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Abstract 
Data mining consists of extracting knowledge 
from data. This paper addresses the discovery of 
knowledge in the form of prediction IF-THEN 
rules, which are a popular form of knowledge 
representation in data mining. In this context, we 
propose a new Genetic Algorithm (GA) designed 
specifically for discovering interesting fuzzy 
prediction rules. The GA searches for prediction 
rules that are interesting in the sense of being 
surprising for the user. More precisely, a 
prediction rule is considered interesting (or 
surprising) to the extent that it represents 
knowledge that not only was previously 
unknown by the user but also contradicts the 
original believes of the user. In addition, the use 
of fuzzy logic helps to improve the 
comprehensibility of the rules discovered by the 
GA, due to the use of linguistic terms that are 
natural for the user. The proposed GA is applied 
to a real-world science & technology data set, 
containing data about the scientific production of 
researchers. Experiments were performed to 
evaluate both the predictive accuracy and the 
degree of interestingness (or surprisingness) of 
the rules discovered by the GA, and the results 
were found to be satisfactory. 

1 INTRODUCTION 
The basic idea of data mining consists of extracting 
knowledge from data (Fayyad, 1996), (Han & Kamber, 
2000). In this paper we address one general kind of data 
mining task, which we will refer to as the discovery of 
prediction rules. By prediction rule we mean an IF-THEN 
rule of the form: 
IF <some_conditions_are_satisfied> 
  THEN <predict_the_value_of_some_goal_attribute> . 
Hence, we aim at discovering rules whose consequent 
(THEN part) predict the value of some goal attribute for 
an example (a record of a data set) that satisfies all the 
conditions in the antecedent (IF part) of the rule. We 
assume there is a small set of goal attributes whose value 
is to be predicted. The goal attributes are chosen by the 
user, according to his/her interest and need. 

It should be noted that this task can be regarded as a 
generalization of the well-known classification task of 
data mining. In classification there is a single goal 
attribute to be predicted, whereas we allow more than one 
goal attribute to be defined by the user.  
Note that, although there are several goal attributes to be 
predicted, each rule predicts the value of a single goal 
attribute in its consequent. However, different rules can 
predict different values of different goal attributes. 
In this paper we propose a new Genetic Algorithm (GA) 
designed specifically for discovering interesting fuzzy 
prediction rules. The main motivation for using a GA in 
prediction-rule discovery is that GAs, due to their ability 
to perform a global search, tend to cope better with 
attribute interaction than most greedy rule induction 
algorithms that are traditionally used in prediction-rule 
discovery (Dhar et al., 2000), (Freitas, 2001). 
The justification for the “interesting” and “fuzzy” 
characteristics of the rules is as follows. In general, fuzzy 
logic is a flexible way of coping with uncertainties 
typically found in real-world applications. In particular, in 
the context of data mining, fuzzy logic seems a natural 
way of coping with continuous (real-valued) attributes. 
Using fuzzy linguistic terms, such as low or high, one can 
more naturally represent rule conditions involving 
continuous attributes, by comparison with crisp 
discretization of those attributes. For instance, the fuzzy 
condition “Salary = low” seems more natural for a user 
than the crisp condition “Salary < $14,328.53”. 
Although we do use fuzzy logic to improve the 
comprehensibility of the rules discovered by the GA, the 
focus of this paper is not on the use of fuzzy logic, but 
rather on the discovery of “interesting” rules. We 
emphasize that this is a difficult problem, relatively little 
explored in the literature. Most algorithms for discovering 
prediction rules focus on evaluating the predictive 
accuracy of the discovered rules (Hand, 1997), without 
trying to discover rules that are truly interesting for the 
user. 
It should be noted that a rule can have a high predictive 
accuracy but be uninteresting for the user, because it 
represents some obvious or previously-known piece of 
knowledge. A classic example is the rule: 
IF <patient is pregnant> THEN <patient is female>.  



Hence, a major contribution of this paper is to propose a 
GA that searches for rules that not only have a high 
predictive accuracy but also are interesting, in the sense of 
being surprising (representing novel knowledge) for the 
user. As will be seen later, the core of the GA consists of 
an elaborate fitness function which takes both these 
aspects of rule quality into account. 
Another contribution of this paper is that we apply the 
proposed GA to the mining of a real-world science & 
technology data set, containing data about the scientific 
production of researchers (cientometric data). 
The remainder of this paper is organized as follows. 
Section 2 reviews relevant related work. Section 3 
describes in detail the proposed GA for discovering 
interesting (surprising) fuzzy prediction rules. Section 4 
reports the results of computational experiments. Finally, 
section 5 concludes the paper. 

2 RELATED WORK 

2.1 EAs FOR DISCOVERING FUZZY 
PREDICTION RULES 

There has been very extensive research on evolutionary 
algorithms (EAs) for discovering fuzzy prediction rules. 
Roughly speaking, the algorithms can be divided into two 
broad groups:  
(a) EAs evolving one or more aspects of membership 
functions, such as the number of membership functions 
(linguistic terms) for each attribute, the shape of the 
membership functions, etc. (Xiong & Litz, 1999), (Mota 
et al. 1999), (Mendes et al., 2001); 
(b) EAs using user-defined membership functions, and 
evolving only the combinations of attribute values 
considered relevant for predicting a goal attribute 
(Ishibuchi & Nakashima, 1999), (Walter & Mohan, 2000). 
We follow the later approach, due to two mains reasons. 
First, it allows us to incorporate the domain knowledge of 
the user into the specification of the membership 
functions, leading to membership functions which are 
more comprehensible for the user. This is important in our 
data mining application, where the discovered prediction 
rules are directly interpreted by a human decision maker. 
Second, it considerably reduces the search space, since the 
GA has to search only for combinations of attribute values 
to be included in the rules. 
It should be noted the above-mentioned projects focus on 
the discovery of fuzzy rules with high predictive accuracy, 
without trying to discover surprising rules. Our work 
differs from these projects in that the proposed GA 
searches for fuzzy prediction rules that are not only 
accurate but also surprising for the user, representing 
knowledge that was previously unknown by the user, as 
will be seen later.  

2.2 DISCOVERING INTERESTING 
PREDICTION RULES 

There are two broad approaches for discovering 
interesting rules in data mining, namely the objective 
approach and the subjective approach. In general, the 

objective approach uses a rule-discovery method and a 
rule-quality measure that are independent of the user and 
the application domain (Major & Mangano, 1993), (Noda 
et. al, 1999).  
By contrast, the subjective approach uses a rule-discovery 
method and/or a rule-quality measure that take into 
account the background knowledge of the user about the 
application domain (Silberchatz & Tuzhilin, 1996), (Liu 
& Hsu, 1996), (Liu et al., 1997). 
Hence, in general the objective approach has more 
generality and autonomy than the subjective approach, 
whereas the subjective approach has the important 
advantage of using the user’s background knowledge to 
guide the search for rules. Therefore, if the application 
domain is well-defined and a user who is an expert in the 
application domain is available, it makes sense to use the 
subjective approach. This is the case of the project 
reported in this paper. The proposed GA was developed 
with the primary goal of mining science & technology 
data, a well-defined application domain, and a user expert 
in this application domain was available. Therefore, in 
this paper we follow the subjective approach. 
Out of the above-mentioned projects, there are two that 
are more related to our research. The first one is the work 
of (Liu & Hsu, 1996), (Liu et al., 1997). This work 
follows the subjective approach. It proposes the use of 
general impressions to guide the search for interesting 
rules. General impressions can be thought of as “rules” 
specified by the user, representing the background 
knowledge and believes of the user about the application 
domain. (General impressions will be discussed in more 
detail later.) Liu and his colleagues propose the use of 
general impressions as the basis for a post-processing 
method to select the most interesting rules, among all 
discovered rules. That is, first a data mining algorithm is 
run, discovering a potentially large number of rules. Then 
the discovered rules are matched against the user-
specified general impressions, in order to select the most 
interesting rules. 
Our work also uses the idea of user-specified general 
impressions to discover interesting rules. However, it 
differs from the above work in that we use general 
impressions directly in the search for rules, rather than as 
a post-processing method. In other words, instead of first 
generating a large number of rules and then selecting the 
most interesting ones, the set of general impressions is 
directly used by the data mining algorithm to generate 
only interesting rules, avoiding the unnecessary 
generation of many rules that will be later discarded due 
to their lack of interestingness for the user. In addition, we 
propose a GA for discovering interesting rules, whereas 
the work of Liu and his colleagues does not use any 
evolutionary algorithm. 
The second work related to our research is the GA for 
discovering interesting rules proposed by (Noda et al., 
1999). This GA also searches for rules that are both 
accurate and interesting, according to a certain rule-
interestingness measure. However, our work differs from 
Noda et al.’s work in two major points. First, unlike their 
GA, our GA discovers fuzzy rules. Second, Noda et al. 
follow an objective approach for the discovery of 
interesting rules, whereas our GA follows a subjective 



approach based on user-specified general impressions, as 
mentioned above.  

3 A NEW GA FOR DISCOVERING 
INTERESTING (SURPRISING) 
FUZZY PREDICTION RULES 

In this section we propose a new GA for discovering 
interesting (surprising) fuzzy rules. Hence, each 
individual represents a prediction rule. More precisely, 
each individual represents the antecedent (IF part) of a 
prediction rule. The consequent (THEN part) of the rule is 
not encoded in the genome. Rather, it is fixed for a given 
GA run, so that in each run all the individuals represent 
rules with the same consequent (value predicted for a goal 
attribute). Therefore, in order to discover rules predicting 
different goal attribute values, we need to run the GA 
several times, once for each value of each goal attribute.  
Furthermore, the prediction rules represented by the 
individuals are fuzzy rules. We stress that only the rule 
antecedents are fuzzified. Rule consequents are always 
crisp. Concerning the rule antecedent, of course only 
conditions involving continuous (real-valued) attributes 
are fuzzified. Categorical (nominal) attributes are 
inherently crisp. For instance, there is no need to fuzzify a 
rule condition such as “Sex = female”.  

3.1 INDIVIDUAL REPRESENTATION 
The genome of an individual represents a conjunction of 
conditions specifying a rule antecedent. Each condition is 
represented by a gene, and it consists of an attribute-value 
pair of the form Ai = Vij, where Ai is the i-th attribute and 
Vij is the j-th value belonging to the domain of Ai. In order 
to simplify the encoding of conditions in the genome, we 
use a positional encoding, where the i-th condition is 
encoded in the i-th gene. Therefore, we need to represent 
only the value Vij of the i-th condition in the genome, 
since the attribute of the i-th condition is implicitly 
determined by the position of the gene. In addition, each 
gene also contains a boolean flag (Bi) that indicates 
whether or not the i-th condition is present in the rule 
antecedent. Hence, although all individuals have the same 
genome length, different individuals represent rules of 
different lengths (which is, of course, desirable in 
prediction rules, since one does not know a priori how 
many conditions will be necessary to create a good 
prediction rule). The structure of the genome of an 
individual is illustrated in Figure 1, where m is the 
number of attributes of the data being mined. 
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Continuous attributes are fuzzified, so that they are 
associated with fuzzy conditions such as “Age = low”, 
where low is a fuzzy linguistic term.  

3.2 FUZZIFYING CONTINUOUS ATTRIBUTES  
Recall that, as discussed in section 2, in this work the GA 
uses user-defined membership functions. Hence, it 
evolves the combinations of attribute values considered 
relevant for predicting a goal attribute, but there is no 
need to evolve the membership functions. 
In our GA the fuzzification of continuous attributes is 
performed as follows. Each continuous attribute is 
associated with either two or three linguistic terms 
(corresponding to the “values” of the fuzzified attribute), 
namely either {low, high} or {low, medium, high}. Each 
of these linguistic terms is defined by a user-specified 
membership function. These functions have a trapezoidal 
format, where there are three (or two) linguistic terms.  

3.3 FITNESS FUNCTION 
Recall that each individual is associated with a fuzzy 
prediction rule. In the vast majority of the literature, the 
main criterion used to evaluate the quality of a fuzzy 
prediction rule is predictive accuracy. This criterion is 
also important in our application, but it is not the only 
one. As discussed in the Introduction, a prediction rule 
can be accurate but not interesting for the user. This will 
be the case when the rule represents some relationship in 
the data that was already known by the user. To avoid 
this, our fitness function takes into account two criteria: 
(a) The predictive accuracy of the rule; 
(b) A measure of the degree of interestingness (or 
surprisingness) of the rule. 
With respect to the latter criterion, our GA favors the 
discovery of rules that are explicitly surprising for the 
user, as will be seen later. 
These two criteria are combined into a weighted formula 
as follows: 
                         Fitness(i)  =  Acc(i) * Surp(i) 
The measures of Acc(i) and Surp(i) are described in the 
next two subsections, respectively, since they are 
computed by separated elaborate procedures. 

3.3.1 Measuring the Predictive Accuracy of a Fuzzy 
Rule 

The first step to measure the predictive accuracy of a 
fuzzy rule is to compute the degree to which an example 
belongs to a rule antecedent. Recall that the rule 
antecedent consists of a conjunction of conditions. We use 
V1j B1 . . . Vij Bi . . . Vmj Bm 
igure 1: Genome of an individual representing a rule 
antecedent 

 emphasize that the operator “=“ is used for both fuzzy 
ditions and crisp conditions, as follows. As usual in 
 data mining and machine learning literature, our GA 
 cope with two kinds of attributes: continuous (real-
ued) attributes and categorical (nominal) ones. 
tegorical attributes are inherently crisp, so that they are 
ociated with crisp conditions such as “Sex = female”. 

the standard fuzzy AND operator, where the degree of 
membership of an example to a rule antecedent is given 
by:  

( )i
z

i
µ

1
min

=
 

where µi denotes the degree to which the example belongs 
to the i-th condition of the rule antecedent, z is the number 
of conditions in the rule antecedent, and min is the 
minimum operator. The degree to which the example 



belongs to the i-th condition is directly determined by the 
value of the corresponding membership function for the 
example’s attribute value associated with that condition. 
Of course, crisp conditions can have only either 0 or 1 
membership degrees.  
For instance, consider a rule antecedent with the following 
two rule conditions: (Age = low) AND (Sex = female), 
where the first condition is fuzzy and the second one is 
crisp. Suppose that a given example has the values 23 and 
female for the attributes Age and Sex, respectively. 
Suppose also that the membership function for the low 
linguistic term of Age returns the value 0.8 for the value 
23. Then the degree to which this example belongs to this 
rule antecedent is min(0.8,1.0) = 0.8. 
Let A be the antecedent of a given rule. Once the degree 
to which each example belongs to A has been computed, 
the predictive accuracy of the i-th individual (fuzzy rule), 
denoted Acc(i), is computed by the formula: 

Acc(i) = (CorrPred - 1/2) / (TotPred) 
where  CorrPred (number of correct predictions) is the 
summation of the degrees of membership in A for all 
examples that have the value Vij predicted by the rule and 
TotPred (total number of predictions) is the summation of 
the degrees of membership in A for all examples. This 
formula is essentially a fuzzy version of a crisp measure 
of predictive accuracy used by some data mining 
algorithms (Quinlan, 1987), (Noda et al., 1999). The 
rationale for subtracting 1/2 from CorrPred in the 
numerator is to penalize rules that are too specific, which 
are probably overfitted to the data. For instance, suppose 
CorrPred = 1 and TotPred = 1. Without subtracting 1/2 
from CorrPred the modified formula would return a 
predictive accuracy of 100% for the rule, which intuitively 
is an over-optimistic estimate of predictive accuracy in 
this case. However, subtracting 1/2 from CorrPred the 
above formula returns 50%, which seems a more plausible 
estimate of predictive accuracy, given that the rule is too 
specific. Clearly, for large values of CorrPred and TotPred 
the subtraction of 1/2 will not have a significant influence 
in the value returned by the formula, so that this 
subtraction penalizes only rules which are very specific, 
covering just a few examples. 
3.3.2 Measuring the Degree of Surprisingness of a 

Prediction Rule 
We consider a prediction rule interesting to the extent that 
it is surprising for the user, in the sense of representing 
knowledge that not only was previously unknown but also 
contradicts the original believes of the user. Clearly, the 
problem of discovering surprising rules is a very difficult 
one, which has been relatively little investigated in the 
data mining literature. (As mentioned above, the vast 
majority of the literature focus on the discovery of rules 
with a high predictive accuracy, without trying to measure 
how novel or surprising the rule is for the user.) 
In order to tackle this problem we follow a subjective 
approach for discovering surprising rules, based on the 
use of user-specified general impressions (Liu & Hsu, 
1996), (Liu et al., 1997). In essence, a general impression 
specifies some relationship that the user believes to be 
true in the data being mined. General impressions, like 
prediction rules, are expressed in the form IF 

<conditions> THEN <predicted value>. The main 
difference is that general impressions are manually 
specified and represent believes of the user about 
relationships in the data, whereas prediction rules are 
automatically discovered and represent relationships that 
seem to hold in the data, according to the criteria used by 
the data mining algorithm. Therefore, the specification of 
general impressions assume that the user already has some 
previous knowledge or hypotheses about relationships that 
hold in the application domain - in our case, science and 
technology data. 
Let  {R1,...,Ri,...R|R|} be the set of rules in the current 
population of the GA, where |R| denotes the number of 
rules (individuals); and let {GI1,...,GIj,...GI|GI|} be the set 
of general impressions representing the previous 
knowledge and believes of the user, where |GI| denotes 
the number of general impressions. Note that the set 
{GI1,...,GIj,...GI|GI|} is specified by the user before the GA 
starts to run, and it is kept fixed throughout the GA run. In 
order to compute the degrees of surprisingness of the rules 
in the current population, each rule is matched against 
every GI, as shown in Figure 2.  
 
 
 
 
 

 
Figure 2: Matching between each rule and every general 

impression 

A rule Ri is considered surprising, in the sense of 
contradicting a general impression GIj of the user, to the 
extent that Ri and GIj have similar antecedents and 
contradictory consequents. In other words, the larger the 
similarity of the antecedents of Ri and GIj and the larger 
the degree of contradiction of the consequents of Ri and 
GIj, the larger the degree of surprisingness of rule Ri with 
respect to general impression GIj. 
For each pair of rule Ri and GIj - where i varies in the 
range 1,...,|R| and j varies in the range 1,...,|GI| - the GA 
computes the degree of surprisingness of Ri with respect 
to GIj in three steps, as follows. 
First step: finding the general impressions whose 
consequents are contradicted by the consequent of Ri. We 
say that the consequent of Ri contradicts the consequent of 
a general impression GIj if and only if Ri and GIj have the 
same goal attribute but a different goal attribute value in 
their consequent. For instance, this would be the case if Ri 
predicts “production = low” and GIj predicts “production 
= high”. Note that if Ri and GIi predict different goal 
attributes, or if they predict the same value for the same 
goal attribute, there is no contradiction between them, and 
so the degree of surprisingness of Ri with respect to GIi is 
considered zero, and in this case the second and third 
steps, described below, are ignored.  
Second step: computing the similarity between the 
antecedents of Ri and GIj. For each general impression GIj 
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Ri

R|R|

GI1 

GIj 

GI|GI|



found in the previous step (i.e, each general impression 
GIj contradicted by Ri), the system computes the similarity 
between the antecedents of Ri and GIj. This similarity, 
denoted AS(i,j), is computed by the formula: 

AS(i,j) = |A(i,j)| / max(|Ri|,|GIj|) , 
where |Ri| is the number of conditions (attribute-value 
pairs) in rule Ri, |GIj| is the number of conditions in 
general impression GIj, max is the maximum operator, 
and |A(i,j)| is the number of conditions that are exactly the 
same (i.e., have the same attribute and the same attribute 
value) in both Ri and GIj. This formula is a somewhat 
simplified version of the formulas proposed by (Liu & 
Hsu, 1996) to measure the similarity between the 
antecedents of Ri and GIj. Those authors proposed 
separate formulas to measure the similarity with respect to 
attributes and with respect to attribute values, whereas we 
have chosen to incorporate both aspects of antecedent 
similarity into a single formula, for the sake of simplicity. 
Third step: computing the degree of surprisingness of Ri 
with respect to GIj. Let Surp(i,j) denote the degree of 
surprisingness of Ri with respect to GIj. Surp(i,j) depends 
on both AS(i,j), computed in the second step, and on the 
difference between the rule consequents of Ri and GIj, 
computed in the first step, as follows. The goal attribute 
values in the consequents of Ri and GIj can be either a 
value in the set {low, high} or a value {low, medium, 
high}, depending on the goal attribute. (The choice 
between these two attribute domains is made by the user 
for each goal attribute, as will be seen later.) If the 
difference between the consequents of Ri and GIj is that 
one of them is low and the other one is high, 
characterizing the greatest possible difference between 
those consequents, then Surp(i,j) is assigned the value of 
AS(i,j), without any modification. If the difference between 
the consequents of Ri and GIj is that one of them is 
medium and the other one is either low or high, 
characterizing a smaller difference between those 
consequents, then Surp(i,j) is assigned half the value of 
AS(i,j), i.e. Surp(i,j) = 0.5 x AS(i,j). In the latter case 
Surp(i,j) is assigned a smaller value than in the former 
case to reflect the fact that the degree of contradiction is 
correspondingly smaller.  
Finally, once the above three steps have been completed 
for all general impressions, with respect to a given rule Ri, 
the system has computed all the degrees of surprisingness 
of Ri with respect to every general impression GIj, i.e. all 
Surp(i,j), j=1,...,|GI|, where |GI| is the number of general 
impressions. At this point the degree of surprisingness of 
rule Ri, denoted Surp(i), is simply computed by the 
formula: 

( ) ( )[ ]ji

GI

j
ASiSurp ,

1
max

=
=  

where max returns the maximum value among its 
arguments.   

3.4 SELECTION AND GENETIC OPERATORS 
The GA uses tournament selection (Blickle, 2000), which 
essentially works as follows. First, k individuals are 
randomly picked (k = 2), with replacement, from the 
population. Then the individual with the best fitness 

value, out of the k individuals, is selected as the winner of 
the tournament. This process is repeated P times, where P 
is the population size. Next the P selected individuals 
undergo genetic operators, as follows. 
The GA uses relatively simple crossover and mutation 
operators. It uses uniform crossover (Goldberg, 1989). 
There is a probability for applying crossover to a pair of 
individuals and another probability for swapping each 
corresponding pair of gene (attribute)’s value in the 
genome of two individuals. The crossover probabilities 
used were 0.85 for the crossover operator and 0.5 for 
attribute value swapping. Our choice of uniform crossover 
was motivated by the fact that this operator has no 
positional bias, i.e., the probability of swapping each pair 
of attribute values is independent of the position of that 
attribute value in the genome. This is desirable in our data 
mining application, where the rule antecedent represented 
by the genome consists of an unordered set of conditions. 
The mutation operator randomly transforms the value of 
an attribute into another (different) value belonging to the 
domain of that attribute. The mutation probability used 
was 0.02. 
In addition to crossover and mutation operators, the GA 
also uses operators that insert/remove conditions to/from a 
rule. In essence, the condition-insertion operator switches 
on the flag of some condition in the genome, rendering it 
present in the decoded rule antecedent. Conversely, the 
condition-removal operator switches off the flag of some 
condition in the genome, which effectively removes that 
condition from the decoded rule antecedent. The 
condition-insertion and condition-removal operators 
perform specialization and generalization operations in 
the rule, respectively. Hence, they contribute for a broader 
exploration of the search space, facilitating the 
exploration of some regions of the search space that might 
not be so easily accessible to crossover and mutation 
operators.  

4 COMPUTATIONAL RESULTS 
We now report the results of computational experiments 
performed with the GA proposed in the previous section. 
In these experiments the set of general impressions was 
specified by the Head of Research of the State University 
of Maringá (Brazil). The same user also evaluated the 
interestingness of the rules discovered by the GA, as will 
be seen later. The data set used in our experiments is 
described in section 4.1. 
The rules discovered by the GA were evaluated with 
respect to two criteria, namely: 
(a) Predictive accuracy. As usual in the literature, 
predictive accuracy was measured in an objective way, by 
computing the prediction accuracy rate on a test set 
separate from the training set. The results with respect to 
predictive accuracy are reported in section 4.2. 
(b) Degree of interestingness (surprisingness). This is a 
measure of how surprising, novel the rule is for the user, 
as explained in the previous section. This was measured in 
a subjective way, by showing the discovered rules to the 
user and ask him to assess them according to how 
interesting they were. The results with respect to 
interestingness are reported in section 4.3. 



4.1 THE DATA SET  
The application domain addressed in this paper involves a 
science and technology database obtained from CNPq (the 
Brazilian government’s National Council of Scientific and 
Technological Development). More precisely, we have 
mined a subset of the database containing data about the 
scientific production of researchers of the south region of 
Brazil. However, it should be noted that the design of the 
GA is generic enough to allow its use in virtually any 
other application domain, as long as proper general 
impressions and membership functions are specified by 
the user. 
The experiments reported in this paper have been 
performed with 24 attributes. The selection and 
preparation of these attributes for data mining purposes 
was a time-consuming process, taking several months, 
since the original data set was not collected for data 
mining purposes. 
The data set contained 5,690 records (examples), and each 
record had attributes describing a given researcher and his 
scientific production in the period from 1997 to 1999. 
Records that had any attribute with missing value were 
removed. Out of the 24 attributes, 6 were used as goal 
attributes to be predicted, and the other 18 attributes were 
used as predictor attributes. Out of the 18 predictor 
attributes, 8 were categorical (nationality, continent of 
origin, sex, state, city, skill in writing English, whether or 
not she/he was the head of a research group, main 
research area) and 10 were continuous (educational level, 
No. of years since last graduation, age, No. of completed 
technical projects, No. of delivered courses, No. of 
supervised Ph.D. thesis, No. of supervised M.Sc. 
dissertations, No. of supervised research essays (at the 
diploma level), No. of supervised final-year 
undergraduate projects, No. of supervised undergraduate 
students with a research scholarship). The 10 continuous 
attributes were fuzzified for rule-discovery purposes, as 
previously explained. 
For prediction purposes, each goal attribute was 
discretized into either two values (referring to a low or 
high scientific production) or three values (referring to a 
low, medium or high scientific production), as determined 
by the user. 
The 6 goal attributes, denoted G1,...,G6, have the 
following meaning and values to be predicted: 
G1 = No. of papers published in national journals - 
values: low, medium, high; 
G2 = No. of papers published in internat. journals - 
values: low, medium, high; 
G3 = No. of chapters published in national books - values: 
low, medium, high; 
G4 = No. of chapters published in international books - 
values: low, high; 
G5 = No. of national edited/published books - values: low, 
high; 
G6 = No. of internat. edited/published books - values: low, 
high. 

Therefore, in total there are 15 goal attribute values to be 
predicted.  

4.2 EVALUATING THE PREDICTIVE 
ACCURACY OF DISCOVERED RULES 

In order to measure the predictive accuracy of discovered 
rules, we have performed a well-known 10-fold cross-
validation procedure (Hand, 1997). In essence, this 
procedure works as follows. First, the data set is divided 
into 10 mutually exclusive and exhaustive partitions. Then 
the data mining algorithm is run 10 times. In the i-th run, 
i=1,...,10, the i-th partition is used as the test set, and the 
remaining 9 partitions are temporarily grouped and used 
as the training set. In each run the system computes the 
prediction accuracy rate on the test set, which is the ratio 
of the number of correct predictions over the total number 
of predictions. The reported result is the average 
prediction accuracy rate over the 10 runs. 
We have compared the predictive accuracy of the rules 
discovered by our GA with the predictive accuracy of the 
rules discovered by J4.8 (Witten, 2000). The latter is a 
decision-tree-building algorithm which is included in a 
public-domain data mining tool available at: 
www.cs.waikato.ac.nz/ml/weka/index.html. J4.8 is a 
modified version of the very well-known decision-tree-
building algorithm C4.5 (Quinlan, 1993).  
Note that J4.8 (as well as C4.5) is an algorithm designed 
for the classification task of data mining, where there is a 
single goal attribute to be predicted. Similarly, each run of 
our GA discovers a rule predicting a different goal 
attribute value. Hence, both J4.8 and our GA have to be 
run several times in our application, since we are 
interested in discovering rules predicting several goal 
attributes. More precisely, J4.8 was “run” 6 times (each 
“run” actually consists of the 10 runs of a 10-fold cross-
validation procedure), whereas our GA was “run” 15 
times (again, each “run” was a 10-fold cross-validation 
procedure), corresponding to the 15 different goal 
attribute values for all the 6 goal attributes.  
Note also that J4.8 and our GA were designed for 
discovering different kinds of prediction rules. The two 
main differences are as follows. First, J4.8 just tries to 
discover accurate rules. It does not try to discover 
interesting, surprising rules. By contrast, our GA tries to 
discover rules that are both accurate and surprising for the 
user. Second, J4.8 was designed for discovering 
classification rules covering all examples. That is, given 
any test example, J4.8 must have discovered a rule that 
can be used to predict its class. By contrast, our GA does 
not try to discover rules covering all examples. It tries to 
discover only a small set of interesting, surprising rules, 
the knowledge “nuggets”. The discovered rules can 
collectively cover only a relatively small subset of 
examples, and yet be considered surprising, high-quality 
rules. These two differences make it difficult to compare 
the two algorithms in a fair way. 
In order to make this comparison more fair, we have 
eliminated the above first difference. This was achieved 
by modifying the fitness function of the GA (only in the 
experiments reported in this section) so that the fitness of 
an individual (rule) is measured only by its predictive 
accuracy, ignoring its degree of surprisingness, i.e.: 

Fitness(i) = Acc(i) = (CorrPred - 1/2) / (TotPred)  
Now both J4.8 and the GA search only for accurate rules.  



The above second difference between the two algorithms 
is more difficult to eliminate, and it still remains a 
difference in our experiments. This problem will be the 
subject of future research. 
The predictive accuracy obtained by J4.8 and our GA is 
reported in Table 1. The first column of this table 
identifies the goal attribute predicted by the rule (see the 
meaning of G1...G6 in the previous section), whereas the 
second column identifies the value predicted for that goal 
attribute. The third column identifies the relative 
frequency (in %) of the corresponding goal attribute value 
in the training set. The fourth and fifth columns report the 
prediction accuracy rate (in %) in the test set (10-fold 
cross-validation) of J4.8 and the GA, respectively. In each 
row, we show in bold the larger predictive accuracy rate, 
out of the rates obtained by the two algorithms.  
 

Table 1: Prediction Accuracy Rate (%) of J4.8 and GA 

Goal 
attrib. 

Predicted 
value 

Freq. 
(%) 

J4.8 
 

GA 
 

low 46.9 64.9 58.8  
medium 50.6 63.9 60.4  

G1 

high 2.5 9.1 0.0  
low 64.2 76.6 90.7  
medium 29.7 45.3 40.0  

G2 

high 6.1 32.2 25.0  
low 76.9 82.2 95.2  
medium 21.2 45.3 56.7  

G3 

high 1.9 27.4 25.0  
low  93.2 93.4 98.4  G4 

high 6.8 51.7 14.3  
low  83.5 86.0 89.5  G5 

high 16.5 54.7 56.9  
low  97.9 97.9 98.9  G6 

high 2.1 0.0 0.0  

As can be seen in the table, the prediction accuracy rate of 
the GA is larger than the one of J4.8 in seven rows (i.e., 
seven goal attribute values), whereas the converse is true 
in other seven rows. With the exception of the goal 
attribute G1, in general the GA outperformed J4.8 in the 
prediction of goal attribute values with a larger frequency 
in the training set, whereas J4.8 outperformed the GA in 
values with a smaller frequency in the training set.  
In any case, the focus of our experiments is the evaluation 
of the degree of interestingness of the rules discovered by 
the GA, reported in the next section.   

4.3 EVALUATING THE INTERESTINGNESS OF 
THE RULES DISCOVERED BY THE GA  

The rules discovered by the GA were also evaluated with 
respect to their degree of interestingness (surprisingness) 
for the user. In this experiment it was not possible to 
compare the GA with J4.8, since J4.8 was not designed to 
discover interesting rules. Actually, for the majority of the 
6 goal attributes, J4.8 produced a very large decision tree, 
with literally hundreds of nodes. Therefore, it was not 
even feasible to show all rules discovered by J4.8 to the 
user, anyway. 

By contrast, the GA was explicitly designed to discover a 
small set of interesting rules (one rule per goal attribute 
value to be predicted), so that it was very feasible to show 
all rules discovered by the GA to the user, for his 
subjective evaluation.   
We emphasize that the user who evaluated the 
interestingness of the discovered rules was the same user 
who specified the general impressions, as mentioned 
above. Actually, when the user was shown a discovered 
rule, he was also shown his own general impression 
contradicted by that rule. 
The user was asked to assign to each rule discovered by 
the GA one of the following three degrees of 
interestingness (surprisingness): low interestingness, 
medium interestingness or high interestingness. The 
results of the evaluation performed by the user is reported 
in Table 2. The rule consequent in the first column 
consists of an attribute-value pair “Gi= val” identifying 
the goal attribute value predicted by the rule, where Gi 
denotes the i-th attribute, i=1,...,6 (see section 4.1 for the 
meaning of these goal attributes) and val denotes the value 
predicted for the corresponding goal attribute. The second 
column of this table shows the degree of interestingness 
assigned to the rule by the user.  
 

Table 2: Interestingness of rules discovered by the GA  

Rule consequent interestingness  
for the user 

G1 = low high 
G1 = medium medium 
G1 = high medium 
G2 = low  high 
G2 = medium medium 
G2 = high low 
G3 = low high 
G3 = medium low 
G3 = high low 
G4 = low medium 
G4 = high medium 
G5 = low high 
G5 = high low 
G6 = low high 
G6 = high low 

 
The experiment reported in this section, involving 15 runs 
of the GA (one for each goal attribute value being 
predicted) took about 6 minutes. Each run of the GA had a 
population size of 100 individuals, which evolved during 
60 generations. 
The results reported in Table 2 were obtained by using the 
entire data set (i.e., all the 5,690 examples) as input data 
for the GA. This procedure is justified because when 
measuring the degree of interestingness of discovered 
rules there is no need for dividing the data into training 
and test sets, since there is no need for measuring 
predictive accuracy in the test set (which was already 
measured in the experiments reported in the previous 
section). 



Out of the 15 rules discovered by the GA, 5 were assigned 
a high degree of interestingness by the user, 5 were 
assigned a medium degree of interestingness, and the 
remaining 5 were assigned a low degree of 
interestingness. Overall, this seems to be a relatively good 
result, considering how difficult it is to discover very 
interesting, surprising rules.  
We have observed that there is a relationship between a 
rule’s simplicity (in the sense of having a small number of 
conditions) and its degree of interestingness for the user. 
This relationship is due to an interaction between the 
measure of rule surprisingness used in this work and the 
kind of general impressions specified by the user, as 
follows. In our experiments, the user specified mainly 
short general impressions, having a small number of 
conditions. As a result, the measure of rule surprisingness 
favors the discovery of short rules too, since these rules 
can have a larger degree of similarity between the rule 
antecedent and the general impression antecedent.  

5 CONCLUSIONS AND FUTURE WORK  
We have proposed a GA for discovering interesting fuzzy 
prediction rules. The proposed GA was evaluated with 
respect to both the predictive accuracy and the 
interestingness of the discovered rules. With respect to the 
former criterion, the performance of the GA was 
compared with J4.8, a well-known decision-tree-building 
algorithm. Overall, the GA was found to be competitive 
with J4.8 with respect to this criterion.  
In any case, the main focus of our experiments was on the 
discovery of rules that are interesting, in the sense of 
representing surprising, previously-unknown knowledge 
for the user. In our experiments the application domain 
was science & technology data, and the user was an expert 
in this domain. Overall, the GA was able to found several 
rules that were considered very interesting by the user. 
For instance, one of the general impressions specified by 
the user represented his previous knowledge (or belief) 
that biology researchers of a given region had a high 
number of international edited/published books. However, 
the GA was able to found an accurate rule contradicting 
this general impression. The rule had the same antecedent 
as the general impression but made the opposite 
prediction, i.e. it predicted that the researchers in question 
had a low number of international edited/published books. 
This rule was considered very interesting by the user. 
The main direction for future research will be to compare 
the degree of interestingness of the rules discovered by 
our GA with the degree of interestingness of the rules 
discovered by another data mining algorithm that was 
specifically designed for the discovery of interesting rules.  
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