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Summary. Many classification schemes for defining protein functions, such as Gene
Ontology (GO), are organised in a hierarchical structure. Nodes near the root of the
hierarchy represent general functions while nodes near the leaves of the hierarchy
represent more specific functions, giving the flexibility to specify at which level
the protein will be annotated. In a data mining perspective, hierarchical structures
present a more challenging problem, since the relationship between nodes need to
be considered. This chapter presents an empirical evaluation of different protein
representations for protein function prediction in terms of maximizing predictive
accuracy, investigating which type of representation is more suitable for different
levels of the GO hierarchy.

1 Introduction

The recent exponential increase in the number of proteins being identified
and sequenced using high throughput experimental approaches has lead to a
growth in the number of uncharacterised proteins. Determining protein func-
tions is a central goal of bioinformatics, and it is crucial to improve biological
knowledge, diagnosis and treatment of diseases. While biological experiments
are the ultimate methods to determine the function of proteins, it is not pos-
sible to perform a functional assay for every uncharacterised protein. This is
due to time and financial constraints, together with the complex nature of
these experiments. Hence, a need for using computational methods to assist
the annotation of large amounts of protein data appeared. In particular, this
presents a significant opportunity to apply data mining techniques to analyse
and extract knowledge from biological databases.

In essence, bioinformatics refers to the research area that combines com-
putational and statistical methods to manage and analyse biological data [11].
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It became a very popular research field after the fully sequenced genomes of
numerous organisms enabled biologists to map, sequence and analyse individ-
ual genes and their protein products. The information acquired by biological
experiments has helped to expand understanding about cellular biology, more
specifically about biological functions of proteins.

Proteins are large and complex molecules, assembled from amino acids
arranged in a linear sequence using information encoded in genes. Proteins
perform most of the functions within a cell. For instance, almost all biological
processes, including metabolism, need enzymes to catalyse chemical reactions
in order to occur; transport proteins are involved in the movement of small
molecules through membranes. The amino acid sequence contains all the in-
formation necessary to specify the three-dimensional structure of a protein,
enabling the protein to perform its function.

Biological databases accumulate vast amounts of protein data, from pro-
tein sequences to three-dimensional structures. To facilitate both collaboration
and standardization across different sources, biological databases employ con-
trolled vocabularies (ontologies) to annotate protein sequences and features.
Ontologies such as the Enzyme Commission (EC) [26], Gene Ontology [2] and
SCOP [18] are organised in a hierarchical structure, allowing the annotation of
proteins at a different level of detail. In a hierarchical structure, nodes at the
top (near the root of the hierarchy) represent general details while nodes at
the bottom (near the leaves of the hierarchy) represent more specific details,
giving the flexibility to specify at which level the protein will be annotated.
The hierarchy defines a parent-child relationship between nodes, where the
child is a specialisation of the parent. In a data mining classification task
perspective, hierarchical structures present a more challenging problem [8]
than flat (single-layer) problems. It is generally more difficult to discriminate
between specific classes represented by leaf nodes than more general classes
represented by internal nodes, since the number of examples per leaf node
tends to be smaller compared to internal nodes.

In this chapter, we apply data mining methods to induce a classification
model which can be used to predict the function of uncharacterised proteins
using the Gene Ontology functional classification scheme. The Gene Ontology
is a complex case of hierarchical organisation, where its terms are arranged
in a directed acyclic graph (DAG) structure. We are particularly interested
in comparing the effectiveness of different protein representations in terms of
maximizing predictive accuracy. Since the problem of discriminating between
terms at deeper levels of the hierarchy is different from terms at higher levels,
our focus is on investigating which type of representation is more suitable for
different GO terms at different levels of the GO hierarchy.

The remainder of this chapter is organised as follows. Section 2 presents a
brief introduction of the basic concepts of molecular biology involved in the
problem of predicting protein functions. Section 3 describes the methodology
for evaluating different protein representations, including data preparation.
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Section 4 presents the computational results. Finally, Section 5 presents the
conclusion and future research directions.

2 Biological Background

The genetic information of living organisms is stored in DNA (deoxyribonu-
cleic acid) molecules. DNA is a long molecule composed by a sequence of de-
oxyribonucleic bases, which are linked together by a backbone composed by
deoxyribose sugar and phosphate groups. There are four possible nucleotide
bases that are found in DNA: adenine (A), guanine (G), cytosine (C) and
thymine (T). The DNA molecule structure is a double stranded helix, which
is dependent on pairing between the nucleotide bases: adenine is able to pair
with thymine, while guanine is able to pair with cytosine. Consequently, the
strands in the double helix complement each other in an anti-parallel fashion.

The correlation between genes and proteins is that nucleotide sequences
— corresponding to particular genes — in DNA molecules code for amino acid
sequences of proteins. This relationship is part of the central dogma of molec-
ular biology [1]. The central dogma states that the information flows from
DNA to RNA (ribonucleic acid) to protein. In summary, this process works
as follows (illustrated in Fig. 1). In the first step (transcription), the genetic
information stored in a DNA sequence is used to create a mRNA (messen-
ger RNA) molecule. In the second step (translation), this mRNA molecule is
used as a template to synthesize proteins. A series of three nucleotides in the
mRNA corresponds to a codon, which in turn corresponds to either a specific
amino acid or a signal site (start/stop translation). For more details about
this process refer to [1].

Proteins are involved in most biological activities and even make up the
majority of cellular structures. Since proteins do almost all the work in a cell,
understanding the roles of proteins is the key to understanding how the whole
cell operates.
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Fig. 1. The central dogma’s information flow: from DNA to RNA to protein.
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2.1 Proteins

Proteins are the building blocks from which every cell in an organism is built
[1]. A protein molecule is assembled from a long sequence of amino acids using
information encoded in genes. Each protein has its own unique sequence of
amino acids, which is specified by the nucleotide sequence of the gene encoding
the protein. There are 20 different types of amino acids, each with different
biochemical properties, that can be found in a sequence. An amino acid is
composed by a central carbon (C) — « carbon — attached to an hidrogen (H),
an amino group (NHy), a carboxyl group (COOH) and a variable side chain
(R). There are 20 distinct side chains, resulting in 20 different types of amino
acids. The amino acids are linked together by a peptide bond between their
amino and carboxyl groups, constituting the protein’s backbone (illustrated
in Fig. 2). In general, proteins are 200-400 amino acids long.

The amino acid sequence of a protein is also known as the protein’s pri-
mary structure. It determines the protein’s three-dimensional structure and
function. Subsequently bondings between the amino and carboxyl groups from
different amino acids allow the linear sequence to fold into structures known as
alpha helices and beta sheets. Alpha helices (a-helices) are formed when the
backbone twists into right-handed helices. Beta sheets (S-sheets) are formed
when the backbone folds back on itself in either a parallel or anti-parallel
fashion. These structures constitute the protein’s secondary structure. The
three-dimensional shape of the whole protein is known as the protein’s ter-
tiary structure, which is defined by the spatial relationship between the sec-
ondary structures. The three-dimensional shape of a protein is crucial for its
function, hence discovering its tertiary structure can provide important infor-
mation about how the proteins performs its function. Proteins are also capable
of assembly into complex structures, known as the protein’s quaternary struc-
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Fig. 2. In (a) basic amino acid structure; (b) The peptide bond between two amino
acids (thick line). Amino acids are linked together by a peptide bond between their
amino and carboxyl groups, constituting the protein’s backbone. This process is
repeated many times for polypeptide proteins.
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ture, as a result of interaction between them. There are some proteins that
can only be functional when associated in protein complexes [15].

The complexity of determining the different levels of protein structures in-
creases from primary towards quaternary structures. For instance, the primary
structure can be determined by translating the DNA sequence of the gene that
specifies the protein to an amino acid sequence, while the tertiary structure
can be determined using complex X-ray crystallography experiments. Conse-
quently, many more proteins sequences (primary structures) are known than
proteins three-dimensional structures (tertiary structures). The process from
which a protein in one-dimensional state (primary structure) turns to a three-
dimensional state (tertiary structure) is called folding. While folding occurs
spontaneously within a cell, its inherent details are not known.

2.2 Protein Databases

Protein information is widely available in biological databases. Some databases
are dedicated to a particular aspect, such as structural information or protein
interaction data, while others provide broad information with links to spe-
cialised databases. Table 1 presents a summary of biological databases. Most
of these databases provide an online search interface.

In general, database entries comprise experimental results combined with
annotations. Annotations provide valuable information about a protein, in-
cluding simple information derived from proteins’ primary structures (e.g
molecular weight and sequence patterns), nature of the experiment and or-
ganism where the protein is found. They can be determined by computational
methods or manually, where the latter is more preferable for its reliability. For
instance, UniProt (Universal Protein Resource) contains two sections: Swiss-
Prot and TrEMBL. Swiss-Prot is the richest annotated protein sequence sec-
tion, containing manually annotated /curated entries, with extensive database
cross-references and literature citations. The TrEMBL section contains com-
putationally analysed records that await full manual annotation.

A commonly used source of protein annotation information are motif
databases. Motifs are preserved amino acid sequences, which usually repre-
sent a protein family, domain or an activation site. PROSITE [12], PRINTS
[3], Pfam [7] and InterPro [17] are examples of databases that contain a col-
lection of protein motifs. Biological literature databases, such as MEDLINE
(Medical Analysis and Retrieval System Online), are a valuable resource and
textual analysis of these databases is an area of growing interest [22]. More
specialised databases contain information about protein interaction data, pro-
tein secondary structures, gene expression data, among others.

2.3 Classification Schemes

Several classification schemes for defining protein function annotation exists,
such as as the Enzyme Commission (EC) [26] scheme for enzyme classifica-
tion and FunCat [24] for the functional description of proteins from diverse
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Table 1. Summary of biological databases available online.

Name Description
UniProt automatically (UniProtKB/TrEMBL)
http://www.ebi.ac.uk/uniprot/ and manually (UniProtKB/Swiss-Prot)

annotated protein sequences

IntAct protein interaction data
http://www.ebi.ac.uk/intact/

CATH hierarchical domain classification of pro-
http://www.cathdb.info/ tein structures

PROSITE protein domains, families and functional
http://www.expasy.org/prosite/ sites

PubMed biomedical literature

http://www.ncbi.nlm.nih.gov/pubmed/

Pfam protein domains and families
http://pfam.sanger.ac.uk/

InterPro protein families, domains and sequence
http://www.ebi.ac.uk/interpro/ patterns
DIP protein interaction data

http://dip.doe-mbi.ucla.edu/

MEDLINE biomedical literature
http://medline.cos.com/

TIGRFAMs protein families
http://www.tigr.org/ TIGRFAMs/

PRINTS protein families
http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/

ArrayExpress gene expression data
http://www.ebi.ac.uk/arrayexpress/

organisms. In order to make classification schemes open for computational
processing, they usually employ a controlled vocabulary (ontology) to de-
fine protein functions. More complex schemes are hierarchically structured,
allowing protein annotations at different levels, depending on the depth of
knowledge about the protein in question.

The Gene Ontology (GO) Consortium [2] has developed ontologies to clas-
sify proteins in terms of three different domains: molecular function, biological
process and cellular component. The ontologies are defined by a hierarchy of
terms (categories), where each term has a unique numerical identifier and a
textual description, arranged in a DAG-like structure. In DAG-based hierar-
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chies, terms can have more than one parent, as opposed to just one parent
in tree-based hierarchies. This makes the hierarchical classification problem a
particularly challenging one.

Within the GO, the ontology is divided into three different domains, each
of which consists of a vocabulary for a particular type of biological knowledge.
The Molecular Function (MF) domain describes activities performed at the
molecular level, generally accomplished by individual proteins. Examples of
molecular functions defined are the general concept ‘transporter activity’ and
its specialisation ‘ion transporter activity’, where the latter is represented as a
child of transporter activity. The Biological Process (BP) domain describes ac-
tivities accomplished by a series of events or molecular functions. Examples of
activities defined are high-level processes ‘immune response’ and ‘reproductive
process’. Finally, the Cellular Component (CC) domain describes locations,
at the levels of subcellular structures and macromolecules complexes. In gen-
eral, proteins are located in or are a subcomponent of a particular cellular
component. Examples of locations defined are ‘plasma membrane’ and ‘golgi
transport complex’.

In the GO hierarchy, parent-child relationships are governed by the true
path rule. The true path rule states that the path from a child term towards
top-level terms must always be true. In other words, if a protein is annotated
with a term A, it automatically inherits the annotation of all ancestor terms
of A. For example, a protein annotated with ‘lon transporter activity’ will
inherit the annotation ‘transporter activity’, since ‘ion transporter activity’
is a specialisation of ‘transporter activity’. The hierarchical structure allows
annotation of proteins at different levels, from general (parent) to more specific
(child) terms, depending on the depth of knowledge about the protein in
question. The GO classification scheme is currently the preferred approach
for computational functional annotation [9].

2.4 Protein Function Prediction

As aforementioned, the exponential increase in the number of proteins being
identified and sequenced using high throughput experimental approaches has
lead to a growth in the number of uncharacterised proteins (proteins for which
the function is unknown). Since the rate at which sequencing methods are
producing data is far outperforming the rate at which biological methods can
determine protein functions, there is a crescent interest in automated protein
function prediction methods.

A commonly used approach is to assign a function by sequence similarity,
using BLAST (Basic Local Alignment Search Tool) to perform a similarity
search in a protein sequence database. This approach relies on the assump-
tion that proteins with similar sequences perform similar functions. It has
been shown that proteins with very different sequences may perform the same
function, or proteins with very similar sequences may perform different func-
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tions ([10], [27], [25]). Furthermore, this approach is unsuitable if a similar
protein with known function cannot be found.

Another approach is to apply data mining techniques to analyse and ex-
tract knowledge from biological databases. In this context, an example (record,
data instance) represents a protein, the attributes represent different features
of a protein (i.e. sequence length, presence/absence of a particular motif) and
the classes correspond to the different functions that the protein can perform.
For instance, in [13] neural networks were trained using sequence derived fea-
tures such as amino acid biochemical properties and secondary structure; [15]
used protein interaction data to create a probabilistic model based on markov
random fields; PROSITE patterns were used in [19] to extract classification
rules using C4.5; and [29] followed a clustering approach using protein do-
mains and textual information from MEDLINE. For further examples refer to
[23], [5] and [9].

3 Methods

The data mining task addressed in this work is the classification task, where
the goal is to predict the class (function) of an example (protein), given the
values of a set of attributes for that example. In essence, the classification
task consists of inducing a model from the data by observing relationships
between predictor attributes and classes, which can be used later to classify
new examples.

We have chosen different types of protein representations to be used as
predictor attributes (detailed in Subsection 3.2) and a classification algorithm
(detailed in Subsection 3.3) to induce a model for protein function classifica-
tion. We are interested in evaluating those types of representations at different
levels of the GO hierarchy, and this evaluation is performed by measuring the
predictive accuracy obtained by the same classification algorithm when using
each of the different types of protein representation.

3.1 Data Preparation

The selection of the protein examples was divided into three phases. In the
first phase we selected a subset of the Gene Ontology hierarchy to represent
the classes in our classification problem. As we are interested in ion channel
proteins, all the ancestor and descendant terms of the GO:0005216 (ion chan-
nel activity) node were selected. Note that in the GO hierarchy one term can
have more than one parent. For this reason, for every descendant (child) term
of the node GO:0005216, we also retrieved its ancestor nodes. The reason for
selecting ancestor terms of the GO:0005216 term was to increase the number
of negative examples in the data sets. The class hierarchy after this phase was
composed by 88 GO terms.
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G0:0003674
molecular function

!

G0:0005215
transporter activity

GO:0015267 G0:0015075 GO:0005342 G0:0005275

channel or pore class fon transporter activity organic acid amine transporter

transporter activity transporter activity activity
G0:0015268 G0:0008324 G0:0008509 G0:0046943
alpha-type channel cation transporter anion transporter carboxylic acid
activity activity activity transporter activity

G0:0005216
ion channel
activity

GO0:0005261 G0:0015276 G0:0005244 GO0:0005253

cation channel ligand-gated ion voltage-gated ion anion channel

activity channel activity channel activity activity
G0:0005267 G0:0005262
potassium channel calcium channel
activity activity

G0:0005245
voltage-gated calcium
channel activity

G0:0015171
amino acid
transporter activity

Fig. 3. Subset of the Gene Ontology (GO) ion channel hierarchy used in our exper-
iments. GO terms GO:0003674 and G0:0005215 were not used since they represent
the root of the hierarchy.

In the second phase, we retrieved protein interaction data from the IntAct
database (release 15/12/2007). Records with database cross-references to the
GO terms selected in the previous phase were retrieved. In summary, each
record of the IntAct database contains the UniProt accession number and a
list of interacting proteins which interact with the protein. It should be noted
that interacting proteins do not necessarily have to belong to the selected
GO hierarchy. It turned out that many GO terms (classes) selected in the
previous phase did not have a reasonable number of proteins associated with
them. Therefore, we discarded GO terms with less than 10 protein records.
At the end of this phase we had selected 147 protein examples and 17 GO
terms.
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In the third phase, for each protein retrieved in the previous phase we
selected the amino acid sequence and MEDLINE document references from
the UniProt database (release 12.0). This was accomplished using the database
cross-reference to UniProt found in IntAct protein records.

After all three preparation phases, we ended up with a set of 147 pro-
tein examples, distributed in 17 GO terms (illustrated in Fig. 3). For each
protein, we have retrieved the amino acid sequence, protein interaction data
and MEDLINE documents. It should be noted that the number of protein
examples selected was constrained by the amount of protein interaction data
available. This set of proteins was used to create seven different data sets, as
detailed in Subsection 3.2.

3.2 Predictor Attributes

We have selected three different types of protein representations to be used
as predictor attributes, namely amino acid composition, protein interaction
data and textual information derived from MEDLINE document references.

Amino acid composition attributes were derived directly from pro-
teins’ primary sequences by calculating the ratio between the number of amino
acid occurrences and the sequence length. For instance, if the amino acid A
(Alanine) occurs 14 times in a protein sequence of length 140, the value of
attribute A (attribute representing the composition of amino acid A) would
be 0.10 (14 / 140). In other words, for each amino acid out of 20 that can
be found in a protein sequence, we compute the percentage of the sequence
composition relative to the amino acid in question. Using this procedure, 20
numeric attributes were produced for each protein in the data set.

Protein interaction attributes are useful because many proteins inter-
act with one another to perform their function, by assembling multiprotein
complexes or metabolic pathways, for example. If one can establish an inter-
action between a known-function protein and an unknown-function protein,
the protein-protein interaction information can be used to predict the func-
tion of the unknown-function protein. Protein interaction data was encoded as
binary attributes as follows. First, for each protein we retrieved the list of in-
teractor proteins from IntAct database. Then, the complete list of interactors
(interactors of all proteins in our data set) was filtered to remove interactors
that only interact with one protein in the data set. This restriction was nec-
essary to remove interactors present only in one protein, which do not have
any predictive power. Finally, the filtered list of interactors (2095 interactors
in total) was encoded as a binary attribute vector. Each position of the vector
indicates, with a ‘yes’ or ‘no’ value, if the protein interacts with a particular
interactor protein or not.

Textual information attributes derived from MEDLINE documents
(titles and abstracts) in the form of keywords were encoded as binary at-
tributes, using document references found in proteins’ UniProt records. In
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total, 1010 documents were linked to the 147 proteins of our data set. We ap-
plied a Genetic Programming (GP) algorithm, as detailed in Subsection 3.4,
to select relevant words (keywords) from linked documents in a preprocessing
step. The selected keywords were encoded as a binary attribute vector. Each
position of the vector indicates, with a ‘yes’ or ‘no’, if the documents linked
to the protein contain a particular keyword or not.

Each of the above three types of attributes was used to produce a single
data set, namely “AA” (for amino acid composition attributes), “PI” (for
protein interaction attributes) and “TX” (for textual information attributes).
Furthermore, we explored the combination of predictor attributes in pairs,
generating another three data sets (“AA-PI”, “AA-TX” and “PI-TX”), and
one data set using all types of attributes (“AA-PI-TX”). In total we produced
seven data sets, with the same number of examples (as explained in Subsection
3.1) but with a different attribute or combination of attributes in each data set.
At the end, two simple predictor attributes derived directly from the proteins’
primary sequences, namely sequence length and molecular weight, were
added to each of these seven data sets.

3.3 Classification Algorithm

In order to extract knowledge from the data sets described in the previous
Subsection we used the J48 [28] classification algorithm. J48 is a Java imple-
mentation of the well known C4.5 decision tree algorithm [21]. We have chosen
J48 mainly because C4.5 is a world-class standard induction algorithm and it
produces a comprehensible classification model in a decision tree form.

A decision tree consists of internal (decision) nodes, which represent at-
tribute tests, and leaf nodes, which represent classes of the problem in hand.
An internal node has outgoing branches, where each branch represents a test
outcome value, which in turn connect the nodes of the tree. A leaf node indi-
cates a class to classify an example. Since all nodes in a decision tree have only
one parent, with the exception of the root node which has no parent, there is
a unique path from a leaf node to the root node. A path can be represented as
a conjunction of attribute test outcomes (i.e. all internal nodes and branches
followed by the path).

An example is classified by descending the decision tree in a top-down
fashion — starting from the root node — following the branches according to
the attribute tests’ outcomes until a leaf node is reached, where the class
associated with the leaf node is assigned to the example. The path followed
by the example can be analysed in order to explain the classification of an
example into a particular class.

As we are dealing with a class hierarchy represented by a GO subset (il-
lustrated in Fig. 3), and J48 is a flat classifier (i.e., it cannot directly cope
with hierarchical classes), we have transformed the hierarchical problem into
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a set of flat classification problems.® The transformation procedure works as
follows. For each GO term, we have split the data set into positive (which
belong to the GO term) and negative (which do not belong to the GO term)
examples. An example (protein) belongs to a specific GO term if it is anno-
tated with that GO term or is annotated with one or more of its child GO
terms. For instance, an example annotated with the GO term GO:0015171 will
be considered as a positive example for GO terms GO:0015171, GO:0046943,
GO0:0005275 and GO:0005342 (where the latter three terms are ancestors of
the former), according to the class hierarchy. This transformation procedure
is required due to the semantics of GO annotation (GO true path rule), where
a protein is explicitly annotated only with its most specific GO terms, but it
is implicitly considered to have all the ancestral terms of those specific terms
[2]. After the transformation step, we trained a classifier for each GO term.
That is, each classifier performs a binary classification, predicting whether or
not a given example belongs to the classifier’s associated GO term.

3.4 Attribute Selection

In order to reduce the number of words to be used as textual information
attributes, we performed attribute selection using standard Genetic Program-
ming. Genetic Programming (GP) [14, 4] is an evolutionary technique, based
on Darwin’s principle of natural selection, which aims at automatically evolv-
ing computer programs. In the GP context, a computer program is a solution
to the problem at hand, which can be represented as a mathematical equa-
tion, a sequence of instructions or an arbitrary combination of input values.
GP uses the principle of natural selection to find solutions to complex prob-
lems by evolving initially poor solutions into near-optimal ones using a set of
genetic operators and a fitness (quality) measure.

Essentially, a GP algorithm consists of a population of candidate solutions
to the target problem and an iterative selection process that mimics an evolu-
tionary process. Candidate solutions are selected based on a fitness measure,
which measures the quality of candidate solution, to undergo reproduction,
recombination and mutation operators in order to form a new population. The
new population replaces the old one and a new iteration begins. The fitness-
based selection determines that better candidate solutions are more often
selected on average, while poor candidate solutions have a smaller change of
being selected. New candidate solutions are generated by applying recombi-
nation and mutation operators, which are responsible for performing a global
search in the solution space. The iterative selection process is carried out until
an arbitrary number of iterations (generations of the evolutionary process) is
reached or an optimal or satisfactory solution is found.

3 For a more complete discussion about the differences between flat and hierarchical
classification refer to [8].
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Table 2. Parameters of the GP algorithm used for attribute selection.

Name Value
number of generations 50
number of individuals per generation 60000
maximum tree depth 17
mutation rate 5%
crossover rate 90%
reproduction rate (with elitism) 10%

The attribute selection process involves elimination of stop words, word
stemming and GP-based selection of predictive words (keywords). It was di-
vided in three steps as follows. In the first step, all MEDLINE documents
(titles and abstracts) linked to proteins in our data set were pre-processed
by applying the Bow library [16] to carry out stop word removal, followed
by stemming using Porter’s algorithm [20]. The objective of this step is to
remove irrelevant words and to group inflected or derived words to their stem
(root form). Examples of stop words are ‘a’ and ‘the’, which carry no mean-
ing for text mining purposes. An example of stemming would be to replace
the words ‘learning’ and ‘learned’ by their stem ‘learn’. At the end, a list of
words W was generated using all the resultant stems. The second step con-
sists of transforming each document to a vector of word frequencies, using the
word list generated in the previous step. For each document d, a vector vq
of length equal to the number of words in W was created where the value of
each position ¢ is given by

number of occurrences of w; in d

, (1)

va(i) = number of words in d

where w; is the i-th word of W.

In the third step, a GP algorithm was used to identify a list of relevant
words for a particular GO term. The selection of words works as follows.
Firstly, we transformed the hierarchical classification problem into a set of
flat classification problems, using the same procedure described in Subsection
3.3. Then, for each GO term we trained a standard GP to classify the docu-
ment vectors generated in the previous step. The function set consists of basic
arithmetic operators (addition, subtraction and multiplication) and a “max”
(maximum value between two numbers) function. The terminal set consists of
ephemeral random constants [14] and input nodes representing each dimen-
sion of a document vector. The fitness function used is the area under a ROC
curve (AUC) [6]. Table 2 presents the parameters of the GP algorithm. At the
end, a list of relevant words for each GO term was selected by analysing the
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five best GP individuals. Words that appear at least in two out of five best
individuals were selected as keywords.

4 Computational Results

All experiments were conducted running the well-known 10-fold cross-valida-
tion procedure [28]. In essence, a cross-validation procedure consists of split-
ting the data set into n (n = 10, in our case) partitions of approximately
same size (number of examples). In an iterative process, each ith (i = 1,...,n)
partition was used as the test set and the remaining 9 partitions were tem-
porarily merged and used as a training set. In each iteration, a classification
algorithm generates a classification model using the training data. Then, the
classification model is used to classify unseen examples from the test set, in
order to evaluate the discovered knowledge. The predictive accuracy rate is
then computed as the average accuracy rate over the 10 test sets.

The results concerning the predictive accuracy obtained with each type of
attribute per GO term are shown in Table 3. An entry in the column “TX”
is shown in bold if, for the corresponding GO term, the accuracy achieved
with textual information attributes is significantly greater than the accuracy
achieved with the second best type of attribute (columns “AA” or “PI”) for
the GO term in question — according to a two-tailed Student’s t-test with sig-
nificance level a = 1%. Overall, the highest predictive accuracy was achieved
when using textual information as predictor attributes (data set “TX”). The
highest accuracy of “TX” attributes was statistically significant in 7 out of 17
cases. There was no statistically significant difference between the accuracy of
“TX” and the accuracy of the other two types of attributes in the remaining
10 cases. These results indicate that textual information attributes are useful
for predicting GO terms at any level in the hierarchy used in our experi-
ments. Protein interaction attributes achieved the lowest predictive accuracy
in 5 out of 17 cases — in GO terms G0O:0015267, GO:0015075, GO:0015268,
GO0:0008324 and GO:0005216. At the same time, they achieved competitive
predictive accuracy (when compared to textual information attributes) in 3
cases — GO terms GO:0008509, GO:0005253 and GO:0005245. These results
suggest that protein interaction attributes are useful for predicting GO terms
at levels near the leaves of the hierarchy, since at levels near the root of the hi-
erarchy they achieved a significantly lower accuracy. Amino acid composition
attributes achieved an average predictive accuracy, overall. In 2 cases — GO
terms GO:0008509 and GO:0005253 — the achieved accuracy was competitive
with textual information attributes.

The results concerning predictive accuracy per GO term for data sets us-
ing a combination of different types of predictor attributes are shown in Table
4. There were no statistically significant differences between the highest pre-
dictive accuracy achieved with one combination of attributes and the second
best combination of attributes. Also, the combination of all three types of
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Table 3. Predictive accuracy (average *+ standard deviation) obtained with each
type of attribute per GO term. An entry in the column “TX” is shown in bold
if, for the corresponding GO term, the accuracy achieved with textual information
attributes is significantly greater than the accuracy achieved with the second best
type of attribute, columns “AA” (amino acid composition) or “PI” (protein interac-
tion), for the GO term in question — according to a two-tailed Student’s t-test with
significance level a = 1%.

Term AA PI X
GO:0015267 69.26 £+ 2.01 55.30 £ 3.77 94.38 + 1.78
GO:0015075 71.49 £+ 4.37 59.30 + 1.14 88.49 + 2.81
G0:0005342 84.32 + 3.01 85.75 4+ 2.08 87.18 4+ 1.49
GO:0005275 88.57 + 2.80 87.93 + 1.53 92.65 4+ 1.52
GO:0015268 65.92 £+ 3.29 57.02 + 2.64 93.24 + 2.98
GO:0008324 64.55 £+ 3.76 59.92 + 1.63 83.77 + 2.24
G0O:0008509 92.01 £+ 1.86 93.21 £ 1.42 93.44 £ 1.87
G0:0046943 86.59 + 2.38 89.89 £+ 1.78 88.55 £ 1.35
GO:0005216 73.32 £ 3.46 57.71 £ 3.60 93.18 + 1.77
GO:0015171 88.59 £+ 1.62 89.26 £ 1.74 88.51 £ 2.27
GO:0005261 71.92 £ 2.17 68.68 £+ 2.66 88.93 + 3.44
GO:0015276 86.37 + 2.00 89.18 4+ 1.03 85.18 4+ 2.34
G0:0005244 69.42 + 1.95 81.05 + 3.02 83.58 + 2.58
G0:0005253 94.03 + 2.01 94.65 + 1.85 97.99 4+ 1.02
GO:0005267 82.38 £ 1.75 88.52 £+ 0.95 97.29 + 1.11
GO:0005262 86.90 + 2.64 85.64 £+ 1.67 87.42 £ 3.15
GO:0005245 89.90 + 2.84 93.24 + 2.22 90.57 £ 2.84

predictor attributes did not lead to a significant increase of the predictive ac-
curacy, when compared to the best results using data sets with a single type of
attribute. All the combination of attributes that contain textual information
attributes achieved competitive predictive accuracy when compared to the
predictive accuracy achieved using only textual information attributes (“TX”
data set).

Table 5 presents a summary of the results obtained in our experiments.
Each cell in that table represent the number of times in which the attribute
type in the corresponding row obtained an accuracy significantly greater
(positive value) or worse (negative value) than the attribute type in the
corresponding column. The value of each cell is in the range [—17,417],
since we are dealing with 17 different GO terms. In 9 out of 17 cases —
GO terms GO:0005342, GO:0005275, GO:0008509, GO:0046943, GO:0015171,
G0:0015276, GO:0005253, GO:0005262 and GO:0005245 — all single attribute
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Table 4. Predictive accuracy (average + standard deviation) per GO term for data
sets using a combination of different types of predictor attributes. There were no
significant differences between the highest predictive accuracy achieved with one
combination of attributes and the second best combination of attributes.

Term AA-PI AA-TX PI-TX AA-PI-TX
GO:0015267 67.38 £3.82 94.38 £1.78 94.38 £ 1.78 92.95 £+ 2.13
GO:0015075 64.17 £ 3.36 87.15 £2.30 87.15 £ 2.53 87.87 £+ 2.59
GO:0005342 84.32 £3.01 87.86 £4.23 87.18 £ 1.49 87.86 + 4.23
GO:0005275 88.57 £ 2.80 93.28 £1.99 92.65 £ 1.52 93.28 £+ 1.99
GO:0015268  59.20 £ 3.66 88.47 £ 3.19 93.24 £2.98 89.90 + 3.01
GO:0008324 72.54 £ 3.11 85.78 £2.08 85.20 £ 2.05 84.49 £+ 1.92
GO:0008509 92.01 £ 1.86 94.07 £1.48 93.44 £ 1.87 94.07 £ 1.48
GO:0046943  86.59 £ 2.38 86.50 £ 2.16 88.55 £ 1.35 86.50 + 2.16
GO:0005216 63.12 £4.52 91.76 £ 1.73 93.18 £ 1.77 91.76 + 1.73
GO:0015171 88.59 £ 1.62 89.93 £1.76 88.51 £ 2.27 89.93 + 1.76
GO:0005261 67.71 £ 5.18 86.88 £ 3.56 86.31 £ 2.72 84.88 £ 3.58
GO:0015276 89.18 £ 1.03 86.47 £ 1.68 89.18 + 1.43 88.52 £+ 1.37
GO:0005244 69.42 £1.95 84.44 £1.33 83.58 £2.58 84.44 +1.33
GO:0005253 94.03 £2.01 9599 £1.79 9799 £ 1.02 95.99 + 1.79
GO:0005267 82.38 £ 1.75 96.62 £1.13 9729 £ 1.11 96.62 + 1.13
GO:0005262 88.10 £ 2.82 86.12 £2.86 90.14 +£ 3.06 87.55 + 2.14
GO:0005245 89.90 £+ 2.84 89.24 £ 3.00 90.57 £ 2.84 89.24 £+ 3.00

Table 5. Summary of the results obtained in our experiments. Each cell represents
the number of times in which the attribute type in the corresponding row obtained
an accuracy statistically significantly greater (positive value) or worse (negative
value) than the attribute type in the corresponding column. The value of a cell is
in the range [—17,417], since we are dealing with 17 different GO terms.

AA  PI TX AA-PI AA-TX PITX AA-PI-TX

AA - 0 -8 0 -8 -8 -8

PI 0 - -6 0 -6 -6 -6

TX 8 6 - 8 0 0 0

AA-PI 0 0 -8 - -8 -8 -7
AA-TX 8 6 8 - 0
PI-TX 8 6 0 8 -

AA-PI-TX 8 6 7 0 -
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types and combination of types of attributes achieved competitive accuracy,
with no significant differences between them. The best results were obtained
when using textual information attributes (as a single attribute type or in
combination with different types of attributes). Experiments using only pro-
tein interaction attributes were slightly better than experiments using only
amino acid composition, but both these types of attributes led to poor re-
sults, when compared to experiments using textual information attributes.

5 Conclusions and Future Research

This chapter has presented an empirical evaluation comparing the effectiveness
of different protein representations in terms of maximizing predictive accuracy
using the Gene Ontology (GO) hierarchical functional classification scheme.
Hierarchical structures present a challenging problem, since it is generally
more difficult to discriminate between specific classes represented by leaf nodes
than more general classes represented by internal nodes.

The set of experiments consisted of using different types and combinations
of types of predictor attributes for protein function prediction, comparing the
predictive accuracy obtained by J48 across a subset of the Gene Ontology ion
channel hierarchy. Since J48 is a flat classifier, and we are dealing with a hier-
archical classification problem, we have transformed the hierarchical problem
into a set of flat classification problems. The results have shown that some
types of predictor attributes are more suitable for different levels of the hi-
erarchy. While protein interaction attributes achieved the lowest accuracy at
top levels of the hierarchy, they are competitive with the highest accuracy
achieved by textual information attributes at lower levels of the hierarchy.
Overall, the highest predictive accuracy was achieved when using textual in-
formation as predictor attributes, suggesting the importance of using textual
information attributes derived from the biological literature for protein func-
tion prediction.

As future research, it would be interesting to evaluate different types of
predictor attributes, such as gene expression data and post-translational mod-
ification data. Also, given the hierarchical nature of predicting function using
the GO classification scheme, investigating different measures of predictive
accuracy tailored for hierarchical problems may give valuable insights about
different protein representations.
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