-
tribute is evaluated by running the inductive learning algorithm usedxtract
knowledge from the data, so that in principle the constructed atsibugefulness
tends to be limited to that inductive learning algorithm. An exampkn attribute
construction method following the interleaving approach can be found in [15].

In this paper we follow the data-driven strategy and the prepingesgproach,
mainly for two reasons. First, using this combination of stratpgyéach the con-
structed attributes have a more generic usefulness, sinceatihéglp to improve the
predictive accuracy of any kind of inductive learning algorithneo8d, an attribute-
construction method following the preprocessing approach tends to be ficentef
than its interleaving counterpart, since the latter requires madgutions of an in-
ductive learning algorithm.

It should be noted that both GALA and GPCI also follow the data-drivategy
and the preprocessing approach. However, both these algorithms hawstétemh
that all attributes have to be booleanized in a preprocessing st the attribute
construction method starts to run. Intuitively, this booleanization @htte a sig-
nificant loss of relevant information. Our proposed GP for attribotestcuction
(described in the next section) does not have this disadvantage,itsiluEs not
require any booleanization of the original attributes.

3 A New GP for Attribute Construction

3.1 Individual Representation

We use a standard tree-structure representation for each indif@iiudl]. The GP
constructs new attributes out of the continuous (real-valued) atgibfithe data set
being mined. Each individual corresponds to a candidate new attributéeritieal
set consists of all the continuous attributes in the data being mihedunction set
consists of four arithmetic operators, namely “+2,*“ [T, “%" (where the latter is
protected division [9]), and two relational comparison operators, naraely=".

The use of these operators in the tree associated with an indimdsalsatisfy
some constraints about the data types of these operators, as shabteit.TAs can
be seen in the table, the arithmetic operators require two contimmusarguments



and produce a continuous output. The relational comparison operators also require
two continuous input arguments, but they produce a boolean output.

Table 1. Data types restrictions for the function set

Operator Input arguments Output
+ - 0% (continuous, continuous)continuous)
> < (continuous, continuous)boolean)

As a result of the data type restrictions shown in Table 1, #reresome restric-
tions on the hierarchy of nodes in a tree. These restrictiondhavn sn Table 2.
Each cell of this table indicates whether or not (Y or N, regmdy) the correspond-
ing combination of parent node and child node is allowed. Note that th®mala
comparison operatorsX", “<”) cannot be used as child nodes. l.e., these operators
can be used only in the root node of a tree.

Table 2. Restrictions on the hierarchy of nodes in the tree

parent node
+ - O % > <
+ Y Y Y Y Y Y
- Y Y Y Y Y Y
O Y Y Y Y Y Y
child node % Y Y Y Y Y Y
> N N N N N N
< N N N N N N
terminal Y Y Y Y Y Y

We have also used a restriction on the size of the tree a@ssbwigh an individ-
ual. This restriction consists of specifying a parameter reptieg the maximum
tree size (number of nodes) of a tree. As will be seen later, we have done erfgerim
with different values of this parameter, to determine how robusGeéuis to varia-
tions in the setting of this parameter.

This size restriction is important for at least two reasoinst, From a predictive
data mining view point, avoiding the generation of very largesthedps to combat
overfitting and so potentially improves the predictive power ofcdredidate attrib-
ute. Second, from a GP viewpoint, this size restriction helps ta &heieffects of
code bloat [12], [10] — i.e., the tendency of GP trees to grow in an undedtnohn-
ner.

It should be mentioned that some GP algorithms specify a predefiagchum
depth for an individual's tree. There is no such maximum tree depth iGBur
Rather, we have preferred to specify a maximum tree sizgrimstof the number of
nodes. The rationale for this choice is that, if a maximum treén degpecified, the
GP will probably be somewhat biased to produce balanced trees, gtbwitrges in
width after the maximum tree depth has been reached. Such bias saehsal,



limiting the flexibility of the GP to search for solutions (Bg@f different shapes.
Actually, there is some evidence that predefining a maximumdeeéh has some
negative effects in GP [5], [11]. A size restriction based ontdted number of
nodes, rather than tree depth, helps to avoid this kind of problem.

Note that the function set of our GP is inclusive enough to allowsthé¢o con-
struct either a continuous attribute or a boolean attribute, depending kimdhef
operator used in the root node of the individual’s tree. If the root nodait®rn
arithmetic operator ¢",“-",“[0, or “%") the constructed attribute will be continu-
ous, whereas if the root node contains a relational comparison opéegtor (<")
the constructed attribute will be boolean.

3.2 Selection M ethod and Genetic Operators

We use tournament selection. In essence, this method works as félimstik indi-
viduals are randomly chosen from the population. Then the individual withetste
fithess is selected. This method has an important parameteoutinarment sizek.
This parameter determines the selective pressure of the metrgdr values ok
correspond to larger selective pressures, favouring individudighdgtbest values of
fitness. As will be seen later, we have done experiments witratit values of this
parameter, to determine how robust our GP is to variations in tiiregsef this pa-
rameter.

In order to create a new population from the current population we e dpf
erators, namely reproduction, crossover and mutation. Reproduction and arossove
are conventional GP operators — we use standard tree crossover [9].

The mutation operator works as follows. First, it randomly choogeseanode.
Then the current symbol in this node is replaced by a randomly chasbolyf the
same kind which is different from the current symbol. More prigiseterminal
symbol is replaced by another terminal symbol, an arithmetic apasateplaced by
another arithmetic operator, and a relational comparison operatplésed by an-
other relational comparison operator.

3.3 Fitness Function

The fitness function used in this work is information gain ratio [djch is a well-
known attribute-quality measure in the data mining and machine learnnaguire It
should be noted that the use of this measure constitutes a datasirategy. As
mentioned above, an important advantage of this kind of stratebsatist tis rela-
tively fast, since it avoids the need for running a data mining gigosvhen evaluat-
ing an attribute (individual). In particular, the information gainorédr a given at-
tribute can be computed in a single scan of the training set.

The Information Gain Ratio of an attribuiAe denoted by IGRY), is computed by
dividing the Information Gain of,, denoted by IGX), by the amount of Information
of the attributeA, denoted If), i.e.:

IGR(A) = IG(A) / I(A) . )



The Information Gain of an attribut® denoted IG4), represents the difference
between the amount of Information of the goal (class) attriButdenoted IG), and
that amount given the knowledge of the values of an attriBudenoted IG|A).
IG(A) is given by:

IG(A) = I(G) - I(GIA), 2

where gy = g p@G) . log p(G), )
=1

and @A) =2 pA) (-2 PGIA) - log: PGIA) ) “@

where p@) is the estimated probability (computed in the training set) oérolysy
thej-th class (i.e., th@¢th value of the goal attribut®), n is the number of classes,
pP(A) is the estimated probability of observing ikl value of the attributd, mis
the number of values of the attribude and pG;j|A) is the empirical probability of
observing thg-th class conditional on having observed ithie value of the attribute
A

Finally, I(A) is given by:

I(A) = -Z pA) - log p(A) - ©)

Recall that the attribute constructed by the GP can be either continuouseambool
(see the last paragraph of section 3.1). When the constructed aisibatdean, the
above formulas are used in a straightforward manner to computé&fheflthe at-
tribute. When the constructed attribute is continuous the GP computézRtsesso-
ciated with each possible cut point (attribute value) definingnhdidate booleaniza-
tion of the attribute, and it chooses the largest value of IGR, amilbtigose IGR
values, as the value to be assigned to K3Rfor more details about this procedure
and the information gain ratio measure in general, see [14].

4 Computational Results

In this section we report the results of computatiomgkréments performed
to evaluate our proposed GP for attribute construction. @tmgeriments were
performed with four public-domain data sets from the W@Riversity
of  California at  Irvine) data  set repository, available  at:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Table 3 shows the main characteristics of the data sets usedemperiments. In
the third column, the number before the slash (“/”) is the number oihcons at-
tributes, whereas the number after the slash is the total numbgribiites in the
data set. As can be seen in the table, for these experimentyavehosen data sets
where all or almost all attributes were continuous. Future wdrinwolve data sets
with mixed kinds of attributes (both continuous and categorical ones).



Table 3. Data sets used in the experiments

Data set No. of No. of Cont. Attrib. No. of
records / Total No. of Attrib. classes
Abalone 4177 718 28
Balance-scale 625 414 3
Waveform 5000 21/21 3
Wine 178 13/13 3

In all our experiments the probabilities of reproduction, crossover araktiarut
were 10%, 80% and 10%, respectively. The initial population was crbgtading
the well-known ramped half-and-half method [9]. The population size wasa6do,
the GP evolved for 100 generations. We made no attempt to optimipartdmaeters
mentioned in this paragraph. However, we did experiments with diffeedums of
two other parameters, the tournament size and the maximum teeeasiavill be
discussed below.

The evaluation of the quality of the attributes constructed by ouw&Pper-
formed by using C4.5 [Quinlan, 1993], a very well-known classificatigorihm
that builds a decision tree. Hence, in the experiments we compackaskéication
error rate of C4.5 using only the original attributes with the ewatsr of C4.5 using
not only the original attributes but also the new attribute constructed by the GP.

The error rate was computed by a well-known 10-fold cross-validptmeedure,
which essentially works as follows. First, the data set iglelivinto 10 mutually
exclusive and exhaustive partitions. Then the algorithm is run 10.timekei-th
run,i=1,...,10, thd-th partition is used as the test set and the remaining 9 quastiti
are grouped and used as the training set. Finally, the reportedisethdtaverage
error rate (in the test set) over the 10 runs.

In addition to the goal of evaluating the quality of the attributessitucted by the
GP, our experiments also had the goal of determining how robust thetGPairia-
tions in the setting of two important parameters, namely the toemasizek and
the maximum tree size (number of nodes). Hence, we did experimehtshvée
different values for the tournament si€2, 4, 8) and three different values for the
maximum tree size (31, 63, 127). The experiments involved all the 9 ossihbi-
nations (3 x 3) of values of these two parameters.

For each of those 9 combinations of parameter values we have run a 10-fold cross-
validation procedure, as explained above. Note that each run of an @osee
validation procedure involved running GP 10 times and running C4.5 20 times (10
times using only the original attributes and 10 times using both idiaarattributes
and the new attribute constructed by the GP).

The results are reported in Tables 4, 5, 6, and 7, for the Abalone, BSkalee
Waveform and Wine data sets, respectively. In these tablds,celiccontains the
error rate obtained by C4.5 using the attribute constructed by GPtheitombina-
tion of parameter values corresponding to that cell. In the secondflthe title of
each table, between brackets, we report the error rate obtained by C4 &nlsihg
original attributes. In these tables, the value of a cell is shiowold if the error rate
obtained using the new attribute constructed by the GP is sniedlethie error rate



obtained using only the original attributes. Therefore, cells in badesent cases
where the attribute constructed by the GP was useful to redueertiheate associ-
ated with the original attributes, being evidence of the good quality of the wxiesitr
attribute. The numbers after the"‘symbol denote standard deviations.

In the Abalone data set (Table 4) the use of the new attributerwctest by the
GP has led to a slight increase in error rate in 6 out of tles@&sqcombinations of
parameter values), and has led to a slight reduction in the ateoinronly 3 cases.
However, in general the differences in error rates are noifisant, since the corre-
sponding error rate intervals (considering the standard deviatioadapv(The very
high error rates obtained by C4.5, with and without the attribute coresirbgtthe
GP, show that this data set represents a very difficultiitat®n problem. This
seems to be at least in part due to the relatively large number of classes, 28.)

In the Balance-Scale data set (Table 5) the use of the méwiattconstructed by
the GP has clearly led to a very significant reduction in ther €ate in all the 9
combinations of parameter values.

In the Waveform data set (Table 6) the use of the new attidontgructed by the
GP has led to a reduction in the error rate in 8 of the 9 combinatiqrerameter
values. These reductions in error rate are significant — thespamding error rate
intervals (considering the standard deviations) do not overlap.

In the Wine data set (Table 7) the use of the new attribute aotestrby the GP
has led to a reduction in the error rate in all the 9 combinatioparameter values.
However, these reductions in error rate are not significant.

With respect to the ability of the attributes constructed by thenGeducing the
error rate associated with the original attributes, one can stinentiae above results
as follows. In one data set (Abalone) the attribute constructed bljaGRed to a
slight increase in error rate, but this increase was not isigmif In another data set
(Wine) the attribute constructed by GP has lead to some reduct&roimrate, but
again this reduction was not significant. In the other two data seen@aScale and
Waveform) the attribute constructed by GP has led to a reductemanrate which
was significant, since the corresponding error rate intervalsidesimg) the standard
deviations, do not overlap. The reduction in error rate was particstadng in the
Balance-Scale data set. Overall, we consider these results quite promising

Recall that another goal of our experiments was to determine how robus? ike G
to variations in the setting of two important parameters, namely the memaizek
and the maximum tree size (number of nodes).

First of all, as expected, there is no combination of parametiessvinat turned
out to be the “best” one for all data sets. This is a common iasidita mining and
machine learning, where the best parameter setting is strb@gdndent on the data
being mined. In any case, the GP turned out to be quite robust toorariatithe
parameter& and maximum tree size. There are, of course, a few exceptions- In par
ticular, in the Waveform data set (Table 6) the combinatiokh-o8 and maximum
number of nodes = 127 led to an error rate significantly largerttieaather combi-
nations of parameter values. But this result is clearly anpéroe In general, in all
the four data sets the differences in error rates associatediffétrent combinations
of parameter values was not significant, which is evidenceedsonable robustness
of GP to variations in these two parameters.



Table 4. Error rate (%) of C4.5 using both original attributed attribute constructed by the
GP in Abalone data set (Error rate (%) of C4.5 usirlgthe original attributes: 792 0.37)

Maximum tree size (number of nodes)
31 63 127
Tournament 2 79.31+0.36 | 79.18+0.35 79.21+ 0.41
size 4 79.21+ 0.33 79.2% 0.33 | 79.16+0.36
8 79.21+ 0.33 79.24# 0.33 | 79.16 + 0.36

Table 5. Error rate (%) of C4.5 using both original attributes attribute constructed by the
GP GP in Balance-Scale data set (Error rate (%Ydb Gsing only the original attributes: 22.42

+1.34)
Maximum tree size (number of nodes)
31 63 127
Tournament 2 1147 £2.13 7.78 £ 0.66 8.58+0.58
size 4 9.06 £ 0.42 8.26 £ 0.65 8.26 + 0.44
8 8.58 + 0.67 8.74 + 0.68 8.10+ 0.63

Table 6. Error rate (%) of C4.5 using both original attributed attribute constructed by the
GP in Waveform data set (Error rate (%) of C4.5 usinly the original attributes: 25.06

0.66)
Maximum tree size (number of nodes)
31 63 127
Tournament 2 23.04+£0.40 | 22.48+0.45 22.68 £ 0.57
size 4 2244+ 059 | 22.86+ 0.50 22.56 £ 0.57
8 22224049 | 22.60+0.42 28.86+ 2.74

Table 7. Error rate (%) of C4.5 using both original attributed attribute constructed by the
GP in Wine data set (Error rate (%) of C4.5 using dmydriginal attributes: 6.482.05)

Maximum tree size (number of nodes)
31 63 127
Tournament 2 5.31+1.38 472+ 1.47 472+ 1.47
size 4 354+£1.30 531+£1.63 354+ 130
8 354+£1.30 472 + 1.47 530+ 1.62

5 Conclusions and Future Research

We have proposed a new GP for attribute construction. It constructattréwtes

out of the original continuous (real-valued) attributes of the datagbeined. We

have also evaluated the ability of the attributes constructeaeb@® in reducing the
error rate associated with the original attributes. This was dgneomparing the
error rate obtained by C4.5 using only the original attributes wittettos rate ob-
tained by C4.5 using both the original attributes and the new attribngtracted by
the GP.



Experiments were performed with four public-domain data sets. In tvilbosé
data sets there was no significant difference in the error rate of CA.&ndtwithout
the attribute constructed by the GP. However, in the other two etstdhe differ-
ence was significant, and in both of these cases the error r@e®fvith the con-
structed attribute was smaller than the error rate of C4.5 witiheutonstructed
attribute. Hence, these can be considered promising results.

In addition, GP turned out to be quite robust to variations in the setifnigg
important parameters, namely the tournament size and the maxieisize (num-
ber of nodes). Experiments with 9 different combinations for the valudeese two
parameters showed that, in general (with a few exceptions), fieeedifes in error
rates associated with different combinations of these parawaters was not sig-
nificant.
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