
A Hyper-Heuristic Evolutionary Algorithm for
Automatically Designing Decision-Tree Algorithms

Rodrigo C. Barros
ICMC-USP

University of São Paulo
São Carlos, SP, Brazil

rcbarros@icmc.usp.br

Márcio P. Basgalupp
ICT-UNIFESP

Federal University of SP
S. J. dos Campos, SP, Brazil
basgalupp@unifesp.br

André C. P. L. F. de
Carvalho
ICMC-USP

University of São Paulo
São Carlos, SP, Brazil

andre@icmc.usp.br
Alex A. Freitas

School of Computing
University of Kent

Canterbury, Kent, UK
A.A.Freitas@kent.ac.uk

ABSTRACT
Decision tree induction is one of the most employed
methods to extract knowledge from data, since the
representation of knowledge is very intuitive and easily
understandable by humans. The most successful strategy
for inducing decision trees, the greedy top-down approach,
has been continuously improved by researchers over the
years. This work, following recent breakthroughs in
the automatic design of machine learning algorithms,
proposes a hyper-heuristic evolutionary algorithm for
automatically generating decision-tree induction algorithms,
named HEAD-DT. We perform extensive experiments in 20
public data sets to assess the performance of HEAD-DT,
and we compare it to the traditional decision-tree algorithms
C4.5 and CART. Results show that HEAD-DT can generate
algorithms that significantly outperform C4.5 and CART
regarding predictive accuracy and F-Measure.

Categories and Subject Descriptors
I.2.6 [Induction and Knowledge Acquisition]: Learning

General Terms
Algorithms

Keywords
Decision trees, hyper-heuristics, evolutionary algorithms

1. INTRODUCTION
Top-down induction of decision trees is a powerful

classification method in machine learning and data mining,

GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.

due to its comprehensible nature that resembles the human
reasoning. Decision-tree (DT) induction algorithms present
several advantages over other learning algorithms, such as
robustness to noise, low computational cost and ability to
deal with redundant attributes.

Several attempts on optimizing DT algorithms have been
made by researches within the last decades, even though
the most successful algorithms date back to mid-80’s [5]
and early 90’s [32]. Different strategies were employed
for deriving accurate DTs, such as bottom-up induction
[2], hybrid induction [22], evolutionary induction [1, 3] and
ensemble of trees [4], just to name a few. Nevertheless, no
strategy has been more successful in generating accurate and
comprehensible decision trees with low computational effort
than the greedy top-down induction strategy.

A greedy top-down DT algorithm recursively analyzes
whether a sample of data should be partitioned in subsets
according to a given rule, or if no further partitioning
is needed. This analysis takes into account a stopping
criterion, for deciding when tree growth should halt, and a
splitting criterion, responsible for choosing the “optimal”
rule for partitioning a subset. Further improvements
over this basic strategy include pruning tree nodes for
enhancing the tree’s capability of dealing with noisy data,
and strategies for dealing with missing values.

A great number of approaches were proposed in the
literature for each one of these design components of
top-down DT algorithms. For instance, new measures for
node splitting tailored for a vast number of application
domains were proposed, as well as many different strategies
for selecting multiple attributes for composing the node
rule. There are even works in the literature that survey
the numerous approaches for pruning a decision tree [6, 16].
It is clear that by improving these design components, we
can obtain more robust top-down DT algorithms.

The manual improvement of DT design components has
been carried out for the past 40 years. Though effective, we
believe that automatically designing DT algorithms could
provide a faster, less-tedious - and equally effective - strategy
for improving DT algorithms in the next years. Hence,
we propose a hyper-heuristic evolutionary algorithm for
automatically design new (and effective) DT algorithms.



SPLIT

GENES

STOPPING

CRITERIA

GENES

MISSING

VALUES

GENES

PRUNING

GENES

Criterion

Binary Split

Criterion

Parameter

Split

Distribution

Classification

Method

Parameter

Figure 1: Linear-genome for evolving decision-tree
algorithms.

We name our method HEAD-DT, short for Hyper-heuristic
Evolutionary Algorithm for Designing DT algorithms. We
detail HEAD-DT in Section 2, and perform a thorough
experimental analysis in Section 3, where we compare the
algorithms evolved by HEAD-DT with C4.5 [32] and CART
[5]. We discuss the results in Secion 4 and we comment
on related work in Section 5. Finally, we present our
conclusions and future work directions in Section 6.

2. HEAD-DT
HEAD-DT is a hyper-heuristic algorithm to automatically

design top-down DT algorithms. Hyper-heuristics can
automatically generate new heuristics suited to a given
problem or class of problems. This is done by
combining, through an evolutionary algorithm, components
or building-blocks of human designed heuristics [7]. In
HEAD-DT, individuals are collections of building blocks
of DT algorithms. Each individual is encoded as an
integer string (see Figure 1), and each gene has a different
range of supported values. We divided the genes in four
categories that represent the major building blocks (design
components) of a DT algorithm: (i) split genes; (ii) stopping
criteria genes; (iii) missing values genes; and (iv) pruning
genes. We detail each category next.

2.1 Split Genes
These genes are concerned with the task of selecting the

attribute to split the data in the current node of the decision
tree. A decision rule based on the selected attribute is thus
generated, and the input data is filtered according to the
outcomes of this rule, and the process continues recursively.

We have used two genes to model the split component
of a DT algorithm. The first gene, criterion, is an
integer that indexes one of the 15 splitting criteria we
have implemented: information gain [29], Gini index
[5], global mutual information [19], G statistics [26],
Mantaras criterion [13], hypergeometric distribution [25],
Chandra-Varghese criterion [10], DCSM [9], χ2 [27], mean
posterior improvement [33], normalized gain [21], orthogonal
criterion [17], twoing [5], CAIR [11] and gain ratio [32].

The most well-known univariate criteria are based on
Shannon’s entropy. Entropy is known to be a unique
function which satisfies the four axioms of uncertainty. It
represents the average amount of information when coding
each class into a codeword with ideal length according to its
probability. The first splitting criterion that arose based
on entropy is the global mutual information (GMI) [19].
Following, the well-known information gain [29] became
a standard after appearing in algorithms such as ID3 [29]
and Assistant [23]. It belongs to the class of the so-called
impurity-based criteria. Quinlan [29] acknowledges the fact

that the information gain is biased towards attributes with
many values. He proposes a solution for this matter called
gain ratio [32]. It basically consists of normalizing the
information gain by the entropy of the attribute being
tested. Several variations of the gain ratio have been
proposed, e.g., the normalized gain [21]. Alternatives
to entropy-based criteria are the class of distance-based
measures, i.e., criteria that evaluate separability, divergency
or discrimination between classes. Examples are the Gini
index [5], the twoing criterion [5], the orthogonality criterion
[17], among others. We have also included lesser-known
criteria such as CAIR [11] and mean posterior improvement
[33], as well as the more recent Chandra-Varghese [10]
and DCSCM [9], to enhance the diversity of options for
generating splits in a decision tree.

The second gene used to model the split component of
a DT algorithm is binary split, which is a binary gene
that indicates whether the splits of a DT are going to
be necessarily binary or perhaps multi-way. In a binary
tree, every split has only two outcomes, which means that
nominal attributes with many categories will be divided
in two subsets, each representing an aggregation over
several categories. In a multi-way tree, nominal attributes
are divided according to their number of categories, i.e.,
one edge (outcome) for each category. In both cases,
numeric attributes always partition the tree in two subsets,
(≤ threshold and > threshold).

2.2 Stopping Criteria Genes
The second category of genes is related to the stopping

criteria component of DT algorithms. The top-down
induction of a DT is recursive and it continues until a
stopping criterion (also known as pre-pruning) is satisfied.
We have implemented the following stopping criteria:

• Reaching class homogeneity: when all instances that
reach a given node belong to the same class, there is
no reason to split this node any further. This strategy
can be combined with any of the following strategies;

• Reaching the maximum tree depth: a parameter tree
depth can be specified to avoid deep trees. We have
fixed its range in the interval [2, 10] levels;

• Reaching the minimum number of instances for a
non-terminal node: a parameter minimum number of
instances for a non-terminal node can be specified to
avoid (or at least alleviate) the data fragmentation
problem in DTs. Range: [1, 20] instances;

• Reaching the minimum percentage of instances for a
non-terminal node: same as above, but instead of
the actual number of instances, we set the minimum
percentage of instances. The parameter is thus relative
to the total number of instances in a data set. Range:
[1%, 10%] the total number of instances ;

• Reaching an accuracy threshold within a node: a
parameter accuracy reached can be specified for halting
the growth of the tree when the accuracy within a node
(majority of instances) has reached a given threshold.
Range: {70%, 75%, 80%, 85%, 90%, 95%, 99%}.

The first gene, criterion, selects among the five different
strategies for stopping the tree growth. The second gene,



parameter, dynamically adjusts a value in the range
[0, 100] to the corresponding strategy. For example, if the
strategy selected by gene criterion is reaching an accuracy
threshold within a node, the following mapping function is
executed:

param = ((value mod 7)× 5) + 70 (1)

This function maps from [0, 100] to
{70, 75, 80, 85, 90, 95, 100}, which is almost what was
defined as the range of strategy reaching an accuracy
threshold. The final step subtracts 1 if the resulting
value of the parameter is 100. Similar mapping functions
are executed dynamically to adjust the ranges of gene
parameter.

2.3 Missing Values Genes
Handling missing values is an important task in decision

tree induction. Missing values can be an issue during
tree induction and also during classification. During tree
induction, there are two moments in which we need to deal
with missing values: splitting criterion evaluation (split
gene) and instances distribution (distribution gene).

During the split criterion evaluation in node t based on
attribute ai, we implemented the strategies: (i) ignore all
instances whose value of ai is missing [5]; (ii) imputation of
missing values with either the mode (nominal attributes) or
the mean/median (numeric attributes) of all instances in t
[12]; (iii) weight the splitting criterion value (calculated in
node t with regard to ai) by the proportion of missing values
[31]; and (iv) imputation of missing values with either the
mode (nominal attributes) or the mean/median (numeric
attributes) of all instances in t whose class attribute is the
same of the instance whose ai value is being imputed [24].

For deciding which child node training instance xj should
go to, considering a split in node t over ai, we adopted the
options: (i) ignore instance xj [29]; (ii) treat instance xj
as if it has the most common value of ai (mode or mean),
regardless of the class [31]; (iii) treat instance xj as if it has
the most common value of ai (mode or mean) considering the
instances that belong to the same class than xj ; (iv) assign
instance xj to all partitions; (v) assign instance xj to the
partition with largest number of instances [31]; (vi) weight
instance xj according to the partition probability [32, 23];
and (vii) assign instance xj to the most probable partition,
considering the class of xj [24].

Finally, for classifying an unseen test instance xj ,
considering a split in node t over ai, we used the strategies:
(i) explore all branches of t combining the results [30];
(ii) take the route to the most probable partition (largest
subset); (iii) halt the classification process and assign
instance xj to the majority class of node t [31].

2.4 Pruning Genes
Pruning is usually performed in decision trees for

enhancing tree comprehensibility by reducing its size while
maintaining (or even improving) accuracy. It was originally
conceived as a strategy for tolerating noisy data, though it
was found to improve decision tree accuracy in many noisy
data sets [5, 29, 30]. We have implemented the following
well-known pruning strategies: i) reduced-error pruning; ii)
pessimistic error pruning; iii) minimum error pruning; iv)
cost-complexity pruning; and v) error-based pruning.

Reduced-error pruning (REP) is a conceptually simple
strategy proposed by Quinlan [30]. It uses a pruning set (a
part of the training set) to evaluate the goodness of a given
subtree from T . The idea is to evaluate each non-terminal
node t with regard to the classification error in the pruning
set. If such an error decreases when we replace the subtree
T (t) rooted on t by a leaf node, then T (t) must be pruned.
Quinlan imposes a constraint: a node t cannot be pruned if
it contains a subtree that yields a lower classification error in
the pruning set. The practical consequence of this constraint
is that REP should be performed in a bottom-up fashion.
The REP pruned tree T ′ presents an interesting optimality
property: it is the smallest most accurate tree resulting
from pruning original tree T [30]. Besides this optimality
property, another advantage of REP is its linear complexity,
since each node is visited only once in T . An obvious
disadvantage is the need of using a pruning set, which means
one has to divide the original training set, resulting in fewer
instances to grow the tree. This disadvantage is particularly
serious for small data sets.

Also proposed by Quinlan [30], the pessimistic error
pruning (PEP) uses the training set for both growing and
pruning the tree. The apparent error rate, i.e., the error
rate calculated over the training set, is optimistically biased
and cannot be used to decide whether pruning should
be performed or not. Quinlan thus proposes adjusting
the apparent error according to the continuity correction
for the binomial distribution in order to provide a more
realistic error rate. PEP is computed in a top-down fashion,
and if a given node t is pruned, its descendants are not
examined, which makes this pruning strategy quite efficient
in terms of computational effort. As a point of criticism,
Esposito et al. [16] point out that the introduction of the
continuity correction in the estimation of the error rate has
no theoretical justification, since it was never applied to
correct over-optimistic estimates of error rates in statistics.

Originally proposed in [28] and further extended in [8],
minimum error pruning (MEP) is a bottom-up approach
that seeks to minimize the expected error rate for unseen
cases. It uses an ad-hoc parameter m for controlling the
level of pruning. Usually, the higher the value of m, the more
severe the pruning. Cestnik and Bratko [8] suggest that a
domain expert should set m according to the level of noise in
the data. Alternatively, a set of trees pruned with different
values of m could be offered to the domain expert, so he/she
can choose the best one according to his/her experience.

Cost-complexity pruning (CCP) is the post-pruning
strategy of the CART system, detailed in [5]. It consists
of two steps: (i) generate a sequence of increasingly smaller
trees, beginning with T and ending with the root node of T ,
by successively pruning the subtree yielding the lowest cost
complexity, in a bottom-up fashion; (ii) choose the best tree
among the sequence based on its relative size and accuracy
(either on a pruning set, or provided by a cross-validation
procedure in the training set). The idea within step 1 is that
pruned tree Ti+1 is obtained by pruning the subtrees that
show the lowest increase in the apparent error (error in the
training set) per pruned leaf. Regarding step 2, CCP chooses
the smallest tree whose error (either on the pruning set or on
cross-validation) is not more than one standard error (SE)
greater than the lowest error observed in the sequence of
trees.

Finally, error-based pruning (EBP) was proposed by



Table 1: Summary of the data sets used in the experiments.

data set # instances # attributes # numeric attributes # nominal attributes % missing # classes

abalone 4177 8 7 1 0.00 30
anneal 898 38 6 32 0.00 6
arrhythmia 452 279 206 73 0.32 16
audiology 226 69 0 69 2.03 24
bridges version1 107 12 3 9 5.53 6
car 1728 6 0 6 0.00 4
cylinder bands 540 39 18 21 4.74 2
glass 214 9 9 0 0.00 7
hepatitis 155 19 6 13 5.67 2
iris 150 4 4 0 0.00 3
kdd synthetic 600 61 60 1 0.00 6
segment 2310 19 19 0 0.00 7
semeion 1593 265 265 0 0.00 2
shuttle landing 15 6 0 6 28.89 2
sick 3772 30 6 22 5.54 2
tempdiag 120 7 1 6 0.00 2
tep.fea 3572 7 7 0 0.00 3
vowel 990 13 10 3 0.00 11
winequality red 1599 11 11 0 0.00 10
winequality white 4898 11 11 0 0.00 10

Quinlan and it is implemented as the default pruning
strategy of C4.5 [32]. It is an improvement over PEP,
based on a far more pessimistic estimate of the expected
error. Unlike PEP, EBP performs a bottom-up search, and
it carries out not only the replacement of non-terminal nodes
by leaves but also grafting of subtree T (t) onto the place of
parent t. For deciding whether to replace a non-terminal
node by a leaf (subtree replacement), to graft a subtree
onto the place of its parent (subtree raising) or not to
prune at all, a pessimistic estimate of the expected error
is calculated by using an upper confidence bound. An
advantage of EBP is the new grafting operation that allows
pruning useless branches without ignoring interesting lower
branches. A drawback of the method is the presence of an
ad-hoc parameter, CF . Smaller values of CF result in more
pruning.

We designed two genes in HEAD-DT for pruning. The
first gene, method, indexes one of the five approaches for
pruning a DT (and also the option of not pruning at all).
The second gene, parameter, is in the range [0, 100] and
its value is dynamically mapped by a function, according
to the pruning method selected (similar to the stopping
criteria parameter gene). For REP, the parameter is the
percentage of training data to be used in the pruning set
(varying within the interval [10%, 50%]). For PEP, the
parameter is the number of standard errors (SEs) to adjust
the apparent error, in the set {0.5, 1, 1.5, 2}. For MEP, the
parameter m may range within [0, 100]. For CCP, there
are two parameters: the number of SEs (in the same range
than PEP) and the pruning set size (in the same range than
REP). Finally, for EBP, the parameter CF may vary within
[1%, 50%].

2.5 Evolutionary Process
HEAD-DT is a regular generational EA configured with

the following parameters:

• Population size: 100;

• Maximum number of generations: 100;

• Selection: tournament selection with size t = 2;

• Elitism rate: 10 individuals;

• Crossover: one-point crossover with 90% probability;

• Mutation: random uniform gene mutation with 10%
probability.

The initial population is created by randomly choosing
values within the range of each gene. For guiding the search
for the near-optimal solution, we have defined the fitness
function of HEAD-DT to be the accuracy of the decision
tree generated by the evolved algorithms. In order to avoid
overfitting issues, we have divided the training data set in
two subsets: sub-training (75%) and validation (25%) sets.
The sub-training set is used so the evolved algorithm can
generate a decision-tree at each generation of the EA. The
validation set is used to assess the relative performance of
the algorithm in the training data, and hence the accuracy
obtained in the validation set is used as fitness function for
guiding the evolutionary search. At the end of each run, the
best individual (algorithm) is selected for inducing a decision
tree from the test data set.

3. EXPERIMENTAL ANALYSIS

3.1 Methodology
To assess the relative performance of the algorithms

automatically designed by HEAD-DT, we use different data
sets (see Table 1) from the UCI machine-learning repository1

[18] and compare the resulting DT algorithms with the two
most well-known and widely-used DT induction algorithms:
C4.5 [32] and CART [5]. We report the classification
accuracy of the DTs generated for each data set, as well as
the F-Measure (performance measure which is not biased
towards the majority class) and the size of the decision
tree (total number of nodes). All results are based on the
average of 10-fold cross-validation runs. Additionally, since
HEAD-DT is a non-deterministic method, we averaged the
results of 5 different runs (varying the random seed).

In order to provide some reassurance about the validity
and non-randomness of the obtained results, we present the
results of statistical tests by following the approach proposed
by Demšar [15]. In brief, this approach seeks to compare

1http://archive.ics.uci.edu/ml/



multiple algorithms on multiple data sets, and it is based on
the use of the Friedman test with a corresponding post-hoc
test. The Friedman test is a non-parametric counterpart
of the well-known ANOVA, as follows. Let Rji be the rank
of the jth of k algorithms on the ith of N data sets. The
Friedman test compares the average ranks of algorithms,
Rj = 1

N

∑
iR

j
i . The Friedman statistic is given by:

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(2)

is distributed according to χ2
F with k−1 degrees of freedom,

when N and k are big enough.
Iman and Davenport [20] showed that Friedman’s χ2

F is
undesirably conservative and derived an adjusted statistic:

Ff =
(N − 1)× χ2

F

N × (k − 1)− χ2
F

(3)

which is distributed according to the F -distribution with
k − 1 and (k − 1)(N − 1) degrees of freedom.

If the null hypothesis of similar performances is rejected,
then we proceed with the Nemenyi post-hoc test for
pairwise comparisons. The performance of two classifiers
is significantly different if their corresponding average ranks
differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
(4)

where critical values qα are based on the Studentized range
statistic divided by

√
2.

3.2 Results
Table 2 shows the classification accuracy of C4.5, CART

and HEAD-DT. It illustrates the average accuracy over the
10-fold cross-validation runs ± the standard deviation of
the accuracy obtained in those runs (best absolute values in
bold). It is possible to see that HEAD-DT generates more
accurate trees in 13 out of the 20 data sets. CART provides
more accurate trees in two data sets, and C4.5 in none. In
the remaining 5 data sets, no method was superior to the
others.

To evaluate the statistical significance of the accuracy
results, we calculated the average rank for CART, C4.5 and
HEAD-DT: 2.375, 2.2 and 1.425, respectively. The average
rank suggest that HEAD-DT is the best performing method
regarding accuracy. The calculation of Friedman’s χ2

F is
given by:

χ2
F =

12× 20

3× 4

[
2.3752 + 2.22 + 1.4252 − 3× 42

4

]
= 10.225

(5)
Iman’s F statistic is given by:

Ff =
(20− 1)× 10.225

20× (3− 1)− 10.22
= 6.52 (6)

Critical value of F (k − 1, (k − 1)(n − 1)) = F (2, 38) for
α = 0.05 is 3.25. Since Ff > F0.05(2, 38) (6.52 > 3.25),
the null-hypothesis is rejected. We proceed with a post-hoc
Nemenyi test to find which method provides better results.
The critical difference CD is given by:

Table 2: Classification accuracy of CART, C4.5 and
HEAD-DT.

CART C4.5 HEAD-DT

abalone 0.26 ± 0.02 0.22 ± 0.02 0.20 ± 0.02
anneal 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
arrhythmia 0.71 ± 0.05 0.65 ± 0.04 0.65 ± 0.04
audiology 0.74 ± 0.05 0.78 ± 0.07 0.80 ± 0.06
bridges version1 0.41 ± 0.07 0.57 ± 0.10 0.60 ± 0.12
car 0.97 ± 0.02 0.93 ± 0.02 0.98 ± 0.01
cylinder bands 0.60 ± 0.05 0.58 ± 0.01 0.72 ± 0.04
glass 0.70 ± 0.11 0.69 ± 0.04 0.73 ± 0.10
hepatitis 0.79 ± 0.05 0.79 ± 0.06 0.81 ± 0.08
iris 0.93 ± 0.05 0.94 ± 0.07 0.95 ± 0.04
kdd synthetic 0.88 ± 0.00 0.91 ± 0.04 0.97 ± 0.03
segment 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
semeion 0.94 ± 0.01 0.95 ± 0.02 1.00 ± 0.00
shuttle landing 0.95 ± 0.16 0.95 ± 0.16 0.95 ± 0.15
sick 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00
tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
tep.fea 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02
vowel 0.82 ± 0.04 0.83 ± 0.03 0.89 ± 0.04
winequality red 0.63 ± 0.02 0.61 ± 0.03 0.64 ± 0.03
winequality white 0.58 ± 0.02 0.61 ± 0.03 0.63 ± 0.03

CD = 2.343×
√

3× 4

6× 20
= 0.74 (7)

The difference between the average rank of HEAD-DT
and C4.5 is 0.775 and that between HEAD-DT and CART
is 0.95. Since both the differences are greater than CD, the
performance of HEAD-DT is significantly better than both
C4.5 and CART regarding accuracy.

Table 3 shows the classification F-Measure of C4.5, CART
and HEAD-DT. Results show that HEAD-DT generates
better trees (regardless of the class imbalance problem) in
16 out of the 20 data sets. CART generates the best tree in
two data sets, while C4.5 does not provide the best tree for
any data set.

Table 3: Classification F-Measure of CART, C4.5
and HEAD-DT.

CART C4.5 HEAD-DT

abalone 0.22 ± 0.02 0.21 ± 0.02 0.20 ± 0.02
anneal 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01
arrhythmia 0.67 ± 0.05 0.64 ± 0.05 0.63 ± 0.06
audiology 0.70 ± 0.04 0.75 ± 0.08 0.79 ± 0.07
bridges version1 0.44 ± 0.06 0.52 ± 0.10 0.56 ± 0.12
car 0.93 ± 0.97 0.93 ± 0.02 0.98 ± 0.01
cylinder bands 0.54 ± 0.07 0.42 ± 0.00 0.72 ± 0.04
glass 0.67 ± 0.10 0.67 ± 0.05 0.72 ± 0.09
hepatitis 0.74 ± 0.07 0.77 ± 0.06 0.80 ± 0.08
iris 0.93 ± 0.05 0.93 ± 0.06 0.95 ± 0.05
kdd synthetic 0.88 ± 0.03 0.90 ± 0.04 0.97 ± 0.03
segment 0.95 ± 0.01 0.96 ± 0.09 0.97 ± 0.01
semeion 0.93 ± 0.01 0.95 ± 0.02 1.00 ± 0.00
shuttle landing 0.56 ± 0.03 0.56 ± 0.38 0.93 ± 0.20
sick 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00
tempdiag 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
tep.fea 0.60 ± 0.02 0.61 ± 0.02 0.61 ± 0.02
vowel 0.81 ± 0.03 0.82 ± 0.03 0.89 ± 0.03
winequality red 0.61 ± 0.02 0.60 ± 0.03 0.63 ± 0.03
winequality white 0.57 ± 0.02 0.60 ± 0.02 0.63 ± 0.03

We calculated the average rank for CART, C4.5 and
HEAD-DT: 2.5, 2.225 and 1.275, respectively. The average
rank suggest that HEAD-DT is the best performing method
regarding F-Measure. The calculation of Friedman’s χ2

F is
given by:



χ2
F =

12× 20

3× 4

[
2.52 + 2.2252 + 1.2752 − 3× 42

4

]
= 16.525

(8)
Iman’s F statistic is given by:

Ff =
(20− 1)× 16.525

20× (3− 1)− 16.525
= 13.375 (9)

Since Ff > F0.05(2, 38) (13.375 > 3.25), the
null-hypothesis is rejected. The difference between the
average rank of HEAD-DT and C4.5 is 0.95 and that
between HEAD-DT and CART is 1.225. Since both the
differences are greater than CD (0.74), the performance of
HEAD-DT is significantly better than both C4.5 and CART
regarding F-Measure.

Table 4 shows the size of trees generated by C4.5, CART
and HEAD-DT. Results show that CART generates smaller
trees in 15 out of the 20 data sets. C4.5 generates smaller
trees in 2 data sets, and HEAD-DT in only one data set.
The statistical analysis is given below:

χ2
F =

12× 20

3× 4

[
1.22 + 22 + 2.82 − 3× 42

4

]
= 25.6 (10)

Ff =
(20− 1)× 33.78

20× (3− 1)− 25.6
= 33.78 (11)

Since Ff > F0.05(2, 38) (33.78 > 3.25), the null-hypothesis
is rejected. The difference between the average rank of
HEAD-DT and C4.5 is 0.8 and that between HEAD-DT
and CART is 1.6. Since both the differences are greater
than CD (0.74), HEAD-DT generates trees which are
significantly larger than both C4.5 and CART. This should
not be a concern, since smaller trees are only preferable in
scenarios where the predictive performance of the algorithms
is similar. The statistical analysis previously presented
clearly indicate that HEAD-DT generates algorithms whose
trees outperform C4.5 and CART regarding predictive
performance. The Occam’s razor assumption that among
competitive hypotheses, the simpler is preferred, does not
apply in this case.

4. DISCUSSION
In this section, we discuss three important topics to

support the empirical analysis presented in Section 3: (i)
the accuracy dilemma and when preferring F-Measure for
evaluating DT algorithms; (ii) the empirical (and theoretic)
time complexity of HEAD-DT, and also of the algorithms it
generates; and (iii) an example of algorithm automatically
designed by HEAD-DT.

4.1 Accuracy vs F-Measure
The fact that HEAD-DT designs algorithms whose trees

are significantly more accurate than those by C4.5 and
CART is quite encouraging. Notwithstanding, we must
point out that accuracy may be a misleading performance
measure. For instance, suppose we have a data set whose
class distribution is very skewed: 90% of the instances
belong to class A and 10% to class B. An algorithm that
always classifies instances as belonging to class A would
achieve 90% of accuracy, even though it never predicts a

class-B instance. In this case, assuming that class B is
equally important (or even more so) than class A, we would
prefer an algorithm with lower accuracy, but that could
eventually predict instances as belonging to the rare class B.

The example above illustrates the importance of not
relying only in accuracy when designing an algorithm.
F-Measure is the harmonic mean of precision and recall, and
thus rewards solutions that present a good trade-off between
these two measures. Hence, for imbalanced-class problems,
F-Measure should be preferred over accuracy.

Even though HEAD-DT explicitly optimizes its solutions
to achieve the highest possible accuracy, we can notice
that HEAD-DT algorithms provide decision trees whose
F-Measure are significantly higher than C4.5 and CART. In
other words, HEAD-DT usually generates DT algorithms
which are more robust to skewed-class problems, and that
is yet another advantage of the automatic algorithm’s
generation by HEAD-DT.

4.2 Time Complexity
Regarding execution time, it is clear that HEAD-DT is

slower than either C4.5 and CART. Considering that there
are 100 individuals executed for 100 generations, there is
a maximum (worst case) of 10000 fitness evaluations of
decision trees.

We recorded the execution time of both breeding
operations and fitness evaluation (one thread was used
for breeding and other for evaluation). Total time of
breeding is absolutely negligible (a few milliseconds in
a full evolutionary cycle), regardless of the data set
being used (breeding does not consider any domain-specific
information). Indeed, breeding individuals in the form of
an integer string is known to be quite efficient in the EA
research field.

Fitness evaluation, on the other hand, is the bottleneck of
HEAD-DT. The largest data set (winequality white) takes
2.5 hours to be fully executed (one full evolutionary cycle
of 100 generations). The smallest data set (shuttle landing)
takes only 0.72 seconds to be fully executed, which means
the fitness evaluation time can vary quite a lot according to
the data set size.

The computational complexity of algorithms such as C4.5
and CART is O(m×n logn) (m is the number of attributes
and n the data set size), plus a term regarding the specific
pruning method. Considering that breeding takes negligible
time, we can say that in the worst case scenario, HEAD-DT
time complexity is O(i × g × m × n logn), where i is the
number of individuals and g is the number of generations.
In practice, the number of evaluations is much smaller than
i × g, due to the fact that repeated individuals are not
re-evaluated. In addition, individuals selected by elitism
and by reproduction (instead of crossover) are also not
re-evaluated, saving computational time.

4.3 Example of an Evolved Algorithm
For illustrating a novel algorithm designed by HEAD-DT,

let us consider the Semeion data set, in which HEAD-DT
managed to achieve maximum accuracy and F-Measure
(which was not the case of CART and C4.5). The algorithm
designed by HEAD-DT is presented in Algorithm 1. It is
indeed novel, since no algorithm in the literature combines
components such as the Chandra-Varghese criterion with
MEP pruning. Furthermore, it chooses MEP as its pruning



Table 4: Tree size of CART, C4.5 and HEAD-DT trees.

CART C4.5 HEAD-DT

abalone 44.40 ± 16.00 2088.90 ± 37.63 4068.12 ± 13.90
anneal 21.00 ± 3.13 48.30 ± 6.48 55.72 ± 3.66
arrhythmia 23.20 ± 2.90 82.60 ± 5.80 171.84 ± 5.18
audiology 35.80 ± 11.75 50.40 ± 4.01 118.60 ± 3.81
bridges version1 1.00 ± 0.00 24.90 ± 20.72 156.88 ± 14.34
car 108.20 ± 16.09 173.10 ± 6.51 171.92 ± 4.45
cylinder bands 4.20 ± 1.03 1.00 ± 0.00 211.44 ± 9.39
glass 23.20 ± 10.56 44.80 ± 5.20 86.44 ± 3.14
hepatitis 6.60 ± 8.58 15.40 ± 4.40 71.80 ± 4.77
iris 6.20 ± 1.69 8.00 ± 1.41 20.36 ± 1.81
kdd synthetic 1.00 ± 0.00 37.80 ± 4.34 26.16 ± 2.45
segment 78.00 ± 8.18 80.60 ± 4.97 132.76 ± 3.48
semeion 34.00 ± 12.30 55.00 ± 8.27 19.00 ± 0.00
shuttle landing 1.00 ± 0.00 1.00 ± 0.00 5.64 ± 1.69
sick 45.20 ± 11.33 46.90 ± 9.41 153.70 ± 8.89
tempdiag 5.00 ± 0.00 5.00 ± 0.00 5.32 ± 1.04
tep.fea 13.00 ± 2.83 8.20 ± 1.69 18.84 ± 1.97
vowel 175.80 ± 23.72 220.70 ± 20.73 361.42 ± 5.54
winequality red 151.80 ± 54.58 387.00 ± 26.55 796.00 ± 11.22
winequality white 843.80 ± 309.01 1367.20 ± 58.44 2525.88 ± 13.17

method, which is a surprise considering that MEP is usually
a neglected pruning method in the DT literature.

The main advantage of HEAD-DT is that it automatically
searches for the suitable components (with their own biases)
according to the data set being investigated. It is hard to
believe that a researcher would combine such a distinct set
of components like those in Algorithm 1 to achieve 100%
accuracy in a particular data set.

Algorithm 1: Algorithm designed by HEAD-DT for the
Semeion data set.

1 Recursively split nodes with the Chandra-Varghese criterion;
2 Aggregate nominal splits in binary subsets;
3 Perform step 1 until class-homogeneity or the minimum number

of 5 instances is reached;
4 Perform MEP pruning with m = 10;

When dealing with missing values:
1 Calculate the split of missing values by performing

unsupervised imputation;
2 Distribute missing values by assigning the instance to all

partitions;
3 For classifying an instance with missing values, explore all

branches and combine the results.

5. RELATED WORK
To the best of our knowledge, no work to date attempts

to automatically design full DT induction algorithms.
The most related approach to this work is HHDT
(Hyper-Heuristic Decision Tree) [34]. It proposes an EA
for evolving heuristic rules in order to determine the best
splitting criterion to be used in non-terminal nodes. Whilst
this approach is a first step to automate decision-tree
induction algorithms, it evolves a single component of the
algorithm (the choice of splitting criterion), and thus should
be further extended for being able to generate full DT
induction algorithms.

A somewhat related approach is the one presented by
Delibasic et al. [14]. The authors propose a framework
for combining DT components, and test 80 different
combination of design components on 15 benchmark data
sets. This approach is not a hyper-heuristic, since it does
not present an heuristic to choose among different heuristics.

It simply selects a fixed number of component combinations
and test them all against traditional DT algorithms (C4.5,
CART, ID3 and CHAID). We believe our strategy is more
robust, since by using an evolutionary algorithm, we can
search for solutions in a much larger search space. Currently,
HEAD-DT can search for more than 127 million different
algorithms.

6. CONCLUSIONS AND FUTURE WORK
In this work, we presented HEAD-DT, a hyper-heuristic

algorithm to automatically design top-down decision-tree
induction algorithms. These algorithms have been manually
improved for the last 40 years, resulting in a great
number of approaches for each of their design components.
Since the human manual approach for testing all possible
modifications in the design components of decision-tree
algorithms would be unfeasible, we believe the evolutionary
search of HEAD-DT constitutes a robust and efficient
solution for the problem.

We performed a thorough experimental analysis in
which the algorithms automatically designed by HEAD-DT
were compared to state-of-the-art decision-tree induction
algorithms CART [5] and C4.5 [32] in 20 public UCI data
sets. We assessed the performance of HEAD-DT through
2 different performance measures, accuracy and F-Measure,
and also a complexity measure, tree size. The experimental
analysis suggested that HEAD-DT can generate algorithms
which perform significantly better than CART and C4.5,
though generating significantly larger trees. Bearing in
mind that an accurate prediction system is widely preferred
over a less-accurate (but simpler) system, we believe
that HEAD-DT arises as an effective algorithm for future
applications of decision trees.

As future work, we intend to develop a multi-objective
fitness function, allowing the trade-off between predictive
performance and parsimony. In addition, we plan to
investigate whether a more sophisticated search system, such
as grammar-based genetic programming, can outperform
our current HEAD-DT implementation. Optimizing the
evolutionary parameters of HEAD-DT is also a topic left
for future research.



Acknowledgements
The authors would like to thank Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES),
Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq) and Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP) for funding this research.

7. REFERENCES
[1] R. C. Barros, M. P. Basgalupp, A. C. P. L. F.

de Carvalho, and A. A. Freitas. A survey of
evolutionary algorithms for decision tree induction.
IEEE Transactions on Systems, Man and Cybernetics
- Part C: Applications and Reviews, In press., 2011.

[2] R. C. Barros, R. Cerri, P. A. Jaskowiak, and A. C. P.
L. F. de Carvalho. A Bottom-Up Oblique Decision
Tree Induction Algorithm. In 11th International
Conference on Intelligent Systems Design and
Applications, pages 450 –456, 2011.

[3] R. C. Barros, D. D. Ruiz, and M. P. Basgalupp.
Evolutionary model trees for handling continuous
classes in machine learning. Information Sciences,
181:954–971, 2011.

[4] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth, 1984.

[6] L. Breslow and D. Aha. Simplifying decision trees: A
survey. The Knowledge Engineering Review,
12(01):1–40, 1997.

[7] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa,
E. Ozcan, and J. R. Woodward. Exploring
Hyper-heuristic Methodologies with Genetic
Programming. In Colaborative Computational
Intelligence, pages 177–201. Springer, 2009.

[8] B. Cestnik and I. Bratko. On estimating probabilities
in tree pruning. In EWSL’91, pages 138–150. Springer,
1991.

[9] B. Chandra, R. Kothari, and P. Paul. A new node
splitting measure for decision tree construction.
Pattern Recognition, 43(8):2725–2731, 2010.

[10] B. Chandra and P. P. Varghese. Moving towards
efficient decision tree construction. Information
Sciences, 179(8):1059–1069, 2009.

[11] J. Ching, A. Wong, and K. Chan. Class-dependent
discretization for inductive learning from continuous
and mixed-mode data. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(7):641–651,
1995.

[12] P. Clark and T. Niblett. The CN2 induction
algorithm. Machine Learning, 3(4):261–283, 1989.

[13] R. L. De Mántaras. A Distance-Based Attribute
Selection Measure for Decision Tree Induction.
Machine Learning, 6(1):81–92, 1991.

[14] B. Delibasic, M. Jovanovic, M. Vukicevic,
M. Suknovic, and Z. Obradovic. Component-based
decision trees for classification. Intelligent Data
Analysis, 15:1–38, Aug. 2011.

[15] J. Demšar. Statistical Comparisons of Classifiers over
Multiple Data Sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[16] F. Esposito, D. Malerba, and G. Semeraro. A
Comparative Analysis of Methods for Pruning
Decision Trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(5):476–491,
1997.

[17] U. Fayyad and K. Irani. The attribute selection
problem in decision tree generation. In National
Conference on Artificial Intelligence, pages 104–110,
1992.

[18] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[19] M. Gleser and M. Collen. Towards automated medical
decisions. Computers and Biomedical Research,
5(2):180–189, 1972.

[20] R. Iman and J. Davenport. Approximations of the
critical region of the friedman statistic.
Communications in Statistics, pages 571–595, 1980.

[21] B. Jun, C. Kim, Y.-Y. Song, and J. Kim. A New
Criterion in Selection and Discretization of Attributes
for the Generation of Decision Trees. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 19(2):1371–1375, 1997.

[22] B. Kim and D. Landgrebe. Hierarchical classifier
design in high-dimensional numerous class cases. IEEE
Transactions on Geoscience and Remote Sensing,
29(4):518–528, 1991.

[23] I. Kononenko, I. Bratko, and E. Roskar. Experiments
in automatic learning of medical diagnostic rules.
Technical report, Jozef Stefan Institute, Ljubljana,
Yugoslavia, 1984.

[24] W. Loh and Y. Shih. Split selection methods for
classification trees. Statistica Sinica, 7:815–840, 1997.

[25] J. Martin. An exact probability metric for decision
tree splitting and stopping. Machine Learning,
28(2):257–291, 1997.

[26] J. Mingers. Expert systems - rule induction with
statistical data. Journal of the Operational Research
Society, 38:39–47, 1987.

[27] J. Mingers. An empirical comparison of selection
measures for decision-tree induction. Machine
Learning, 3(4):319–342, 1989.

[28] T. Niblett and I. Bratko. Learning decision rules in
noisy domains. In 6th Annual Technical Conference on
Expert Systems, pages 25–34, 1986.

[29] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

[30] J. R. Quinlan. Simplifying decision trees. International
Journal of Man-Machine Studies, 27:221–234, 1987.

[31] J. R. Quinlan. Unknown attribute values in induction.
In 6th International Workshop on Machine Learning,
pages 164–168, 1989.

[32] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann, San Francisco, CA, USA, 1993.

[33] P. C. Taylor and B. W. Silverman. Block diagrams
and splitting criteria for classification trees. Statistics
and Computing, 3:147–161, 1993.

[34] A. Vella, D. Corne, and C. Murphy. Hyper-heuristic
decision tree induction. World Congress on Nature &
Biologically Inspired Computing, pages 409–414, 2009.


