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ABSTRACT 
In a previous work we have proposed a hybrid Particle Swarm 
Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm for 

the discovery of classification rules, in the context of data mining. 
Unlike a conventional PSO algorithm, this hybrid algorithm can 

directly cope with nominal attributes, without converting nominal 

values into numbers in a pre-processing phase. The design of this 
hybrid algorithm was motivated by the fact that nominal attributes 

are common in data mining, but the algorithm can in principle be 

applied to other kinds of problems involving nominal variables 
(though this paper focuses only on data mining). In this paper we 

propose several modifications to the original PSO/ACO algorithm. 

We evaluate the new version of the PSO/ACO algorithm 
(PSO/ACO2) in 16 public-domain real-world datasets often used to 

benchmark the performance of classification algorithms. PSO/ACO2 

is evaluated with two different rule quality (particle "fitness") 
functions. We show that the choice of rule quality measure greatly 

effects the end performance of PSO/ACO2. In addition, the results 

show that PSO/ACO2 is very competitive with respect to two well-
known rule induction algorithms. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – Induction. 

General Terms: Algorithms. 

Keywords: Rule Induction, Classification, Particle Swarm 

optimization, Ant Colony Optimisation, Data Mining. 

1. I%TRODUCTIO% 
We have previously proposed a hybrid Particle Swarm 

Optimisation/Ant Colony Optimisation (PSO/ACO) algorithm for 
the discovery of classification rules, in the context of data mining. 

(A brief review of classification rules is provided in Section 2.) 

Unlike a conventional PSO algorithm, this hybrid algorithm can 
directly cope with not only continuous but also nominal attributes, 

without converting nominal values into numbers in a pre-processing 

phase. The design of this hybrid algorithm was motivated by the fact 
that nominal attributes are common in data mining, but the 

algorithm can in principle be applied to other kinds of problems 
involving nominal variables (though this paper focuses only on data 

mining). 

In this paper we propose several modifications to the original 
PSO/ACO algorithm. In essence, the proposed modifications 

involve changes in the pheromone updating procedure and in the 

rule initialization method, as well as – significantly – the splitting of 
the rule discovery process into two separate phases, as follows. In 

the first phase a rule is discovered using nominal attributes only. In 

the second phase the rule is potentially extended with continuous 
attributes. This further increases the ability of the PSO/ACO 

algorithm in treating nominal and continuous attributes in different 

ways, recognizing the differences in these two kinds of attributes (a 
fact ignored by a conventional PSO algorithm, as mentioned earlier). 

We also experiment with two different rule quality functions, since 

the choice of a such a function is a very important aspect in the 
design of a data mining algorithm. We evaluate the new version of 

the PSO/ACO algorithm – denoted PSO/ACO2 in this paper – in 16 
public-domain real-world datasets often used to benchmark the 

performance of classification algorithms. 

The remainder of the paper is organised as follows. Section 2 

introduces the classification task, section 3 describes in detail the 

workings of the modified algorithm. Section 4 discusses the reasons 
for the modifications, in section 5 we present the experimental set-

up and results. In section 6 we draw some conclusions from the 

work and discuss possible future research. 

2. CLASSIFICATIO% 
The task (kind of problem) addressed in this paper is the 
classification task of data mining. In classification the knowledge or 

patterns discovered in the data set can be represented in terms of a 

set of rules. A rule consists of an antecedent (a set of attribute-
values) and a consequent (class): 

IF <attrib = value> AND ... AND <attrib = value> THEN <class> 

The consequent of the rule is the class that is predicted by that rule. 
The antecedent consists of a set of terms, where each term is 

essentially an attribute-value pair. More precisely, a term is defined 

by a triple <attribute, operator, value>, where value is a value 
belonging to the domain of attribute. The operator used in this 

paper is “=” in the case of categorical/nominal attributes, or “≤” and 

“>” in the case of continuous attributes. The knowledge 
representation in the form of rules has the advantage of being 

intuitively comprehensible to the user. This is important, because the 

general goal of data mining is to discover knowledge that is not only 
accurate, but also comprehensible [12][3]. 

3. THE MODIFIED PSO/ACO ALGORITHM 
In this section we first provide a very brief overview of the hybrid 

Particle Swarm Optimization/Ant Colony Optimization (PSO/ACO) 
algorithm originally proposed in [5] and [6] – hereafter denoted as 

PSO/ACO1. This algorithm was designed to be the first PSO-based 
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classification algorithm to natively support nominal data – i.e., to 
cope with nominal data directly, without converting a nominal 

attribute into a numeric or binary one and then applying a 

mathematical operator to the  value. The motivation to natively 
support nominal data is that by converting a nominal attribute such 

as gender into a numerical attribute (say, mapping male into 0 and 

female into 1) we would be introducing an artificial order among the 
numerical values (1 > 0). Such an order clearly makes no sense in 

the context of original nominal values, and mathematical operations 

applied to this artificial order may generate counter-intuitive results. 

The PSO/ACO1 algorithm achieves a native support of nominal data 

by combining ideas from Ant Colony Optimisation (Ant-Miner 
classification algorithm [10]) and Particle Swarm Optimisation 

[8][11] to create a classification meta heuristic that supports innately 

both nominal (including binary as a special case) and continuous 
attribute. 

3.1.PSO/ACO2 Sequential Covering Approach 
RS = ∅   /* initially, Rule Set is empty */ 

FOR EACH class C 
       TS = {All training examples} 

       WHILE (Number of uncovered training examples 

               belonging to class C > MaxUncovExampPerClass) 
Run the PSO/ACO algorithm to discover the  

best nominal rule predicting class C, called Rule 

Run the standard PSO algorithm to add continuous terms 
to Rule, and return the best discovered rule BestRule 

Prune BestRule 

RS = RS ∪ BestRule 

TS = TS – {training examples correctly covered by 

          discovered rule} 
       END WHILE 

END FOR 

Order rules in RS by decending Quality 

Pseudocode 1: Sequential Covering Approach used by the 

Hybrid PSO/ACO2 Algorithm  

Both the original PSO/ACO algorithm and the new modified version 

uses a sequential covering approach [12] to discover one-
classification-rule-at-a-time. The original PSO/ACO algorithm is 

described in detail in [5][6], hereafter we describe how the 

sequential covering approach is used in the new modified version of 
the PSO/ACO algorithm as described in Pseudocode 1 – hereafter 

denoted as PSO/ACO2. It starts by initialising the rule set (RS) with 

the empty set. Then, for each class the algorithm performs a WHILE 
loop, TS is used to store the set of training examples the rules will be 

created from. Each iteration of this loop performs one run of the 

PSO/ACO2 algorithm which only discovers rules based on nominal 
attributes, returning the best discovered rule (Rule) predicting 

examples of the current class (C). The rule returned by the 

PSO/ACO2 algorithm is not (usually) complete as it does not 
include any terms with continuous values. For this to happen the 

best rule discovered by the PSO/ACO2 algorithm is used as a base 

for the discovery of terms with continuous values. A standard PSO 
algorithm (applied only to numeric attributes) is used [1] with 

constriction. The vector to be optimised consists of two dimensions 
per continuous attribute, one for an upper bound and one for a lower 

bound. At every particle evaluation the vector is converted to set of 

terms (rule conditions) and added to Rule produced by the 
PSO/ACO2 algorithm for fitness evaluation. For instance, if the data 

set contained one nominal attribute An0 and one continuous attribute 

Ac0 the PSO/ACO algorithm might produce a rule like: IF An0 = 
<value> THEN class C. The standard PSO algorithm would then 

attempt to improve this rule by adding terms: xi1 > Ac0  AND xi2 ≤ 

Ac0, which effectively corresponds to a term of the form: xi1 > Ac0 ≥ 
xi2. Where a particle's position would be the vector xi1, xi2. The rule 

for evaluation purposes would be:  

IF An0 = <value> AND xi1 > Ac0  AND xi2 ≤ Ac0 THEN class C 

If the two bounds cross over (i.e., 0 > Ac0 ≥ 1) both terms are 

omitted from the decoded rule but the PBest (pi) positions is still 

updated in those dimensions. 

vid = χ (vid + c1ϵ1 (pid − xid) + c2ϵ2 (pgd − xid)) 

Equation 1: PSO Velocity Update 

xid = xid + vid 

Equation 2: PSO Position Update 

The best rule is then added to the rule set after being pruned using 

Ant-Miner “style” pruning [10], and the examples correctly covered 

by that rule are removed from the training set (TS). An example is 
said to be correctly covered by a rule if that example satisfies all the 

terms (attribute-value pairs) in the rule antecedent (“IF part”) and it 

has the class predicted by the rule. This WHILE loop is performed 
as long as the number of uncovered examples of the class C is 

greater than a user-defined threshold, the maximum number of 
uncovered examples per class (MaxUncovExampPerClass). After 

this threshold has been reached TS is restored to all the original 

training examples. This process means that the rule set generated is 
unordered – it is  possible to use the rules in the rule set in any order 

to classify an example without unnecessary degradation of predictive 

accuracy. Having an unordered rule set is important because after 
the entire rule set is created the rules are ordered by their Quality 

and not the order they were created in, although this is a greedy 

approach it improved predictive accuracy in initial experiments. 

3.2.The PSO/ACO2 Algorithm 
Each particle in the PSO/ACO2 population is a collection of n  

pheromone matrices where n is the number of nominal attributes in a 
data set. Each particle can be decoded probabilistically into a rule 

with a predefined consequent class. Each of the n matrices has two 
entries, one entry represents an off state and one entry represents an 

on state. If the off state is selected the corresponding  attribute-value 

pair will not be included in the decoded rule. If the on state is 
selected when the rule is decoded the corresponding attribute-value 

pair will be added to the decoded rule. Which value is included in 

this attribute-value pair (term) is dependant on the seeding values. 
The seeding values are set when the population of particles is 

initialised, each particle has its past best state (which is a rule) set to 

a randomly chosen record (a collection of attribute-value pairs) with 
class C – the same class as the predefined consequent class for the 

decoded rules. From now on the particle is only able to translate to a 

rule with attribute-values equal to the seeding terms, or to a rule 
without some or all those terms. This may seem at first glance, 

counter-intuitive as flexibility is lost – each particle cannot translate 

into any possible rule, the reasons for this will be discussed later. 
Each pheromone matrix entry is a real valued number and all the 

entries in each matrix for each attribute add up to 1. Each entry in 

each pheromone matrix is associated with a minimum, positive, non-
zero pheromone value. This prevents a pheromone from dropping to 

zero, helping to increase the diversity of the population (reducing 

the risk of premature convergence). 



Initialize population 
REPEAT for MaxInterations 

  FOR every particle P 

    /* Rule Creation */ 

    Set Rule R = “IF ∅  THEN C” 

    FOR ever dimension d in P 

Use roulette selection to choose whether the state should be set 
to off or on. If it is on then the corresponding attribute-value pair 

set in the initialisation will be added to R otherwise, if off is 

selected nothing will be added. 
    LOOP 

    Calculate Quality Q of R 
    /* Set the past best position */ 

    IF Q > P’s Best past rule’s (Rp) Quality Qp 

      Qp= Q 
      Rp = R 

    END IF 

  LOOP 
  FOR every particle P 

    Find best Neighbour Particle 7 according to 7's Qp 

    FOR every dimension d in P 
      /* Pheromone updating procedure */ 

      IF best state selected for Pd = best state selected for 7d THEN  

        pheromone_entry for the best state selected for Pd  is    
        increased by Qp 

      ELSE 

        pheromone_entry for the best state selected for Pd  is    
        decreased by Q 

      END IF 

      Normalize pheromone_entries 
    LOOP 

  LOOP 

LOOP 

Pseudocode 2: The Hybrid PSO/ACO Algorithm 

Pseudocode 2 shows the modified PSO/ACO algorithm proposed in 

this paper and utilised in Pseudocode 1. Firstly the population of 

particles is initialised. Each particle is seeded with terms from a 
randomly selected record, as described in the previous paragraph. 

Initially, in each dimension the pheromone for the on state is set to ≈ 

0.9 and the pheromone for the off state is set to ≈ 0.1. The first loop 
iterates the whole population for MaxIterations. Then for each 

particle P a rule is built probabilistically from its pheromone 

matrices. For each dimension d in P, roulette selection is used to 
decide if the on or off state should be selected [5]. If the on state is 

selected then the corresponding term is added to the antecedent of R, 

this is an attribute-value pair where the attribute corresponds to the 
dimension d and the value corresponds to the initial seeding value. 

After this process has been repeated for every dimension, the quality 

Q of the rule is calculated. If the new Q is greater than the previous 
best Qp, then the particle's state (R) is saved as Rp. 

After the rule creation phase the pheromone is updated for every 
particle. Each particle finds its best neighbour (7) according to the 

rule quality measure (as saved in Qp). For every dimension d in P 

and so every corresponding dimension in 7 the following 
pheromone updating rules are used. If the best state selected for P in 

the dimension d (PBestd) is the same as the best state selected for 7 in 

d then an amount of pheromone equal to Qp is added to the 
pheromone entry for the best state for P in d. If the best state 

selected for P in the dimension d is not the same as the best state 
selected for 7 in d then an amount of pheromone equal to Q is 

removed from the pheromone entry for the best state for P in d. If 

after this process is completed any pheromone entry is less than a 
minimum amount then it is set to that amount (≈ 0.001). Importantly 

this allows the pheromone entry that is not the best state to increase 

due to normalisation, it also aids search in a conveptually similar 
way to mutation in GAs. This is because if the non best state reached 

a pheromone value of zero then it would always remain at zero even 

if pheromone was being removed from the other entry. After the 
pheromone matrix has been updated it is normalised, so that its 

entries add up to one. 

Figure 1: Pheromone Update in PSO/ACO2 

Table 1: Different Pheromone Updating Scenarios 

State for 7d Sate for PBestd Outcome for entries in Pd 

(on) 

<value>=X 

(on) 

<value>=X 

on pheromone increased 

off pheromone decreased 

(on) 

<value>=X 

(on) 

<value>=Y 

off pheromone increased 

on pheromone decreased 

off (on) 

<value>=X 

off pheromone increased 

on pheromone decreased 

off off off pheromone increased 
on pheromone decreased 

 

Figure 1 gives a graphical representation of how both the personal 
best PBest and the best Neighbour 7 effect the pheromone in the 

current particle P. In table 1 the four possible scenarios for 

pheromone updating are described given the differing states of PBest 
and 7. Note that the only time the pheromone for the entry on is 

increased (by Qp) is when the state of  PBest and 7 are set to on and 
their corresponding values are the same. In all other cases the 

pheromone is decreased (by Q). 

3.3.Quality Measures 
It is necessary to estimate the quality of every candidate rule 

(decoded particle). A measure must be used in the training phase in 
an attempt to estimate how well a rule will perform in the testing 

phase. Given such a measure it becomes possible to optimise a rule's 

quality (the fitness function) in the training phase and this is the aim 
of the PSO/ACO2 algorithm. In our previous work [5] the Quality 

measure used was Sensitivity × Specificity (Equation 3) [4]. Where 
TP, F7, FP and T7 are, respectively, the number of true positives, 

false negatives, false positives and true negatives associated with the 

rule [12].  

Sensitivity × Specificity = TP / (TP + F7) × T7 / (T7 + FP) 

Equation 3: Original Quality Measure 



Later we found that Equation 3 does not give an effective measure 
of accuracy under certain circumstances [6]. This led us to modify 

the quality measure so that when the class predicted by a rule is the 

majority class (a class having more examples than the rest of the data 
set combined) its quality is computed by the product of the rule's 

sensitivity and specificity as shown in Equation 3. When a rule 

predicts a minority class (i.e., any class different from the majority 
class) the product of sensitivity and precision [6], shown in Equation 

4, is used as the rule’s quality.  

Sensitivity × Precision = TP / (TP + F7) ×  TP / (TP + FP) 

Equation 4: Quality Measure on Minority Class 

Subsequent experiments proved that although this new measure of 
quality deals better with extreme cases it caused rules to be 

generated that produced suboptimal accuracies in the testing phase. 

We have modified the quality measure so that when the minority 
class is being predicted precision with Laplace correction [12] [2] is 

used, as per equation 5. 

Precision = 1 + TP / (1+ k + TP + FP) 

Equation 5: %ew Quality Measure on Minority Class 

Where k is the number of classes. We noticed that in some cases the 

use of Precision as a rule quality measure would lead to rules 
covering very few examples. To stop this less than ideal situation we 

also added the following conditional statement to the new quality 

measure: 
IF TP < MinTP 

   Quality = 0 

ELSE 
   Quality = Precision 

END IF 

Where MinTP is the least number of correctly covered examples that 

a rule has to cover before it is given a positive non-zero quality. In 

our experiments we set MinTP to equal 10 but any comparably small 
number will have a similar effect. These two different quality 

measures are compared in section 5. 

4. MOTIVATIO%S, MODIFICATIO%S A%D 

DISCUSSIO% 
The modified algorithm (PSO/ACO2) proposed in this paper differs 

from the original algorithm (PSO/ACO1) proposed in [5][6] in four 
important ways. Firstly PSO/ACO1 attempted to optimise both the 

continuous and nominal attributes present in a rule antecedent at the 
same time, whereas PSO/ACO2 takes the best nominal rule built by 

PSO/ACO2 and then attempts to add continuous attributes using a 

standard PSO algorithm. Secondly the original algorithm used a type 
of pruning to create seeding terms for each particle, PSO/ACO2 uses 

all the terms from an entire training example (record). Thirdly in 

PSO/ACO1 it was possible for a particle to select a value for an 
attribute that was not present in its seeding terms, in PSO/ACO2 

only the seeding terms' values may be added to the decoded rule. 

Fourthly the pheromone updating rules have been simplified to 
concentrate on the optimisational properties of the original 

algorithm. In PSO/ACO1 pheromone was added to each entry that 

corresponded to the particle's past best state, its best neighbour's best 
state, and the particle's current state in proportion to a random 

learning factor. Now pheromone is only added when the best 

neighbour's best state and the current particle's best state match, or 
taken away when they do not. Also pheromone is only ever added to 

the best state's entry. 

In PSO/ACO2 (Pseudocode 2) the standard PSO and the hybrid 
PSO/ACO2 algorithms have been separated partially because they 

differ quite largely in the time taken to reach peak fitness. It usually 

takes about 30 iterations for the pheromone matrices to reach a 
stable state in PSO/ACO2, it tends to take considerably longer for 

the standard PSO algorithm to converge. Due to this fact the 

standard PSO algorithm's particles set PBests early on in quite 
dissimilar positions, this causes high velocities and suboptimal 

search, with a higher likelihood of missing a position of high fitness. 

So separating the two algorithms provides more consistent results. 

Secondly in the PSO/ACO1 algorithm, sets of seeding terms were 

pruned before they were used, the aggressive pruning algorithm used 
a heuristic to discard certain terms. This is less than ideal as the 

heuristic does not take into account attribute interaction, and so 

potentially useful terms are not investigated. 

To understand the reasons behind the last two modifications it is 

important to understand how the algorithms find good rules. In  both 
PSO/ACO1 and PSO/ACO2 sets of terms are generated by mixing 

together the experiences of the particles and their neighbours. This 

mixing is done on a performance driven basis, so a particle will only 
be influenced by its best neighbour, this means that areas of 

promising quality are investigated. Each particle is a probabilistic 
rule generator. As the pheromone entries in the matrices converge 

and reach one (and zero), better rules should be generated more 

often.  

In PSO/ACO1 the levels of the pheromone in the matrices is 

influenced by three factors (current state, past best state and best 
neighbours' best state) [5]. If these factors do not agree then the 

pheromone matrix will be slow to converge. Slow convergence can 

be advantageous in this type of situation as the algorithm should not 
prematurely converge on a local maxima. However, in PSO/ACO1 

the result of this slow convergence is usually destructive, as 

incompatible terms can be mixed together over and over again. 
Incompatible terms are terms that do not cover any of the same 

records. In Table 2, example, incompatible terms are An1 = a and An2 

= b. A rule including both these terms would have a quality of zero 
as it would not cover any examples. This problem is addressed by 

the third modification in PSO/ACO2, now incompatible terms will 

not be mixed.  

In PSO/ACO2 the pattern being investigated by the particles will 

likely include relatively general terms – an example might be a rule 
including the term An3 = b in table 2. It is the job of the PSO/ACO2 

algorithm to find terms that interact well together to create a rule that 

is not only general to the class being predicted (and so particles 
representing records, or parts of records from it) but also specific to 

the class as well (by not covering examples in other classes). It is 
also the job of the PSO/ACO2 algorithm to turn off terms that limit 

the generality of the rule without adding specificity to it. This trade-

off between specificity and generality (or sensitivity) is calculated by 
the rule quality measure. It is clear, in Table 2, that including values 

for An1 and An2 will not create a good trade-off between sensitivity 

and specificity and so  due to the new pheromone updating 
procedures a particle will choose the off state for these conflicting 

attributes. As this is a good modification it will propagate 

throughout the population. These are the most important qualities of 
the PSO/ACO2 algorithm and are exploited more effectively by the 

new pheromone updating procedure.  

Modification three in PSO/ACO2 ensures a particle will always 

cover at least one example (the seeding example) even if all the 



terms are included in the decoded rule. This was not the case in 
PSO/ACO1 as at the beginning of the search many incompatible 

terms would be mixed creating many particles with zero fitness . 

Table 2. An Example Single Class Data Set, R's are Records, 

An's are %ominal Attributes 

 An1 An2 An3 

R1 a a a 

R2 a a b 

R3 a a b 

R4 b b b 

R5 b b b 

R6 b b b 

 

For instance, if record R1 and R4 are used to seed two different 

particles then three attribute value conflicts will take place, this is 

due to the fact that no single rule can cover both examples. In 
PSO/ACO1 the particle seeded with R1 would most likely eventually 

be converted to a particle more suited to covering R4 as there are 

more records within the data set that follow R4's pattern. However, it 
is not clear that this is always a good idea because, in the PSO/ACO 

algorithm it is important to maintain diversity within the search for 

as long as possible. This is because the algorithm does not know 
which generalisations (arising from the interaction of particles 

starting with different seeding terms) will prove to be the best in the 

long term. In the example provided diversity is not important, but if 
R1 characterised the pattern found within many other records then it 

would be, as this may lead to a rule with higher quality than the ones 

that may be generated after starting with R4. Obviously too much 
diversity within the population would not be useful either, as a sort 

of hierarchy of interaction needs to take place to form good 

generalisations. The interaction between just two particles may not 
necessarily form a good rule, but the interaction between those two 

particles and another two may. In PSO/ACO2 more diversity is 

maintained because a particle seeded with R1 can never be 
“converted” to cover R4, it cannot produce a rule with a term A3 = b. 

This may not initially seem like a good thing, as the population can 
never fully converge on a single solution. It is, however, not 

necessary for the whole population to converge to produce good 

rules with a reasonably sized and well connected population. This is 
because smaller “colonies” within the main population emerge that 

are compatible and mix to produce good and increasingly general 

rules for their shared pattern. Particles bordering the boundaries 
between different “colonies” will be unstable and have a low fitness 

but serve as a buffer to keep unhelpful influences out. If R2 and R4 

were used to seed two particles then it is easy to see how the 
interactions of just these two particles would produce the optimal 

rule (with the single term An3 = b) very quickly. It is the guided 

(according to a fitness function) generalising power of the algorithm, 
along with the ability to maintain diversity that also makes 

PSO/ACO2 effective and this is also reflected in the modified 

pheromone updating rules. 

The pheromone updating rules (as can be seen in Table 1) simply 

say that, for a given dimension d, if the current particle P has the 
same term (attribute-value) in d as its best neighbour then reinforce 

the probability of selecting that term by adding pheromone, if they 

do not agree then increase the likelihood that the term will be turned 

off (via normalisation - evaporation). In this way it is possible to 
generate a very general (but specific to the current class and so of 

high quality) rule that most particles will have converged to by the 

end of the run. If there are only less general rules possible then many 
of them will be present throughout the population at the end, making 

it possible to select the best one. 

5. RESULTS 
For the experiments we used 16 of data sets from the well-known  

UCI dataset repository [9], we performed 10 fold cross validation, 
and run each algorithm 10 times for each fold for the stochastic 

algorithms.  

Both the PSO/ACO2 algorithm and the standard PSO algorithm use 

the Von-Neumann topology as it is recommended as a good 
topology [7] and performed well in initial experiments. Both 

algorithms had 100 particles, the PSO/ACO2 algorithm ran for a 

maximum of 100 iterations (MaxInterations) and the standard PSO 
algorithm ran for a maximum of 100 iterations per rule discovered. 

In all experiments constriction factor χ = 0.72984 and social and 

personal learning coefficients c1 = c2 = 2.05 [1]. 
MaxUncovExampPerClass = 2 as this is the minimum number of 

examples you can discover any sort of general rule for. The WEKA 

[12] statistics class was used to compute the standard deviation and 
two tailed Student T-Tests in the results presented. 

The algorithms compared in table 3 are JRip [12] (WEKA's 
implementation of RIPPER) and PART [12] (which uses J48, 

WEKA's improved implementation of C4.5, to generate pruned 

decision trees from which rules are extracted ). PSO/ACO2 (S×P) 
is the proposed variant of the algorithm that uses Sensitivity × 

Precision as the quality measure. PSO/ACO2 (P) is the variant of 

the proposed algorithm that uses precision with Laplace 
correction. We report results only for PSO/ACO2 as in initial 

experiments PSO/ACO2 always outperformed PSO/ACO1. The 

shading in the last three columns of the table denotes a win or a 
loss (according to the two tailed Student's T-Test), light grey for a 

win and dark grey for a loss against the baseline algorithm (JRIP). 
It can be seen that overall PART scores equally as well as JRip, 

but PSO/ACO (P) wins by 2 (i.e., 3 wins against 1 loss) according 

to the two tailed T-Test. PSO/ACO (S×P) performs significantly 
worse overall losing by 5. Therefore against the benchmark JRip 

algorithm, PSO/ACO (P) outperforms PSO/ACO (S×P) by 7 (out 

of a possible maximum value of 16). 

Table 3. Accuracy of Labelled Approaches in UCI Data Sets, 

with Standard Deviation and Student T-Test Shadings 

 JRip Part 
PSO/ACO2 

(S×P) 

PSO/ACO2 

(P) 

BC 
69.95 

±5.66 

69.19 

±7.71 

71.69 

±6.71 

74.16 

±6.47 

Crx 
85.6 

±4.79 

84.4 

±5.34 

86.05 

±4.08 

86.19 

±4.59 

Diabetes 
75.39 

±4.87 

74.36 

±4.51 

71.37 

±8.64 

72.67 

±5.28 

Heart-c 
78.55 

±7.17 

76.84 

±7.8 

80.14 

±8.02 

80.53 

±10.21 

Hepatitis 
90.42 

±9.38 

84.86 

±14.0 

80.0 

±15.2 

88.19 

±14.14 

Table Continued 

 

 



Table 3. Accuracy of Labelled Approaches in UCI Data Sets, 

with Standard Deviation and Student T-Test Shadings 

(continued) 

Ionosphere 
88.05 
±5.13 

90.04 
±4.68 

80.64 
±6.77 

90.04 
±3.58 

Iris-

Discretized 

93.33 

±5.44 

94.0 

±5.84 

94.67 

±6.13 

97.33 

±4.66 

Lymph 
78.43 

±8.08 

83.19 

±9.47 

75.0 

±11.04 

79.81 

±6.84 

Mushroom 
99.98 
±0.08 

100.0 
±0.0 

98.84 
±0.92 

99.74 
±0.51 

Promoters 
71.91 

±13.33 

83.91 

±7.91 

77.45 

±13.1 

77.45 

±13.92 

Sonar 
73.4 
±11.35 

72.52 
±10.57 

53.88 
±10.05 

64.0 
±14.56 

Splice 
94.61 

±1.5 

92.79 

±1.65 

91.5 

±1.69 

94.33 

±1.46 

Tic-Tac-
Toe 

97.5 
±1.0 

93.85 
±2.7 

73.38 
±3.49 

98.64 
±0.7 

Vehicle 
51.17 

±4.82 

58.02 

±6.36 

44.69 

±6.95 

58.6 

±7.89 

Wisconsin 
93.99 

±3.22 

94.43 

±2.06 

93.7 

±2.87 

93.85 

±2.67 

Zoo 
90.18 
±9.23 

94.18 
±6.6 

95.09 
±7.01 

81.36 
±9.1 

6. DISCUSSIO% A%D CO%CLUSIO%S 
Our experiments show that the new variant of PSO/ACO2 is at least 
comparable in terms of accuracy with two leading classification 

algorithms, JRip (RIPPER) and Part (C4.5Rules). They also show 

that the version of the PSO/ACO2 algorithm that uses just precision 
with Laplace correction outperforms the variant that uses sensitivity 

× precision with Laplace correction. As usual some algorithms 

perform better in certain situations, but on average PSO/ACO2 with 
Laplace correction performs the best in these 16 data sets. We 

believe this is because both measures give a level of trade-off 

between the generality of the rule within the predicted class and how 
specific the rule is to the predicted class. In the case of the measure 

that uses sensitivity it causes the algorithm to more strongly attempt 

to cover as many examples in the predicted class as possible. It is 
good to make general rules as rules that are not general are likely to 

perform badly in the test set. For example, in the most extreme case, 

a rule for every example in the training set could be created, this 
would make a very specific rule set, but it it very likely to perform 

badly in the test set. The opposite is also true with rules that are too 

general without consideration for the specificity in the predicted 
class. An extreme example would be a rule with an empty 

antecedent which would always be very general but would only 
perform at the default (majority class prediction) accuracy. Using 

precision alone allows the algorithm to cover small patterns in the 

data set that are not too small as to be overfitted.  Sensitivity × 
Precision creates rules that are overly general and so causes the less 

optimal accuracies in the test set. 

At present PSO/ACO2 is still greedy in the sense that it builds each 
rule with the aim of optimising that rule's quality individually, 

without directly taking into account the interaction with other rules. 

A less greedy, but possibly more computationally expensive way to 
approach the problem would be to associate a particle with an entire 

rule set and then to consider the quality of the entire rule set when 

evaluating a particle, this is known as the “Pittsburgh approach” in 
the evolutionary algorithm literature. Also the nominal part of the 

rule is always discovered first and separately from the continuous 

part, it could be advantageous to use a more “co-evolved” approach. 
More extensive comparisons  between meta-heuristic algorithms, 

quality measures and rule induction algorithms are left for future 

research. Along with different topologies and levels of connectivity 
within the population. 
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