
A Hybrid PSO/ACO Algorithm for Classification

Nicholas Holden
University of Kent

Computing Laboratory
Canterbury, CT2 7NF, UK
+44 (0)1227 823192

nickpholden@gmail.com

Alex A. Frietas
University of Kent

Computing Laboratory
Canterbury, CT2 7NF, UK
+44 (0)1227 827220

A.A.Freitas@kent.ac.uk

ABSTRACT
In a previous work we have proposed a hybrid Particle Swarm
Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm for

the discovery of classification rules, in the context of data mining.
Unlike a conventional PSO algorithm, this hybrid algorithm can

directly cope with nominal attributes, without converting nominal

values into numbers in a pre-processing phase. The design of this
hybrid algorithm was motivated by the fact that nominal attributes

are common in data mining, but the algorithm can in principle be

applied to other kinds of problems involving nominal variables
(though this paper focuses only on data mining). In this paper we

propose several modifications to the original PSO/ACO algorithm.

We evaluate the new version of the PSO/ACO algorithm
(PSO/ACO2) in 16 public-domain real-world datasets often used to

benchmark the performance of classification algorithms. PSO/ACO2

is evaluated with two different rule quality (particle "fitness")
functions. We show that the choice of rule quality measure greatly

effects the end performance of PSO/ACO2. In addition, the results

show that PSO/ACO2 is very competitive with respect to two well-
known rule induction algorithms.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – Induction.

General Terms: Algorithms.

Keywords: Rule Induction, Classification, Particle Swarm

optimization, Ant Colony Optimisation, Data Mining.

1. I%TRODUCTIO%
We have previously proposed a hybrid Particle Swarm

Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm for
the discovery of classification rules, in the context of data mining.

(A brief review of classification rules is provided in Section 2.)

Unlike a conventional PSO algorithm, this hybrid algorithm can
directly cope with not only continuous but also nominal attributes,

without converting nominal values into numbers in a pre-processing

phase. The design of this hybrid algorithm was motivated by the fact
that nominal attributes are common in data mining, but the

algorithm can in principle be applied to other kinds of problems
involving nominal variables (though this paper focuses only on data

mining).

In this paper we propose several modifications to the original
PSO/ACO algorithm. In essence, the proposed modifications

involve changes in the pheromone updating procedure and in the

rule initialization method, as well as – significantly – the splitting of
the rule discovery process into two separate phases, as follows. In

the first phase a rule is discovered using nominal attributes only. In

the second phase the rule is potentially extended with continuous
attributes. This further increases the ability of the PSO/ACO

algorithm in treating nominal and continuous attributes in different

ways, recognizing the differences in these two kinds of attributes (a
fact ignored by a conventional PSO algorithm, as mentioned earlier).

We also experiment with two different rule quality functions, since

the choice of a such a function is a very important aspect in the
design of a data mining algorithm. We evaluate the new version of

the PSO/ACO algorithm – denoted PSO/ACO2 in this paper – in 16
public-domain real-world datasets often used to benchmark the

performance of classification algorithms.

The remainder of the paper is organised as follows. Section 2

introduces the classification task, section 3 describes in detail the

workings of the modified algorithm. Section 4 discusses the reasons
for the modifications, in section 5 we present the experimental set-

up and results. In section 6 we draw some conclusions from the

work and discuss possible future research.

2. CLASSIFICATIO%
The task (kind of problem) addressed in this paper is the
classification task of data mining. In classification the knowledge or

patterns discovered in the data set can be represented in terms of a

set of rules. A rule consists of an antecedent (a set of attribute-
values) and a consequent (class):

IF <attrib = value> AND ... AND <attrib = value> THEN <class>

The consequent of the rule is the class that is predicted by that rule.
The antecedent consists of a set of terms, where each term is

essentially an attribute-value pair. More precisely, a term is defined

by a triple <attribute, operator, value>, where value is a value
belonging to the domain of attribute. The operator used in this

paper is “=” in the case of categorical/nominal attributes, or “≤” and

“>” in the case of continuous attributes. The knowledge
representation in the form of rules has the advantage of being

intuitively comprehensible to the user. This is important, because the

general goal of data mining is to discover knowledge that is not only
accurate, but also comprehensible [12][3].

3. THE MODIFIED PSO/ACO ALGORITHM
In this section we first provide a very brief overview of the hybrid

Particle Swarm Optimization/Ant Colony Optimization (PSO/ACO)
algorithm originally proposed in [5] and [6] – hereafter denoted as

PSO/ACO1. This algorithm was designed to be the first PSO-based

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GECCO’07, July 7–11, 2007, London, England, United Kingdom.

Copyright 2007 ACM 978-1-59593-698-1/07/0007...$5.00.

classification algorithm to natively support nominal data – i.e., to
cope with nominal data directly, without converting a nominal

attribute into a numeric or binary one and then applying a

mathematical operator to the value. The motivation to natively
support nominal data is that by converting a nominal attribute such

as gender into a numerical attribute (say, mapping male into 0 and

female into 1) we would be introducing an artificial order among the
numerical values (1 > 0). Such an order clearly makes no sense in

the context of original nominal values, and mathematical operations

applied to this artificial order may generate counter-intuitive results.

The PSO/ACO1 algorithm achieves a native support of nominal data

by combining ideas from Ant Colony Optimisation (Ant-Miner
classification algorithm [10]) and Particle Swarm Optimisation

[8][11] to create a classification meta heuristic that supports innately

both nominal (including binary as a special case) and continuous
attribute.

3.1.PSO/ACO2 Sequential Covering Approach
RS = ∅ /* initially, Rule Set is empty */

FOR EACH class C
 TS = {All training examples}

 WHILE (Number of uncovered training examples

 belonging to class C > MaxUncovExampPerClass)
Run the PSO/ACO algorithm to discover the

best nominal rule predicting class C, called Rule

Run the standard PSO algorithm to add continuous terms
to Rule, and return the best discovered rule BestRule

Prune BestRule

RS = RS ∪ BestRule

TS = TS – {training examples correctly covered by

 discovered rule}
 END WHILE

END FOR

Order rules in RS by decending Quality

Pseudocode 1: Sequential Covering Approach used by the

Hybrid PSO/ACO2 Algorithm

Both the original PSO/ACO algorithm and the new modified version

uses a sequential covering approach [12] to discover one-
classification-rule-at-a-time. The original PSO/ACO algorithm is

described in detail in [5][6], hereafter we describe how the

sequential covering approach is used in the new modified version of
the PSO/ACO algorithm as described in Pseudocode 1 – hereafter

denoted as PSO/ACO2. It starts by initialising the rule set (RS) with

the empty set. Then, for each class the algorithm performs a WHILE
loop, TS is used to store the set of training examples the rules will be

created from. Each iteration of this loop performs one run of the

PSO/ACO2 algorithm which only discovers rules based on nominal
attributes, returning the best discovered rule (Rule) predicting

examples of the current class (C). The rule returned by the

PSO/ACO2 algorithm is not (usually) complete as it does not
include any terms with continuous values. For this to happen the

best rule discovered by the PSO/ACO2 algorithm is used as a base

for the discovery of terms with continuous values. A standard PSO
algorithm (applied only to numeric attributes) is used [1] with

constriction. The vector to be optimised consists of two dimensions
per continuous attribute, one for an upper bound and one for a lower

bound. At every particle evaluation the vector is converted to set of

terms (rule conditions) and added to Rule produced by the
PSO/ACO2 algorithm for fitness evaluation. For instance, if the data

set contained one nominal attribute An0 and one continuous attribute

Ac0 the PSO/ACO algorithm might produce a rule like: IF An0 =
<value> THEN class C. The standard PSO algorithm would then

attempt to improve this rule by adding terms: xi1 > Ac0 AND xi2 ≤

Ac0, which effectively corresponds to a term of the form: xi1 > Ac0 ≥
xi2. Where a particle's position would be the vector xi1, xi2. The rule

for evaluation purposes would be:

IF An0 = <value> AND xi1 > Ac0 AND xi2 ≤ Ac0 THEN class C

If the two bounds cross over (i.e., 0 > Ac0 ≥ 1) both terms are

omitted from the decoded rule but the PBest (pi) positions is still

updated in those dimensions.

vid = χ (vid + c1ϵ1 (pid − xid) + c2ϵ2 (pgd − xid))

Equation 1: PSO Velocity Update

xid = xid + vid

Equation 2: PSO Position Update

The best rule is then added to the rule set after being pruned using

Ant-Miner “style” pruning [10], and the examples correctly covered

by that rule are removed from the training set (TS). An example is
said to be correctly covered by a rule if that example satisfies all the

terms (attribute-value pairs) in the rule antecedent (“IF part”) and it

has the class predicted by the rule. This WHILE loop is performed
as long as the number of uncovered examples of the class C is

greater than a user-defined threshold, the maximum number of
uncovered examples per class (MaxUncovExampPerClass). After

this threshold has been reached TS is restored to all the original

training examples. This process means that the rule set generated is
unordered – it is possible to use the rules in the rule set in any order

to classify an example without unnecessary degradation of predictive

accuracy. Having an unordered rule set is important because after
the entire rule set is created the rules are ordered by their Quality

and not the order they were created in, although this is a greedy

approach it improved predictive accuracy in initial experiments.

3.2.The PSO/ACO2 Algorithm
Each particle in the PSO/ACO2 population is a collection of n

pheromone matrices where n is the number of nominal attributes in a
data set. Each particle can be decoded probabilistically into a rule

with a predefined consequent class. Each of the n matrices has two
entries, one entry represents an off state and one entry represents an

on state. If the off state is selected the corresponding attribute-value

pair will not be included in the decoded rule. If the on state is
selected when the rule is decoded the corresponding attribute-value

pair will be added to the decoded rule. Which value is included in

this attribute-value pair (term) is dependant on the seeding values.
The seeding values are set when the population of particles is

initialised, each particle has its past best state (which is a rule) set to

a randomly chosen record (a collection of attribute-value pairs) with
class C – the same class as the predefined consequent class for the

decoded rules. From now on the particle is only able to translate to a

rule with attribute-values equal to the seeding terms, or to a rule
without some or all those terms. This may seem at first glance,

counter-intuitive as flexibility is lost – each particle cannot translate

into any possible rule, the reasons for this will be discussed later.
Each pheromone matrix entry is a real valued number and all the

entries in each matrix for each attribute add up to 1. Each entry in

each pheromone matrix is associated with a minimum, positive, non-
zero pheromone value. This prevents a pheromone from dropping to

zero, helping to increase the diversity of the population (reducing

the risk of premature convergence).

Initialize population
REPEAT for MaxInterations

 FOR every particle P

 /* Rule Creation */

 Set Rule R = “IF ∅ THEN C”

 FOR ever dimension d in P

Use roulette selection to choose whether the state should be set
to off or on. If it is on then the corresponding attribute-value pair

set in the initialisation will be added to R otherwise, if off is

selected nothing will be added.
 LOOP

 Calculate Quality Q of R
 /* Set the past best position */

 IF Q > P’s Best past rule’s (Rp) Quality Qp

 Qp= Q
 Rp = R

 END IF

 LOOP
 FOR every particle P

 Find best Neighbour Particle 7 according to 7's Qp

 FOR every dimension d in P
 /* Pheromone updating procedure */

 IF best state selected for Pd = best state selected for 7d THEN

 pheromone_entry for the best state selected for Pd is
 increased by Qp

 ELSE

 pheromone_entry for the best state selected for Pd is
 decreased by Q

 END IF

 Normalize pheromone_entries
 LOOP

 LOOP

LOOP

Pseudocode 2: The Hybrid PSO/ACO Algorithm

Pseudocode 2 shows the modified PSO/ACO algorithm proposed in

this paper and utilised in Pseudocode 1. Firstly the population of

particles is initialised. Each particle is seeded with terms from a
randomly selected record, as described in the previous paragraph.

Initially, in each dimension the pheromone for the on state is set to ≈

0.9 and the pheromone for the off state is set to ≈ 0.1. The first loop
iterates the whole population for MaxIterations. Then for each

particle P a rule is built probabilistically from its pheromone

matrices. For each dimension d in P, roulette selection is used to
decide if the on or off state should be selected [5]. If the on state is

selected then the corresponding term is added to the antecedent of R,

this is an attribute-value pair where the attribute corresponds to the
dimension d and the value corresponds to the initial seeding value.

After this process has been repeated for every dimension, the quality

Q of the rule is calculated. If the new Q is greater than the previous
best Qp, then the particle's state (R) is saved as Rp.

After the rule creation phase the pheromone is updated for every
particle. Each particle finds its best neighbour (7) according to the

rule quality measure (as saved in Qp). For every dimension d in P

and so every corresponding dimension in 7 the following
pheromone updating rules are used. If the best state selected for P in

the dimension d (PBestd) is the same as the best state selected for 7 in

d then an amount of pheromone equal to Qp is added to the
pheromone entry for the best state for P in d. If the best state

selected for P in the dimension d is not the same as the best state
selected for 7 in d then an amount of pheromone equal to Q is

removed from the pheromone entry for the best state for P in d. If

after this process is completed any pheromone entry is less than a
minimum amount then it is set to that amount (≈ 0.001). Importantly

this allows the pheromone entry that is not the best state to increase

due to normalisation, it also aids search in a conveptually similar
way to mutation in GAs. This is because if the non best state reached

a pheromone value of zero then it would always remain at zero even

if pheromone was being removed from the other entry. After the
pheromone matrix has been updated it is normalised, so that its

entries add up to one.

Figure 1: Pheromone Update in PSO/ACO2

Table 1: Different Pheromone Updating Scenarios

State for 7d Sate for PBestd Outcome for entries in Pd

(on)

<value>=X

(on)

<value>=X

on pheromone increased

off pheromone decreased

(on)

<value>=X

(on)

<value>=Y

off pheromone increased

on pheromone decreased

off (on)

<value>=X

off pheromone increased

on pheromone decreased

off off off pheromone increased
on pheromone decreased

Figure 1 gives a graphical representation of how both the personal
best PBest and the best Neighbour 7 effect the pheromone in the

current particle P. In table 1 the four possible scenarios for

pheromone updating are described given the differing states of PBest
and 7. Note that the only time the pheromone for the entry on is

increased (by Qp) is when the state of PBest and 7 are set to on and
their corresponding values are the same. In all other cases the

pheromone is decreased (by Q).

3.3.Quality Measures
It is necessary to estimate the quality of every candidate rule

(decoded particle). A measure must be used in the training phase in
an attempt to estimate how well a rule will perform in the testing

phase. Given such a measure it becomes possible to optimise a rule's

quality (the fitness function) in the training phase and this is the aim
of the PSO/ACO2 algorithm. In our previous work [5] the Quality

measure used was Sensitivity × Specificity (Equation 3) [4]. Where
TP, F7, FP and T7 are, respectively, the number of true positives,

false negatives, false positives and true negatives associated with the

rule [12].

Sensitivity × Specificity = TP / (TP + F7) × T7 / (T7 + FP)

Equation 3: Original Quality Measure

Later we found that Equation 3 does not give an effective measure
of accuracy under certain circumstances [6]. This led us to modify

the quality measure so that when the class predicted by a rule is the

majority class (a class having more examples than the rest of the data
set combined) its quality is computed by the product of the rule's

sensitivity and specificity as shown in Equation 3. When a rule

predicts a minority class (i.e., any class different from the majority
class) the product of sensitivity and precision [6], shown in Equation

4, is used as the rule’s quality.

Sensitivity × Precision = TP / (TP + F7) × TP / (TP + FP)

Equation 4: Quality Measure on Minority Class

Subsequent experiments proved that although this new measure of
quality deals better with extreme cases it caused rules to be

generated that produced suboptimal accuracies in the testing phase.

We have modified the quality measure so that when the minority
class is being predicted precision with Laplace correction [12] [2] is

used, as per equation 5.

Precision = 1 + TP / (1+ k + TP + FP)

Equation 5: %ew Quality Measure on Minority Class

Where k is the number of classes. We noticed that in some cases the

use of Precision as a rule quality measure would lead to rules
covering very few examples. To stop this less than ideal situation we

also added the following conditional statement to the new quality

measure:
IF TP < MinTP

 Quality = 0

ELSE
 Quality = Precision

END IF

Where MinTP is the least number of correctly covered examples that

a rule has to cover before it is given a positive non-zero quality. In

our experiments we set MinTP to equal 10 but any comparably small
number will have a similar effect. These two different quality

measures are compared in section 5.

4. MOTIVATIO%S, MODIFICATIO%S A%D

DISCUSSIO%
The modified algorithm (PSO/ACO2) proposed in this paper differs

from the original algorithm (PSO/ACO1) proposed in [5][6] in four
important ways. Firstly PSO/ACO1 attempted to optimise both the

continuous and nominal attributes present in a rule antecedent at the
same time, whereas PSO/ACO2 takes the best nominal rule built by

PSO/ACO2 and then attempts to add continuous attributes using a

standard PSO algorithm. Secondly the original algorithm used a type
of pruning to create seeding terms for each particle, PSO/ACO2 uses

all the terms from an entire training example (record). Thirdly in

PSO/ACO1 it was possible for a particle to select a value for an
attribute that was not present in its seeding terms, in PSO/ACO2

only the seeding terms' values may be added to the decoded rule.

Fourthly the pheromone updating rules have been simplified to
concentrate on the optimisational properties of the original

algorithm. In PSO/ACO1 pheromone was added to each entry that

corresponded to the particle's past best state, its best neighbour's best
state, and the particle's current state in proportion to a random

learning factor. Now pheromone is only added when the best

neighbour's best state and the current particle's best state match, or
taken away when they do not. Also pheromone is only ever added to

the best state's entry.

In PSO/ACO2 (Pseudocode 2) the standard PSO and the hybrid
PSO/ACO2 algorithms have been separated partially because they

differ quite largely in the time taken to reach peak fitness. It usually

takes about 30 iterations for the pheromone matrices to reach a
stable state in PSO/ACO2, it tends to take considerably longer for

the standard PSO algorithm to converge. Due to this fact the

standard PSO algorithm's particles set PBests early on in quite
dissimilar positions, this causes high velocities and suboptimal

search, with a higher likelihood of missing a position of high fitness.

So separating the two algorithms provides more consistent results.

Secondly in the PSO/ACO1 algorithm, sets of seeding terms were

pruned before they were used, the aggressive pruning algorithm used
a heuristic to discard certain terms. This is less than ideal as the

heuristic does not take into account attribute interaction, and so

potentially useful terms are not investigated.

To understand the reasons behind the last two modifications it is

important to understand how the algorithms find good rules. In both
PSO/ACO1 and PSO/ACO2 sets of terms are generated by mixing

together the experiences of the particles and their neighbours. This

mixing is done on a performance driven basis, so a particle will only
be influenced by its best neighbour, this means that areas of

promising quality are investigated. Each particle is a probabilistic
rule generator. As the pheromone entries in the matrices converge

and reach one (and zero), better rules should be generated more

often.

In PSO/ACO1 the levels of the pheromone in the matrices is

influenced by three factors (current state, past best state and best
neighbours' best state) [5]. If these factors do not agree then the

pheromone matrix will be slow to converge. Slow convergence can

be advantageous in this type of situation as the algorithm should not
prematurely converge on a local maxima. However, in PSO/ACO1

the result of this slow convergence is usually destructive, as

incompatible terms can be mixed together over and over again.
Incompatible terms are terms that do not cover any of the same

records. In Table 2, example, incompatible terms are An1 = a and An2

= b. A rule including both these terms would have a quality of zero
as it would not cover any examples. This problem is addressed by

the third modification in PSO/ACO2, now incompatible terms will

not be mixed.

In PSO/ACO2 the pattern being investigated by the particles will

likely include relatively general terms – an example might be a rule
including the term An3 = b in table 2. It is the job of the PSO/ACO2

algorithm to find terms that interact well together to create a rule that

is not only general to the class being predicted (and so particles
representing records, or parts of records from it) but also specific to

the class as well (by not covering examples in other classes). It is
also the job of the PSO/ACO2 algorithm to turn off terms that limit

the generality of the rule without adding specificity to it. This trade-

off between specificity and generality (or sensitivity) is calculated by
the rule quality measure. It is clear, in Table 2, that including values

for An1 and An2 will not create a good trade-off between sensitivity

and specificity and so due to the new pheromone updating
procedures a particle will choose the off state for these conflicting

attributes. As this is a good modification it will propagate

throughout the population. These are the most important qualities of
the PSO/ACO2 algorithm and are exploited more effectively by the

new pheromone updating procedure.

Modification three in PSO/ACO2 ensures a particle will always

cover at least one example (the seeding example) even if all the

terms are included in the decoded rule. This was not the case in
PSO/ACO1 as at the beginning of the search many incompatible

terms would be mixed creating many particles with zero fitness .

Table 2. An Example Single Class Data Set, R's are Records,

An's are %ominal Attributes

 An1 An2 An3

R1 a a a

R2 a a b

R3 a a b

R4 b b b

R5 b b b

R6 b b b

For instance, if record R1 and R4 are used to seed two different

particles then three attribute value conflicts will take place, this is

due to the fact that no single rule can cover both examples. In
PSO/ACO1 the particle seeded with R1 would most likely eventually

be converted to a particle more suited to covering R4 as there are

more records within the data set that follow R4's pattern. However, it
is not clear that this is always a good idea because, in the PSO/ACO

algorithm it is important to maintain diversity within the search for

as long as possible. This is because the algorithm does not know
which generalisations (arising from the interaction of particles

starting with different seeding terms) will prove to be the best in the

long term. In the example provided diversity is not important, but if
R1 characterised the pattern found within many other records then it

would be, as this may lead to a rule with higher quality than the ones

that may be generated after starting with R4. Obviously too much
diversity within the population would not be useful either, as a sort

of hierarchy of interaction needs to take place to form good

generalisations. The interaction between just two particles may not
necessarily form a good rule, but the interaction between those two

particles and another two may. In PSO/ACO2 more diversity is

maintained because a particle seeded with R1 can never be
“converted” to cover R4, it cannot produce a rule with a term A3 = b.

This may not initially seem like a good thing, as the population can
never fully converge on a single solution. It is, however, not

necessary for the whole population to converge to produce good

rules with a reasonably sized and well connected population. This is
because smaller “colonies” within the main population emerge that

are compatible and mix to produce good and increasingly general

rules for their shared pattern. Particles bordering the boundaries
between different “colonies” will be unstable and have a low fitness

but serve as a buffer to keep unhelpful influences out. If R2 and R4

were used to seed two particles then it is easy to see how the
interactions of just these two particles would produce the optimal

rule (with the single term An3 = b) very quickly. It is the guided

(according to a fitness function) generalising power of the algorithm,
along with the ability to maintain diversity that also makes

PSO/ACO2 effective and this is also reflected in the modified

pheromone updating rules.

The pheromone updating rules (as can be seen in Table 1) simply

say that, for a given dimension d, if the current particle P has the
same term (attribute-value) in d as its best neighbour then reinforce

the probability of selecting that term by adding pheromone, if they

do not agree then increase the likelihood that the term will be turned

off (via normalisation - evaporation). In this way it is possible to
generate a very general (but specific to the current class and so of

high quality) rule that most particles will have converged to by the

end of the run. If there are only less general rules possible then many
of them will be present throughout the population at the end, making

it possible to select the best one.

5. RESULTS
For the experiments we used 16 of data sets from the well-known

UCI dataset repository [9], we performed 10 fold cross validation,
and run each algorithm 10 times for each fold for the stochastic

algorithms.

Both the PSO/ACO2 algorithm and the standard PSO algorithm use

the Von-Neumann topology as it is recommended as a good
topology [7] and performed well in initial experiments. Both

algorithms had 100 particles, the PSO/ACO2 algorithm ran for a

maximum of 100 iterations (MaxInterations) and the standard PSO
algorithm ran for a maximum of 100 iterations per rule discovered.

In all experiments constriction factor χ = 0.72984 and social and

personal learning coefficients c1 = c2 = 2.05 [1].
MaxUncovExampPerClass = 2 as this is the minimum number of

examples you can discover any sort of general rule for. The WEKA

[12] statistics class was used to compute the standard deviation and
two tailed Student T-Tests in the results presented.

The algorithms compared in table 3 are JRip [12] (WEKA's
implementation of RIPPER) and PART [12] (which uses J48,

WEKA's improved implementation of C4.5, to generate pruned

decision trees from which rules are extracted). PSO/ACO2 (S×P)
is the proposed variant of the algorithm that uses Sensitivity ×

Precision as the quality measure. PSO/ACO2 (P) is the variant of

the proposed algorithm that uses precision with Laplace
correction. We report results only for PSO/ACO2 as in initial

experiments PSO/ACO2 always outperformed PSO/ACO1. The

shading in the last three columns of the table denotes a win or a
loss (according to the two tailed Student's T-Test), light grey for a

win and dark grey for a loss against the baseline algorithm (JRIP).
It can be seen that overall PART scores equally as well as JRip,

but PSO/ACO (P) wins by 2 (i.e., 3 wins against 1 loss) according

to the two tailed T-Test. PSO/ACO (S×P) performs significantly
worse overall losing by 5. Therefore against the benchmark JRip

algorithm, PSO/ACO (P) outperforms PSO/ACO (S×P) by 7 (out

of a possible maximum value of 16).

Table 3. Accuracy of Labelled Approaches in UCI Data Sets,

with Standard Deviation and Student T-Test Shadings

 JRip Part
PSO/ACO2

(S×P)

PSO/ACO2

(P)

BC
69.95

±5.66

69.19

±7.71

71.69

±6.71

74.16

±6.47

Crx
85.6

±4.79

84.4

±5.34

86.05

±4.08

86.19

±4.59

Diabetes
75.39

±4.87

74.36

±4.51

71.37

±8.64

72.67

±5.28

Heart-c
78.55

±7.17

76.84

±7.8

80.14

±8.02

80.53

±10.21

Hepatitis
90.42

±9.38

84.86

±14.0

80.0

±15.2

88.19

±14.14

Table Continued

Table 3. Accuracy of Labelled Approaches in UCI Data Sets,

with Standard Deviation and Student T-Test Shadings

(continued)

Ionosphere
88.05
±5.13

90.04
±4.68

80.64
±6.77

90.04
±3.58

Iris-

Discretized

93.33

±5.44

94.0

±5.84

94.67

±6.13

97.33

±4.66

Lymph
78.43

±8.08

83.19

±9.47

75.0

±11.04

79.81

±6.84

Mushroom
99.98
±0.08

100.0
±0.0

98.84
±0.92

99.74
±0.51

Promoters
71.91

±13.33

83.91

±7.91

77.45

±13.1

77.45

±13.92

Sonar
73.4
±11.35

72.52
±10.57

53.88
±10.05

64.0
±14.56

Splice
94.61

±1.5

92.79

±1.65

91.5

±1.69

94.33

±1.46

Tic-Tac-
Toe

97.5
±1.0

93.85
±2.7

73.38
±3.49

98.64
±0.7

Vehicle
51.17

±4.82

58.02

±6.36

44.69

±6.95

58.6

±7.89

Wisconsin
93.99

±3.22

94.43

±2.06

93.7

±2.87

93.85

±2.67

Zoo
90.18
±9.23

94.18
±6.6

95.09
±7.01

81.36
±9.1

6. DISCUSSIO% A%D CO%CLUSIO%S
Our experiments show that the new variant of PSO/ACO2 is at least
comparable in terms of accuracy with two leading classification

algorithms, JRip (RIPPER) and Part (C4.5Rules). They also show

that the version of the PSO/ACO2 algorithm that uses just precision
with Laplace correction outperforms the variant that uses sensitivity

× precision with Laplace correction. As usual some algorithms

perform better in certain situations, but on average PSO/ACO2 with
Laplace correction performs the best in these 16 data sets. We

believe this is because both measures give a level of trade-off

between the generality of the rule within the predicted class and how
specific the rule is to the predicted class. In the case of the measure

that uses sensitivity it causes the algorithm to more strongly attempt

to cover as many examples in the predicted class as possible. It is
good to make general rules as rules that are not general are likely to

perform badly in the test set. For example, in the most extreme case,

a rule for every example in the training set could be created, this
would make a very specific rule set, but it it very likely to perform

badly in the test set. The opposite is also true with rules that are too

general without consideration for the specificity in the predicted
class. An extreme example would be a rule with an empty

antecedent which would always be very general but would only
perform at the default (majority class prediction) accuracy. Using

precision alone allows the algorithm to cover small patterns in the

data set that are not too small as to be overfitted. Sensitivity ×
Precision creates rules that are overly general and so causes the less

optimal accuracies in the test set.

At present PSO/ACO2 is still greedy in the sense that it builds each
rule with the aim of optimising that rule's quality individually,

without directly taking into account the interaction with other rules.

A less greedy, but possibly more computationally expensive way to
approach the problem would be to associate a particle with an entire

rule set and then to consider the quality of the entire rule set when

evaluating a particle, this is known as the “Pittsburgh approach” in
the evolutionary algorithm literature. Also the nominal part of the

rule is always discovered first and separately from the continuous

part, it could be advantageous to use a more “co-evolved” approach.
More extensive comparisons between meta-heuristic algorithms,

quality measures and rule induction algorithms are left for future

research. Along with different topologies and levels of connectivity
within the population.

7. REFERE%CES
[1] D. Bratton and J. Kennedy. Defining a Standard for Particle

Swarm Optimization. Proceedings of the 2007 IEEE Swarm
Intelligence Symposium, Honolulu, Hawaii, USA, April 2007.

[2] P. Clark and R. Boswell. Rule induction with C72: Some

recent improvements. Machine Learning - EWSL-91, pp. 151-
163, Berlin, 1991.

[3] U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From data

mining to knowledge discovery: an overview, Advances in
Knowledge Discovery and Data Mining, AAAI/MIT, pp. 1-34,

1996.

[4] D.J. Hand. Construction and Assessment of Classification
Rules. Wiley, 1997.

[5] N. Holden and A.A. Freitas. A hybrid particle swarm/ant

colony algorithm for the classification of hierarchical

biological data. In: Proc. 2005 IEEE Swarm Intelligence

Symposium (SIS-05), pp. 100-107, IEEE, 2005.

[6] N. Holden and A.A. Freitas. Hierarchical Classification of G-
Protein-Coupled Receptors with a PSO/ACO Algorithm. In:

Proc. IEEE Swarm Intelligence Symposium (SIS-06), pp. 77-

84. IEEE, 2006.
[7] J. Kennedy and R. Mendes, Population structure and particle

swarm performance. Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2002), Honolulu, Hawaii

USA. 2002

[8] J. Kennedy and R. C. Eberhart, with Y. Shi. Swarm
Intelligence, San Francisco: Morgan Kaufmann/ Academic

Press, 2001.1

[9] D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz (1998).
UCI Repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,

CA: University of California, Department of Information and
Computer Science.

[10] R.S. Parpinelli, H.S. Lopes and A.A. Freitas. Data Mining with

an Ant Colony Optimization Algorithm, IEEE Trans. on
Evolutionary Computation, special issue on Ant Colony

algorithms, 6(4), pp. 321-332, Aug 2002.

[11] T. Sousa, A. Silva, A. Neves, Particle Swarm based Data
Mining Algorithms for classification tasks, Parallel Computing

30, pp. 767–783, 2004.

[12] I.H. Witten, E. Frank, Data Mining: Practical machine

learning tools and techniques, 2nd Edition, Morgan

Kaufmann, San Francisco, CA, 2005.

