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ABSTRACT

The Ant-Miner algorithm, first proposed by Parpinednd

colleagues, applies an ant colony optimization iséarto the
classification task of data mining to discover adeved list of
classification rules. In this paper we present a mersion of the
Ant-Miner algorithm, which we call Unordered RuletSAnt-

Miner, that produces an unordered set of classifioarules. The
proposed version was evaluated against the orighm&iMiner

algorithm in six public-domain datasets and wasitbto produce
comparable results in terms of predictive accur&tywever, the
proposed version has the advantage of discoveriorg modular
rules, i.e., rules that can be interpreted indepetig from other
rules — unlike the rules in an ordered list, whitsee interpretation
of a rule requires knowledge of the previous ruleshe list.

Hence, the proposed version facilitates the inetgtion of
discovered knowledge, an important point in dataimgj.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning — concept learning
induction

General Terms
Algorithms, Performance, Experimentation.

Keywords
Ant Colony Optimization, Data Mining, Classificatidrules.

1. INTRODUCTION

Data Mining is the process of extracting useful wieglge from
real-world data. Among the several data mining dasksuch as
clustering and classification - this paper focuse<lassification.
In this task the aim is to discover, from trainitgta (containing
cases, or records, whose class is known), a dlz#iin model
that can be used to predict the class of casebtdntdst data
(containing unknown-class cases). One popular oage@f

classification model consists of classificationesjlwhich is the
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model category used in this paper. In this contéase,aim of the
classification algorithm is to discover a set @fsdlification rules.

One algorithm for solving this task is Ant-Minertoposed by
Parpinelli and colleagues [5], which employs antloog
optimization techniques [1] to discover classificatrules of the
form:

IF (termy AND term, AND ..... term,,) THEN (predicted class)

where each term is of the form <attribute = valuend different
rules can have different number of terms in theteeedent (IF
part). The consequent of a rule is a predictedscles., the value
that the rule predicts for the class attribute wlaen example
satisfies the conjunction of terms in the rule eatent.

Classification rules have the advantage of repteseknowledge
at a high level of abstraction, so that they arauitively
comprehensible to the user [7].

Ant-Miner has produced good results when comparita mvore
conventional data mining algorithms [5], [8] andist still a
relatively recent algorithm, which motivates funtheesearch
trying to improve it. This work proposes a modifioa to the
Ant-Miner data mining algorithm called Unorderedi®&et Ant-
Miner, with the aim of improving or at least mainiag the level
of predictive accuracy obtained by the original Miner, whilst
at the same time facilitating the interpretationttoé discovered
classification rules, as follows. In the originahtAMiner, the goal
of the algorithm was to produce an ordered listudés, which
was then applied to test data in the order in Wwhieey were
discovered. This makes it difficult to interpreetiules at the end
of the list, since their conditions make sense amihe context of
all the previous rules in the ordered list of ru[@gé The new
version of Ant-Miner proposed in this paper disagyefrom
training data, an unordered set of rules that @aagplied to test
data in any order. This makes the discovered redeser for the
user to interpret, since now the interpretationeath rule is
independent from all the other discovered rules.

Although some modifications to the Ant-Miner algbm have
already been proposed [2][3][4], to the best of knowledge, an
unordered rule set modification to the original Afiner

algorithm is an area of research that has notegen explored.

This paper is organised as follows. Section 2 mssan outline
of the original Ant-Miner algorithm. Section 3 eapis the
proposed Unordered Rule Set Ant-Miner. Section gculises
computational results and performance of the algari Section 5
concludes the paper and suggests further areasesdinch.
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2. ABRIEF DESCRIPTION OF THE ANT-

MINER ALGORITHM

The original Ant-Miner algorithm, upon which the ahdered
Rule Set Ant-Miner proposed in this paper is basediescribed
in the pseudo code of Algorithm 1, taken from [B]e provide
here just a brief overview of the algorithm; for maetails the
reader is referred to that reference.

Algorithm 1 — Original Ant-Miner

TrainingSet = {all training cases};
DiscoveredRuleList = [ ]; /* initialize rule list ith empty list */
WHILE (TrainingSet > Max_uncovered_cases)
t =1; /* ant index, and also rule index */
j = 1; I* convergence test index */
Initialize all trails with the same amouritphheromone;
REPEAT

Ant starts with an empty rule and incrementally
constructs a classification rule iy adding one
term at a time to the current rule;

Prune ruleR /* remove irrelevant terms from rule */

Update the pheromone of all trailsiyreasing
pheromone in the trail followed by Arjproportional
to the quality of JRand decreasing pheromone in the
other trails (simulating pheromonemation);

IF (Ris equal to R— 1) /* update convergence test */

THENj=j+1;
ELSEj=1;
END IF
t=t+1,

UNTIL (i> No_of_ants) OR ¢ No_rules_converg)

Choose the best rulgsR among all rules feonstructed by
all the ants;

Add rule R.s;to DiscoveredRuleList;

TrainingSet = TrainingSet - {set of casergectly covered
by Rest:
END WHILE

Ant-Miner discovers an ordered list of classifiocatirules based
on a heuristic function involving information gaia popular
heuristic function in data mining [6] — and positifeedback
involving artificial pheromone. For each iteratiohthe Repeat-
Until loop, an ant attempts to discover a rule élgsting terms in
a probabilistic manner, until all the attributesré@deen used to
make the current rule, or adding any other avaélaeim would
make the rule coverage less tham_cases_per_rule a user-
specified thresholdThe discovered rule is then pruned in an
attempt to reduce over-fitting to the training datal increase rule
quality. Afterwards, the pheromone values for teams in the

current rule are increased, in order to increaseptbbability that
other ants will select those terms, and then thegrhone values
for all terms are normalised. The While loop itesauntil the
number of training examples remaining in the datd&Eomes
less than or equal tdMax_uncovered_cases another user-
specified threshold. The rule discovered in the Refuntil loop
that has the highest quality is then added toithef discovered
rules, and the training examples correctly covdngthat rule are
removed from the training dataset. An example isrextly
covered by a rule if the example satisfies the anecedent and
has the class predicted by the rule.

2.1 Pheromone Initialisation

Pheromone values for each term are all initialisedhe same
value at the beginning of each While loop iteratidhe initial
value of each pheromone is given by the function:

Tij( = 0): al

2.b

i=1

Where a is the total number of attributes,is the index of an
attribute,j is the index of a value in the domain of attribiytand
b; is the number of values in the domain of attriute

2.2 Pheromone Updating
In Ant-Miner pheromone levels are increased fortatms in a
rule just constructed by an ant, based on the tyuaithat rule, as
measured by the rule quality formula “sensitivityspecificity”,
defined as follows:

TP TN

Q= E,
TP+ FN FP+TN

where TP / (TP + EN) is the sensitivity, TN / (FPTN) is the
specificity, and:

TP (true positives) is the number of cases covbyethe rule that
have the class predicted by the rule.

FP (false positives) is the number of cases covieyetie rule that
have a class different from the class predictethbyrule.

FN (false negatives) is the number of cases ttamnat covered
by the rule but that have the class predicted byrtie.

TN (true negatives) is the number of cases thahareovered by
the rule and that do not have the class predictatiérule.

2.3 Term Selection
The probability that a term will be added to therent rule is
given by the following formula:

T [Tij (t)

izal: X g: (’7ij kS (t))

P =

1

where:

n; is the value of a problem-dependent heuristic tionc— more
precisely information gain [6] — fderm; (a condition of the form
attributg = valug). The higher the value of; the more relevant
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for classification theerm; is, and so the higher its probability of
being chosen.

7j(t) is the amount of pheromone associated wihm; at
iterationt.

ais the total number of attributes.

x; is set to 1 if the attribute, was not yet used by the current ant,
0 otherwise.

b, is the number of values in domain of fkie attribute.

3. UNORDERED RULE SET
MODIFICATIONS TO THE ANT-MINER
ALGORITHM

As mentioned in the Introduction, we propose a fication to
the original Ant-Miner so that the algorithm diseos a set of
rules which do not need to be applied to test datae order in
which they were discovered. The pseudocode of tee n
algorithm is described in Algorithm 2.

In the original Ant-Miner, ants chose terms foruerwith the
goal of decreasing entropy in the class distributid examples
matching the rule in construction. The consequétihe rule was
then assigned afterwards by determining the cladsevthat
would produce the highest quality rule. In UnordeRule Set
Ant-Miner, by contrast, an extra For-Each loop é&led as the
outer loop of the algorithm, iterating over theued in the class
attribute domain, as indicated in Algorithm 2. Asesult of this
loop, the consequent for the rule is known by thiedaring rule
construction and does not change. The currentri@stto choose
terms that will produce the rule predicting thesslaalue in the
current iteration of the For-Each loop with an optm level of
accuracy. In theory, such an approach should leadaster
convergence on good rules, by comparison with tiginal Ant-
Miner. The reason is that in Unordered Rule SetMimter each
term’s pheromone value directly represents thah'serelevance
for predicting a fixed target class value. By canstr in the
original Ant-Miner each term’s pheromone is assdawith that
term’s relevance in reducing the entropy associaiddthe entire
class distribution, a less focused relevance.

Each iteration of the For-Each loop discovers aordered set of
rules, all of which predict the current class valugt the
beginning of each iteration, the entire trainingiseeinstated, so
that a maximal number of negative examples ardahlaito the
algorithm. Ants discover rules from the trainingtadantil the
number of positive examples (belonging to the currelass)
remaining in the dataset that have not been covéneda
discovered rule is less than or equal to the vdetermined by
the max_uncovered_casgsrameter. Note that in the original
Ant-Miner max_uncovered_casesferred to all examples in the
training set, rather than to the positive exampglely as in the
proposed algorithm.

Rule construction occurs as follows. For each fiienaof the
WHILE loop, the amount of pheromone for each tesmsdt to an
initial value. This initialization is the same d®tone used in the
original Ant-Miner. However, unlike the original AMiner, in
the proposed algorithm an ant starts with a ruletaining the
known consequent (the current class value of thR k©p) and
an empty antecedent. The rule is constructed ineméaily by

selecting terms with a probabilistic method thatofars terms
with a large amount of pheromone and a high Laptacescted
confidence value (see below). The ant stops cartsigua rule if
all the attributes have been used in the rule aditt constructed
so far, or if there are no terms available thatemviadded to the
rule antecedent, would not make the rule cover fesases than
the limit min_cases_per_ruleThe rule is then pruned in an
attempt to increase its quality, and if the rul@fis high enough
confidence, the terms making up the rule have thearomone
levels increased. The best rule discovered dutieg REPEAT
UNTIL loop is added to the unordered set of discedaules.

Algorithm 2 — Proposed Unordered Rule Set Ant-Miner

Discovered Rule Set = {} /* initialize rule set \Wwiempty set */
FOR EACH Class
TrainingSet = {all training cases}
PositiveSet = {training cases of current g}as
NegativeSet = TrainingSet — PositiveSet
WHILE (|PositiveSet| > max_uncovered_cases)
t=1,
i=1
initialise all trails to the same ambafpheromone;
REPEAT

Antstarts with an empty rule and incrementally
constructs a classification rulebR adding one term
at a time to the current rule;

Prune rule R

IF (LaplaceCorrectedConfidencgR
RuleConfidenceThreshold)

THEN increase pheromone of terms in ruje R
END IF

Update pheromones in all other terms by normalising
the pheromone values (simulating evaporation)

IF (Reequals R,)

THENj=j+1;
ELSE | = 1;
END IF
t=1t+1;

UNTIL (i= No_of_ants) OR @& No_rules_converg)

Choose the best rulg.famong all rules Rconstructed
by all ants;

Add rule Rgto DiscoveredRuleSet;

TrainingSet = TrainingSet — {set of poe cases
covered by Rq};

PositiveSet = PositiveSet — {set ofifyos cases
covered by Rs};

END WHILE
END FOR
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3.1 Problem dependent heuristic function
Since the consequent of the rule is already knowanathe ants
discover rules, the heuristic function of the arai Ant-Miner
must be altered to favour the selection of ternag thcrease the
probability that the rule will predict the curreciass of the For-
Each loop. The problem dependent heuristic functibasen is
the Laplace-corrected confidence for each ternerghby:

.= |term; k|+1
" |term; |+ No_of clases

where ferm;, k| is the number of training cases haviagm; and
the current positive clasgs fterm;| is the number of training cases
having term; and No_of_classess the number of values in the
class attribute’s domain. The Laplace correctiorlg used in
other rule induction algorithms such as CN2 [9]d anhas the
advantage of penalizing rules that are too speéifiwvering too
few cases), helping to reduce overfitting. Foranse, suppose a
terms occurs in just one case, and that case hasutrent
positive class, so thaefm;| = ferm;, k| = 1. Without the Laplace
correction, the confidence of that term would bell= 100%, a
too optimistic value for such an extremely speaifite, which is
unlikely to generalize well for test data unseemirdy training.
With the Laplace correction, and supposMg_of classes 2,
the confidence of the rule is corrected to (1 + () + 2) = 67%, a
more realistic value. Note that the Laplace coioactvill have
little effect whentermy| is large, which is consistent with the fact
that there is a lot of statistical support for sacheneric rule.

3.2 Pheromone Updating

As mentioned earlier, in the unordered rule sebritlym the

consequent (predicted class) of each rule is fidedng the

construction of the rule by an ant. Due to the philistic nature

of the algorithm, it is possible to generate ruldere the number
of true positives (TP) is less that the number aéd positives
(FP). Such rules tend to be bad rules, becausetthey a low
predictive accuracy. It is important that the pimeooe of terms
occurring in the rule be increased only when ttet-gonstructed
rule has an acceptable confidence value. The tbigsthat

determines if a rule is acceptable or not (i.e.etlvhr or not the
pheromone of its terms should be increased) isessped by the
following formula.

K]

RuleConfiénceThresbid = MAX(0.5———
| trainingset|

Where |k| is the number of training cases with the current

(positive) class, anftraining set|is the total number of cases in
the current training set.

The rule confidence threshold is therefore the maxn of the
relative frequency of the predicted class and Ttie motivation
for the use of the max operator in this formulasgollows. In the
case of a predicted class whose relative frequescitarge”

(greater than 0.5), the rule is considered accéptably if its

confidence is at least as great as the relativguéecy of that
class. For instance, if the relative frequency alass is 70%, a
rule predicting that class with a confidence of 6B%¢learly a
bad rule. This requirement is not enough, howewdren the

predicted class has a “small” relative frequenoyvér than 50%).
For instance, suppose a class has a relativelydrary of 10%. A
rule with a confidence of 15% satisfies the craerbf having a
confidence greater than the relative frequencyhef predicted
class, but it is still a weak rule. Hence, the ofsthe max operator
guarantees that, when the predicted class has ardiative
frequency, the confidence threshold is raised #%.90/e make no
claim that the threshold value 0.5 is an optimdleabut this
value worked well in our preliminary experimentsptithizing
this parameter is a topic left for future research.

Once a rule has been considered acceptable, theinanod
pheromone increase to be applied to each of thester that rule
is determined by the following formula.

7, (t+1)= 7, (t)+ (5, (t)L0)

where;(t) is the current (at time indetk amount of pheromone
associated witttermy;, and ¢ is set to the rule qualit® (the
formula in section 2.2, which is also the formulsed in the
original Ant-Miner) if the Laplace-corrected corgidce for the
rule was aboveRuleConfidenceThresholdr set to 0 otherwise.
The basic idea of the Laplace-correction was ajreagblained in
section 3.1, in the context of the problem-depehd&uristic
function. A conceptually similar idea is used ie ttontext of the
confidence of a rule. A rule’s confidence (befotee tuse of
Laplace correction) is defined as follows. Let IFTANEN C be a
rule, where A is the antecedent (conjunction ofm®rand C be
the predicted class. The confidence of a ruleviergby:

|A and C|/ |A|

i.e., the number of training cases satisfying bothnd C divided
by the total number of cases satisfying A. The heglcorrected
confidence is then given by:

(JAand C| + 1)/ (JA| + No_of_classes) .

The effect of the Laplace correction in the conficke of a rule is
conceptually similar to the effect of this correctin the value of
the problem-dependent function, as explained itice8.1.

3.3 Rule Pruning

It is necessary to make some alterations to treeprining in the
Ant-Miner algorithm to support unordered rule sels. the

original Ant-Miner rules were pruned to remove ligrant terms
and to improve the predictive accuracy of rulesisTihvolved

speculatively removing each term in turn and eualgathe

quality of the rule without that term; and thenidiéély removing

the term whose removal provided the largest ineréasrule

quality. This process was then repeated until theae only one
term left in the rule antecedent or no increasrlie quality was
observed during the speculative removal process.néw

consequent — namely, the class with the largequéecy among
all cases covered by the rule — was assigned tautheafter each
term was speculatively removed. For Unordered Rage Ant-

Miner the consequent must remain the same duriisgptiocess,
and so the rule pruning procedure is simplifiedeAgach term is
speculatively removed, there is no need to comfhgeyuality of

the new reduced rule for all possible classes endbnsequent,
just the quality for the current positive classasnputed.



In Proceedings of the Genetic and Evolutionary Qatiatjion Conference (GECCO-2006), pp. 43-50

3.4 Classifying Test Data with an Unordered

Rule Set

In the original Ant-Miner algorithm, classifyingsedata with the
ordered list of rules was accomplished by finding éach case
the first rule in the ordered list that covered ttase (i.e. the
case’s attribute values matched the rule antecgdant then
assigning the consequent class value of that niliheé case. A
default rule that assigned the majority class @ntthining set to a
case was used to classify a test case if noneeofligcovered
rules matched the test case.

When classifying test data with Unordered Rule B#tMiner, a
different approach is required as a case mighlered by more
than one rule. One of the following scenarios witicur when
classifying a given test case with rules discovel®d the
Unordered Rule Set Ant Miner.

1. If none of the discovered rules cover the tesec that
case is assigned the default class, which is therityaclass
in the training data set.

2. If only one of the discovered rules covers s tase,
that case is assigned the class predicted byuleat r

3. If more than one of the discovered rules cotegstest
case, but all those rules predict the same classcase is
assigned that class.

4. If more than one of the discovered rules cotteestest
case, but the rules do not all predict the samsscla rule
conflict strategy is required to determine whichssl should
be assigned to that case.

Two rule conflict strategies were evaluated in thak:

1. Classify the test case with the rule that hashighest
rule quality.

2.  Apply a rule conflict resolution procedure basedthe

class distribution of the rules covering the curttest case to
determine that case’s class value [9]. The pseutiofar this

procedure is shown in Algorithm 3.

Algorithm 3 —Rule Conflict Resolution Procedure Baed on
the Class Distribution of the Rules Covering a Case

FOR EACH Class
Count€) = 0;
END FOR
FOR EACH Rule covering the current test case
FOR EACH Class
Count€) = Count¢) + Coverage( c);
END FOR
END FOR

Assign to the current test case the class with maxi value of
Countg), among all candidate classes.

The first For-Each-Class loop of Algorithm 3 inlizs the class
counts to zero. The For-Each-Rule loop up iteratesy all the

rules covering the current test case, i.e., thesrwhose conflict
must be solved. The function Coveragej returns the number of
training cases having classovered by rule. Hence, for each of
the rules covering the current test case, the Alyoradds, to

each class count, the number of training casesredvily the

current rule. Therefore, at the end of the For-ERale loop, each
class count will contain the frequency of the cgpending class
in the total class distribution associated withrales covering the
current test case. Finally, the test case is asdigine class with
the largest value of class count, i.e., the mesjuent class in the
total class distribution associated with all castitig rules.

4. COMPUTATIONAL RESULTS

4.1 Datasets Used in the Experiments

The performance of the proposed Unordered RuleABeMiner

was evaluated using six public-domain data sets) fthe UCI

(University of California at Irvine) data set refiosy — available
from: http://www.ics.uci.edu/~mlearn/MLRepositorinii. Table
1 shows the main characteristics of the datasdtghwwvere the
same datasets used to evaluate the original AneMm[5].

Note that Ant-Miner (both the original one and therdered rule
set version proposed in this paper) cannot copectlljr with
continuous attributes, i.e., continuous attributesve to be
discretized in a preprocessing step. For the datakaving
continuous attributes in Table 1, we used the sdiweretized
version of the data used in the experiments wighadtiginal Ant-
Miner reported in [5]. Those discretized datasetrewkindly
provided by Parpinelli.

Table 1 — Dataset Characteristics

Number of | Number of
Number of . . Number of
DataSet examples cate.gorlcal cont_lnuous classes

attributes attributes
Ljubljana breas
cancer 282 9 [0 Y.
Wisconsin breagt
cancer 683] g 9 2
Cleveland heart
disease 303 8 s 9
Dermatology 366 33 ]
Hepatitis 155 13 q ]
Tic-tac-toe 958 9 [0 .

4.2 Comparison of Results
Both the original Ant-Miner algorithm and the prced
Unordered Rule Set Ant-Miner have four parameters:

1. Number of ants (No_of_ants).

2. Minimum number of rule

(Min_cases_per_rule).

cases per

3. Maximum number of uncovered cases in the trgisit
(Max_uncovered_cases).

4. Number of rules used to test convergence ofatfits
(No_rules_converg).

As explained earlier, in Unordered Rule Set Ant-8fin
Max_uncovered_cases refers to the maximum number
uncoveredpositivecases in the training set, whilst in the original

of



In Proceedings of the Genetic and Evolutionary Qatiesjon Conference (GECCO-2006), pp. 43-50

Ant-Miner it refers to the maximum number of cagegher

positive or negative ones) in the training set. this reason, this
parameter may need to be set lower in Unordered Rat Ant-
Miner than in the original Ant-Miner. The value Bf(half the

value used for the original Ant-miner) was usedhis work as a
reasonable value. The other parameters of Unorderged Set
Ant-Miner were set to the same values as in thgirmal Ant-

Miner, since those other parameters have the sasaming in

both versions of the algorithm. We make no claist these are
optimal parameter values, and finding the optimuatues for
Unordered Rule Set Ant-Miner’s parameters is am aeguiring

further research. (In any case, the optimum vatneafparameter
tends to be strongly problem-dependent, as usubiokinspired

algorithms.) Table 2 shows the parameter settirggd uvhen
testing both versions of Ant-Miner.

Table 2 — Parameter settings

Parameter Origir.lal Unordered .Rule
Ant-Miner| Set Ant-Miner
No_of_ants 3000 3000
Min_cases_per_rule 5 5
Max_uncovered_casef 10 5
No_rules_converg 5 5

Ten-fold cross validation [7] was performed on eawfhthe
datasets with the following versions of the Ant-Eliralgorithm:

1.  Original, Ordered Rule List Ant-Miner.

2. Unordered Rule Set Ant-Miner using highest-jyal
rule conflict resolution strategy.

3. Unordered Rule Set Ant-Miner using class-disttion
rule conflict resolution strategy.

Table 3 shows a comparison of the mean classiicadccuracy
(%) on the test set and corresponding standarcatiewi of the
rule sets discovered by each version of Ant-Minarirdy the
cross validation procedure. In the last two colurohshat table,
the presence of the symbol (+) or (-) in a cellidgates that the
predictive accuracy of the corresponding versionJobrdered
Rule Set Ant-Miner is significantly better or worskan the
predictive accuracy of the original Ordered ListtAfiner in the
corresponding dataset. A difference in predictivceusacy is
considered significant if the standard deviationtervals
(containing plus or minus one standard deviatioouad the
mean) of the two accuracies do not overlap.

Table 3 — Mean accuracy (%) of discovered rules

Unordered Ruleg Unordered Ruleg

DataSet Ordered Lisf Class Distributiony Highest Quality
Ljubljana
breast cancer| 72.98 +/- 1.9f 78.42 +/- 1.70|+) 68/3B.52 (-)
Wisconsin
breast cancer| 95.91 +/- 0.48 92.38 +/- 0.84|-) 95/60.92
Cleveland
heart disease| 57.20 +/- 1.7 64.84 +/- 2.60|(+) 56/38.49
Dermatology | 92.74 +/- 1.38| 80.50 +/- 1.56 (}) 96.05146 (+)
Hepatitis 88.81 +/- 2.94| 95.42 +/- 2.50 () 96.35H88 (+)
Tic-tac-toe 72.24 +/- 1.24] 72.45 +/- 0.87 64.39 +571(-)

The results in Table 3 show that the accuracy tif bersions of
Unordered Rule Set Ant-Miner is comparable to theueacy of
the original Ant-Miner algorithm in most cases. Tlhegest gain
in accuracy occurred in the Hepatitis dataset, e/heth versions
of Unordered Rule Set Ant-Miner obtained a sigumifitty higher
accuracy than the original Ordered Rule List Antabti The only
datasets in which there was no improvement assatiaith the
Unordered Rule Set versions of Ant-Miner were the-t&ic-toe
and Wisconsin breast cancer sets.

Table 3 also shows that the rule conflict resolutstrategy used
by Unordered Rule Set Ant-Miner when classifyingttdata is
very important. The difference in accuracy betwésn Highest
Rule Quality-based and Class Distribution-basedtetfyies is
almost 20% for the Ljubljana Cancer dataset, an@ th
Dermatology and Cleveland HD datasets also showgelar
discrepancies between the results for the twoeglies. Overall,
Class Distribution-based rule conflict resolutiaragegy slightly
outperformed Highest Rule Quality-based rule confiésolution.
In particular, the Class Distribution-based strategptained a
predictive accuracy significantly better (worsearhthe original
Ant-Miner in 3 (2) datasets; whilst the Highest Qyebased
strategy obtained a predictive accuracy signifigaretter
(worse) than the original Ant-Miner in 2 (2) dattsse

One could argue that, although the Class Distriloubiased rule
conflict resolution strategy slightly outperformete Highest
Rule Quality-based rule conflict resolution strategith respect
to predictive accuracy, the former hinders therpritability of
the discovered rules, because it involves combinitg
predictions of several rules, rather than justgisie prediction of
an individual rule. This is to some extent a concéut there is a
reply to this argument. The reply is that the iptetation of the
rules by the user is, conceptually, independenttodther or not
the rules are combined for making a prediction alboe class of
a specific example in the test. The rules were adiseed by
following a sequential covering strategy, consgstinof
discovering one rule at a time. Due to the det#filthe procedure
used for discovering the rules (in tb@orderedRule Set version
of Ant-Miner), each rule does have a modular megnin
independent of the others — regardless of how ukeis used to
classify test examples. In addition, note thasihot practical to
ask the user to interpret at the same time thefsal rules used
to classify a test example because this set vaoes example to
example. l.e., a given rule can sometimes be therate used to
classify a certain test example (if the rule is dinéy to cover that
example), whilst in other occasions the same rulghinbe
combined with other rules to classify another tesample (if
there are two or more rules of different classesrag the same
test example). The main motivation for showing thkes to the
user is to try to give the user more insight alibetdata and the
application domain. Users can potentially get suwdight by
interpreting the rules individually, one rule atime, even when
using the Class Distribution-based rule conflictsolation
strategy.

We now consider the simplicity of the rules disamee by the
Unordered Rule Set Ant-Miner. As usual in the dataing

literature, simplicity is measured by the numberés and the
number of terms per rule — the smaller these valiessimpler
the rule set is. The original Ant-Miner was compedi with CN2

and C4.5 with respect to accuracy, while producimgch more
simple rules [5], [8]. This is desirable as disam¢erule sets that
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are more simple are easier to interpret and uratedstand are
potentially less likely to over fit the training tda A comparison
of the mean number of rules discovered by the miffeversions
of Ant-Miner is shown ifTable 4and the mean number of terms
per rule is shown ifTable 5 The values after the mean are
standard deviations. ITable 4in the last two columns, the
presence of the symbol (+) or (-) in a cell indégsathe mean
number of rules discovered by the correspondingsioer of
Unordered Rule Set Ant-Miner is significantly grerabr smaller
than the mean number of rules discovered by theel®ddRule
List Ant-Miner in the corresponding dataset.Tiable 5in the last
two columns, the presence of the symbols (+) orir(-a cell
indicates the number of terms in the rules disaedeby the
corresponding version of Unordered Rule Set AntéMins
significantly greater or smaller that the numbert@fns in the
rules discovered by the Ordered Rule List Ant-Minerthe
corresponding dataset. As Table 3 a difference between two
results is considered significant if the standagdiation intervals
do not overlap.

Table 4 — Mean number of rules discovered withoutaunting
the default rule

Unordered Rule Unordered Rulep
DataSet Ordered Ligt Class Highest Quality
Distribution

Ljubljana
breast cancer6.70 +/- 0.37 | 6.10 +/- 0.11 (-] 6.00 +/- 0.00 (})
Wisconsin
breast cancer5.60 +/- 0.30 | 6.50 +/- 0.19 (4) 6.20 +/- 0.15 (})
Cleveland
heart disease|14.20 +/- 0.43 11.00 +/- 0.00 (-) 11.00 +/- 0.00|(-)
Dermatology [6.00 +/- 0.00 | 6.00 +/- 0.00 6.00 +/- 0.00
Hepatitis 2.70 +/-0.17 | 3.00 +/- 0.00 () 3.00 +/- 0.00 (})
Tic-tac-toe [4.60 +/- 0.48 | 6.30 +/- 0.17 (4) 6.30 +/- 0.17 (j+)

Table 5 — Average No. of terms per rule

Unordered Rulg Unordered Rulg
DataSet Ordered Lis| Class Highest Quality
Distribution

Ljubljana
breast cancer [1.79 +/- 0.08 | 1.85 +/- 0.02 1.83 +/- 0.00
Wisconsin
breast cancer |2.27 +/- 0.09 | 2.55 +/- 0.08 () 2.37 +/- 0.08
Cleveland heal
disease 2.69 +/- 0.10 | 2.54 +/- 0.01 (-] 2.53 +/- 0.02{-)
Dermatology |[13.25 +/- 0.14] 13.10 +/- 0.07 | 13.28 +/- 0.11
Hepatitis 3.81 +/-0.15 | 3.33 +/-0.05 (-] 3.33 +/-0.00(-)
Tic-tac-toe 1.26 +/-0.10 | 1.10 +/- 0.04 (-] 1.10 +/- 0.04|-)

The two versions of Unordered Rule Set Ant-Mineodurced
significantly fewer rules for the Ljubljana breaséncer and
Cleveland heart disease datasets. The largestatiffe was for
the Cleveland HD dataset, where the original, GrddRule List
Ant-Miner produced 14.20 rules on average, wheitbastwo
versions of Unordered Rule Set Ant-Miner producédwith the
number of terms per rule being significantly snrafte the rules

discovered by Unordered Set Ant Miner than for thees
discovered by Ordered List Ant-Miner in that datase

Although the two versions of Unordered Rule Set-Kiner

produced a significantly increased number of rideshree out of
the six data sets (Wisconsin breast cancer, Hepatid Tic-tac-
toe), the unordered rule sets discovered for twdhofe three
datasets (Hepatitis and Tic-tac-toe) had a signifly smaller
number of terms per rule than the corresponding fidts

discovered by Ordered Rule List Ant-Miner. In argse, overall
the two versions of Ant-Miner (with Ordered and Wihered
Rules) obtained rule sets with similar levels ofiglicity.

Interestingly for the Cleveland HD, Dermatology addpatitis
datasets there was no deviation from the mean nuofriles
during the cross validation, for the two versiorisUnordered
Rule Set Ant-Miner.

5. CONCLUSIONS AND FUTURE
RESEARCH

Our experimentation has shown that, overall, theppsed
Unordered Rule Set Ant-Miner is capable of discogerrules

that are comparable to those discovered by thénatigint-Miner

algorithm, in terms of both predictive accuracy ande set
simplicity (size of the classification model). Inyacase, it should
be recalled that the rules discovered by Unord&eleé Set Ant-
Miner are more modular than the rules discoverethkyoriginal

Ordered List Ant-Miner. This is the case becaus¢hi former
kind of algorithm each rule can be interpreted petalently from
the others, whereas in the rule list discoverethleyoriginal Ant-

Miner a given rule should be interpreted only ia tontext of all
the previous rules in the list. This modularity ifidates the
interpretation of the rules by the user, an imptr{zoint in data
mining [7], and therefore an advantage of the Uamrd Rule Set
Ant-Miner proposed in this paper.

The results also highlight the importance of thée roonflict
resolution strategy in the application of discodenenordered
rules to test data. Further research in this ave&dde focused on
developing rule conflict resolution strategies thet more robust
across a number of datasets.

In this work the algorithm parameters were notrofsed for any
particular data set, since the focus was on com@dhie different
versions of Ant-Miner, rather than optimizing paeisrs for each
data set. Hence, another area of further reseaightrbe to
attempt to determine the optimum parameter settihgswould
maximise the accuracy of the discovered classifinatules for
each dataset.
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