
Automatic Design of Decision-Tree Algorithms
with Evolutionary Algorithms

Rodrigo C. Barros rcbarros@icmc.usp.br
Universidade de São Paulo, São Carlos, Brazil
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Abstract
This study reports the empirical analysis of a hyper-heuristic evolutionary algorithm
that is capable of automatically designing top-down decision-tree induction algo-
rithms. Top-down decision-tree algorithms are of great importance, considering their
ability of providing an intuitive and accurate knowledge representation for classifi-
cation problems. The automatic design of these algorithms seems timely, given the
large literature accumulated in more than 40 years of research in the manual design
of decision-tree induction algorithms. The proposed hyper-heuristic evolutionary al-
gorithm, HEAD-DT, is extensively tested using 20 public UCI data sets and 10 real-
world microarray gene expression data sets. The algorithms automatically designed
by HEAD-DT are compared with traditional decision-tree induction algorithms, such
as C4.5 and CART. Experimental results show that HEAD-DT is capable of generating
algorithms which are significantly more accurate than C4.5 and CART.

Keywords
Decision trees, hyper-heuristics, automatic algorithm design, supervised machine
learning, data mining.

1 Introduction

Classification is a machine learning task that aims at building class prediction models
taking into account a set of predictive attributes (also known as features). The outcome
of a classification model is the assigning of class labels to new instances whose only
known information are the values of the predictive attributes (i.e., whose class labels are
unknown). The set of instances whose class labels is known is named the training set —
{xi, yi}Ni=1 — where xi is the ith vector of predictive attributes xi = (xi1, x

i
2, x

i
3, ..., x

i
n)

and yi is the corresponding class label.
A classification algorithm usually operates in two steps. In the first step, the train-

ing set {xi, yi}Ni=1 is used as input so that a classification model that represents the
relationship between predictive attributes and class labels can be built. In the second
step, the classification model is used to classify new instances whose class labels are
unknown.
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Decision trees are one of the most employed classification methods to date. In fact,
a relatively recent poll from the kdnuggets website1 pointed out decision trees as the
most used classification method by researchers and practitioners, reaffirming its im-
portance in machine learning classification tasks. They are an efficient nonparametric
method whereby the input space is split into local regions in order to predict the class
labels (Alpaydin, 2010).

A decision tree can be seen as a graph G = (V,E) consisting of a finite, non-empty
set of nodes (vertices) V and a set of edges E. To be considered a decision tree, this
graph must satisfy the following properties (Safavian and Landgrebe, 1991):

• The edges must be ordered pairs (v, w) of vertices, i.e., the graph must be directed;

• There can be no cycles within the graph, i.e., the graph must be acyclic;

• There is exactly one node, known as root, with no entering edges;

• Every node, except for the root, has exactly one entering edge;

• There is a unique path — a sequence of edges of the form
(v1, v2), (v2, v3), ..., (vl−1, vl) — from the root to each node;

• When there is a path from node v to w, v 6= w, v is a proper ancestor of w and w is
a proper descendant of v. A node with no proper descendant is called a leaf (or a
terminal). All other nodes are called internal nodes (except for the root).

Root and internal nodes hold a test over a given predictive attribute (or a set of
predictive attributes) from the data set. The edges correspond to the possible outcomes
of the test, eventually leading to the leaf nodes, which are responsible for holding class
labels. For predicting the class label of a certain instance, one has to navigate through
the decision tree. Starting from the root, one has to follow through the edges according
to the results of the tests over the predictive attributes. When reaching a leaf node, the
information it contains (class label) is usually assumed as the prediction outcome.

As it can be seen, decision trees are a natural alternative to powerful black-box
methods, such as support vector machines (SVM) and neural networks (NNs), consid-
ering their comprehensible nature that resembles the human reasoning. Decision-tree
induction algorithms present several advantages over other learning algorithms, such
as robustness to noise, low computational cost and ability to deal with redundant at-
tributes (Tan et al., 2005). In Figure 1, an example of a general decision tree for classifi-
cation is presented. Circles denote the root and internal nodes whilst boxes with round
corners denote the leaf nodes.

There are exponentially many decision trees that can be grown from the same data
set. Induction of an optimal decision tree from a data set is considered to be a hard
task. For instance, Hyafil and Rivest (1976) have shown that constructing a minimal
binary tree with regard to the expected number of tests required for classifying an un-
seen object is a NP-complete problem. Hancock et al. (1996) have proved that finding a
minimal decision tree consistent with the training set is NP-Hard, which is also the case
of finding the minimal equivalent decision tree for a given decision tree (Zantema and
Bodlaender, 2000) and building the optimal decision tree from decision tables (Nau-
mov, 1991). These studies indicate that growing optimal decision trees (a brute-force
approach) is only feasible for very simple problems.

1http://www.kdnuggets.com/polls/2007/data_mining_methods.htm.
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Figure 1: Example of a general decision tree for classification.

Hence, heuristics are necessary for dealing with the problem of growing decision
trees. Several approaches developed in the last decades are capable of providing rea-
sonably accurate — albeit suboptimal — decision trees in a reduced amount of time,
such as bottom-up induction (Barros et al., 2011b), hybrid induction (Kim and Land-
grebe, 1991), evolutionary induction (Basgalupp et al., 2009a,b; Barros et al., 2010, 2011c,
2012b), and ensemble of trees (Breiman, 2001). Notwithstanding, no strategy has been
more successful in generating accurate and comprehensible decision trees with low
computational effort than the greedy top-down induction strategy. Due to its popular-
ity, a large number of approaches have been proposed for each one of the design compo-
nents of top-down decision-tree induction algorithms. For instance, new measures for
node splitting tailored to a vast number of application domains have been proposed,
as well as many different strategies for selecting multiple attributes for composing the
node rule. There are also studies in the literature that survey the numerous approaches
for pruning a decision tree (Breslow and Aha, 1997; Esposito et al., 1997). It is clear that
by improving these design components, we can obtain more robust top-down decision-
tree induction algorithms.

Bearing in mind that the manual improvement of decision-tree design compo-
nents has been carried out for the past 40 years, we believe that automatically design-
ing decision-tree induction algorithms could provide a faster, less-tedious — and at
least equally effective — strategy for improving decision-tree induction algorithms in
the years to come. This belief is partly supported by a proof of concept that evo-
lutionary algorithms can effectively design new data mining algorithms competitive
with conventional ones, as reported in (Pappa and Freitas, 2010). In that work, a
grammar-based genetic programming system was investigated to automatically design
a rule induction algorithm, which is another type of classification algorithm, and the
automatically-designed algorithms were shown to be competitive with state-of-the-art
manually-designed rule induction algorithms.
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In order to automatically design decision-tree induction algorithms, we propose
a hyper-heuristic evolutionary algorithm, named HEAD-DT. We first envisioned the
problem of automatically designing decision-tree induction algorithms in (Barros et al.,
2011a). In this new study, we investigate the effectiveness of automatically designing
decision-tree induction algorithms in both benchmarking and bioinformatics data. This
paper is an extended version of a previous conference paper (Barros et al., 2012a), pro-
viding a more detailed description of the proposed approach and also presenting new
computational results and their analysis for 10 real-world bioinformatics (gene expres-
sion) data sets.

This paper is organized as follows. Section 2 offers a background on decision trees
for readers unfamiliar with the topic. Section 3 presents in detail the HEAD-DT al-
gorithm. Sections 4 and 5 describe the experimental methodology and the obtained
results, respectively, whereas Section 6 discusses relevant aspects regarding the effec-
tiveness and efficiency of HEAD-DT. Section 7 presents related work and Section 8
concludes the paper with our final thoughts and future work suggestions.

2 Background on Decision Trees

Automatically generating classification rules in the form of decision trees has been ob-
ject of study of most research fields in which data exploration techniques have been
developed (Murthy, 1998). Disciplines such as engineering (pattern recognition), statis-
tics, decision theory, and more recently artificial intelligence (machine learning), have
a large number of studies dedicated to the generation and application of decision trees.
In statistics, we can trace the origins of decision trees to works that proposed building
binary segmentation trees for understanding the relationship between predictors and
dependent variable. Some examples are AID (Sonquist et al., 1971) and CHAID (Kass,
1980). Decision-tree induction algorithms, and induction methods in general, arose
in machine learning to avoid the knowledge acquisition bottleneck in expert systems
(Murthy, 1998).

Specifically regarding top-down induction of decision trees (by far the most popu-
lar approach of decision-tree induction), Hunt’s Concept Learning System (CLS) (Hunt
et al., 1966) can be regarded as the pioneering work for inducing decision trees. Sys-
tems that directly descend from Hunt’s CLS are ID3 (Quinlan, 1986), ACLS (Patterson
and Niblett, 1983) and Assistant (Kononenko et al., 1984).

At a high level of abstraction, Hunt’s algorithm can be recursively defined in
only two steps. Let Xt be the set of training instances associated with node t and
y = {y1, y2, ..., yk} be the class labels in a k-class problem (Tan et al., 2005):

1. if all instances in Xt belong to the same class yi then t is a leaf node labeled as yi;

2. if Xt contains instances that belong to more than one class, an attribute test con-
dition is selected to partition the instances into subsets. A child node is created
for each outcome of the test and the instances in Xt are distributed to the children
based on the outcomes. Recursively apply the algorithm to each child.

Hunt’s simplified algorithm is the basis for most current top-down decision-tree
induction algorithms. Nevertheless, its assumptions are too stringent for practical use.
For instance, it would only work if every combination of attribute values is present in
the training data, and if the training data is inconsistency-free (each combination has a
unique class label).

Hunt’s algorithm was improved in many ways. Its stopping criterion, for exam-
ple, as expressed in step 1, requires all leaf nodes to be pure (i.e., belonging to the same
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class). In most practical cases, this constraint leads to very large decision trees, which
tend to suffer from overfitting. Possible solutions to overcome this problem are pre-
maturely stopping the tree growth when a minimum level of impurity is reached, or
performing a pruning step after the tree has been fully grown. Another design issue is
how to select the attribute test condition to partition the instances into smaller subsets.
In Hunt’s original approach, a cost-driven function was responsible for partitioning
the tree. Subsequent algorithms, such as ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993),
make use of information theory based functions for partitioning nodes in purer subsets.

These improvements were achieved by human investigation of several design al-
ternatives. We believe that evolutionary algorithms (EA) are capable to evolve new
efficient decision-tree induction algorithms by automatically finding a good combina-
tion of different heuristics, many of them present in known induction algorithms. In the
next section, we present an EA designed to evolve the design components of decision-
tree induction algorithms, HEAD-DT.

3 HEAD-DT

HEAD-DT is a hyper-heuristic algorithm able to automatically design top-down
decision-tree induction algorithms. Hyper-heuristics can automatically generate new
heuristics suited to a given problem or class of problems. This is accomplished by com-
bining, through an evolutionary algorithm, components or building-blocks of human
designed heuristics (Burke et al., 2009).

HEAD-DT is a regular generational EA in which individuals are collections of
building blocks (heuristics) from decision-tree induction algorithms. In Figure 2, we
present its evolutionary scheme.

Initial

Population
Evaluation

Tournament

Selection

New Population

Complete?
Stop?

Best

Individual
Test

META-TRAINING

SET

META-TEST

SET

NoYes

Yes

No

Reproduction Crossover Mutation

pr pc pm

Figure 2: HEAD-DT evolutionary scheme.

Each individual in HEAD-DT is encoded as an integer string (see Figure 3), and
each gene has a different range of supported values. We divided the genes into four
categories that represent the major building blocks (design components) of a decision-
tree induction algorithm: (i) split genes; (ii) stopping criteria genes; (iii) missing values
genes; and (iv) pruning genes. We detail each category next.

3.1 Split Genes

These genes are concerned with the task of selecting the predictive attribute to split
the data in the current node of the decision tree. A decision rule based on the selected
attribute is thus generated, and the input data is filtered according to the outcomes of
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Figure 3: Linear genome for evolving decision-tree induction algorithms.

this rule, and the process continues recursively. HEAD-DT uses two genes to model
the split component of a decision-tree algorithm: split criterion and split type.

3.1.1 Split Criterion Gene
The first gene, split criterion, is an integer that indexes one of the 15 splitting crite-
ria implemented: information gain (Quinlan, 1986), Gini index (Breiman et al., 1984),
global mutual information (Gleser and Collen, 1972), G statistics (Mingers, 1987),
Mantaras criterion (De Mántaras, 1991), hypergeometric distribution (Martin, 1997),
Chandra-Varghese criterion (Chandra and Varghese, 2009), DCSM (Chandra et al.,
2010), χ2 (Mingers, 1989), mean posterior improvement (Taylor and Silverman, 1993),
normalized gain (Jun et al., 1997), orthogonal criterion (Fayyad and Irani, 1992), twoing
(Breiman et al., 1984), CAIR (Ching et al., 1995) and gain ratio (Quinlan, 1993).

The most well-known univariate criteria are based on Shannon’s entropy (Shan-
non, 1948). Entropy is known to be a unique function that satisfies the four axioms of
uncertainty. It represents the average amount of information when coding each class
into a codeword with ideal length according to its probability. The first splitting cri-
terion based on entropy was the global mutual information (GMI) (Gleser and Collen,
1972). Afterwards, the well-known information gain (Quinlan, 1986) became a standard
after appearing in algorithms like ID3 (Quinlan, 1986) and Assistant (Kononenko et al.,
1984). It belongs to the class of the so-called impurity-based criteria. Quinlan (Quin-
lan, 1986) acknowledged the fact that the information gain is biased towards attributes
with many values. To deal with this problem, he proposed the gain ratio (Quinlan,
1993), which basically normalizes the information gain by the entropy of the attribute
being tested. Several variations of the gain ratio were proposed, e.g., the normalized
gain (Jun et al., 1997). Alternatives to entropy-based criteria are the class of distance-
based measures, i.e., criteria, which evaluate separability, divergency or discrimination
between classes. Examples are the Gini index (Breiman et al., 1984), the twoing crite-
rion (Breiman et al., 1984), the orthogonality criterion (Fayyad and Irani, 1992), among
others. We also included lesser-known criteria, such as CAIR (Ching et al., 1995) and
mean posterior improvement (Taylor and Silverman, 1993), as well as the more recent
Chandra-Varghese (Chandra and Varghese, 2009) and DCSCM (Chandra et al., 2010),
to enhance the diversity of options for generating splits in a decision tree.

3.1.2 Split Type Gene
The second gene, split type, is a binary gene that indicates whether the splits of a de-
cision tree are going to be necessarily binary or perhaps multi-way. In a binary tree,
every split has only two outcomes, which means that nominal attributes with many
categories will be divided into two subsets, each representing an aggregation over sev-
eral categories. In a multi-way tree, nominal attributes are divided according to their
number of categories, i.e., one edge (outcome) for each category. In both cases, numeric

6 Evolutionary Computation Volume x, Number x



Automatic Design of Decision-Tree Algorithms with Evolutionary Algorithms

attributes always partition the tree into two subsets, (≤ threshold and > threshold).

3.2 Stopping Criteria Genes

The second category of genes is related to the stopping criteria component of decision-
tree induction algorithms. The top-down induction of a decision tree is recursive and it
continues until a stopping criterion (also known as pre-pruning) is satisfied. HEAD-DT
uses two genes to model the stopping criteria component of decision trees: criterion and
parameter.

3.2.1 Stopping Criterion Gene
The first gene, stopping criterion, selects among the five following different strategies
for stopping the tree growth:

• Reaching class homogeneity: when all instances that reach a given node belong to
the same class, there is no reason to split this node any further. This criterion can
be combined with any of the following criteria;

• Reaching the maximum tree depth: a parameter tree depth can be specified to avoid
deep trees. Range: [2, 10] levels;

• Reaching the minimum number of instances for a non-terminal node: a parameter
minimum number of instances for a non-terminal node can be specified to avoid (or
at least alleviate) the data fragmentation problem in decision trees. Range: [1, 20]
instances;

• Reaching the minimum percentage of instances for a non-terminal node: same as
above, but instead of the actual number of instances, we set the minimum percent-
age of instances. The parameter is thus relative to the total number of instances in
a data set. Range: [1%, 10%] the total number of instances;

• Reaching a predictive accuracy threshold within a node: a parameter accuracy
reached can be specified for halting the growth of the tree when the predictive ac-
curacy within a node (majority of instances) has reached a given threshold. Range:
{70%, 75%, 80%, 85%, 90%, 95%, 99%}.

3.2.2 Stopping Parameter Gene
The second gene, stopping parameter, dynamically adjusts a value in the range [0, 100]
to the corresponding strategy. For instance, if the strategy selected by gene stopping
criterion is reaching a predictive accuracy threshold within a node, the following mapping
function is executed:

param = ((value mod 7)× 5) + 70 (1)

This function maps from [0, 100] to {70, 75, 80, 85, 90, 95, 100}, which is almost what
was defined as the range of strategy reaching a predictive accuracy threshold. The final step
subtracts 1 from the resulting parameter value if it is equal to 100. Similar mapping
functions are executed dynamically to adjust the ranges of gene stopping parameter.

3.3 Missing Values Genes

Handling missing values is an important task in decision-tree induction. Missing val-
ues can harm the tree induction process and also its use for the classification of new
examples. During the tree induction, there are two moments in which we need to deal
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with missing values: splitting criterion evaluation and instances distribution. To deal
with these scenarios, HEAD-DT uses three genes to model the missing values compo-
nent of decision trees: mv split, mv distribution, and mv classification.

3.3.1 mv Split Gene
During the split criterion evaluation for a node t based on an attribute ai, we imple-
mented the following strategies: (i) ignore all instances whose value of ai is missing
(Friedman, 1977; Breiman et al., 1984); (ii) imputation of missing values with either the
mode (nominal attributes) or the mean/median (numeric attributes) of all instances in
t (Clark and Niblett, 1989); (iii) weight the splitting criterion value (calculated in node t
with regard to ai) by the proportion of missing values (Quinlan, 1989); and (iv) imputa-
tion of missing values with either the mode (nominal attributes) or the mean/median
(numeric attributes) of all instances in twhose class attribute is the same of the instance
whose ai value is being imputed (Loh and Shih, 1997).

3.3.2 mv Distribution Gene
For deciding to which child node a training instance xj should go to, considering a split
for node t over ai, we adopted the following options: (i) ignore instance xj (Quinlan,
1986); (ii) treat instance xj as if it has the most common value of ai (mode or mean),
regardless of its class (Quinlan, 1989); (iii) treat instance xj as if it has the most common
value of ai (mode or mean) considering the instances that belong to the same class as
xj ; (iv) assign instance xj to all partitions (Friedman, 1977); (v) assign instance xj to the
partition with the largest number of instances (Quinlan, 1989); (vi) weight instance xj
according to the partition probability (Quinlan, 1993; Kononenko et al., 1984); and (vii)
assign instance xj to the most probable partition, considering the class of xj (Loh and
Shih, 1997).

3.3.3 mv Classification Gene
For classifying an unseen test instance xj , considering a split in node t over ai, we used
the strategies: (i) explore all branches of t combining the results (Quinlan, 1987a); (ii)
take the route to the most probable partition (largest subset); (iii) halt the classification
process and assign the instance xj to the majority class of node t (Quinlan, 1989).

3.4 Pruning Genes

Pruning is usually performed in decision trees to enhance tree comprehensibility by
reducing its size while maintaining (or even improving) its predictive accuracy. It was
originally conceived as a strategy for tolerating noisy data, though it was found to
improve decision tree predictive accuracy in many noisy data sets (Breiman et al., 1984;
Quinlan, 1986, 1987b). We designed two genes in HEAD-DT for pruning: method and
parameter.

3.4.1 Pruning Method Gene
The first gene, pruning method, indexes one of the following five approaches for prun-
ing a decision tree (and also the option of not pruning at all):

• Reduced-error pruning (REP) is a conceptually simple strategy proposed by Quin-
lan (Quinlan, 1987b). It uses a pruning set (part of the training set) to evaluate
the goodness of a given subtree from T . The idea is to evaluate each non-terminal
node t regarding the classification error in the pruning set. If this error decreases
when we replace the subtree T (t) rooted on t by a leaf node, then T (t) must be
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pruned. Quinlan also imposes a constraint: a node t cannot be pruned if it contains
a subtree that yields a lower classification error in the pruning set. The practical
consequence of this constraint is that REP should be performed in a bottom-up
fashion. The REP pruned tree T ′ presents an interesting optimality property: it
is the smallest most accurate tree resulting from pruning original tree T (Quinlan,
1987b). Besides this optimality property, another advantage of REP is its linear
complexity, since each node is visited only once in T . An obvious disadvantage
is the need of a pruning set, which means one has to divide the original training
set, resulting in less instances to grow the tree. This disadvantage is particularly
serious for small data sets.

• Also proposed by Quinlan (1987b), the pessimistic error pruning (PEP) uses the
training set for both growing and pruning the tree. The apparent error rate, i.e.,
the error rate calculated for the training set, is optimistically biased and cannot
be used to decide whether pruning should be performed or not. Quinlan proposes
adjusting the apparent error according to the continuity correction for the binomial
distribution in order to provide a more realistic error rate. PEP is computed in a
top-down fashion, and if a given node t is pruned, its descendants are not exam-
ined, which makes this pruning strategy very computationally efficient. However,
Esposito et al. (Esposito et al., 1997) point out that the introduction of the continu-
ity correction in the estimation of the error rate has no theoretical justification, since
it was never applied to correct over-optimistic estimates of error rates in statistics.

• Originally proposed in (Niblett and Bratko, 1986) and further extended in (Cestnik
and Bratko, 1991), minimum error pruning (MEP) is a bottom-up approach that
seeks to minimize the expected error rate for unseen cases. It uses an ad-hoc param-
eter m for controlling the level of pruning. Usually, the higher the value of m, the
more severe the pruning. Cestnik and Bratko (Cestnik and Bratko, 1991) suggest
that a domain expert should set m according to the level of noise in the data. Al-
ternatively, a set of trees pruned with different values of m could be offered to the
domain expert, so he/she can choose the best one according to his/her experience.

• Cost-complexity pruning (CCP) is the post-pruning strategy of the CART system,
detailed in (Breiman et al., 1984). It has two steps: (i) generate a sequence of in-
creasingly smaller trees, beginning with T and finishing with the root node of T , by
successively pruning the subtree yielding the lowest cost complexity, in a bottom-
up fashion; (ii) choose the best tree among the sequence based on its relative size
and predictive accuracy (either on a pruning set, or provided by a cross-validation
procedure in the training set). The idea behind step 1 is that the pruned tree Ti+1

is obtained by pruning the subtrees that show the lowest increase in the apparent
error (error in the training set) per pruned leaf. Regarding step 2, CCP chooses the
smallest tree whose error (either on the pruning set or on cross-validation) is not
higher than one standard error (SE) larger than the lowest error observed in the
sequence of trees.

• Finally, error-based pruning (EBP), proposed by Quinlan and implemented as the
default pruning strategy of C4.5 (Quinlan, 1993), is an improvement over PEP. It
is based on a far more pessimistic estimate of the expected error. Unlike PEP, EBP
performs a bottom-up search, and it carries out not only the replacement of non-
terminal nodes by leaves but also grafting of subtree T (t) onto the place of parent
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DECISION-TREE
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Figure 4: Fitness evaluation from one data set in the meta-training set.

t. For deciding whether to replace a non-terminal node by a leaf (subtree replace-
ment), to graft a subtree onto the place of its parent (subtree raising) or not to prune
at all, a pessimistic estimate of the expected error is calculated by using an upper
confidence bound. An advantage of EBP is the new grafting operation that allows
pruning useless branches without ignoring interesting lower branches. A draw-
back of the method is the presence of an ad-hoc parameter, CF . Smaller values of
CF result in more pruning.

3.4.2 Pruning Parameter Gene
The second gene, pruning parameter, is in the range [0, 100] and its value is dynami-
cally mapped by a function, according to the pruning method selected (similar to the
stopping parameter gene). For REP, the parameter is the percentage of training data
to be used in the pruning set (varying within the interval [10%, 50%]). For PEP, the pa-
rameter is the number of standard errors (SEs) to adjust the apparent error, in the set
{0.5, 1, 1.5, 2}. For MEP, the parameter m may range within [0, 100]. For CCP, there are
two parameters: the number of SEs (in the same range than PEP) and the pruning set
size (in the same range as REP). Finally, for EBP, the parameter CF may vary within
the interval [1%, 50%].

3.5 Fitness Evaluation

During the fitness evaluation, HEAD-DT employs a meta-training set for assessing the
quality of each individual throughout evolution. It also employes a meta-test set, which
is used to assess the quality of the evolved decision-tree induction algorithm (the best
individual in Figure 2). There are two distinct approaches for dealing with the meta-
training and meta-test sets:

1. Evolving a decision-tree induction algorithm tailored to one specific data set.

2. Evolving a decision-tree induction algorithm from multiple data sets.

In the first case (see Figure 4), we have a specific data set for which we want to
design a decision-tree induction algorithm. The meta-training set is thus comprised
of the training data we have available for the data set at hand, and the meta-test set
is comprised of the test data (belonging to the same data set) we have available for
evaluating the performance of the algorithm.
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INDIVIDUAL

DECISION-TREE

ALGORITHM
TRAINING 2

DT 1

DT 2

DT n

TRAINING 1

TRAINING n

VALIDATION 1

VALIDATION 2

VALIDATION n

STATS 1

STATS 2

STATS n

... ... ... ...

FITNESS EVALUATION

META-TRAINING SET

Figure 5: Fitness evaluation from multiple data sets in the meta-training set.

In the second case (see Figure 5), we have multiple data sets comprising the meta-
training set, and possibly multiple (but different) data sets comprising the meta-test set.
This strategy can be employed with two different objectives: (i) designing a decision-
tree induction algorithm that performs reasonably well in a wide variety of data sets
(i.e., data sets with very different structural characteristics and/or from very distinct
application domains, e.g. finance, medicine, bioinformatics, etc); and (ii) designing a
decision-tree induction algorithm that is tailored to a particular application domain or
to a specific statistical profile. In both cases, the main goal is to generate induction
algorithms tailored to a set of data sets, which may be from the same domain or not.

In this paper, we focus on the first fitness approach — generating one decision-tree
induction algorithm per data set. The second approach is a topic left for future research.
As fitness function, we investigate both predictive accuracy and F-Measure (harmonic
mean of precision and recall) (Tan et al., 2005). These performance measures can be
defined in terms of four variables: true positives (tp), true negatives (tn), false positives
(fp), and false negatives (fn). True positives (negatives) is the number of instances
that were correctly predicted as belonging to the “positive” (“negative”) class, whereas
false positives (negatives) is the number of instances that were incorrectly predicted as
belonging to the “positive” (“negative”) class. With these four variables, we can define
accuracy, precision, recall, and F-Measure, respectively, as:

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(2)

precision =
tp

tp+ fp
(3)

recall =
tp

tp+ fn
(4)

FMeasure = 2× precision× recall
precision+ recall

(5)

Note that this formulation assumes that the classification problem at hand is bi-
nary, i.e., comprised of two classes: positive and negative. Nevertheless, it can be triv-
ially extended to account for multi-class problems. For instance, one can compute the
measure for each class — assuming each class to be the “positive” class in turn — and
(weight-)average the per-class measures. A discussion about the pros and cons of ac-
curacy and F-measure as predictive performance measures will be presented later.
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3.6 Evolutionary Cycle

The evolution of individuals in HEAD-DT follows the scheme presented in Figure 2.
The 9-gene linear genome of an individual in HEAD-DT is comprised of the build-
ing blocks described in the earlier sections: [split criterion, split type, stopping criterion,
stopping parameter, pruning strategy, pruning parameter, mv split, mv distribution, mv classi-
fication], where mv stands for missing value.

The first step of HEAD-DT is the generation of the initial population, in which a
population of n individuals is randomly generated (random number generation within
the genes acceptable range of values). The individuals from the current population
participate in a pairwise tournament selection procedure for defining those that will
undergo genetic operators. Individuals may participate in either uniform crossover,
random uniform gene mutation, or reproduction, the three mutually-exclusive genetic
operators employed in HEAD-DT. In addition, HEAD-DT employs an elitism strategy,
in which the best i% individuals are kept from one generation to the next.

One possible individual encoded by the 9-gene linear string representation is
[4, 1, 2, 77, 3, 91, 2, 5, 1], which accounts for Algorithm 1.

Algorithm 1 — Example of an algorithm automatically designed by HEAD-DT.
1) Recursively split nodes with the G statistics criterion;
2) Create one edge for each category in a nominal split;
3) Perform step 1 until class-homogeneity or the maximum tree depth of 7 levels

(77 mod 9) + 2) is reached;
4) Perform MEP pruning with m = 91;
5) When dealing with missing values:

5.1) Impute missing values with mode/mean during split calculation;
5.2) Distribute missing-valued instances to the partition with the largest number of

instances;
5.3) For classifying an instance with missing values, explore all branches and

combine the results.

4 Experimental Methodology

4.1 Data sets

To assess the relative performance of the algorithms automatically designed by HEAD-
DT, we employ well-known UCI public data sets (Frank and Asuncion, 2010). In ad-
dition, we test the effectiveness of the automatically-generated algorithms tailored to
each of 10 real-world gene expression data sets (de Souto et al., 2008). The 30 data
sets used for testing the effectiveness of HEAD-DT are summarized in Table 1, where
the fifth and sixth columns describe the number of numerical and nominal attributes,
respectively. The other column names are self-explanatory.

4.2 Baseline Algorithms and Statistical Analysis

We compare the resulting decision-tree induction algorithms with the most well-known
and widely-used decision-tree induction algorithms to date: C4.5 (Quinlan, 1993) and
CART (Breiman et al., 1984). Since HEAD-DT is a non-deterministic method, its results
are averaged over 5 different runs (varying the random seed in each run).

In order to provide some reassurance about the validity and non-randomness of
the obtained results, we present the results of statistical tests by following the approach
proposed by Demšar (Demšar, 2006). In brief, this approach seeks to compare multiple
algorithms on multiple data sets, and it is based on the use of the Friedman test with
a corresponding post-hoc test. The Friedman test is a non-parametric counterpart of
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Table 1: Summary of the 30 data sets used in the experiments.
source data set # instances # attributes # numeric # nominal % missing # classes

UCI

abalone 4177 8 7 1 0.00 30
anneal 898 38 6 32 0.00 6
arrhythmia 452 279 206 73 0.32 16
audiology 226 69 0 69 2.03 24
bridges version1 107 12 3 9 5.53 6
car 1728 6 0 6 0.00 4
cylinder bands 540 39 18 21 4.74 2
glass 214 9 9 0 0.00 7
hepatitis 155 19 6 13 5.67 2
iris 150 4 4 0 0.00 3
kdd synthetic 600 61 60 1 0.00 6
segment 2310 19 19 0 0.00 7
semeion 1593 265 265 0 0.00 2
shuttle landing 15 6 0 6 28.89 2
sick 3772 30 6 22 5.54 2
tempdiag 120 7 1 6 0.00 2
tep.fea 3572 7 7 0 0.00 3
vowel 990 13 10 3 0.00 11
winequality red 1599 11 11 0 0.00 10
winequality white 4898 11 11 0 0.00 10

Gene

alizadeh-2000-v1 42 1095 1095 0 0.0 2

Expression

armstrong-2002-v1 72 1081 1081 0 0.0 2
armstrong-2002-v2 72 2194 2194 0 0.0 3
bittner-2000 38 2201 2201 0 0.0 2
liang-2005 37 1411 1411 0 0.0 3
ramaswamy-2001 190 1363 1363 0 0.0 14
risinger-2003 42 1771 1771 0 0.0 4
tomlins-2006 104 2315 2315 0 0.0 5
tomlins-2006-v2 92 1288 1288 0 0.0 4
yeoh-2002-v1 248 2526 2526 0 0.0 2

the well-known ANOVA, as follows. Let Rji be the rank of the jth of k algorithms on
the ith of N data sets. The Friedman test compares the average ranks of algorithms,
Rj =

1
N

∑
iR

j
i . The Friedman statistic, given by:

χ2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (6)

is distributed according to χ2
F with k − 1 degrees of freedom, when N and k are large

enough.
Iman and Davenport (Iman and Davenport, 1980) showed that Friedman’s χ2

F is
undesirably conservative and derived an adjusted statistic:

Ff =
(N − 1)× χ2

F

N × (k − 1)− χ2
F

(7)

which is distributed according to the F -distribution with k − 1 and (k − 1)(N − 1)
degrees of freedom.

If the null hypothesis of similar performances is rejected, we proceed with the
Nemenyi post-hoc test for pairwise comparisons. The performance of two classifiers is
significantly different if their corresponding average ranks differ by at least the critical
difference

CD = qα

√
k(k + 1)

6N
(8)
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where critical values qα are based on the Studentized range statistic divided by
√
2.

4.3 Parameters

The baseline algorithms CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993) were
used with the default parameter values proposed by their authors, which typically rep-
resent robust values that work well across different data sets. None of the algorithms,
including HEAD-DT, had their parameter values optimized to individual data sets,
since the goal is to evaluate a parameter settings’ generalization ability across a wide
range of data sets, as usual in the supervised machine learning literature.

HEAD-DT was configured with the following parameter values described in Ta-
ble 2. These values were defined in previous non-exhaustive empirical tests, and no
further attempt of optimizing these values was made. A more robust parameter opti-
mization procedure is left for future research.

Table 2: Parameter values for HEAD-DT.
Parameter Description Value

Number of Individuals 100
Number of Generations 100
Tournament Selection Size 2
Elitism Rate 5%
Crossover Rate 90%
Mutation Rate 5%
Reproduction Rate 5%

5 Results

In this section, we present the results obtained by HEAD-DT with the strategy of gen-
erating one algorithm per data set. Recall that, in this case, both the meta-training and
meta-test sets contain data from a specific data set. We used 10-fold cross-validation to
evaluate the results provided by HEAD-DT and by the baseline algorithms C4.5 (Quin-
lan, 1993) and CART (Breiman et al., 1984).

For the UCI data sets, we employed predictive accuracy (see Equation (2)) as fit-
ness function, whereas for the gene expression (GE) data sets we employed the F-
Measure (see Equation (5)), considering that most GE data sets are quite imbalanced.
The results for the UCI datasets were also reported in our previous work (Barros et al.,
2012a), but the results for the GE datasets are a new contribution of this paper.

5.1 Results for the UCI Data Sets

Table 3 shows the classification accuracy of CART, C4.5, and HEAD-DT for the 20 UCI
data sets. It illustrates the average accuracy over the 10-fold cross-validation runs ±
the standard deviation of the accuracy obtained in these runs (best absolute values in
bold). It is possible to see that HEAD-DT generates more accurate trees in 13 out of the
20 data sets. CART provides more accurate trees in two data sets, and C4.5 in none. In
the remaining 5 data sets, no method was superior to the others.

To evaluate the statistical significance of the predictive accuracy results, we calcu-
lated the average rank for CART, C4.5 and HEAD-DT: 2.375, 2.2, and 1.425, respectively.
The average ranks suggest that HEAD-DT is the best performing method regarding ac-
curacy. The calculation of Friedman’s χ2

F is given by:
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Table 3: Classification accuracy of CART, C4.5 and HEAD-DT — UCI data sets.
CART C4.5 HEAD-DT

abalone 0.26± 0.02 0.22± 0.02 0.20± 0.02
anneal 0.98± 0.01 0.99± 0.01 0.99± 0.01
arrhythmia 0.71± 0.05 0.65± 0.04 0.65± 0.04
audiology 0.74± 0.05 0.78± 0.07 0.80± 0.06
bridges version1 0.41± 0.07 0.57± 0.10 0.60± 0.12
car 0.97± 0.02 0.93± 0.02 0.98± 0.01
cylinder bands 0.60± 0.05 0.58± 0.01 0.72± 0.04
glass 0.70± 0.11 0.69± 0.04 0.73± 0.10
hepatitis 0.79± 0.05 0.79± 0.06 0.81± 0.08
iris 0.93± 0.05 0.94± 0.07 0.95± 0.04
kdd synthetic 0.88± 0.00 0.91± 0.04 0.97± 0.03
segment 0.96± 0.01 0.97± 0.01 0.97± 0.01
semeion 0.94± 0.01 0.95± 0.02 1.00± 0.00
shuttle landing 0.95± 0.16 0.95± 0.16 0.95± 0.15
sick 0.99± 0.01 0.99± 0.00 0.99± 0.00
tempdiag 1.00± 0.00 1.00± 0.00 1.00± 0.00
tep.fea 0.65± 0.02 0.65± 0.02 0.65± 0.02
vowel 0.82± 0.04 0.83± 0.03 0.89± 0.04
winequality red 0.63± 0.02 0.61± 0.03 0.64± 0.03
winequality white 0.58± 0.02 0.61± 0.03 0.63± 0.03

χ2
F =

12× 20

3× 4

[
2.3752 + 2.22 + 1.4252 − 3× 42

4

]
= 10.225 (9)

and the Iman’s F statistic is given by:

Ff =
(20− 1)× 10.225

20× (3− 1)− 10.22
= 6.52 (10)

The critical value of F (k − 1, (k − 1)(n − 1)) = F (2, 38) for α = 0.05 is 3.25. Since
Ff > F0.05(2, 38) (6.52 > 3.25), the null-hypothesis is rejected. We proceed with a
post-hoc Nemenyi test to find which method provides the best accuracy. The critical
difference CD is given by:

CD = 2.343×
√

3× 4

6× 20
= 0.74 (11)

The difference between the average rank of HEAD-DT and C4.5 is 0.775, while the
difference between HEAD-DT and CART is 0.95. Since both the differences are larger
thanCD, the performance of HEAD-DT is significantly better than both C4.5 and CART
regarding predictive accuracy.

Table 4 shows the classification F-Measure of CART, C4.5, and HEAD-DT for the
same UCI data sets. It can be seen that HEAD-DT generates better trees (regardless of
the class imbalance problem) in 16 out of the 20 data sets. CART generates the best tree
in two data sets, while C4.5 does not induce the best tree for any data set.

We calculated the average rank for CART, C4.5, and HEAD-DT: 2.5, 2.225 and
1.275, respectively. The average rank suggest that HEAD-DT is the best performing
method regarding the F-Measure. The calculation of Friedman’s χ2

F is given by:

χ2
F =

12× 20

3× 4

[
2.52 + 2.2252 + 1.2752 − 3× 42

4

]
= 16.525 (12)

and the Iman’s F statistic is given by:
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Table 4: Classification F-Measure of CART, C4.5 and HEAD-DT — UCI data sets.
CART C4.5 HEAD-DT

abalone 0.22± 0.02 0.21± 0.02 0.20± 0.02
anneal 0.98± 0.01 0.98± 0.01 0.99± 0.01
arrhythmia 0.67± 0.05 0.64± 0.05 0.63± 0.06
audiology 0.70± 0.04 0.75± 0.08 0.79± 0.07
bridges version1 0.44± 0.06 0.52± 0.10 0.56± 0.12
car 0.93± 0.97 0.93± 0.02 0.98± 0.01
cylinder bands 0.54± 0.07 0.42± 0.00 0.72± 0.04
glass 0.67± 0.10 0.67± 0.05 0.72± 0.09
hepatitis 0.74± 0.07 0.77± 0.06 0.80± 0.08
iris 0.93± 0.05 0.93± 0.06 0.95± 0.05
kdd synthetic 0.88± 0.03 0.90± 0.04 0.97± 0.03
segment 0.95± 0.01 0.96± 0.09 0.97± 0.01
semeion 0.93± 0.01 0.95± 0.02 1.00± 0.00
shuttle landing 0.56± 0.03 0.56± 0.38 0.93± 0.20
sick 0.98± 0.00 0.98± 0.00 0.99± 0.00
tempdiag 1.00± 0.00 1.00± 0.00 1.00± 0.00
tep.fea 0.60± 0.02 0.61± 0.02 0.61± 0.02
vowel 0.81± 0.03 0.82± 0.03 0.89± 0.03
winequality red 0.61± 0.02 0.60± 0.03 0.63± 0.03
winequality white 0.57± 0.02 0.60± 0.02 0.63± 0.03

Ff =
(20− 1)× 16.525

20× (3− 1)− 16.525
= 13.375 (13)

Since Ff > F0.05(2, 38) (13.375 > 3.25), the null-hypothesis is rejected. The dif-
ference between the average rank of HEAD-DT and C4.5 is 0.95, while the difference
between HEAD-DT and CART is 1.225. Since both the differences are larger than CD
(0.74), the performance of HEAD-DT is significantly better than both C4.5 and CART
regarding the F-Measure.

Table 5 shows the size of decision trees (measured as the number of tree nodes)
generated by C4.5, CART and HEAD-DT. It can be seen that CART generates smaller
trees in 15 out of the 20 data sets. C4.5 generates smaller trees in 2 data sets, and HEAD-
DT in only one data set. The statistical analysis is given below:

χ2
F =

12× 20

3× 4

[
1.22 + 22 + 2.82 − 3× 42

4

]
= 25.6 (14)

Ff =
(20− 1)× 33.78

20× (3− 1)− 25.6
= 33.78 (15)

Since Ff > F0.05(2, 38) (33.78 > 3.25), the null-hypothesis is rejected. The differ-
ence between the average rank of HEAD-DT and C4.5 is 0.8, while the difference be-
tween HEAD-DT and CART is 1.6. Since both the differences are larger than CD (0.74),
HEAD-DT generates trees which are significantly larger than both C4.5 and CART for
these UCI data sets.

5.2 Results for the Gene Expression Data Sets

In this section, we present the results for 10 microarray gene expression (GE) data sets
(de Souto et al., 2008). Microarray technology enables expression level measurement
for thousands of genes in parallel, given a biological tissue. Once combined, a fixed
number of microarray experiments are comprised in a gene expression data set. The
considered data sets are related to different types or subtypes of cancer (e.g., prostate,
lung and skin) and comprehend the two flavors in which the technology is generally
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Table 5: Tree size of CART, C4.5 and HEAD-DT trees — UCI data sets.
CART C4.5 HEAD-DT

abalone 44.40± 16.00 2088.90± 37.63 4068.12± 13.90
anneal 21.00± 3.13 48.30± 6.48 55.72± 3.66
arrhythmia 23.20± 2.90 82.60± 5.80 171.84± 5.18
audiology 35.80± 11.75 50.40± 4.01 118.60± 3.81
bridges version1 1.00± 0.00 24.90± 20.72 156.88± 14.34
car 108.20± 16.09 173.10± 6.51 171.92± 4.45
cylinder bands 4.20± 1.03 1.00± 0.00 211.44± 9.39
glass 23.20± 10.56 44.80± 5.20 86.44± 3.14
hepatitis 6.60± 8.58 15.40± 4.40 71.80± 4.77
iris 6.20± 1.69 8.00± 1.41 20.36± 1.81
kdd synthetic 1.00± 0.00 37.80± 4.34 26.16± 2.45
segment 78.00± 8.18 80.60± 4.97 132.76± 3.48
semeion 34.00± 12.30 55.00± 8.27 19.00± 0.00
shuttle landing 1.00± 0.00 1.00± 0.00 5.64± 1.69
sick 45.20± 11.33 46.90± 9.41 153.70± 8.89
tempdiag 5.00± 0.00 5.00± 0.00 5.32± 1.04
tep.fea 13.00± 2.83 8.20± 1.69 18.84± 1.97
vowel 175.80± 23.72 220.70± 20.73 361.42± 5.54
winequality red 151.80± 54.58 387.00± 26.55 796.00± 11.22
winequality white 843.80± 309.01 1367.20± 58.44 2525.88± 13.17

available: single channel and double channel. The classification task consists of classi-
fying different instances according to their gene (attribute) expression levels. Note that
the classification of microarray data is challenging because the number of instances
is much smaller than the number of attributes, which makes classification algorithms
applied to such data prone to overfitting.

Table 6 shows the classification accuracy of CART, C4.5, and HEAD-DT regarding
the 10 GE data sets. It illustrates the average accuracy over the 10-fold cross-validation
runs ± the standard deviation of the accuracy obtained in these runs (best absolute
values in bold). One can see that HEAD-DT generates more accurate trees in 9 out of
the 10 data sets. In the remaining data set (yeoh-2002-v1), all methods provide the same
decision tree (and thus, obtain the same accuracy value).

Table 6: Classification accuracy of CART, C4.5 and HEAD-DT — GE data sets.
data set CART C4.5 HEAD-DT

alizadeh-2000-v1 0.71± 0.16 0.68± 0.20 0.76± 0.18
armstrong-2002-v1 0.90± 0.07 0.89± 0.06 0.91± 0.11
armstrong-2002-v2 0.85± 0.05 0.83± 0.05 0.90± 0.10
bittner-2000 0.53± 0.18 0.49± 0.16 0.56± 0.19
liang-2005 0.71± 0.14 0.76± 0.19 0.79± 0.17
ramaswamy-2001 0.60± 0.09 0.61± 0.05 0.63± 0.08
risinger-2003 0.52± 0.15 0.53± 0.19 0.60± 0.29
tomlins-2006-v1 0.58± 0.20 0.58± 0.18 0.58± 0.17
tomlins-2006-v2 0.59± 0.15 0.58± 0.17 0.61± 0.09
yeoh-2002-v1 0.99± 0.02 0.99± 0.02 0.99± 0.02

We calculated the average rank for CART, C4.5, and HEAD-DT: 2.25, 2.65, and 1.1,
respectively. The average rank suggest that HEAD-DT is the best performing method
regarding accuracy. The calculation of Friedman’s χ2

F is given by:

χ2
F =

12× 10

3× 4

[
2.652 + 2.252 + 1.12 − 3× 42

4

]
= 12.95 (16)

and the Iman’s F statistic is given by:
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Ff =
(10− 1)× 12.95

10× (3− 1)− 12.95
= 16.53 (17)

F (k − 1, (k − 1)(n − 1)) = F (2, 18) for α = 0.05 is 3.55. Since Ff > F0.05(2, 18)
(16.53 > 3.55), the null-hypothesis is rejected. We proceed with the post-hoc pairwise
Nemenyi test. The critical difference CD is given by:

CD = 2.343×
√

3× 4

6× 10
= 1.05 (18)

The difference between the average rank of HEAD-DT and C4.5 is 1.55, while the
difference between HEAD-DT and CART is 1.15. Since both differences are larger than
CD (1.05), the performance of HEAD-DT is significantly better than both C4.5 and
CART regarding the predictive accuracy in the GE data sets.

Next, Table 7 shows the classification F-Measure of CART, C4.5, and HEAD-DT for
the same GE data sets. The experimental results show that HEAD-DT generates better
trees (regardless of the class imbalance problem) in 8 out of the 10 data sets. CART and
C4.5 generate the best tree for tomlins2006-v1, while all methods generate the same tree
for yeah-2002-v1.

Table 7: Classification F-Measure of CART, C4.5 and HEAD-DT — GE data sets.
data set CART C4.5 HEAD-DT

alizadeh-2000-v1 0.67± 0.21 0.63± 0.26 0.72± 0.23
armstrong-2002-v1 0.90± 0.07 0.88± 0.06 0.91± 0.11
armstrong-2002-v2 0.84± 0.05 0.83± 0.05 0.89± 0.11
bittner-2000 0.49± 0.21 0.45± 0.19 0.51± 0.23
liang-2005 0.67± 0.21 0.77± 0.22 0.78± 0.21
ramaswamy-2001 0.56± 0.10 0.56± 0.07 0.59± 0.08
risinger-2003 0.48± 0.19 0.53± 0.21 0.57± 0.29
tomlins-2006-v1 0.56± 0.20 0.56± 0.20 0.53± 0.16
tomlins-2006-v2 0.55± 0.13 0.57± 0.17 0.57± 0.10
yeoh-2002-v1 0.99± 0.02 0.99± 0.02 0.99± 0.02

We calculated the average rank for CART, C4.5, and HEAD-DT: 2.2, 2.75, and 1.05,
respectively. The average rank suggest that HEAD-DT is the best performing method
regarding the F-Measure. The calculation of Friedman’s χ2

F is given by:

χ2
F =

12× 10

3× 4

[
2.752 + 2.22 + 1.052 − 3× 42

4

]
= 15.05 (19)

and the Iman’s F statistic is given by:

Ff =
(10− 1)× 15.05

10× (3− 1)− 15.05
= 27.36 (20)

Since Ff > F0.05(2, 18) (27.36 > 3.55), the null-hypothesis is rejected. The dif-
ference between the average rank of HEAD-DT and C4.5 is 1.7, while the difference
between HEAD-DT and CART is 1.15. Since both the differences are larger than CD
(1.05), the performance of HEAD-DT is significantly better than both C4.5 and CART
regarding the F-Measure.

Finally, Table 8 presents the average tree size for CART, C4.5, and HEAD-DT re-
garding the GE data sets. CART provides the smaller trees for all data sets (it generates
the same tree than C4.5 in data set yeah-2002-v1).
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Table 8: Tree size of CART, C4.5 and HEAD-DT trees — GE data sets.
data set CART C4.5 HEAD-DT

alizadeh-2000-v1 3.20± 0.63 5.00± 0.00 4.00± 1.29
armstrong-2002-v1 3.00± 0.00 3.60± 0.97 4.32± 1.74
armstrong-2002-v2 5.00± 0.00 7.20± 0.63 6.20± 0.99
bittner-2000 3.80± 1.40 5.00± 0.00 4.08± 2.18
liang-2005 2.20± 1.03 5.00± 0.00 3.96± 1.41
ramaswamy-2001 28.20± 7.38 45.20± 2.74 39.04± 11.31
risinger-2003 5.00± 1.89 8.60± 0.84 6.40± 2.53
tomlins-2006-v1 12.60± 2.80 17.00± 1.33 12.80± 5.82
tomlins-2006-v2 7.40± 3.10 16.40± 0.97 11.32± 4.75
yeoh-2002-v1 3.00± 0.00 3.00± 0.00 3.48± 2.04

We calculated the average rank for CART, C4.5, and HEAD-DT: 1.3, 2.4, and 2.3,
respectively. The average rank suggests that CART generates smaller trees than both
C4.5 and HEAD-DT. The calculation of Friedman’s χ2

F is given by:

χ2
F =

12× 10

3× 4

[
2.42 + 2.32 + 1.32 − 3× 42

4

]
= 7.40 (21)

and the Iman’s F statistic is given by:

Ff =
(10− 1)× 7.40

10× (3− 1)− 7.40
= 5.29 (22)

Since Ff > F0.05(2, 18) (5.29 > 3.55), the null-hypothesis is rejected. The difference
between the average rank of HEAD-DT and C4.5 is 0.1, while the difference between
HEAD-DT and CART is 1.0. The size of trees generated by CART are significantly
smaller than those generated by C4.5 and HEAD-DT. There are no significant differ-
ences between HEAD-DT and C4.5 regarding the tree size, though.

5.3 Summary

In the experiments performed for this study, the decision-tree induction algorithms
automatically designed by HEAD-DT induced decision trees with better predictive
performance than both CART and C4.5, which are very popular and very effective
manually-designed decision-tree induction algorithms. In both experiments (with UCI
and GE data sets), HEAD-DT consistently presented better results with statistical as-
surance. The performance evaluation measures we employed in these experiments —
accuracy and F-Measure — are among the most well-known and used measures in data
mining and machine learning classification problems.

Regarding tree complexity, which was measured as the total number of nodes in
a tree (tree size), we observed that CART usually induced much smaller trees, proba-
bly due to its particular pruning method (cost complexity pruning). Nevertheless, we
saw that smaller trees do not necessarily translate into better performance, since the
trees generated by the automatically-designed algorithms are significantly more accu-
rate than those generated by CART.

We conclude from these experiments that HEAD-DT is indeed an effective alter-
native to state-of-the-art decision-tree induction algorithms C4.5 and CART. Next, we
broaden our discussion by commenting on other issues involved in decision-tree in-
duction, and also on the trade-off between HEAD-DT’s predictive performance and
computational efficiency.
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6 Discussion

In this section, we discuss three important topics to support the empirical analysis
presented in the previous section: (i) the accuracy dilemma and when preferring F-
Measure for evaluating decision-tree induction algorithms; (ii) the empirical (and theo-
retic) time complexity of HEAD-DT, and also of the decision-tree induction algorithms
it generates; and (iii) an example of decision-tree induction algorithm automatically
designed by HEAD-DT.

6.1 Accuracy vs F-Measure

The fact that HEAD-DT designs algorithms that induce significantly more accurate de-
cision trees than C4.5 and CART is very encouraging. Notwithstanding, we must point
out that accuracy may be a misleading performance measure. For instance, suppose we
have a data set whose class distribution is very skewed: 90% of the instances belong to
class A and 10% to class B. An algorithm that always classifies instances as belonging
to class A would achieve 90% of accuracy, even though it never predicts a class-B in-
stance. In this case, assuming that class B is equally important (or even more so) than
class A, we would prefer an algorithm with lower accuracy, but which could eventually
correctly predict some instances as belonging to the rare class B.

The previous example illustrates the importance of not relying only on accuracy
when designing an algorithm. F-Measure is the harmonic mean of precision and recall,
and thus rewards solutions that present a good trade-off between these two measures.
Hence, for imbalanced-class problems, F-Measure should be preferred over accuracy.

In the experimental analysis performed in the previous section, recall that we opti-
mized solutions towards accuracy (in the UCI data sets) and F-Measure (in the GE data
sets) by varying HEAD-DT fitness function. We observed that, regardless of the mea-
sure being optimized, HEAD-DT was able to generate robust solutions for balanced
and imbalanced data sets.

6.2 HEAD-DT Complexity Analysis

Regarding execution time, it is clear that HEAD-DT is slower than either C4.5 and
CART. Considering that there are 100 individuals executed for 100 generations, there is
a maximum (worst case) of 10000 fitness evaluations of decision trees.

We recorded the execution time of both breeding operations and fitness evaluation
(one thread was used for breeding and another for evaluation). The total time of breed-
ing is absolutely negligible (a few milliseconds in a full evolutionary cycle), regardless
of the data set being used (breeding does not consider any domain-specific informa-
tion). Indeed, breeding individuals in the form of an integer string is known to be quite
efficient in the EA research field.

Fitness evaluation, on the other hand, is the bottleneck of HEAD-DT. In the largest
UCI data set (winequality white), HEAD-DT took 2.5 hours to be fully executed (one
iteration of the cross-validation procedure, in a full evolutionary cycle of 100 genera-
tions). In the smallest UCI data set (shuttle landing), HEAD-DT took only 0.72 seconds
to be fully executed, which means the fitness evaluation time can largely vary accord-
ing to the data set size.

It should be noted that, even in cases where a run of HEAD-DT took several hours,
this is still a very short time in the context of algorithm design, since, in general, even
a machine learning researcher with expertise in decision-tree induction would take
much longer to design a novel decision-tree algorithm that is competitive with C4.5
and CART.
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The computational complexity of algorithms like C4.5 and CART is O(m×n log n)
(m is the number of attributes and n the number of instances), plus a term regarding
the specific pruning method. Considering that breeding takes negligible time, we can
say that in the worst case scenario, HEAD-DT time complexity is O(i×g×m×n log n),
where i is the number of individuals and g is the number of generations. In practice,
the number of evaluations is much smaller than i × g, due to the fact that repeated
individuals are not re-evaluated. In addition, individuals selected by elitism and by re-
production (instead of crossover) are also not re-evaluated, saving computational time.

6.3 Example of an Evolved Decision-Tree Algorithm

For illustrating a novel decision-tree induction algorithm designed by HEAD-DT, let
us consider the semeion data set, in which HEAD-DT managed to achieve maximum
accuracy and F-Measure (which was not the case for CART and C4.5). The algorithm
designed by HEAD-DT is presented in Algorithm 2. It is indeed novel, since no algo-
rithm in the literature combines components such as the Chandra-Varghese criterion
with MEP pruning. Furthermore, it chooses MEP as its pruning method, which is a
surprise considering that MEP is usually a neglected pruning method in the decision
tree literature.

The main advantage of HEAD-DT is that it automatically searches for the suitable
components (with their own biases) according to the data set being investigated. It is
hard to believe that a human researcher would combine such a distinct set of compo-
nents like those in Algorithm 2 to achieve 100% accuracy in a particular data set.

Algorithm 2 — decision-tree induction algorithm designed by HEAD-DT for the se-
meion data set.
1) Recursively split nodes using the Chandra-Varghese criterion;
2) Aggregate nominal splits in binary subsets;
3) Perform step 1 until class-homogeneity or the minimum number of 5 instances is reached;
4) Perform MEP pruning with m = 10;
5) When dealing with missing values:

5.1) Calculate the split of missing values by performing unsupervised imputation;
5.2) Distribute missing values by assigning the instance to all partitions;
5.3) For classifying an instance, explore all branches and combine the results.

7 Related Work

To the best of our knowledge, no work to date has attempted to automatically design
full decision-tree induction algorithms (except of course our previous work (Barros
et al., 2012a) which has been extended in this paper, as mentioned in the Introduction).
The most related approach to this work is HHDT (Hyper-Heuristic Decision Tree) (Vella
et al., 2009). It proposes an EA for evolving heuristic rules in order to determine the best
splitting criterion to be used in non-terminal nodes. Whilst this approach is a first step
to automate the design of decision-tree induction algorithms, it evolves a single com-
ponent of the algorithm (the choice of splitting criterion), and thus should be further
extended for being able to generate full decision-tree induction algorithms.

A somewhat related approach is the one presented by Delibasic et al. (Delibasic
et al., 2011). The authors propose a framework for combining decision-tree compo-
nents, and test 80 different combination of design components on 15 benchmark data
sets. This approach is not a hyper-heuristic, since it does not present a heuristic to
choose among different heuristics. It simply selects a fixed number of component com-
binations and test them all against traditional decision-tree induction algorithms (C4.5,
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CART, ID3 and CHAID). We believe that our strategy is more robust, since by using an
evolutionary algorithm, it can search for solutions in a much larger search space. Cur-
rently, HEAD-DT searches in the space of more than 127 million different candidate
decision-tree induction algorithms.

8 Conclusions and Future Work

In this paper, we presented HEAD-DT, a hyper-heuristic evolutionary algorithm
that automatically designs top-down decision-tree induction algorithms. Top-down
decision-tree induction algorithms have been manually improved in 40 years of re-
search, leading to a large number of proposed approaches for each of their design com-
ponents. Since the human manual combination of all available design components of
these algorithms would be unfeasible, we believe the evolutionary search of HEAD-
DT constitutes a robust and efficient solution for the design of new and effective algo-
rithms.

We performed a thorough experimental analysis in which the algorithms automat-
ically designed by HEAD-DT were compared to the state-of-the-art decision-tree induc-
tion algorithms CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993). In this analysis,
we evaluated the effectiveness of HEAD-DT in two scenarios: (i) general performance
in 20 well-known UCI data sets with very different characteristics, from very differ-
ent application domains; (ii) domain-specific performance in 10 real-world microarray
gene expression data sets. We assessed the performance of HEAD-DT through two dis-
tinct performance evaluation measures (predictive accuracy and F-Measure), and a tree
complexity measure (tree size). In both scenarios, the experimental results suggested
that HEAD-DT can generate decision-tree induction algorithms with predictive perfor-
mance significantly higher than CART and C4.5, though sometimes generating larger
trees. Bearing in mind that an accurate prediction system is widely preferred over a
significantly less accurate (but simpler) system, we believe that HEAD-DT arises as a
robust algorithm for future applications of decision trees.

As future work, we intend to develop a multi-objective fitness function, consider-
ing the trade-off between predictive performance and parsimony. In addition, we plan
to investigate whether a more sophisticated search system, such as grammar-based
genetic programming, can outperform our current HEAD-DT implementation. Opti-
mizing the evolutionary parameters of HEAD-DT is also a topic left for future research.
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