
Particle Swarm and Bayesian Networks Applied to
Attribute Selection for Protein Functional Classification

Elon S. Correa
Computing Laboratory and

Centre for BioMedical
Informatics

University of Kent
Canterbury, CT2 7NF, UK

E.S.Correa@kent.ac.uk

Alex A. Freitas
Computing Laboratory and

Centre for BioMedical
Informatics

University of Kent
Canterbury, CT2 7NF, UK

A.A.Freitas@kent.ac.uk

Colin G. Johnson
Computing Laboratory and

Centre for BioMedical
Informatics

University of Kent
Canterbury, CT2 7NF, UK

C.G.Johnson@kent.ac.uk

ABSTRACT

The Discrete Particle Swarm (DPSO) algorithm is an optimization
method that belongs to the fertile paradigm of Swarm Intelligence.
The DPSO was designed for the task of attribute selection and it
deals with discrete variables in a straightforward manner. This
work extends the DPSO algorithm in two ways. First, we enable
the DPSO to select attributes for a Bayesian network algorithm,
which is a much more sophisticated algorithm than the Naive Bayes
classifier previously used by this algorithm. Second, we apply the
DPSO to a challenging protein functional classification data set, in-
volving a large number of classes to be predicted. The performance
of the DPSO is compared to the performance of a Binary PSO on
the task of selecting attributes in this challenging data set. The cri-
teria used for comparison are: (1) maximizing predictive accuracy;
and (2) finding the smallest subset of attributes.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Artificial Intelligence—Learn-

ing, induction.

General Terms

Algorithms, performance.

Keywords

Particle swarm, Data Mining, attribute selection, Naive Bayes clas-
sifier, Bayesian networks, bioinformatics.

1. INTRODUCTION
Most of the particle swarm algorithms present in the literature

deal only with continuous variables [1, 9, 17]. This is a signif-
icant limitation because many optimization problems are set in a
space featuring discrete variables. Typical examples include prob-
lems which require the ordering or arranging of discrete variables,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, United Kingdom.
Copyright 2007 ACM 9781595936974/07/0007...$5.00.

such as scheduling or routing problems [24]. Therefore, the de-
sign of particle swarm algorithms that deal with discrete variables
is pertinent to this field of study.

In [4] we proposed a discrete Particle Swarm Optimization (PSO)
algorithm for attribute selection in Data Mining. We will refer to
that algorithm as the Discrete Particle Swarm Optimization (DPSO)
algorithm. The DPSO deals with discrete variables, and its popula-
tion of candidate solutions contains particles of different sizes – it
forces the particles to have a constant number of attributes across
iterations. The motivation and main innovation of the DPSO al-
gorithm is to interpret the concept of velocity, used in traditional
PSO, as “probability"; render velocity as a proportional likelihood
and use this information to sample new particle positions. Though
the DPSO has been designed for an attribute selection task, it is
not limited to this kind of application. With few modifications,
the DPSO may potentially be applied to other discrete optimization
problems, such as facility location problems [5].

Many data mining applications involve the task of building a
model for predictive classification. The goal of such a model is to
classify examples (records or data instances) into classes or cate-
gories of the same type. Noise or unimportant variables (attributes)
may reduce the accuracy and reliability of a classification or pre-
diction model. Unnecessary variables (attributes) also increase the
costs of building and running a model – particularly on large data
sets. It is therefore important to select an appropriate subset of
“good" attributes before performing classification. Attribute selec-
tion tries to simplify a data set by reducing its dimensionality and
identifying relevant underlying attributes without sacrificing pre-
dictive accuracy. As a result, it reduces redundancy in the informa-
tion provided by the attributes effectively used for prediction. For
a more detailed review of the attribute selection task using genetic
algorithms see [7].

The DPSO algorithm was designed to the data mining task of
attribute selection. It differs from other traditional PSO algorithms
because its particles do not represent points inside an n-dimensional
Euclidean space (continuous case) or lattice (binary case) as in the
standard PSO algorithms [14]. Instead, they represent a combina-
tion of selected attributes. In previous work the DPSO was used to
select attributes for a Naive Bayes (NB) classifier. The NB classi-
fier was used to predict postsynaptic function in proteins.

This new study extends that previous work in two ways. First,
we enable the DPSO to select attributes for a Bayesian network al-
gorithm, which is much more sophisticated than the Naive Bayes
algorithm previously used. Second, we apply DPSO to a more chal-
lenging protein functional classification data set. This data set has
a much larger number of classes to be predicted than the previously

tested postsynaptic data set – which had just two classes to be pre-
dicted.

The organization of the paper is: Section 2 briefly addresses
Bayesian networks and Naive Bayes classifier. Section 3 shortly
discusses PSO algorithms. Section 4 describes the standard Binary
PSO algorithm and Section 5 the DPSO algorithm. Section 6 sum-
marizes G protein-coupled receptors (GPCRs). Section 7 reports
computational experiments. It also includes a brief discussion of
the results obtained. Section 8 presents conclusions and points out
future research directions. The following subsection presents nota-
tion used throughout this paper.

1.1 Notation
We denote a random variable by an uppercase letter, i.e., X and

the state or value of this random variable by a similar lowercase
letter, i.e., x. An uppercase letter with an arrow over the letter, e.g.,
−→
X , denotes a vector of random variables.

−→
X = (X1, X2, ..., Xn) de-

notes an n-dimensional vector of random variables. Abusing the

mathematical notation, we use
−→
X = {X1, X2, ..., Xn} (note the braces

“{}”) to represent a vector of random variables which is also a set

of indices.
−→
X = {X1, X2, ..., Xn} is a set of indices in the math-

ematical sense of set. That is, there are no duplicated indices and
there is no ordering among the indices X1, X2, ..., Xn. Given a candi-

date solution, say
−→
X (i), the symbol f (

−→
X (i)), called the fitness func-

tion, represents a measurement of how well the solution
−→
X (i) solves

the target problem. Subsection 7.1 describes how the measurement

f (
−→
X (i)) is computed in the present work.

2. BAYESIAN NETWORKS AND

NAIVE BAYES
The Naive Bayes classifier uses a probabilistic approach to as-

sign each example (record) of the data set to a possible class. In
our application, it assigns a record (protein) of the data set to one
of the possible classes. A Naive Bayes classifier assumes that all
attributes are conditionally independent of one another [18].

A Bayesian network, by contrast, detects probabilistic dependen-
cies among these attributes and uses this information to benefit the
attribute selection process.

A Bayesian network (BN) is a graphical representation of a prob-
ability distribution over a set of variables of a given problem do-
main [10, 20]. This graphical representation is a directed acyclic
graph in which nodes represent the variables of the problem and
arcs represent conditional probabilistic dependencies among the
nodes. The network structure encodes probabilistic dependencies
among domain variables and a joint probability distribution quan-
tifies the strength of these dependencies.

An example of a Bayesian network is as follows1. Suppose that
a doctor is treating a patient who has been suffering from shortness
of breath (called dyspnoea). The doctor knows that diseases such as
tuberculosis and bronchitis are possible causes for that, as well as
lung cancer. The doctor also knows that other relevant information
includes whether the patient is a smoker (increasing the chances of
cancer and bronchitis) and what sort of air pollution the patient has
been exposed to. A positive X-ray would indicate either tuberculo-
sis or lung cancer. The set of variables for this problem and their
possible values are shown in Table 1.

Figure 1 shows a Bayesian network representing this problem.
For applications of Bayesian networks on evolutionary algorithms
and optimization problems see [15, 21].
1This is a modified version of the so-called “Asia" problem, [16],
given in § 2.5.3.

Table 1: Bayesian network: nodes and values for the lung can-

cer problem. L = low, H = high, T = true, F = false, Pos =

positive and Neg = negative.

Node name Values

Pollution {L, H}
Smoker {T, F}
Cancer {T, F}

Dyspnoea {T, F}
X-ray {Pos, Neg}

P S p(C=T|P,S)

H T 0.050

H F 0.020

L T 0.030

L F 0.001

p(P=L)

0.90

p(S=L)

0.30

C p(X=Pos|C)

T 0.90

F 0.20

C p(D=T|C)

T 0.65

F 0.30

Pollution Smoker

Cancer

X-ray Dyspnoea

Figure 1: A Bayesian network for the lung cancer problem.

Parents(Xi) represents the set of nodes (attributes) that have a
directed edge pointing to Xi. More formally, consider a BN con-
taining ℓ nodes, X1 to Xℓ, taken in that order. A particular value

of
−→
X = {X1, X2, ..., Xℓ} in the joint probability distribution is repre-

sented by:

p(
−→
X) = p(X1 = x1, X2 = x2, ..., Xℓ = xℓ),

or more compactly, p(x1, x2, ..., xℓ). The chain rule of probability
theory allows us to factorize joint probabilities, therefore:

p(
−→
X) = p(x1) p(x2|x1) ... p(xℓ |x1, ..., xℓ−1)

=
∏

i

p(xi|x1, ..., xi−1). (1)

As the structure of a BN implies that the value of a particular
node is conditional only on the values of its parent nodes, Equation
1 may be reduced to:

p(
−→
X) =

∏

i

p(Xi|Parents(Xi)). (2)

Learning the structure of a BN is an NP-hard problem [2, 3].
Many algorithms developed to this end use a scoring metric and
a search procedure. The scoring metric evaluates the goodness-
of-fit of a structure to the data. The search procedure generates
alternative structures and selects the best one based on the scoring
metric. To reduce the search space of networks, only candidate
networks in which each node has at most k inward arcs (parents)
are considered – k is a parameter determined by the user. In this
work we use k = 20 to avoid overly complex models.

To generate alternative structures for our BN we used a greedy
search algorithm. Starting with an empty network, the greedy search
algorithm adds into the network the edge that most increases the
score of the resulting network. The search stops when no other edge
addition improves the score of the network. Algorithm 1 shows the
pseudocode of our generic greedy search algorithm.

Algorithm 1 Pseudocode for a generic greedy search algorithm

Require: Initialize an empty Bayesian network G containingn

nodes (i.e., a BN with n nodes but no edges)
1: Evaluate the score of G: Score(G)
2: G’ = G

3: for i = 1 to n do

4: for j = 1 to n do

5: if i , j then

6: if there is no edge between the nodes i and j in G′ then

7: Modify G’ by adding an edge between the nodes i and j in G′

such that i is a parent of j: (i→ j)
8: if the resulting G’ is a DAG then

9: if (Score(G’) > Score(G)) then

10: G = G’

11: end if

12: end if

13: end if

14: end if

15: G’ = G

16: end for

17: end for

In this work we evaluate the “goodness-of-fit” (score) of a net-
work structure to the data using an unconventional scoring metric.
To evaluate the score of candidate networks we proceed as follows.
We divide the data set into 10 equally sized folds. For all class
levels each fold maintains roughly the same proportion of classes
present in the whole data set before division. This is called strat-
ified cross-validation. Eight of the ten folds are used to compute
the probabilities for the bayesian network. The ninth fold is used
as validation set and the tenth fold as test set. During the search
for the network structure only the validation set is used to compute
predictive accuracy. The score of the candidate networks is given
by the predictive accuracy of the classification of the proteins in the
validation set. The network that shows the highest predictive accu-
racy on the validation set is then used to compute the predictive
accuracy on the test set. Once the network structure is selected, the
nine folds are merged and this merged data set is used to compute
the probabilities for the selected Bayesian network. The predictive
accuracy (reported as the final result) is then computed on the pre-
viously untouched test set fold. Every fold will be once used as
validation set and once used as test set. This process is discussed
again, somewhat in more details, in subsection 7.1 when the com-
putation of a fitness function is presented. A similar process is
adopted for the computation of the predictive accuracy using the
Naive Bayes classifier.

3. A BRIEF INTRODUCTION TO

PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization (PSO) comprises a set of search

techniques, inspired by the behavior of natural swarms, for solv-
ing optimization problems [14]. In PSO a potential solution to a
problem is represented by a particle,

−→
X (i) = (X(i,1), X(i,2), ..., X(i,n)),

in an n-dimensional search space. The coordinates X(i,d) of these
particles have a rate of change (velocity) v(i,d), d = 1, 2, ..., n. Every
particle keeps a record of the best position that it has ever visited.
Such a record is called the particle’s previous best position and de-

noted by
−→
B(i). The global best position attained by any particle

so far is also recorded and stored in a particle denoted by
−→
G. An

iteration comprises evaluation of each particle, then stochastic ad-

justment of v(i,d) in the direction of particle
−→
X (i)’s previous best

position and the previous best position of any particle in the neigh-
borhood [13]. There is much variety in the neighborhood topology
used in PSO, but quite often gbest or lbest topologies are used. In
the gbest topology every particle has only the global best particle
−→
G as its neighbor. In the lbest topology, usually, each particle has
a number of other particles to its right and left as neighbors. For
a review of the neighborhood topologies used in PSO the reader is
referred to [12, 14].

As a whole, the set of rules that govern PSO are: evaluate, com-
pare and imitate. The evaluation phase measures how well each
particle (candidate solution) solves the problem at hand. The com-
parison phase identifies the best particles. The imitation phase pro-
duces new particle positions based on some of the best particles
previously found. These three phases are repeated until a given
stopping criterion is met. The objective is to find the particle that
best solves the target problem.

Important concepts in PSO are velocity and neighborhood topol-

ogy. Each particle,
−→
X (i), is associated with a velocity vector. This

velocity vector is updated at every generation. The updated veloc-

ity vector is then used to generate a new particle position
−→
X (i). The

neighborhood topology defines how other particles in the swarm,

such as
−→
B(i) and

−→
G, interact with

−→
X (i) to modify its respective ve-

locity vector and, consequently, its position as well.

4. THE STANDARD BINARY PSO

ALGORITHM
The standard binary version of the PSO algorithm [14] works as

follows. Potential solutions (particles) to the target problem are en-

coded as fixed length binary strings; i.e.,
−→
X (i) = (X(i,1), X(i,2), ..., X(i,n)),

where X(i, j) ∈ {0, 1}, i = 1, 2,..., N and j = 1, 2, ..., n. Given a list

of attributes A = (A1, A2, ..., An), the first element of
−→
X (i), from the

left to the right hand side, corresponds to the first attribute “A1”,
the second to the second attribute “A2”, and so forth. A value of
0 on the site associated to an attribute indicates that the respective
attribute is not selected. A value of 1 means that it is selected.

4.1 The initial population for the standard
Binary PSO algorithm

For the initial population, N binary strings of length n are ran-

domly generated. Each particle
−→
X (i) is independently generated as

follows. For every position X(i,d) of
−→
X (i) a uniform random num-

ber ϕ is drawn on the interval (0, 1). If ϕ < 0.5, then X(i,d) = 1,
otherwise X(i,d) = 0. We then record this exactly initial population
to be used as the initial population by the DPSO algorithm. This is
to try to make the comparison between both algorithms as fair as
possible.

4.2 Updating the records
At the beginning, the previous best position of

−→
X (i), denoted by

−→
B(i), is empty. Therefore, once the initial particle

−→
X (i) is gener-

ated,
−→
B(i) is set to

−→
B(i) =

−→
X (i). After that, every time that

−→
X (i)

is updated,
−→
B(i) is also updated if f (

−→
X (i)) is better than f (

−→
B(i)).

Otherwise,
−→
B(i) remains as it is. A similar process is used to up-

date the global best position
−→
G. At the beginning,

−→
G is also empty.

Therefore, once all the
−→
B(i) have been determined,

−→
G is set to the

fittest
−→
B(i) previously computed. After that,

−→
G is updated if the

fittest f (
−→
B(i)) in the swarm is better than f (

−→
G(i)). And, in that case,

f (
−→
G(i)) is set to f (

−→
G(i)) = fittest f (

−→
B(i)). Otherwise,

−→
G remains as

it is.

4.3 Updating the velocities for the standard
Binary PSO algorithm

Every particle
−→
X (i) is associated to a unique vector of velocities

V(i) = (v(i,1), v(i,2), ..., v(i,n)). The elements v(i,d) in V(i) determine

the rate of change of each respective coordinate X(i,d) in
−→
X (i), d =

1, 2, ..., n. Each element v(i,d) ∈ V(i) is updated according to the
equation:

v(i,d) = w v(i,d) + ϕ1(b(i,d) − X(i,d)) + ϕ2(g(d) − X(i,d)), (3)

where w (0 < w < 1), called the inertia weight, is a constant value
chosen by the user. Equation 3 is a standard equation used in PSO
algorithms to update the velocities [11, 22]. Note that X(i,d) is the

dth component of
−→
X (i); b(i,d) is the dth component of

−→
B(i); g(d) is the

dth component of
−→
G and d = 1, 2, ..., n. The factors ϕ1 and ϕ2 are

uniform random numbers independently generated in the interval
(0, 1).

4.4 Sampling new particle positions for the
standard Binary PSO algorithm

New particle positions are sampled as follows. For each particle
−→
X (i) and each dimension d, the value of the new coordinate X(i,d) ∈
−→
X (i) can be either 0 or 1. The decision of whether X(i,d) will be 0 or
1 is based on its respective velocity v(i,d) ∈ V(i) and is given by the
following equation:

X(i,d) =

{

1, if(rand < S (v(i,d)))
0, otherwise;

(4)

where 0 ≤ rand ≤ 1 is a uniform random number and

S (v(i,d)) =
1

1 + exp(−v(i,d))

is the sigmoid function. Equation 4 is a standard equation used to
sample new particle positions in the Binary PSO algorithm [14].
Note that the lower the value of v(i,d) the more likely the value of
X(i,d) will be 0. By contrast, the higher the value of v(i,d) the more
likely the value of X(i,d) will be 1. The next section presents the
DPSO algorithm.

5. THE DISCRETE PSO ALGORITHM

(DPSO)
This algorithm deals with discrete variables (attributes) and its

population of candidate solutions contains particles of different sizes.
Potential solutions to the optimization problem at hand are repre-
sented by a swarm of particles. There are N particles in a swarm.
The length of each particle may vary from 1 to n, where n is the

number of attributes of the problem. Each particle
−→
X (i) keeps a

record of the best position it has ever attained. This information

is stored in a separated particle labeled as
−→
B(i). The swarm also

keeps a record of the global best position ever attained by any par-
ticle in the swarm. This information is also stored in a separated

particle labeled
−→
G. Note that

−→
G is equal to the best

−→
B(i) present in

the swarm.

5.1 Encoding of the particles for the DPSO
algorithm

Each attribute is identified by a unique positive integer number,
or index. These numbers, indices, vary from 1 to n. A particle is a

subset of non-ordered indices without repetition, e.g.,
−→
X (i) = {2, 4,

18, 1}.

5.2 The initial population for the DPSO
algorithm

The initial population of solutions used by the DPSO is always
identical to the initial population used by the Binary PSO. They dif-
fer only in the way in which solutions are represented. We translate
all candidate solution in the initial population (of the binary PSO
to the Discrete PSO population) in the following way: the index of
every attribute that has value 1 is copied to the new solution (parti-
cle) of the DPSO initial population. For instance, a solution equal
to (1, 0, 1, 1, 0) is translated into {1, 3, 4}.

5.3 Velocities = proportional likelihoods
The DPSO algorithm does not use a vector of velocities as the

standard PSO algorithm does. It works with proportional likeli-
hoods instead. Arguably, the notion of proportional likelihood used
in the DPSO algorithm and the notion of velocity used in the stan-
dard PSO are somewhat similar. We use V̇(i) to represent an array
of proportional likelihoods and v̇ to represent one of its compo-
nents. Every particle is associated with a 2-by-n array of propor-
tional likelihoods, where 2 is the number of rows in this array and n

is the number of columns. A generic proportional likelihood array
looks like this:

V̇(i) =

(

proportional likelihood row

attribute index row

)

.

Each of the n elements in the first row of V̇(i) represents the pro-
portional likelihood that an attribute be selected. The second row of
V̇(i) shows the indices of the attributes associated with the respec-
tive proportional likelihoods. There is a one-to-one correspondence
between the columns of this array and the attributes of the problem
domain. At the beginning, all elements in the first row of V̇(i) are
set to 1, for example:

V̇(i) =

(

1 1 1 1 1
1 2 3 4 5

)

.

After the initial population of particles is generated, this array is al-
ways updated before a new configuration for the particle associated

to it is generated. The updating process is based on
−→
X (i),

−→
B(i) and

−→
G and works as follows. In addition to

−→
X (i),

−→
B(i) and

−→
G, three con-

stant updating factors, namely, α, β and γ, are used to update the
proportional likelihoods v̇(i,d). These factors determine the strength

of the contribution of
−→
X (i),

−→
B(i) and

−→
G to the adjustment of every

coordinate v̇(i,d) ∈ V̇(i). Note that α, β and γ are parameters chosen
by the user. The contribution of these parameters to the updating of

v̇(i,d) is as follows. All indices present in
−→
X (i) have their correspon-

dent proportional likelihood increased by α. In addition to that, all

indices present in
−→
B(i) have their correspondent proportional like-

lihood increased by β. The same for
−→
G for which the proportional

likelihoods are increased by γ. For instance, given n = 5, α = 0.10,

β = 0.12, γ = 0.14,
−→
X (i) = {2, 3, 4},

−→
B(i) = {3, 5, 2},

−→
G = {5, 2}

and also:

V̇(i) =

(

1 1 1 1 1
1 2 3 4 5

)

, the updated V̇(i) would be:

V̇(i) =

(

1 1 + α + β + γ 1 + α + β 1 + α 1 + β + γ
1 2 3 4 5

)

.

Note that index 1 is not present in
−→
X (i),

−→
B(i) or

−→
G. Therefore, the

proportional likelihood of attribute 1 in V̇(i) remains as it is. This
new updated array replaces the old one and will be used to generate
a new configuration to the particle associated to it as follows.

5.4 Sampling new particle positions for the
DPSO algorithm

The proportional likelihood array V̇(i) is then used to sample a

new instance of particle
−→
X (i) – that is, the particle associated to it.

First, every element of the first row of the array V̇(i) is multiplied by
a uniform random number between 0 and 1. A new random number
is drawn for every single multiplication performed. To illustrate,
suppose that

V̇(i) =

(

1 1.36 1.22 1.1 1.26
1 2 3 4 5

)

.

The multiplied proportional likelihood array would be:

V̇(i) =

(

1 × ϕ1 1.36 × ϕ2 1.22 · ϕ3 1.1 · ϕ4 1.26 · ϕ5

1 2 3 4 5

)

,

where ϕ1, ..., ϕ5 are uniform random numbers independently drawn
on the interval (0, 1). Suppose that the multiplied array V̇(i) looks
like this:

V̇(i) =

(

0.11 0.86 0.57 0.62 1.09
1 2 3 4 5

)

.

The new particle position is then defined by ranking the columns in
V̇(i) by the values in its first row. That is, the elements in the first
row of the array are ranked in a decreasing order of value and the
indices of the attributes (in the second row of V̇(i)) follow their re-
spective proportional likelihoods. For example, ranking the array:

V̇(i) =

(

0.11 0.86 0.57 0.62 1.09
1 2 3 4 5

)

,

we would obtain V̇(i) =

(

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

)

.

After ranking the array V̇(i), the first k indices (in the second row
of V̇(i)), from left to right, are selected to compose the new particle

position. The constant k represents the length of the particle
−→
X (i),

the particle associated to the ranked array V̇(i). Thus, if particle
−→
X (i), a particle associated to the multiplied and sorted array:

V̇(i) =

(

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

)

,

has length 3, the first 3 indices from the second row of V̇(i) would
be selected to compose the new particle position. Based on the ar-

ray V̇(i) given above, if k = 3 (that is,
−→
X (i) = {*, *, *}) the indices

(attributes) 5, 2 and 4 would be selected to compose the new par-

ticle position, i.e.,
−→
X (i) = {5, 2, 4}. Note that indices that have a

higher proportional likelihood are, on average, more likely to be
selected.

The updating of
−→
X (i),

−→
B(i) and

−→
G is identical to what is described

in Subsection 4.2.

6. G PROTEINCOUPLED RECEPTORS

(GPCRS)
G protein-coupled receptors (GPCRs) are a protein family of

transmembrane receptors. Their function is to transduce signals
that induce a cellular response to the environment. GPCRs are the
largest protein family known and they are involved in all types of
stimulus-response pathways, from intercellular communication to
physiological senses. GPCRs are of much interest to the pharma-
ceutical industry for these proteins are involved in many pathologi-
cal conditions, which led to GPCRs being the target of 40% to 50%
of modern medicinal drugs [6].

In this work we use the GPCR-PROSITE data set of proteins
previously used in [8]. The data set contains 190 proteins. The pro-
teins are represented by a set of 127 PROSITE patterns. PROSITE
is a database of protein families and domains. It is based on the
observation that, while there is a huge number of different proteins,
most of them can be grouped, on the basis of similarities in their
sequences, into a limited number of families (a protein consists
of a sequence of amino acids). PROSITE patterns are small re-
gions within a protein that present a high sequence similarity when
compared to other proteins. In our data set the absence of a given
PROSITE pattern is indicated by a value of 0 for the attribute corre-
sponding to that PROSITE pattern. The presence of it is indicated
by a value of 1 for that same attribute. The proteins in this data
set are grouped into families and subfamilies in a hierarchical fash-
ion. There are three levels of hierarchy. The first level has 8 classes
(families), the second and third levels have 32 classes (subfamilies)
each one (some proteins are classified only up to the second hier-
archical level and have no class at the third level). The objective
of our algorithms is to classify each protein into its most suitable
family in each level. In this work the classification of the proteins
is performed for each class level individually. For instance, given
protein X a conventional “flat” classification algorithm assigns X’s
class at the first class level only. Once protein X has been classified
at the first class level, the conventional flat classification algorithm
is again applied to assign a class to protein X at the second level –
no information about X’s class at the previous level is used. The
same process is used to assign a class to protein X at the third class
level.

7. EXPERIMENTS
In this section, we report and discuss computational experiments.

The quality of a candidate solution (fitness) is evaluated in three
different ways: (1) by a baseline algorithm (using all possible at-
tributes); (2) by the Binary PSO; and (3) by the Discrete PSO
(DPSO). Each of these algorithms computes the fitness of every
given solution using two distinct techniques: (a) using a Naive
Bayes classifier; and (b) using a Bayesian network. For the Binary
PSO and DPSO 30 independent runs are performed for each single
fold. The results obtained, averaged over 30 runs, are reported in
Table 2.

7.1 Experimental Methodology
The fitness function f (

−→
X (i)) of any particle

−→
X (i) is computed as

follows. f (
−→
X (i)) is equal to the predictive accuracy achieved by the

Naive Bayes classifier (and the Bayesian network) on the GPCR-

PROSITE data set and using only the attributes present in
−→
X (i). The

objective is to find the smallest subset of attributes (PROSITE pat-
terns) with which it is possible to classify the proteins on the data
set as belonging to one of the classes (for each class level) with
an acceptable accuracy. We define the accuracy as acceptable if
it is equal to or better than the accuracy obtained by the classifica-

Table 2: Results for the GPCR-PROSITE data set.

127 ATTRIBUTES
AVERAGE

PREDICTIVE ACCURACY
AVERAGE NUMBER OF

SELECTED ATTRIBUTES

METHOD
CLASS

LEVEL

USING ALL
ATTRIBUTES

BINARY
PSO

DISCRETE
PSO

BINARY
PSO

DISCRETE
PSO

NAIVE
BAYES

1 71.27±2.08 72.88±2.40 *73.05±2.31 85.60±2.84 *74.90±3.48
2 30.00±2.10 31.34±2.47 *32.60±2.31 101.50±3.14 *83.80±4.64
3 20.47±0.96 21.47±1.16 *23.25±1.08 102.30±3.77 *87.50±4.25

BAYESIAN
NETWORK

1 78.05±2.33 79.03±2.57 *80.54±2.46 78.50±3.50 *65.50±3.41
2 39.08±2.67 40.31±2.85 *43.24±4.67 94.10±3.70 *73.30±2.67
3 24.70±1.83 26.14±2.11 *28.97±2.77 94.90±3.90 *77.60±4.35

The best result on each line for each performance criterion is marked with an asterisk (*).

tion performed considering all the 127 original attributes. Note that
this is a naive and particular definition of acceptable accuracy. We
chose this definition because it suits the purpose of our experiments
– to compare the performance of the standard Binary PSO and the
DPSO algorithms in the GPCR-PROSITE data set. As a rule, the
definition of acceptable accuracy is problem dependent and should
take into account prior knowledge of the target problem - when
available. In fact, in many real-world applications, minimizing the
number of selected attributes while maximizing classification ac-
curacy are conflicting tasks.

The measurement of f (
−→
X (i)) in this paper follows what in Data

Mining is called a wrapper approach. The wrapper approach searches
for an optimal attribute subset tailored to a particular algorithm,
such as the Naive Bayes classifier or Bayesian network. For more
information on wrapper and other attribute selection approaches see
[25].

The computational experiments involved a 10-fold cross-validation
method [25]. First, the 190 records in the GPCR-PROSITE data
set were divided into 10 equally sized folds. The folds were ran-
domly generated but under the following criterion. The proportion
of classes in every single fold must be similar to the one found in
the original data set containing all the 190 records. This is known
as stratified cross-validation. Each of the 10 folds is used once as
test set and the remaining of the data set is used as training set. Out
of the 9 folds in the training set, one is reserved to be used as a val-
idation set. The Naive Bayes classifier and the Bayesian network
use the remaining 8 folds to compute the probabilities required to
classify new examples. Once those probabilities have been com-
puted, the Naive Bayes classifier (NB) and the Bayesian network
(BN) classify the examples in the validation set. The accuracy of
this classification on the validation set is the value of the fitness
functions fNB(

−→
X (i)) and fBN(

−→
X (i)). After the run of the PSO al-

gorithm is completed, the 9 folds are merged into a full training
set. The Naive Bayes classifier and the Bayesian network are then
trained again on this full training set (9 merged folds), and the prob-
abilities computed in this final, full training set are used to classify
examples in the test set (the 10th fold), which was never accessed
during the run of the algorithms. In each of the 10 iterations of the
cross-validation procedure, the predictive accuracy of the classifi-
cation is assessed by 3 different methods:

(1) Using all the 190 original attributes: all possible attributes
are used by the Naive Bayes classifier and the Bayesian net-
work.

(2) Standard Binary PSO algorithm: only the attributes se-
lected by the best particle found by the Binary PSO algorithm
are used by the Naive Bayes classifier and the Bayesian net-
work.

(3) DPSO algorithm: only the attributes selected by the best
particle found by the DPSO algorithm are used by the Naive
Bayes classifier and the Bayesian network.

Since the Naive Bayes and Bayesian network classifiers that we
used are deterministic, only one run (for each of these algorithms)
is performed for the classification using all the 127 attributes. For
the Binary PSO and the DPSO algorithms 30 independent are per-
formed for each fold. Results reported are averaged over these 30
independent runs. The population size used for both algorithms
(Binary PSO and DPSO) is 200 and the search stops after 20,000
fitness evaluations (or 100 iterations). The Binary PSO algorithm
uses a inertia weight value of 0.8 (i.e., w = 0.8). The choice of the
value of this parameter was based on the work presented in [23].
Other choices of parameter values for the DPSO were α = 0.10, β
= 0.12 and γ = 0.14. These values were empirically determined
in our preliminary experiments; but we make no claim that these
are optimal values. Parameter optimization is a topic for future re-
search.

The measurement of the predictive accuracy rate of a model
should be a reliable estimate of how well that model classifies the
test examples (unseen during the training phase) on the target prob-
lem. In Data Mining, typically, the equation:

Standard accuracy rate =
T P + T N

T P + FP + FN + T N
(5)

is used to assess the accuracy rate of a classifier (where T P, T N,
FP, FN are the numbers of true positives, true negatives, false pos-
itives and false negatives, respectively [25]). Nevertheless, if the
class distribution is highly unbalanced, Equation 5 is an ineffective
way of measuring the accuracy rate of a model. For instance, in
many problems it is easy to maximize Equation 5 by simply pre-
dicting always the majority class. Therefore, on our experiments
we use a more demanding measurement for the accuracy rate of a
classification model.

It has also been used before in [19]. This measurement is given
by the equation:

Predictive accuracy rate = T PR · T NR , (6)

where, T PR =
T P

T P + FN
and T NR =

T N

T N + FP
.

Note that if any of the quantities T PR or T NR is zero, the value
returned by Equation 6 is also zero.

7.2 Discussion
Results are reported in Table 2. First, we discuss the results ob-

tained by the three algorithms using the Naive Bayes classifier. To
assess the performance of the algorithms we consider two criteria:
(1) maximizing predictive accuracy; and (2) finding the smallest

subset of attributes. Comparing the first criterion, accuracy, we
note that both versions of the PSO algorithm did better (in all class
levels) than the baseline algorithm using all attributes. Further-
more, the DPSO algorithm did slightly better than the Binary PSO
algorithm in all class levels. Nevertheless, the difference in the pre-
dictive accuracy performance between these algorithms is, in some
cases, not statistically significant. Table 3 shows the results of a
paired two-tailed t-test for the predictive accuracy of the Binary
PSO versus the predictive accuracy of the DPSO (at a significance
level of 0.05).

Table 3: Binary PSO vs. DPSO (ACCURACY) : paired two-

tailed t-test for the predictive accuracy (significance level 0.05).
CLASS
LEVEL

Naive Bayes Bayesian network

1 t(9) = 0.467, p = 0.651 t(9) = 3.407, p = 0.007
2 t(9) = 2.221, p = 0.053 t(9) = 3.200, p = 0.010
3 t(9) = 3.307, p = 0.009 t(9) = 3.556, p = 0.006

According to Table 3, using Naive Bayes as classifier the only
statistically significant difference in performance (in terms of pre-
dictive accuracy) between the algorithms (Binary PSO and DPSO)
is at the third class level. By contrast, using Bayesian networks as
classifier the difference in performance is statistically significant at
all class levels.

However, the discriminating factor between the performance of
these algorithms is on the second comparison criterion – finding the
smallest subset of attributes. The DPSO not only outperformed the
binary PSO in predictive accuracy, but also did so using a smaller
subset of attributes in all class levels. Moreover, when it comes
to effectively pruning the set of attributes, the difference in perfor-
mance between the Binary PSO and the DPSO is always statisti-
cally significant. Table 4 shows that.

Table 4: Binary PSO vs. DPSO (ATTRIBUTES) : paired two-

tailed t-test for the number of attributes selected (significance

level 0.05).
CLASS
LEVEL

Naive Bayes Bayesian network

1 t(9) = 7.248, p = 4.8E-5 t(9) = 8.2770, p = 1.6E-5
2 t(9) = 9.052, p = 8.1E-6 t(9) = 14.890, p = 1.2E-7
3 t(9) = 6.887, p = 7.1E-5 t(9) = 9.1730, p = 7.3E-6

Second, we discuss the results obtained using the Bayesian net-
work algorithm as a classifier. Again, the predictive accuracy at-
tained by both versions of the PSO algorithm surpassed the predic-
tive accuracy obtained by the baseline algorithm in all class levels.
DPSO obtained the best predictive accuracy of all algorithms in all
three class levels. In terms of the second comparison criterion, find-
ing the smallest subset of attributes, again DPSO always selected
the smallest subset of attributes in all hierarchical levels.

Comparing the performance of the classifiers (Naive Bayes vs.
Bayesian networks), we note that Bayesian networks did a much
better job. For all three class levels the predictive accuracy ob-
tained by the algorithms (baseline, Binary PSO and DPSO) using
Bayesian networks was significantly better than the predictive ac-
curacy obtained using Naive Bayes classifier. The Bayesian net-
works also enabled the two PSO algorithms to do the job using
fewer selected attributes.

The results emphasize the importance of taking correlations among
attributes into account when doing attribute selection. When these
correlations are ignored, predictive accuracy is adversely affected.

8. CONCLUSIONS
Computational results show that the use of unimportant attributes

tend to derail classifiers and hurt classification accuracy. Using
fewer attributes, the Binary PSO and the DPSO algorithms obtained
better predictive accuracy (in 100% of the cases) than the classifica-
tion performed using all possible attributes. Previous work had al-
ready shown that the DPSO algorithm performs better than the Bi-
nary PSO in the task of attribute selection [4]. Even if the improve-
ment in predictive accuracy is not significant, by selecting fewer
attributes the DPSO certainly enhance computational efficiency of
the classifier.

The original work, however, questioned whether the difference
in performance between these two algorithms was attributable to
variations in the initial population of solutions. To overcome this
possible advantage/disadvantage for one algorithm or the other, the
present work used the same initialization for both algorithms. Com-
putational results show that, even using the same initial conditions,
the DPSO is still outperforming the Binary PSO in both predictive
accuracy and number of selected attributes. The DPSO is arguably
not too different from traditional PSO but still the algorithm has
some features that enable it to improve over binary PSO.

Another interesting result from the experiments is the clear dif-
ference in performance between Naive Bayes and Bayesian net-
works used as classifiers. Bayesian networks outperformed Naive
Bayes classifier in all experiments and in all hierarchical class lev-
els.

The hierarchical classification performed in this work was a flat
classification. The algorithms did not use the information of the
class assigned to an example (protein) in one level to help the pre-
diction of the class of at the next hierarchical level. In future work
we intend to develop an algorithm that takes advantage of this in-
formation.

9. ACKNOWLEDGMENTS
Thanks to Nick Holden for kindly providing us with the bio-

logical data sets used in this work. The authors would also like to
thank EPSRC (grant Extended Particle Swarms GR/T11265/01) for
financial support.

10. REFERENCES

[1] T. Blackwell and J. Branke. Multi-swarm optimization in
dynamic environments. In Lecture Notes in Computer

Science, volume 3005, pages 489–500. Springer-Verlag,
2004.

[2] R. R. Bouckaert. Properties of Bayesian belief network
learning algorithms. In I. R. L. de Mantaras and e. D. Poole,
editors, Proceedings of the 10th Conference on Uncertainty

in Artificial Intelligence, pages 102–109, Seattle, WA, USA,
1994. Morgan Kaufmann.

[3] D. M. Chickering, D. Geiger, and D. Heckerman. Learning
Bayesian networks is NP-hard. Technical Report
MSR-TR-94-17, Microsoft Research, November 1994.

[4] E. S. Correa, A. A. Freitas, and C. G. Johnson. A new
discrete particle swarm algorithm applied to attribute
selection in a bioinformatics data set. In M. K. et al., editor,
Proceedings of the Genetic and Evolutionary Computation

Conference - GECCO-2006, pages 35–42, Seattle, WA,
USA, July 2006. ACM Press.

[5] E. S. Correa, M. T. Steiner, A. A. Freitas, and C. Carnieri.
Using a genetic algorithm for solving a capacity p-median
problem. Numerical Algorithms, 35:373–388, 2004.

[6] D. Filmore. It’s a GPCR world. Modern drug discovery,
11(7):24–28, November 2004.

[7] A. A. Freitas. Data Mining and Knowledge Discovery with

Evolutionary Algorithms. Springer-Verlag, October 2002.

[8] N. Holden and A. A. Freitas. Hierarchical classification of
g-protein-coupled receptors with a pso/aco algorithm. In
Proc. IEEE Swarm Intelligence Symposium (SIS-06), pages
77–84. IEEE Press, June 2006.

[9] S. Janson and M. Middendorf. A hierarchical particle swarm
optimizer for dynamic optimization problems. In
Evoworkshops 2004: 1st European Workshop on

Evolutionary Algorithms in Stochastic and Dynamic

Environments, pages 513–524, Coimbra, Portugal, 2004.
Springer-Verlag.

[10] F. V. Jensen. Bayesian networks and decision graphs.
Springer-Verlag, 1st edition, July 2001.

[11] G. Kendall and Y. Su. A particle swarm optimisation
approach in the construction of optimal risky portfolios. In
Proceedings of the 23rd IASTED International

Multi-Conference on Applied Informatics, pages 140–145,
2005. Artificial intelligence and applications.

[12] J. Kennedy. Small worlds and mega-minds: effects of
neighborhood topology on particle swarm performance. In
P. J. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and
A. Zalzala, editors, Proceedings of the Congress of

Evolutionary Computation, pages 1931–1938, Piscataway,
NJ, USA, 1999. IEEE Press.

[13] J. Kennedy and R. C. Eberhart. A discrete binary version of
the particle swarm algorithm. In Proceedings of the 1997

Conference on Systems, Man, and Cybernetics, pages
4104–4109, Piscataway, NJ, USA, 1997. IEEE.

[14] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[15] P. Larrañaga, R. Etxeberria, J. A. Lozano, B. Sierra, I. naki
Inza, and J. M. Peña. A review of the cooperation between
evolutionary computation and probabilistic models. In
Second Symposium on Artificial Intelligence - CIMAF-1999,
pages 314–324, Havana, Cuba, March 1999. Special Session
on Distributions and Evolutionary Computation.

[16] S. L. Lauritzen and D. J. Spiegelhalter. Local computations
with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statistics

Society 50, 2:157–224, 1988.

[17] M. Løvbjerg and T. Krink. Extending particle swarm
optimisers with self-organized criticality. In D. B. Fogel,
M. A. El-Sharkawi, X. Yao, G. Greenwood, H. Iba,
P. Marrow, and M. Shackleton, editors, Proceedings of the

2002 Congress on Evolutionary Computation CEC2002,
pages 1588–1593. IEEE Press, 2002.

[18] T. M. Mitchell. Machine Learning. McGraw-Hill, August
1997.

[19] G. L. Pappa, A. J. Baines, and A. A. Freitas. Predicting
post-synaptic activity in proteins with data mining.
Bioinformatics, 21(2):ii19–ii25, 2005.

[20] J. Pearl. Probabilistic reasoning in intelligent systems:

networks of plausible inference. Morgan Kaufmann, 1st
edition, September 1988.

[21] J. M. Peña, J. A. Lozano, and P. Larrañaga. Globally
multimodal problem optimization via an estimation of
distribution algorithm based on unsupervised learning of
bayesian networks. In Evolutionary Computation,
volume 13, pages 43–66. MIT Press, January 2005.

[22] R. Poli, C. D. Chio, and W. B. Langdon. Exploring extended
particle swarms: a genetic programming approach. In
GECCO’05: Proceedings of the 2005 Conference on Genetic

and Evolutionary Computation, pages 169–176, New York,
NY, USA, 2005. ACM Press.

[23] Y. Shi and R. C. Eberhart. Parameter selection in particle
swarm optimization. In EP’98: Proceedings of the 7th

International Conference on Evolutionary Programming,
pages 591–600, London, UK, 1998. Springer-Verlag.

[24] M. M. Solomon. Algorithms for the vehicle routing and
scheduling problems with time window constraints.
Operations Research, 35(2):254–265, 1987.

[25] I. H. Witten and E. Frank. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, 2nd
edition, 2005.

