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ABSTRACT 

Oral absorption depends on many physiological, physiochemical and formulation factors. 

Two important properties that govern oral absorption are in vitro permeability and solubility, 

which are commonly used as indicators of human intestinal absorption. Despite this, the 

nature and exact characteristics of the relationship between these parameters are not well 

understood. In this study a large dataset of human intestinal absorption was collated along 

with in vitro permeability, aqueous solubility, melting point, and maximum dose for the same 

compounds. The dataset allowed a permeability threshold to be established objectively to 

predict high or low intestinal absorption. Using this permeability threshold, classification 

decision trees incorporating a solubility-related parameter such as experimental or predicted 

solubility, or the melting point based absorption potential (MPbAP), along with structural 

molecular descriptors were developed and validated to predict oral absorption class. The 

decision trees were able to determine the individual roles of permeability and solubility in 

oral absorption process. Poorly permeable compounds with high solubility show low 

intestinal absorption, whereas poorly water soluble compounds with high or low permeability 

may have high intestinal absorption provided that they have certain molecular characteristics 

such as a small polar surface or specific topology.  
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1. INTRODUCTION 

The assessment of pharmacokinetic properties, especially absorption, is now well established 

in early drug discovery. The need to determine absorption of new chemical entities is 

essential for successful orally administered compounds, as well as efficacy, toxicity and other 

ADME (absorption, distribution, metabolism, excretion) properties [1]. The prediction of oral 

absorption can be carried out with experimental assays and/or the use of in silico models. 

These experimental and computer models can be used as an indication of intestinal 

absorption in humans, which is carried out later on in drug development. By testing drug 

compounds using these models, compounds with undesirable properties can be removed 

earlier, therefore improving cost effectiveness [2, 3]. 

Intestinal absorption depends on many physiological, physiochemical and formulation 

factors. Two important properties that govern oral absorption are permeability and solubility 

as utilised by the Biopharmaceutics Classification System (BCS) [4].  For a drug to be 

absorbed it must firstly dissolve in the gastrointestinal fluid in order to then permeate the 

intestinal membrane. The relationship between these properties is closely, usually inversely, 

related [5, 6]. As an increasing number of new chemical entities (NCE) have high 

lipophilicity and low solubility, predicting absorption of NCEs is problematic. Inadequate 

aqueous solubility can lead to poor, erratic, variable absorption, so it is important to consider 

the effects of solubility for the prediction of intestinal absorption [7] . 

The importance of solubility on oral absorption is highlighted in the literature, but there are 

few studies that incorporate both experimental solubility and permeability values within a 

model, in order to see the effect these two properties have on oral absorption [8, 9]. Early oral 

absorption models are too small to effectively represent all the different biological processes 

of absorption and the physiochemical properties including solubility [10, 11]. Most studies 

have removed compounds with solubility issues when modelling oral absorption [12, 13], 

which is not ideal due to the increasing number of poorly soluble drugs being developed. 

Zhao and co-workers demonstrated that predicting BCS Class II compounds (low solubility 

and high permeability) resulted in an overestimation of fraction absorbed by their model [12]. 

Solubility itself is a complex parameter and in turn dependent on numerous factors, therefore 

it is important to investigate what multiple elements such as those calculated from the 

molecular structure may improve understanding of this property in relation to absorption.  
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Molecular descriptors that describe the process of solubilisation of the drug such as crystal 

lattice energy, solvent cavity formation energy and solvation energy are utilised in the 

prediction of solubility [14, 15]. The general solubility equation (GSE) is a simple method 

that predicts aqueous solubility using only two parameters, logP and melting point [16]. 

Other methods may employ more specific molecular descriptors to improve the prediction 

accuracy [17, 18]. GSE and its variants have been used for the estimation of oral absorption-

related parameters termed absorption potential [19, 20]. Recently a melting point based 

absorption potential (MPbAP) has been proposed which is derived from the GSE and 

includes maximum dose, to give an indication of oral absorption. In general, it was found that 

the lower the melting point the higher the tendency the compound had to be highly-absorbed 

and vice versa, and it was also found that for higher melting points absorption was limited by 

dose [21]. 

Permeability in drug discovery is routinely measured using in vitro cell based assays to give 

an indication of permeability of drug compounds in the intestine, blood brain barrier, nasal 

cavity and skin [22]. Apparent permeability (Papp) is the rate of permeation across cell 

monolayers and is usually measured in cm/s
-1

. The ideal permeability model for the small 

intestine mimics the physical and biochemical processes of intestinal absorption [1]. There 

are many different cell lines that can be used to measure permeability. Human colon 

adenocarcinoma (Caco-2) is a commonly used cell line [23-25],
 
which displays biological and 

characteristic properties of the enterocytes of the small intestine such as the brush border and 

tight junctions [1, 25-27]. These cells can express a variety of transporters and metabolic 

enzymes, allowing other transport and metabolism mechanisms to be investigated [28]. 

Drawbacks of this particular cell line are inter-laboratory differences, variable transporter 

expression, long culture time, tighter junctions compared with in vivo situation and lack of 

mucus secreting goblet cells [1, 29, 30]. Some of these problems have been resolved by other 

cell lines such as 2/4/A1, a rat intestinal epithelial cell line, which has leakier tight junctions 

[31, 32]; also, the cell line HT29-MTX is a co-culture of Caco-2 cells with mucus secreting 

goblet cells to study the effects of mucus on absorption [33]. Another cell line that has been 

gaining popularity is MDCK II (Madin-Darby Canine Kidney strain II) cells, due to shorter 

culture time (of 3-5 days), leakier tight junctions and low expression of transporters 

compared with Caco-2, making it an ideal cell line for passive permeability assessment even 

with species and tissue differences [22, 34-36]. There are many similarities and differences 



5 
 

between Caco-2 and MDCK cell lines. Despite this there is a linear relationship between the 

two shown using small compound sets [22, 34, 35]. 

The relationship between permeability and fraction absorption in humans can be determined 

numerically or categorically. From a classification perspective a permeability threshold 

indicates high or low intestinal absorption (absorption class). The permeability thresholds 

defined in the literature vary greatly and the majority of studies appear to set the permeability 

threshold subjectively from a visual inspection of the graphical fit, rather than using an 

objective method [13, 37-40]. For example, Artusson et al [37], using a dataset of 20 

compounds, defined that a compound would have complete absorption if it had a 

permeability > 1 x10
-6 

cm/s.
 

More recent studies have indicated higher permeability 

thresholds than 1 x10
-6

 to define a high absorption compound [8, 38, 41]. In a recent 

investigation, Varma et al [36], used Receiver Operating Characteristic (ROC) analysis to 

objectively define the best permeability threshold for fraction absorbed based on a dataset of 

82 compounds with permeability measured in a low transporter expression MDCK II cell 

line. The threshold defined was > 5 x 10
-6 

cm/s for ≥ 80% or ≥ 90% fraction absorbed. 

Additionally, the FDA has recommended a set of high and low permeability standards with 

known fraction absorbed [42]. These standard compounds can be measured alongside NCEs 

which are then considered as highly or poorly permeable, depending on whether the 

permeability is greater or lower than the standards; this can then be related to fraction 

absorbed based on these FDA standards. Potential problems with this are the choice of 

standard. For example, the high permeability standards propranolol, verapamil and 

metoprolol have differences in their permeability which could result in potential incorrect 

prediction depending which standard is used when testing alongside NCEs.  

In order to see the effects of solubility and permeability on fraction absorbed, a large dataset 

is needed. Therefore, the first aim of this work was to expand the permeability dataset by 

combining data from Caco-2 and MDCK cell lines. By studying the relationship and the 

effect of different absorption mechanisms between the two cell lines and from the differences 

already known between the two cell lines, the justification of combining the datasets can be 

shown. Secondly, the determination of a permeability threshold to predict fraction absorbed 

class using an objective decision tree method is tested on an external validation set of the 

permeability dataset collected. Using this permeability threshold, decision trees using 

experimental and predicted solubility and related properties such as dose number and melting 

point were included along with structural molecular descriptors to build classification models 
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to predict fraction absorbed class. Therefore, the QSAR endpoint is the categorical variable 

indicating the ‘high’ or ‘low’ fraction absorbed class. Based on this work, one can obtain an 

increased understanding around the relationship between two popular cell based assays and 

how they can be used to predict absorption class using an objective permeability threshold. In 

addition, the effect of solubility and related properties on the prediction of fraction absorbed 

models is explored. 

2. METHODS AND MATERIALS 

2.1 Datasets 

With an extensive search in the literature, multiple datasets were collated consisting of data 

for human intestinal absorption, transport route, permeability, solubility, dose number, 

aqueous solubility and melting point. For each compound the name, property value, CAS 

number, references and additional comments from the authors relating to the data is included 

and can be found in the Supporting Information I. Whenever possible, the original 

literature was consulted to evaluate data quality. In some cases data from secondary sources 

was included when original literature could not be located.  

2.1.1 Human Intestinal absorption 

Intestinal absorption can be assessed and calculated from different types of data such as 

bioavailability, and urinary and faecal excretion mass balance studies. We used the same 

principles to calculate and evaluate the reliability of fraction absorbed value as defined by 

other works [12, 43]. Intestinal absorption values were initially obtained from the published 

datasets of Hou et al [13] and Varma et al [43]; this data was scrutinised by checking the 

original publications. An exhaustive search of the literature was then carried out and 

additional compounds were also added from the drug information obtained from the FDA 

Drugs@FDA database (accessed from June 2012 to May 2013) [44]. Where there was no 

numerical value defined in the literature, categorical values for fraction absorbed were also 

included for this dataset. At the end, the dataset consisted of 913 numerical and 19 

categorical fraction absorption values creating a final dataset of 932 compounds. 

2.1.2 Permeability 

Apparent permeability (Papp) data measured in cm/s
-1

 was collected for compounds with 

known fraction absorption. The dataset contains apparent permeability data for the two 
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different cell lines Caco-2 and MDCK obtained from the literature. The dataset contains 386 

Caco-2 and 246 MDCK Papp values for drug and drug-like compounds. For 185 compounds 

the permeability was found for both cell lines, and this dataset was used to investigate the 

relationship between the two cell lines. Where there were multiple permeability values for a 

single compound these results were averaged unless they were very different, in which case 

comparison of MDCK and Caco-2 permeability was carried out (if available) or careful 

examination of the experimental conditions of the specific value was performed in order to 

justify inclusion. 

For Caco-2 permeability, the published dataset by Pham-The et al [45] was used as the 

starting point from which an exhaustive literature search was carried out. For MDCK 

permeability, permeability data from two studies by Varma and co-workers [36, 46] were 

used as a starting point. As there are different strains of this cell line, it was important to 

reference what strain (if known) was used in the study. In addition, it was decided not to just 

isolate data collection on one strain, but make a note which would aid in interpretation at a 

later stage. The main two types of MDCK strains collected were MDCK II and MDCK-

MDR1. A preliminary statistical paired t test of these two main strains showed no significant 

difference between these two strains in this dataset (p > 0.05), therefore all the data for 

MDCK was used together for comparison with Caco-2. 

2.1.3 Identification of absorption mechanisms 

The knowledge about absorption mechanism will help with interpretation of models and give 

us a better understanding of the influence of transporter systems on absorption as this is 

increasingly important in the prediction of drug absorption. For each compound the 

absorption route was assessed using literature data, review articles and transporter databases. 

It was recorded if compounds underwent any absorption mechanism other than passive 

transcellular route. This included carrier mediated systems, such as efflux and influx 

transporters, and paracellular absorption. A total of 201 (out of 932) were identified to be 

absorbed via routes other than passive transcellular. It must be noted that, firstly, if no 

information or evidence was found to suggest alternative absorption mechanisms, this does 

not necessarily mean it is not a substrate of a transporter or transported via the paracellular 

route; it may not have been tested and/or results have not been published in the literature. 

Therefore, in the future we anticipate that this number could increase further when more 

research is carried out. Secondly, although a compound is identified as a substrate for a 
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carrier mediated system, this does not mean that the transport system is the dominating 

process [47]. 

2.1.4 Aqueous solubility 

Aqueous solubility for 483 compounds in mg/mL was obtained primarily from the 

AQUASOL dATAbASE (6
th

 Edition) and SRC (PHYSPROP) databases 

(http://esc.srcinc.com/fatepointer/search.asp) and the literature. Solubility was converted to 

log molar units (M) and log mg/mL units in this work. For the AQUASOL data, those values 

that had the highest evaluation codes as defined by the database were selected, and those 

compounds with more than one value were averaged.  

In addition to these values, predicted solubility values were also utilised and compared with 

experimental in the modelling section of this work. Solubility was calculated by the revised 

general solubility equation (GSE) using experimental melting point and calculated logP.[16] 

(Equation 1 below). 

Log Sol (GSE) = 0.5 − 0.01 (𝑀𝑃 − 25) − 𝑙𝑜𝑔𝑃                                                                  (1) 

2.1.5 Dose number 

Dose number is a dimensionless number used to determine high or low solubility in the 

Biopharmaceutical Classification System (BCS) [4]. It is calculated using the solubility and 

maximum strength dose (Equation 2).  

Do = (Mo /Vo) / S                                                                                                                      (2) 

Where Do is dose number, Mo is the highest dose strength, Vo is 250ml and S is the aqueous 

solubility (mg/ml). The maximum strength dose was obtained for the compounds in this 

dataset from the British National Formulary (2012)[48], FDA electronic orange book 2012 

(accessed December 2012-January 2013) and Martindale (2009) [49]. Where there were still 

missing values, an extensive literature search was carried out and the values presented are the 

authors’ best recommendation based on an evaluation of the literature data. Where doses 

were based on bodyweight, a body weight of 70kg was used to calculate the maximum dose 

for human.  

 

 

http://esc.srcinc.com/fatepointer/search.asp
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2.1.6 Melting point 

Experimental melting point (in 
o
C) was obtained from the AQUASOL dATAbASE, SRC 

(Physprop), the Hazardous substances data bank (HSDB) (http://toxnet.nlm.nih.gov/cgi-

bin/sis/htmlgen?HSDB) and the literature. The average was taken if a melting point range 

was stated.  

2.1.7 Melting point based absorption potential 

The melting point based absorption potential (MPbAP) was derived from the GSE but 

utilising maximum dose as well as melting point [21]. As shown by Equation 3 below. 

 MPbAP =  0.5 − 0.01 (𝑀𝑃 − 25) − log(4 ∗ 𝑀𝑎𝑥 𝐷𝑜𝑠𝑒)                                                       (3) 

2.2 Calculated molecular descriptors 

Calculated molecular descriptors were calculated from structures using the software packages 

TSAR 3D v3.3 (Accelrys Inc.), MDL QSAR (Accelrys Inc.), MOE v2010.10 (Chemical 

Computing Group Inc.) and Advanced Chemistry Development ACD Laboratories/LogD 

Suite v12. Including the seven descriptors of permeability, solubility and related parameters, 

a total of 220 molecular descriptors were utilised for analysis. 

2.3 Training and validation sets 

Using the combined permeability data from the two cell lines yielded an initial dataset of 447 

compounds. Compounds with MDCK and Caco-2 permeability data that differed by more 

than one log unit and one compound that did not have a numerical value for HIA were 

removed (14 compounds in total). This resulted in a dataset of 433 compounds. The 433 

compounds were split into a training set and a validation set. To ensure a similar distribution 

of fraction absorbed in these two sets, compounds were sorted according to ascending %HIA 

and then logP values. From each group of six consecutive compounds, five were assigned to 

the training set, and one compound was allocated to the validation set randomly. The initial 

training set consisted of 356 compounds and the validation set consisted of 78 compounds.  

For models used to determine the influence of solubility and related parameters, compounds 

that had missing values for solubility, melting point and dose number were removed from the 

initial training and validation sets. The final compound numbers for decision tree analysis are 

shown in Table 1. 

http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
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Table 1. Compound numbers used in the training and validation sets for decision tree 

analysis 

Property Total number of 

compounds 

Training set 

n 

Validation set 

n 

Permeability 433 356 77 

Solubility 296 242 54 

GSE solubility 315 262 53 

Dose number 292 239 53 

Melting point 315 262 53 

MPbAP  308 257 51 

 

2.4 Classification and regression trees (CARTs) 

STATISTICA v11 (StatSoft Ltd.) software was used for permeability threshold determination 

and classification of compounds using CART analysis. CARTs (called C&RT in the 

STATISTICA software) use decision trees to solve regression and classification problems 

developed by Breinman et al [50]. Hence, in this work the QSAR models are represented as 

decision trees (a type of graph). According to the observed %HIA values in the data set, 

compounds were placed into either the “high” class if %HIA was equal to or greater than a 

specified HIA cut-off (e.g.50%) or the “low” class if %HIA was less than this specified 

%HIA cutoff. In this work binary classification of (low or high HIA) was carried out using 

calculated molecular descriptors from the chemical structure, permeability and solubility 

related parameters. The QSAR models (in the form of decision trees) used in this work were 

validated by measuring the predictive accuracy of model predictions (prediction of “High” or 

“Low” oral absorption class) for the compounds in the validation set, as described earlier 

(section 2.3 – training and validation sets). 

 

Preliminary results indicated that permeability and not solubility was the dominant property 

selected statistically by CART. Therefore in order to gauge the relative importance of these 

two parameters, the decision trees were built in two phases. The first phase forced CART to 

select a suitable permeability threshold for different HIA class definitions. The second phase 

involved forcing CART to choose thresholds for solubility and related parameters for the 

second split of the decision tree. After this, CART was allowed to build the remainder of the 

tree automatically using structural molecular descriptors. These trees were compared with a 

CART tree developed using the parameters selected automatically by the tree from 

permeability or solubility parameters or the molecular descriptors provided. 
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2.5 Permeability threshold determination using CART 

The permeability threshold is the numerical value chosen by CART that best predicts HIA 

class. In this work several different analyses were performed where high absorption 

compounds were defined as those having HIA values of above 30, 50, 70, 80 or 90%. Using 

the training set of 356 compounds, HIA class was used as the dependent variable and 

permeability as the independent variable. The CART analysis was restricted to only one split 

to give the permeability threshold. This threshold was tested using a validation set of 78 

compounds. Due to the class imbalance, where there are many more highly-absorbed than 

poorly-absorbed compounds, higher misclassification costs were applied to false positives to 

overcome this bias. Based on previous works the use of misclassification costs has shown 

improved model accuracy [51]. The misclassification cost values applied depended on the 

class distribution of the dataset. For instance, when the “high absorption” class is defined as 

having %HIA ≥ 30%, the cost of a false positive was considered five times the cost of a false 

negative due to roughly five times more highly absorbed compounds in the data set. 

Misclassification costs of 5, 4, 3, 2.5 and 2 were applied to false positives in the analyses 

where the high HIA class had been defined as those compounds having %HIA values equal 

or above 30, 50, 70, 80 and 90%, respectively. 

2.6 Permeability and solubility related model analysis for oral absorption class 

determination 

In this section, models were built using HIA class as the dependent variable where high 

absorption was defined as HIA ≥ 80% and molecular descriptors were utilised as the 

independent variables for model building. The HIA class definition of ≥ 80% was selected 

based on preliminary work, where when using lower HIA class definition such as 30-70% 

due to the lower number of poorly absorbed compounds only poor models could be achieved. 

Using a higher threshold of 90% resulted in poorer overall accuracy (based on preliminary 

analysis), and this threshold is too high to predict oral absorption class effectively with a high 

number of false negatives. 

In this work permeability was set as the first split variable and two alternative approaches 

were used to choose the remaining split variables. In the first one, the CART tree was 

allowed to grow automatically. In the second one, each of the solubility and related 

parameters (dose number and melting point) were manually chosen as then second split 
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variable (note that CART still chooses the cut-off point automatically) and then the tree was 

allowed to grow automatically. Stopping factors were used to prevent overfitting of the 

CART trees and was the minimum number of compounds for splitting. This was set at 11 for 

the permeability only CART trees and eight for permeability and solubility trees.  

2.7 Statistical significance of the models 

To determine the relationship between Caco-2 and MDCK permeability, MINITAB 

Statistical Software (version 16.1.1.0) and Prism (GraphPad Software, Inc) v.5.02 were used 

to carry out linear regression, identify outliers and perform statistical significance testing 

between the different absorption mechanisms. For linear regression the parameter reported to 

assess the fit of the two variables was the squared correlation coefficient, r
2 

forced through 

the origin. For correlation analysis the Pearson’s correlation coefficient and the Spearman’s 

ranking correlation coefficient (rs) were calculated. It must be emphasised here that r
2
 based 

on the regression line forced through the origin is not comparable to r
2
 values where the 

regression line is not forced through the origin [52]. The statistical significance of the 

correlations and regression lines and comparison of the regression lines for different 

absorption mechanisms (using the intercept and the slope values) was depicted by p values. P 

values <0.05 indicated significance.  

The predictive performance of the classification models built using CART in this work was 

measured using sensitivity (SE), specificity (SP) and SP × SE. Sensitivity is the ratio of 

correct classifications for the highly absorbed compound class (SE = TP/(TP + FN)), where 

TP is the number of true positives and FN is the number of false negatives. Specificity is the 

ratio of correct classifications of poorly absorbed compounds (SP = TN/(TN + FP)), where 

TN is the number of true negatives and FP is the number of false positives. In this work 

overall accuracy is defined by specificity multiplied by sensitivity (SP × SE). This measure 

represents the overall predictive performance of both high and low class prediction. In 

addition, this measure will not be overly influenced by the classification accuracy of the 

majority high absorption class, and it has been used in previous investigations [51, 53]. 

3. RESULTS AND DISCUSSIONS 

In this work in order to investigate the effects of permeability and solubility a large dataset of 

human intestinal absorption was gathered from the original literature and then for the same 

compounds Caco-2 and MDCK permabilities, solubility, melting point and dose were 
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gathered from the original literature. Table 2 shows the collated data which is available in the 

supporting information I, where n denotes the number of compounds for each property. 

This data was used in order to develop models for predicting high/low oral absorption and to 

explore suitability of different solubility and permeability measures from different sources as 

descriptors of intestinal absorption.  

Table 2. Data sets collated from the literature 

Property n 

Human intestinal absorption 932 

Caco-2 permeability 386 

MDCK permeability 246 

Aqueous solubility 482 

Dose number 465 

Melting point 609 

 

In terms of permeability, we have gathered permeability measured in both Caco-2 and 

MDCK cell lines. In vitro permeability through different cell lines is commonly used as a 

high throughput measure of effective intestinal absorption in early drug discovery. Other cell 

lines such as MDCK, 2/4/A1 and HT29-MTX have also been used to assess compound 

permeability. There have been a few studies, which show the linear relationship between 

these cell lines. For example, Braun et al [22] studied the relationship between Caco-2 and 

MDCK cell lines and from 14 compounds achieved an r
2
 of 0.86. However, Adveef et al [35] 

achieved a r
2
 of 0.90 using a dataset of 79 compounds.  

3.1 Comparison of Caco-2 and MDCK apparent permeability as indicators of intestinal 

absorption 

For 185 compounds, the in vitro apparent permeability from both Caco-2 and MDCK cell 

lines was obtained from the literature. By an exhaustive literature search transport routes 

were identified for all these compounds. Plotting the permeability of these two cell lines on a 

log scale a linear relationship is shown (Figure 1) where the transport routes have also been 

highlighted. Out of 185 compounds in this figure, 96 compounds were found to be substrates 

of a transporter system and 11 compounds have been suggested to be absorbed to some extent 

via paracellular route.  
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Figure 1. Linear relationship between Caco-2 and MDCK apparent permeability for 185 

compounds  

It can be seen in the plot that Caco-2 and MDCK permeability of majority of compounds 

regardless of their absorption routes correlate well with each other. However, there are 

compounds that deviate significantly from this line and removal of 9 outlier compounds 

(compound names shown in the Figure 1) improves the correlation significantly (Table 3). 

Details of the outlier compounds and a description of reasons can be found in Supporting 

Information II. A better linear relationship between the two cell lines is also achieved when 

only compounds undergoing passive transcellular absorption are plotted (Table 3). It may be 

noted in Table 3 that the correlation between the cell lines are better after the removal of 9 

outliers than after the removal of all the compounds with a transporter effect. It is also 

noteworthy that not all the outliers were substrates of a transporter; examples are 

phenazopyridine and glipizide where no transport system other than passive-transcellular has 

been identified. Both these drugs have poor solubilities (dissolution limiting solubility) and 

classed in Class II of Biopharmaceutics classification system (BCS) [54, 55]. 

!
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Similar conclusions can be made from the results of previous studies where transporter 

mediated effects could not be identified by correlating the permeability through different cell 

lines. Irvine et al [34] compared the apparently permeability of 55 compounds using MDCK 

and Caco-2 cells. This study achieved an r
2
 of 0.79. Irvine identified 12 compounds that were 

substrates for carrier mediated systems. We crossed referenced the remaining compounds 

used by Irvine with our database and identified an additional 18 compounds to be substrates 

for carrier mediated systems. Therefore over half of this original dataset has now been found 

to be affected by a carrier mediated route. The 12 compounds highlighted as undergoing 

carrier systems in most cases were within the linear fit of Irvine’s, with only a few 

exceptions. The explanation by Irvine of why known P-gp substrates were not identified in 

comparing the two cell lines is not suitable. For the P-gp substrates highlighted in the work, it 

was stated the reason they could not be identified was due to saturation of the transport 

mechanism in the assay. Braun et al [22] used the same compounds but at lower 

concentrations, and they were still unable to identify known P-gp substrates. It was concluded 

that using the relationship between MDCK and Caco-2 could not identify P-gp substrates. 

From this work the correlation between MDCK and Caco-2 permeability does indicate the 

same result that compounds with carrier mediated mechanisms do not deviate from the 

correlation between Caco-2 and MDCK permeabilities. This is despite the fact that the 

transporters have different abundance levels in these two cell lines.  

Table 3. Statistical parameters for the linear relationship between MDCK and Caco-2 

permeability measured using PRISM 

Datasets r
2
 (with intercept) r

2
 (non-intercept) Rp Rs 

All compounds (185) 0.63 0.60 0.79 0.79 

Passive transcellular (83) 0.71 0.69 0.84 0.74 

OUTLIERS Removed (9 removed) 

All compounds (176) 0.73 0.72 0.86 0.84 

Passive transcellular (81) 0.75 0.75 0.87 0.76 

 

We have complied a table that compares the cells and small intestine in terms of species 

origin, tightness of the cell junctions and also the transporter and enzyme expressions (Table 

S1 in Supporting Information III). One thing to note is the lack of information/evidence in 

the literature for transporter and enzyme expression especially for the specific strains of the 

MDCK cell line, which is less well studied. For the small intestine the expression of 

transporters and enzyme systems can vary from the three sections of the small intestine, as 
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compounds are not just absorbed from one section, we tried to accommodate an overview of 

expression from the human small intestine [56]. It can be seen from Table S1 that the main 

differences between MDCK and Caco-2 cell lines in general are that MDCK does not express 

some transporter types and that MDCK has a lower abundance of some of the other 

transporters compared to Caco-2 cell lines. However it must be noted that expression of 

transporters or enzymes does not necessarily correlate with their functionality for affecting 

the absorption of the compounds across different membrane/cell lines [57, 58], and as it was 

shown earlier, most substrates of different transporters do not deviate from the correlation 

between Caco-2 and MDCK permeabilities.  

The different expression levels of metabolising enzymes in the different cell lines could also 

potentially affect the permeability of compounds. The expression and activity of CYP3A4 

enzymes in Caco-2 cells are either not present or very weak [30, 59]. A recent investigation 

has found no evidence of CYP3A4 expression in MDCK II cells [60]. Unfortunately the lack 

of information regarding enzymatic activity in the cell lines makes it difficult to 

comprehensively compare and contrast the suitability of these in vitro tools as indicators of 

intestinal absorption. 

Cell based assays, particularly Caco-2, have a reputation for variability. The differences can 

arise from the experimental conditions, which in turn can affect the monolayer, those that 

affect the analysis of samples and also the physiochemical properties of the compound [61]. 

A good example is solubility, which depending on experimental conditions can cause 

variation particularly for compounds with low solubility such as the outlier compounds 

phenazopyridine and glipizide [54, 55] (Figure 1). 

The prime purpose of cell based assays such as Caco-2 and MDCK is to study the rate of 

passive permeability rather than other transport routes involving influx and efflux 

transporters. In this dataset, out of the 185 compounds, 96 were identified as undergoing 

transport routes other than passive. In some cases, more than one route was identified as 

being involved for the transport of the compound (Table 4). 
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Table 4. The different identified absorption mechanism of the 185 compounds  

Transport route Number of 

compounds 

Examples 

Passive transcellular (A) 83 sumatriptan, valsartan 

Passive paracellular (B) 6 lucifer yellow, mannitol 

Efflux (C) 62 vinblastine, saquinavir 

Efflux and paracellular (D) 2 famotidine, cimetidine 

Influx (E) 15 amoxicillin, tolbutamide 

Influx and paracellular (F) 2 soltalol, atenolol 

Efflux and influx (G) 14 talinolol, acebutolol 

Influx, efflux and paracellular (H) 1 ranitidine 

 

From Table 4, there are a higher number of compounds identified as carrier mediated efflux 

substrates compared to influx substrates. The majority of compounds that were identified as 

efflux substrates are substrates of the P-gp transporter, which is always tested due to the great 

influence this transporter has on reducing absorption of many compounds.  

We compared the permeability values obtained from Caco-2 and MDCK cell lines for all 

compounds and subgroups of compounds showing specific routes of absorption as described 

in Table 4. Two statistical methods were employed; 1) paired student t-test to compare 

MDCK and Caco-2 permeability values of a subgroup of compounds, and 2) comparison of 

the coefficients of the correlation lines of subgroups of compounds, e.g. efflux substrates and 

compounds with passive transcellular absorption. The results for subgroups indicated that 

permeabilities through MDCK and Caco-2 cell lines are correlated with similar slopes and 

intercepts for compounds with different absorption mechanisms (Figures S1-S7 and Table 

S2 in the Supporting Information III). The only significant difference between the 

correlation lines was the difference between compounds undergoing transcellular and 

paracellular absorption routes (p value 0.0023). However, despite the different tightness of 

the Caco-2 and MDCK cell lines, the observed difference may be due to the narrow range of 

permeability values of the compounds with paracellular absorption route resulting in a non-

significant correlation between MDCK and Caco-2 solubility of this subgroup (Figure S1 in 

Supporting Information III). This hypothesis is supported by the results of a paired student 

t test between the permeability values of the two cell lines for the 11 compounds undergoing 

paracellular absorption (as a main or shared transport route) showed no significant difference 

between Caco-2 and MDCK permeabilities (p > 0.05). In addition paired t tests for all 

different absorption mechanism groups and no significant differences between the two cell 
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lines for these absorption groups were found. Therefore, we can conclude that in general 

there are no statistically significant differences between the two cell lines even when 

considering separately the compounds with different absorption mechanisms. Therefore, the 

data from both these cell lines can be combined into a larger permeability dataset for use in 

further modelling. 

3.2 Determining permeability threshold for an effective oral absorption 

In this work we use the large dataset of combined Caco-2 and MDCK permeability and a 

statistical method (CART) to identify statistically valid permeability threshold for high/low 

oral absorption. Using CART analysis, a permeability threshold value was obtained to predict 

the high or low intestinal absorption (HIA class) using a training set of 356 compounds. 

Several different analyses were performed where high absorption compounds were defined as 

those having HIA values of above 30, 50, 70, 80 or 90%. In order to optimise the threshold 

selection, various CART models using different misclassification cost ratios for false 

positives: false negatives (FP:FN) were generated [51, 53]. The results below show the 

permeability threshold selected by the CART analyses and the accuracy, specificity and 

sensitivity of the class prediction (Table 5). 
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Table 5. The permeability thresholds selected by CART and HIA class prediction with equal and higher misclassification costs applied to false 

positives when high HIA defined as higher than 30, 50, 70, 80 and 90% 

Model 

HIA class 

determination 

above or 

below 

Set 
Misclassification 

Costs (FP:FN) 

Accuracy 

(SP X SE) 

Sensitivity 

(SE) 

Specificity 

(SP) 

Log Perm 

Threshold 

Perm 

Threshold 

(cm/s x10
-6

) 

1 30% 
t 

1:1 
0.000 1.000 0.000 

-6.11 0.78 
v 0.000 0.986 0.000 

2 50% 
t 

1:1 
0.626 0.905 0.692 

-6.02 0.96 
v 0.470 0.939 0.500 

3 70% 
t 

1:1 
0.562 0.910 0.618 

-5.91 1.23 
v 0.522 0.948 0.550 

4 80% 
t 

1:1 
0.645 0.745 0.865 

-5.15 7.08 
v 0.630 0.741 0.850 

5 90% 
t 

1:1 
0.565 0.785 0.720 

-5.08 8.32 
v 0.487 0.762 0.639 

6 30% 
t 

5:1 
0.672 0.874 0.769 

-5.98 1.05 
v 0.800 0.914 0.875 

7 50% 
t 

4:1 
0.664 0.803 0.827 

-5.64 2.29 
v 0.720 0.864 0.833 

8 70% 
t 

3:1 
0.645 0.745 0.865 

-5.15 7.08 
v 0.630 0.741 0.850 

9 80% 
t 

2.5:1 
0.645 0.745 0.865 

-5.15 7.08 
v 0.630 0.741 0.850 

10 90% 
t 

2:1 
0.566 0.759 0.745 

-5.00 10.0 
v 0.533 0.738 0.722 

t: training set; v: validation set 
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It can be seen in Table 5 that using high ratios of (FP:FN) misclassification costs results in 

improved accuracy of the permeability threshold for classification of compounds into high or 

low absorption groups for all definitions of HIA class. For example using equal 

misclassification costs to find permeability threshold for dividing compounds into ≥ 30% or < 

30% HIA is not successful at all (Model 1 Table 5) but increasing the cost of false positives 

to five times that of the false negatives results in a high accuracy of classification and a 

robust threshold of -5.98 (in log units) (model 6). It must be noted here that different  

high/low definitions of HIA result in different proportions of compounds in “high” or “low” 

absorption classes, and hence the choice of misclassification cost ratios to reflect the ratios of 

highly absorbed to poorly absorbed compounds [51, 53]. Therefore by applying higher 

misclassification costs to reduce false positives, this has shifted the permeability threshold in 

order to reduce the number of false positives due to the under representation of the poorly 

absorbed class (Figure 2). The one exception to this is the 80% HIA class definition, where 

applying misclassification costs had no effect on the permeability threshold. In practice, when 

using the permeability threshold to classify high/low absorption compounds, the suitable 

threshold suggested by models 6-10 can be used for HIA class definition. The permeability 

thresholds determined by CART when applying higher misclassification costs from Table 5 

can be shown below (Figure 2) when plotting fraction absorbed against permeability for the 

training and validation sets. 
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Figure 2. Permeability thresholds determined by CART analysis with higher 

misclassification costs applied to false positives for different HIA cut offs of 30%, 50%, 

70%, 80% and 90% on  %HIA versus permeability plot including areas of outliers (A= low 

permeability, high oral absorption; B = high permeability, low oral absorption) 

 

As can be seen by Figure 2 there is a correlation between fraction absorbed and permeability. 

It is common in the literature to assume a sigmoid fit to the relationship between HIA and 

permeability [32, 36, 62]. However, there are too few points at the lower plateau region to 

justify fitting a sigmoidal fit from statistical point of view; in spite of this we found a r
2
 of 

0.435 for a sigmoid fit to the whole 433 compounds. The collection of more data in the 0-

50% region may resolve this problem.  

From Figure 2, there are compounds that are highly absorbed but have permeability values 

below the threshold and vice versa. The most pronounced outliers have been shown in the 

figure (Figure 2) using boxes A and B. Compounds with low permeability but high fraction 
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absorbed (Region A on Figure 2) have been identified as mainly highly soluble and 

substrates for influx carrier mediated transporters. Examples of these are ribavirin and 

lamivudine [63, 64]. Due to the lower levels of these transporters, particularly PEPT1 in 

vitro, the cell permeability underestimates the percentage absorbed of this set of compounds. 

On the other hand, compounds with high permeability but low fraction absorbed tend to be 

those that are susceptible to gut metabolism and poorly soluble from this dataset (Region B 

on Figure 2). Examples of compounds in this outlier group are lovastatin and tacrolimus [65, 

66]. 

Although the liver is the main metabolising organ, gut metabolism can contribute 

significantly to overall metabolism and should be considered [67]. Compounds susceptible to 

gut metabolism, specifically CYP3A4 substrates, are highly permeable in vitro but are poorly 

absorbed in vivo. However there are other CYP3A4 substrates in this dataset which do not 

appear to undergo extensive gut metabolism so are both highly absorbed and highly 

permeable. Reasons for why some compounds are susceptible to gut metabolism and others 

are not even though they are both CYP3A4 substrates could be due to the different 

biotransformation rate by this enzyme, solubility/ dissolution rate, permeation rate, dose 

amount and substrate affinity [67-69]. A list of these compounds in regions A and B in 

Figure 2 can be found in the Supporting Information II. 

3.3 Oral absorption prediction using solubility, dose number and melting point 

From Figure 2, we have identified potential outliers in the relationship between oral 

absorption and permeability. Using the models built with permeability and solubility 

parameters and molecular descriptors, these misclassifications could be classified correctly 

due to the influence of solubility and other related parameters on oral absorption. For 

example, false positives are highly permeable compounds with poor oral absorption. These 

compounds maybe poorly soluble compounds or those undergoing gut metabolism. 

CART classification models to predict highly absorbed or poorly absorbed class of 

compounds (HIA ≥ 80 or < 80%) were built using the training sets described in the material 

and methods section. The permeability for ≥ 80% absorption (at -5.15 log scale according to 

Table 5) was used to develop the models. The 80% class definition was chosen as when 

using lower HIA% values to define high or low absorption led to very low number of poorly 

absorbed compounds, compared with highly absorbed compounds which would seriously 

reduce significance of models.  The HIA 90% cut-off for class definition, although used in 
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some previous work, was not chosen in this work as (based on our preliminary analysis) that 

definition resulted in poor overall accuracy in the produced models, and the 90% threshold is 

too high to predict oral absorption class effectively. Selected CART models produced for the 

prediction of HIA class (HIA> or ≤80%) using permeability and solubility related parameters 

and molecular descriptors are shown in Table 6. Note that for all models permeability was 

always used as the first split variable and the table gives the variables used for the second 

splits. After the second splits, CART picks the most significant parameter out of all the 

molecular descriptors and physicochemical properties available. In Table 6, in model 1 after 

permeability as the first split variable, CART automatically builds the rest of the tree by 

selecting the most significant property/molecular descriptor. For models 2-4, solubility; 

calculated solubility (GSE method or melting point based absorption potential (MPbAP)) 

were used on both (high and low permeability) sides of the tree for the second split, and after 

this CART automatically built the rest of the tree. Models 5-10 were built using different 

combinations of solubility and related parameters on either the high or low permeability side 

of the trees. Finally, models 11-12 were combinations of the molecular descriptors and 

solubility related parameters in high or low permeability sides of the trees.  
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Table 6. The results of CART analysis for the best permeability and solubility related trees using permeability threshold for ≥ 80% or < 80% 

HIA as the first split 

Model   

Parameter used for second 

split 

Misclassification cost ratios 

(FP:FN) 

Dataset n 
Accuracy 

(SP x SE) 

Sensitivity 

(SE) 

Specificity 

(SP) High 

permeability 

compounds 

Low 

permeability 

compounds 

High 

permeability 

compounds 

Low 

permeability 

compounds 

1 
Molecular 

Descriptorsa 

Molecular 

Descriptorsa 
3:1 6:1 

t 356 0.72 0.754 0.955 

v 77 0.519 0.593 0.875 

2 
Solubility 

(mg/ml) 

Solubility 

(mg/ml) 
2:1 10:1 

t 241 0.723 0.823 0.879 

v 54 0.618 0.674 0.917 

3 
GSE 

solubility 

GSE 

solubility 
2:1 1:1 

t 261 0.695 0.891 0.779 

v 53 0.638 0.829 0.769 

4 MPbAP  MPbAP 1:1 1:1 
t 249 0.753 0.876 0.859 

v 48 0.631 0.757 0.833 

5 
Solubility 

(mg/ml) 

GSE 

solubility 
2:1 10:1 

t 200 0.754 0.820 0.920 

v 40 0.583 0.667 0.875 

6 Dose number   MPbAP 2:1 10:1 
t 196 0.758 0.791 0.958 

v 40 0.636 0.636 1.000 

7 MPbAP 
GSE 

solubility 
2:1 1:1 

t 256 0.723 0.884 0.818 

v 51 0.667 0.800 0.833 

8 MPbAP 
Solubility 

(M)  
2:1 1:1 

t 197 0.776 0.866 0.896 

v 40 0.697 0.697 1.000 

9 
Solubility 

(mg/ml) 

Solubility 

(M)  
2:1 10:1 

t 241 0.754 0.766 0.985 

v 54 0.533 0.581 0.917 

10 
GSE 

solubility 

Solubility 

(M)  
2:1 1:1 

t 201 0.722 0.881 0.820 

v 40 0.663 0.758 0.875 

11 
GSE 

solubility 

Molecular 

Descriptorsa 
2:1 1:1 

t 262 0.717 0.887 0.809 

v 53 0.650 0.780 0.833 

12 MPbAP 
Molecular 

Descriptorsa 
2:1 1:1 

t 257 0.746 0.880 0.848 

v 51 0.688 0.750 0.917 
a These are the molecular descriptors statistically selected by CART out of all the molecular descriptors and solubility parameters. 

FP: false positive; FN: false negative; GSE: General solubility equation; MPbAP: melting point based absorption potential 
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From Table 6 it is interesting to note which properties were used to build the selected 

models. Note that many combinations of melting point, dose and solubility related parameters 

were tested and Table 6 is a selection of the best models based on accuracy (SE X SP). Using 

melting point did not yield high prediction models (data not shown). It was thought that due 

to the relationship between melting point and solubility this parameter might be a useful 

alternative to solubility, as these two properties share similar functions such as enthalpy 

energies which must be overcome in order to solubilise or melt. Additionally, dose number 

was useful only for splitting the high permeability compounds and the combination with 

MPbAP yielded for a good prediction model (Model 6 in Table 6). Dose number is used to 

define high and low solubility for the BCS system [4, 42]. By definition, increasing the dose 

or a low solubility will result in a high dose number and this is expected to lead to poor oral 

absorption of highly permeable compounds. 

The majority of the selected models in Table 6 incorporate solubility and predicted solubility 

especially for highly permeable compounds. Unlike GSE solubility which was used on both 

sides of the CART trees, MPbAP only yielded good models when used for splitting on the 

high permeability compounds. Experimental solubility in two units, mg/ml or molar, have 

been used in models. Solubility in M, which takes into account the molecular weight and is 

smaller for high molecular weight compounds, was utilised for splitting of the low 

permeability compounds (Models 8, 9 and 10). 

In terms of the role of solubility in the absorption process, one would expect poor absorption 

of poorly soluble compounds, due to solubility being the rate limiting factor in absorption. 

However, this is not the picture presented by the classification trees 1-12 (See Supporting 

Information III). According to the classification tree models, the low permeability and high 

solubility compounds always have low intestinal absorption (< 80%). This is probably due to 

the highly polar nature of such compounds. On the other hand, poorly water soluble 

compounds of low permeability may be highly absorbed from the small intestine if they have 

small polar surface area (models 3-7) or a small sum of absolute atomic partial charge, ABSQ 

(models 2, 8, 9, 10), which also indicates polarity of molecules. The absorption limiting 

effect of poor aqueous solubility is not seen for highly permeable compounds either. Here, 

highly permeable compounds with poor aqueous solubility are still highly absorbable from 

GI, with the exception of compounds with high polar surface area, low dipole moment 

(models 2, 5, 9) or small Balaban Topological index which is an indicator of molecular shape 

(models 3, 4, 10, 11). The reason for not observing the limiting effect of poor aqueous 
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solubility here could be firstly the lack of enough representation of these solubility limiting 

compounds in the dataset and secondly the effect of formulation of oral dosage forms with 

measures taken for improved dissolution rate (excipients, particles size, etc) which could 

mask previous solubility limiting effects of such compounds.  

The top molecular descriptors used in models 1-12 in Table 6 are polar surface area (PSA) 

and Balaban topological index. Both of these descriptors are related to both absorption and 

solubility prediction models [70, 71]. PSA is the area of the van der Waals surface that arises 

from oxygen and nitrogen atoms or hydrogen atoms bound to these atoms [70]. The Balaban 

topological index, J, is the average-distance sum connectivity and relates to the shape of the 

molecule [72]. The next popular descriptors are sum of absolute charges on each atom of the 

molecule (ABSQ) and lowest unoccupied molecular orbital energy (LUMO) calculated by 

VAMP [73]. 

3.4 Selected CART models 

In order to generally compare models 1-12 from Table 6, the compound datasets used to 

build the resulting models should be taken into account. The degree of difficulty of the 

classification model will change depending on the compounds in the dataset. When the 

dataset is large, e.g. in the case of model 1, there are more compounds that maybe harder to 

classify in the dataset. The model with the highest SP x SE for the validation set is model 8, 

with a value of 0.697; however this is based on a training set of only 197 and a validation set 

of 40 compounds due to the missing experimental solubility or melting point values. On the 

other hand, model 12 has a slightly lower SP x SE of 0.682 for the validation set, but it was 

built using a training set of 257 and assessed using a validation set of 51 compounds; 

therefore it may be more suitable for generalization ability for new compounds, as it covers a 

wider chemical space compared with model 8. Moreover the only experimental parameter 

used in this model is melting point that is used for the calculation of MPbAP. We also 

selected model 7, which has used calculated solubility and MPbAP, and model 3 which has 

used only the calculated solubility to indicate the roles of solubility and absorption potential. 

The CART models are presented in Figures 3-5.  
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Figure 3. Model 3 CART permeability and predicted solubility (GSE) model when higher 

misclassification costs of two to reduce false positives were applied to low GSE solubility 

node 

 

In Figure 3, Model 3, permeability is used as the first CART split variable and then 

calculated solubility from GSE equation on both sides of the tree was used as the second split 

variable. Polar surface area and Balaban index were picked automatically by the CART 

analysis. The model shows that highly permeable and highly soluble compounds have high 

intestinal absorption (node 7). Moreover, compounds with low predicted solubility (≤-4.74) 

can still be classed as highly absorbed if the Balaban index is > 1.57.  Compounds with a low 

Balaban index will be poorly absorbed and such examples include mebendazole and 

ketoconazole. In spite of this there are misclassifications in this node 8 in Figure 3; 

ziprasidone and tiagabine are misclassified as poorly absorbed when in fact they have HIA ≥ 

80%. Balaban topological index, J, a highly discriminant topological descriptor, gives an 

indication of shape including branching and cyclicity of a molecule. A high index can 

indicate a high number of branches, close proximity of the position of these branches, as well 

as increased number of double bonds on a molecule. A low index can indicate a low level of 

branching as well as a larger number of cyclic groups [72]. The relationship between Balaban 
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index and solubility with reference to melting point has been shown previously in the 

literature [15]. In spite of this there is not much difference between the calculated GSE 

solubilities between the two nodes although there is a significant difference betwee the 

average melting points (222 
o
C compared with 193 

o
C in nodes 8 and 9 respectively), 

suggesting a possible effect of melting point on absorption.  

Poorly permeable compounds are highly absorbed only for compounds with predicted 

solubility ≤ -1.12 if the PSA is low. This is a higher solubility value than the threshold seen in 

splitting of node 3, and is not expected to limit the intestinal absorption. There are some 

misclassified compounds in this group, which are actually poorly absorbed despite having a 

low PSA, therefore classified as highly-absorbed according to this tree. The reasons for 

misclassifications is mostly due to efflux mechanisms reducing the absorption of compounds 

and examples include nadolol and norfloxacin which both have low PSA and classed as 

highly absorbed but are observed to have poor oral absorption due to transporter effects [31, 

74]. Unlike nadolol which is classed as highly soluble, norfloxacin is considered as a poorly 

soluble compound in class IV of the BCS system.  One may speculate that presence of more 

such compounds in this dataset, may have led to further split of this node based on solubility 

to class compounds with extremely low aqueous solubility as poorly soluble.   
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Figure 4. Model 7 CART permeability, predicted solubility (GSE) and MPbAP model when 

higher misclassification costs of two to reduce false positives were applied to GSE node 

 

Model 7 was built using GSE solubility for the second split of the poorly permeable 

compounds (node 2) and MPbAP for the second split of highly permeable compounds in 

node 3. This model was chosen due to high validation SP x SE using a larger training and 

validation set. The descriptors used in this tree are the same as in Figure 3. Model 3, 

however, using the split based on MPbAP appears to split more compounds into node 6 to be 

classed by Balaban topological index. In this tree a lower threshold of 1.54 for Balaban 

Topological index increases the number of correctly classified poorly absorbed compounds 

when permeability is high examples of this type of compounds include the BCS class II 

compounds spironolactone and ketoconazole. 
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Figure 5. Model 12 CART permeability and MPbAP model when higher misclassification 

costs of two to reduce false positives were applied to permeability node 

From Figure 5 classification of highly permeable compounds in node 3 is the same as Figure 

4. Poorly permeable compounds with a high number of hydrogen bonding donors (SHHBd 

>6.61) will be poorly absorbed, which is confirmed by the literature such as Lipinski’s rule of 

five, where compounds are likely to be poorly absorbed if two or more of the following rules 

are broken: more than > 5 hydrogen bond donors, > 10 hydrogen bond acceptors, logP > 5 

and molecular weight > 500Da [75]. Compounds can be misclassified as poorly absorbed 

based on a higher number of hydrogen bond donor groups mainly due to being highly 

absorbed due to substrate specificity for influx transporters. Examples of misclassified 

compounds include ribavirin and folinic acid.  

A poorly permeable compound will still be highly absorbed if HOMO energy is greater than -

8.76. A comparison of the molecular structures in this node indicates that these compounds 
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have more aromatic rings compared with compounds with lower HOMO energy (node ID 8) 

where the average number of aromatic rings is one. In addition it was also found that a 

number of low HOMO compounds had a permanent quaternary ammonium or ionisable 

centre such as trospium and neostigmine.  

Even if a poorly permeable compound has a low HOMO energy it can still be classed as 

highly absorbed if the compound has few methyl groups (SsCH3 ≤ 3.509) or log P > 1.239.   

Compounds with logP < 1.24 are classified as poorly absorbed, but there are false negatives 

such as orally administered cephradine and baclofen, which are both highly absorbed but are 

predicted as poorly absorbed by having a low logP. The reason for some of the false 

negatives in this node is that some of these compounds are substrates for influx carrier 

mediated systems. 

3.5 Discussion of related literature 

3.5.1 Subjective definition of a permeability threshold for oral absorption prediction 

Permeability from in vitro cell based assays has been utilised frequently in the literature. 

These thresholds are then used to give an indication of potential oral absorption from 

permeability data. A summary of a few permeability thresholds defined by other works is 

shown in Table 7.  

Table 7. Examples of permeability thresholds determined by the literature 

Study Cell line Papp threshold 

(x 10
-6

 cm/s) 

Oral absorption 

class (%) 

Number of 

compounds 

Artusson (1991) [37] Caco-2 >1  

≤ 0.1  

 100 

< 1 

20 

Yee (1997) [41] Caco-2 < 1  

1-10  

>10  

0-20 

20-70 

70-100 

35 

Bergstrom (2003) [9] Caco-2 ≤ 0.2 

≥ 1.6 

≤ 20 

≥ 80 

27 

Hou (2007) [13] Caco-2 ≥ 6 .0 High 

(>80) 

69 

Di (2011) [40] MDCK II ~ 3 

 

Low/medium (<80) 

High (>80) 

19 

 

Varma (2012) [36] MDCKII* ≥ 5.0 ≥ 80/90 97 

Pham-The (2013) [62] Caco-2 ~ 0.7 

≥ 16 .0 

< 30 

≥ 85 

324 

*MDCKII strain (MDCK-LE) cell line with isolated low endogenous efflux transporter expression 
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Early permeability thresholds defined by works in the literature are based on small compound 

datasets. Artusson et al [37] set a permeability threshold of > 1 x 10
-6

 cm/s for complete 

absorption based on 20 compounds. Based on other works in the literature this value is too 

low to predict complete absorption, where other works have permeability thresholds one 

order of magnitude higher. For example, from Table 7, Yee et al [41] has stated > 10 x 10
-6 

cm/s permeability is related to absorption > 70%. What is apparent is the difference between 

permeability thresholds from different sources, which is dependent on the small number of 

compounds tested and inter and intra laboratory differences [13]. In comparison, our 

permeability thresholds are statistically defined by CART rather than a subjective 

determination; the thresholds picked by CART are similar to those in the literature, especially 

when high absorption was set at either as > 70%, > 80% or > 90%, indicating that high 

absorption is related to permeability > 7 x 10
-6 

cm/s. The permeability threshold determined 

by Hou et al [13] of 6 x 10
-6

 cm/s is based on data from numerous sources and is very similar 

to our 70 - 90% class permeability thresholds.  

Di et al (2011) [40] used MDCK II cells with low efflux endogenous transporter expression 

(MDCK-LE) to define a threshold of 3 x 10
-6 

cm/s to distinguish between low/medium 

absorbed compounds (< 80% HIA) and highly absorbed compounds. A dataset published by 

Varma et al (2012) [36] using the MDCK-LE cell line shows that the permeability threshold 

defined ROC analysis using this cell line (≥ 5.0 x 10
-6

 cm/s) is similar to Caco-2 thresholds in 

the literature, and this value is in agreement with CART permeability thresholds in this work. 

The threshold similarity between Caco-2 and MDCK cell lines is expected by the linear 

relationship between these two cell lines shown in this work.  

Finally more recently Pham-The et al (2013) [62] established a rank order relationship 

between Caco-2 permeability and oral absorption for 324 compounds. The thresholds defined 

were based on standard compounds from the FDA with known fraction absorbed values. For 

example, for a compound to be considered highly absorbed, it must have an apparent 

permeability greater than metoprolol, a FDA standard compound with known HIA. In this 

case Caco-2 permeability greater than 16 x 10
-6

 cm/s, which is 0.8 times the metoprolol 

permeability was used to take into account the lower HIA threshold of 85% used. For the low 

absorption threshold an average value of 0.7 x 10
-6

 cm/s, based on the permeability of 

mannitol was used. In this study this threshold was to define compounds with HIA < 30% 

however mannitol has a reported HIA of ~18% therefore the use of this permeability 

threshold may increase the number of false negatives. 
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3.5.2 The influence of permeability and solubility on oral absorption modelling 

Permeability and solubility are two important factors important for oral absorption. Therefore 

the effect these two properties have on oral absorption and in turn how they influence oral 

absorption prediction is important to establish. From the literature there is a lot of focus on 

permeability and as shown in this work there is a rank order relationship between HIA and 

permeability. On the other hand, solubility seems not to be regarded as important as 

permeability in relation to oral absorption, but as a factor that can lead to poor (solubility 

limited) absorption in addition to other limiting factors such as transporter and enzyme 

effects. Furthermore, the relative importance of solubility could be dependent on the research 

organization and the mechanistic importance of solubility in regards to oral absorption may 

not be considered [6]. In spite of this the main reasons for poor oral absorption have been 

shown to be either poor permeability or poor solubility or both [76]. 

The results of this work indicate that permeability is the most important parameter 

influencing oral absorption prediction. Permeability was always picked as top molecular 

descriptor when building CART models. In contrast, solubility and the related parameters 

were never picked as the top descriptor or even in the second split, unless selected manually 

at this second level in order to examine if there was any influence of solubility on oral 

absorption prediction. 

It is apparent that solubility can be a rate-limiting step in oral absorption [4, 12, 77]. This is 

based on the principle that a drug must be dissolved in the gastrointestinal fluid in order to 

then permeate the membrane to be absorbed. However formulation development strategies 

can overcome this problem, for example by employing solubilising agents, pH control, or 

complexation [78]. 

In any case, the results obtained here do not directly indicate the poor absorption of poorly 

soluble compounds and the effects of poor solubility in limiting absorption. According to this 

study, in general compounds that are highly permeable but have low solubility can be 

predicted as highly or poorly absorbed depending on the other molecular properties. 

Moreover, poorly permeable but highly soluble compounds are classed as poorly absorbed, 

although there are exceptions to this i.e. the false negatives. One important consideration in 

analysing these results is the threshold of solubility in the models. For example, poorly 

permeable compounds with poor solubility may have high oral absorption (see models 3 and 

7 for example). However, it must be noted here that poor solubility has been defined as <-
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1.12 in log unit, which is quite high when comparing with the threshold values suggested in 

the literature for BCS classes II and IV [4].  A further observation from the models could be 

the poor representation of very poorly soluble compounds in the dataset i.e. those having 

solubility-limited absorption. As a result, it may not be statistically advantageous to further 

split the classification tree to allocate these compounds into a separate terminal node. For 

example in a large dataset of fraction absorbed, 24 were highlighted to have solubility issues 

out of 648 compounds[13]. Besides this the formulation techniques may improve the 

dissolution rate of these compounds and overcome the low solubility issues of compounds in 

the fraction absorbed dataset used in this work. 

It is difficult to directly compare other models in the literature with this work, as different 

data sets and methods have been used. Early oral absorption models which use a diverse 

dataset are too small to represent all the different biological processes of absorption and other 

factors such as solubility. The majority of oral absorption models in the literature do not 

include compounds which have solubility issues [10, 79]. Therefore, these and other models 

may only be useful for predicting absorption for compounds with no solubility issues. In 

addition, some of these studies also removed compounds with transporter effects or 

compounds with a permanent charge [13, 80]. This simplifies the resulting models by 

removing those compounds with these rate-limiting steps. However, the main issue with this 

is the potential impact on the generalizability of the resulting models which will fail to 

predict the oral absorption of these excluded compound classes despite the increased need in 

current drug discovery projects for prediction of absorption of the increasingly poorly-soluble 

compounds.  

In studies by Zhao and co-workers, data with solubility and dose dependency was defined 

and not used in the majority of the initial models. However upon inclusion of these 

compounds with solubility issues the resulting models had higher error [81]. It was also noted 

however that the more insoluble a compound the lower the resulting absorption. In a later 

study compounds identified with no solubility issues were used to built models and some of 

these resulting models were then used to predict absorption for the compounds with dose-

limiting and dose dependency effects. Overall prediction of absorption of these excluded 

compounds was in agreement with observed values or the models tended to overestimate 

absorption [12]. Our oral absorption models are able to predict oral absorption class even 

with poor solubility for majority of compounds by incorporating molecular descriptors in 

addition to permeability and solubility into the models. From the list of 27 compounds with 
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solubility and related problems defined by Zhao et al (2001) [12], 14 were utilised in this 

work with experimental permeability and solubility values present. Using the best models 

chosen, 11 out of 14 compounds were predicted correctly by model 3, 12 out of 14 correct 

predictions by model 7 and all 14 compounds were predicted correctly using model 12.  

With the extended use of BCS classification in drug discovery, the influence of solubility and 

permeability is of great interest [82]. In work by Pham-The et al (2013), oral absorption was 

predicted, taking into account solubility, which is a general aim of the BCS. In this study, 

Pham-The, using a rank order relationship, noted that the relationship between permeability 

and oral absorption is less certain for poorly absorbed compounds which is a similar 

observation to our results. They also found various contour plots that incorporating solubility 

improves classification of HIA based on permeability data by about 10%; therefore showing 

that potentially using solubility in models is advantageous for oral absorption prediction. 

From the literature examples as well as this work the influence of solubility could be included 

to help predict oral absorption. However the main issue is the lack of experimental solubility 

for drug compounds to be used in oral absorption modelling. The use of experimental 

solubility data in the prediction of oral absorption alongside permeability yields good 

accuracy to predict oral absorption however the lack of experimental solubility limits the 

application for the prediction of new compounds. Therefore, according to our results, 

predicted solubility such as GSE solubility and parameters such as MPbAP can be used 

successfully instead of experimental solubility. These are based on simple properties of 

lipophilicity, melting point and dose. Despite this, melting point alone was not successful in 

providing an adequate alternative to experimental solubility, even though partition coefficient 

was also available to be used concurrently in the same model. Due to the complexity of 

solubility it is difficult to find one molecular descriptor to adequately describe all the 

solubility processes.  

4. CONCLUSION 

The two main properties influencing oral absorption are permeability and solubility. In order 

to establish the relationship of these two properties with oral absorption classification, firstly, 

a larger dataset was established from different sources. This was made possible through 

combining Caco-2 and MDCK permeability after comparing a linear relationship between 

these two cell lines, even for compounds with different absorption mechanisms.  
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Secondly, using the combined permeability dataset, a permeability threshold for various 

levels of oral absorption was investigated using CART analysis. Due to the larger number of 

highly absorbed compounds, misclassification costs were applied and improved the threshold 

definition statistically. The thresholds obtained from the objective CART analysis are similar 

to some of those in the literature using mainly subjective methods to determine permeability 

thresholds.  

Finally the permeability thresholds were then used to build decision trees with the CART 

method, incorporating solubility and related parameters, as well as the calculated molecular 

descriptors to predict oral absorption class.  Melting point is not a useful parameter to predict 

absorption when used stand-alone. However, when melting point is utilised to calculate 

combined parameters such as predicted (GSE) solubility and melting point-based absorption 

potential, it yielded high accuracy models compared with experimental solubility. This is due 

to the possibility of using more data for the training of the models when calculated or more 

easily accessible experimental parameters are used. Therefore, models built using predicted 

values of solubility and melting point-based absorption gave rise to better predictive models. 

Molecular descriptors utilised in the models, such as those describing size, shape, 

polarizability and hydrogen bonding, can be related to both permeability and solubility and 

therefore oral absorption. These molecular descriptors were shown to be necessary for oral 

absorption models to correctly classify the compounds with solubility-limited absorption. The 

models built in this work are useful for a better mechanistic understanding of the effect of 

these properties and how they contribute to overall oral absorption. 

ASSOCIATED CONTENT 

Supporting information I contains the dataset of 932 compounds with HIA%, Caco-2 

permeability, MDCK permeability, aqueous solubility, melting point and the references. 

Supporting information II contains compound lists and information regarding the outliers in 

Figures 1 and 3 including references. Supporting Information III contains a table comparing 

the differences in transporter and enzyme expression between the human small intestine, 

Caco-2 and MDCK cell lines, the significance testing and graphs for the different absorption 

mechanisms when comparing Caco-2 and MDCK cell lines, all the models (CART decision 

trees) produced from this work, and finally a list of molecular descriptor utilised in the 12 

models presented in this work.  
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CAPTIONS (in order of appearance in manuscript) 

Table 1. Compound numbers used in the training and validation sets for decision tree 

analysis 

Table 2. Data sets collated from the literature 

Figure 1. Linear relationship between Caco-2 and MDCK apparent permeability for 185 

compounds 

Table 3. Statistical parameters for the linear relationship between MDCK and Caco-2 

permeability measured using PRISM 

Table 4. The different identified absorption mechanism of the 185 compounds  

Table 5. The permeability thresholds selected by CART and HIA class prediction with equal 

and higher misclassification costs applied to false positives when high HIA defined as higher 

than 30, 50, 70, 80 and 90% 

Figure 2. Permeability thresholds determined by CART analysis with higher 

misclassification costs applied to false positives for different HIA cut offs of 30%, 50%, 

70%, 80% and 90% on  %HIA versus permeability plot including areas of outliers (A= low 

permeability, high oral absorption; B = high permeability, low oral absorption) 

Table 6. The results of CART analysis for the best permeability and solubility related trees 

using permeability threshold for ≥ 80% or < 80% HIA as the first split 

Figure 3. Model 3 CART permeability and predicted solubility (GSE) model when higher 

misclassification costs of two to reduce false positives were applied to low GSE solubility 

node 

Figure 4. Model 7 CART permeability, predicted solubility (GSE) and MPbAP model when 

higher misclassification costs of two to reduce false positives were applied to GSE node 

Figure 5. Model 12 CART permeability and MPbAP model when higher misclassification 

costs of two to reduce false positives were applied to permeability node 

Table 7. Examples of permeability thresholds determined by the literature 


