
Improving the Interpretability of Classification Rules
Discovered by an Ant Colony Algorithm

Fernando E. B. Otero
School of Computing

University of Kent, Chatham Maritime
Kent, ME4 4AG, UK

F.E.B.Otero@kent.ac.uk

Alex A. Freitas
School of Computing

University of Kent, Canterbury
Kent, CT2 7NF, UK

A.A.Freitas@kent.ac.uk

ABSTRACT

The vast majority of Ant Colony Optimization (ACO) al-
gorithms for inducing classification rules use an ACO-based
procedure to create a rule in an one-at-a-time fashion. An
improved search strategy has been proposed in the cAnt-
MinerPB algorithm, where an ACO-based procedure is used
to create a complete list of rules (ordered rules)—i.e., the
ACO search is guided by the quality of a list of rules, in-
stead of an individual rule. In this paper we propose an ex-
tension of the cAnt-MinerPB algorithm to discover a set of
rules (unordered rules). The main motivation for discovering
a set of rules is to improve the interpretation of individual
rules and evaluate the impact on the predictive accuracy
of the algorithm. We also propose a new measure to eval-
uate the interpretability of the discovered rules to mitigate
the fact that the commonly-used model size measure ignores
how the rules are used to make a class prediction. Compar-
isons with state-of-the-art rule induction algorithms and the
cAnt-MinerPB producing ordered rules are also presented.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms

Keywords

ant colony optimization, data mining, classification, sequen-
tial covering, unordered rules

1. INTRODUCTION
Ant colony optimization (ACO) has been successfully ap-

plied to the classification task in data mining. Classification
problems can be viewed as optimisation problems, where the
goal is to find the best model that represents the predictive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

relationships in the data [19, 4, 25]. In essence, a classi-
fication problem consists of discovering a predictive model
that represents the relationships between the predictor at-
tribute values and the class (target) attribute values of data
instances (also called examples, or cases). The discovered
classification model is then used to classify—predict the class
attribute value of—new examples (unseen during training)
based on the values of their predictor attributes.

Since the introduction of Ant-Miner [18], the first ant
colony rule induction algorithm for the discovery of a list
of classification rules, many extensions have been proposed
in the literature [7, 12]. The vast majority of these exten-
sions follow the same overall design: they employ an ACO
procedure to create a single classification rule in the form
IF <term1 AND . . . AND termn> THEN <class value> at
each iteration of the algorithm, where the IF part corre-
sponds to the antecedent of the rule and the THEN part
corresponds to the consequent of the rule. The ACO-based
construction procedure is repeated many times to produce
a classification model (i.e., a list of classification rules). The
strategy of creating one-rule-at-time, where the creation of
each rule is an independent search problem, can lead to the
problem of rule interaction—the creation of a rule affects
the rules that can be created in subsequent iterations. A
new strategy to mitigate the potential problem of rule inter-
action has been recently proposed in [17] and implemented
in the cAnt-MinerPB algorithm. The main idea proposed in
the new strategy is the use of an ACO procedure to create
a complete list of rules and guide the search based on the
quality of the whole list, therefore taking into account the
interaction between the rules in the list.

This paper proposes an extension of the cAnt-MinerPB

algorithm to create unordered rules. The main motivation
is to improve the interpretation of individual rules. In an
ordered set of rules (also referred to as list of rules), the
effect (meaning) of a rule depends on all previous rules in
the list, since a rule is only used if all previous rules do not
cover the example. On the other hand, in an unordered set
of rules, an example is shown to all rules and a single rule
is used to make a prediction. We evaluate the new exten-
sion, called Unordered cAnt-MinerPB, against state-of-the-
art rule induction algorithms in terms of predictive accuracy
using 18 publicly available datasets. We also propose a new
measure to evaluate the size of the discovered model and
present the results obtained by cAnt-MinerPB and the pro-
posed Unordered cAnt-MinerPB algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a discussion of the new strategy implemented

in the cAnt-MinerPB algorithm. The details of the proposed
extension to create unordered rules are presented in Sec-
tion 3. The computational results are presented in Section 4.
Finally, Section 5 concludes this paper and presents future
research directions.

2. BACKGROUND
The majority of ant colony classification algorithms fol-

lows a sequential covering strategy in order to create classi-
fication rules. The sequential covering strategy (also known
as separate-and-conquer) is a commonly used strategy in
machine learning to create a list/set of rules and it consists
of two main steps: the algorithm creates a rule that clas-
sifies part of the available training examples (conquer step)
and then removes the classified examples (separate step).
This iterative process is repeated until (almost) all exam-
ples have been classified—i.e., there is a rule that classifies
each of the available training examples. The use of the se-
quential covering strategy reduces the problem of creating
a list/set of classification rules into a sequence of simpler
problems, each requiring the creation of a single rule. In
the case of ant colony classification algorithms, a single rule
is created by an ACO procedure, which aims at searching
for the best rule given a rule quality function. This is the
strategy found in Ant-Miner [18], the first ACO-based rule
induction algorithm, and its many extensions [7, 12]. One
of the few exceptions is the Grammar Based Ant Program-
ming (GBAP) algorithm [15, 16], which does not follow the
sequential covering. In GBAP, each ant in the colony cre-
ates a rule using a context-free grammar and a list of rules is
obtained using a niching approach—different ants compete
to cover all training examples and the most accurate ones
are used to compose a list of rules.

Recently, [17] proposed a new strategy to create classifi-
cation rules using an ACO algorithm, implemented in the
cAnt-MinerPB algorithm. The main motivation for the new
strategy is to avoid the potential problem of rule interaction
arising from the greedy nature of the sequential covering.
Since rules are discovered in an one-at-a-time fashion in the
sequential covering, the outcome of a rule (the examples re-
moved by the rule) affects the remaining rules that can be
created—the removal of the examples effectively changes the
search space for the later iterations. As a result, Ant-Miner
(and its variations) perform a greedy search for the list of
best rules, using an ACO procedure to search for the best
rule give a set of examples, and it is highly dependant in the
order that rules are created. The strategy implemented in
cAnt-MinerPB mitigates the problem of rule interaction by
using an ACO procedure to search for the best list of rules.
Therefore, an ant in cAnt-MinerPB creates a complete list
of rules, while an ant in Ant-Miner creates a single rule.

In this paper we propose an extension to cAnt-MinerPB

to discover unordered rules (set of rules) instead of ordered
rules (list of rules), with the aim of improving the inter-
pretability of the discovered rules. The discovery of un-
ordered rule sets has been previously explored as extensions
to the Ant-Miner algorithm only in [23, 14] to the best of our
knowledge, although the search strategy of Ant-Miner and
cAnt-MinerPB are very different—both of the Ant-Miner ex-
tensions in [23, 14] use an ACO procedure to create an indi-
vidual rule. The motivation for extending the cAnt-MinerPB

algorithm is to use an ACO procedure to search for the best

set of rules, taking advantage of the improved strategy im-
plemented in cAnt-MinerPB.

3. CREATING UNORDERED RULE SETS
cAnt-MinerPB creates a list of rules (also referred to as

ordered rules), where the order of rules plays an important
role in the interpretation of individuals rules. When using
a list of rules to classify a new example, each rule is tested
sequentially—i.e., the example is shown to the first rule,
then the second, and so forth—until a rule that covers1 the
example is found. Therefore, the effect (meaning) of a rule
depends on all previous rules in the list, since a rule is only
used if all previous rules do not cover the example. A simple
example of this effect was given by [1]:

If feathers = yes then class = bird

else if legs = two then class = human

else ...

The rule ‘if legs=two then class=human’ cannot be cor-
rectly interpreted alone, since birds also have two legs. If
we analyse the rule in the context of the list, an example is
going to be tested against it only if the first rule is not used.
In the case of birds, they will satisfy the first rule and be
classified correctly as ‘birds’. This problem becomes more
complex when we consider larger lists of rules.

An alternative to improve the interpretation of individual
rules is to create a set of rules (also referred to as unordered
rules), where the order of rules is not important. The use
of a set of rules to classify an example consists of finding
all rules that cover the example. If only one rule covers the
example, the rule classifies the example; if multiple rules
cover the example, a conflict resolution criteria is used to
decide the final classification of the example. Rule conflict
resolution criteria will be discussed in Subsection 3.4.

3.1 Unordered cAnt-MinerPB

The main modification in order to create unordered rules
is in the way ants create the set of rules. Instead of creat-
ing a rule and then determine its consequent based on the
majority class value of the covered training examples, the
Unordered cAnt-MinerPB introduces an extra loop to iter-
ate over each class value. Therefore, an ant creates rules
for each class value in turn, using as negative examples all
the examples associated with different class values. Figure 1
presents the high-level pseudocode of the Unordered cAnt-
MinerPB algorithm.

In summary, the unordered algorithm works as follows.
An ant starts with an empty set of rules (outer for loop).
Then, it creates rules for each of the class values (inner for-
all loop). An ant creates rules for a specific class value until
all examples of the class have been covered or the number
of examples remaining for the class is below a given max-
imum threshold (inner while loop). After a rule is created
and pruned, it is added to current set of rules and the train-
ing examples correctly covered by the rule are removed—i.e.,
the examples covered by the rule that are associated with
the rule’s class value (positive examples). The heuristic in-
formation for the current class value is recalculated at each
iteration to reflect the changes in the predictive power of

1A rule covers an example when the example satisfies all the
conditions in the antecedent of the rule.

Require: training examples
Ensure: best discovered rules
1. InitialisePheromones();
2. rulesgb ← ∅;
3. m← 0;
4. while m < maximum iterations and not stagnation do
5. rulesib ← ∅;
6. for n ← 1 to colony size do
7. rulesn ← ∅;
8. for all class in classes do
9. examples← all training examples;

10. while Count(examples, class) > maximum uncovered do
11. ComputeHeuristicInformation(examples, class);
12. rule ← CreateRule(examples, class);
13. Prune(rule);
14. examples← examples− Covered(rule, class, examples);
15. rulesn ← rulesn + rule;
16. end while
17. end for
18. if Quality(rulesn) > Quality(rulesib) then
19. rulesib ← rulesn;
20. end if
21. end for
22. UpdatePheromones(rulesib);
23. if Quality(rulesib) > Quality(rulesgb) then
24. rulesgb ← rulesib;
25. end if
26. m← m+ 1;
27. end while
28. return rulesgb;

Figure 1: High-level pseudocode of the Unordered cAnt-MinerPB algorithm.

the candidate terms due to the removal of the positive ex-
amples. The examples associated with different class values
(negative examples) remain, even the ones that are covered
by a rule—unlike the original (ordered) cAnt-MinerPB al-
gorithm, where all covered examples are removed. After
creating rules for all class values, the iteration-best set of
rules is updated if the quality of the newly created set of
rules is greater than the quality of the current iteration-
best set. Once all ants have created a set of rules and the
iteration-best set is determined, the pheromone values are
updated using the iteration-best set and the global-best set
of rules is updated, if the quality of the iteration-best set is
greater than the quality of the global-best set (i.e., the best
set of rules produced so far since the start of the search).
The entire procedure (outer while loop) is repeated until ei-
ther a maximum number of iterations has been reached or
the search has converged. At the end, the best set of rules
found is returned as the discovered set of rules.

Note that when an ant is creating a rule, the consequent
of the rule (the class value predicted by the rule) is fixed.
Therefore, the heuristic information and the dynamic dis-
cretization of continuous values take advantage of the class
information and use a more accurate class-specific measure.

3.2 Class-Specific Heuristic Information
The heuristic information of each vertex vi of the con-

struction graph for the class value c is given by

ηvi(c) =
|Examples(vi, c)|

|Examples(vi)|
, (1)

where |Examples(vi, c)| is the number of training examples
that satisfy the term (attribute-condition) represented by
vertex vi and that are associated with class value c, and
|Examples(vi)| is the number of training examples that sat-
isfy the term (attribute-condition) represented by vertex vi.
In other words, the heuristic information ηvi(c) corresponds
to the fraction of training cases that are correctly covered
by the term vi with respect to the class value c.

3.3 Class-Specific Dynamic Discretisation
Continuous attributes represent a special case of vertices

in the construction graph since they do not have a set of
fixed intervals to define a complete term (attribute condi-
tion). When a vertice representing a continuous attribute is
used, either for computing heuristic information or during
the rule construction process, a dynamic discretisation pro-
cedure is employed to select a discrete interval in order to
create a term. cAnt-MinerPB uses an entropy-based proce-
dure, which does not require the class information a priori.
Since in the unordered extension the class value is available
to the discretization procedure, we use the Laplace accu-
racy as a criteria to select a threshold value to discretize a
continuous attribute as follows.

A threshold value t in the domain of the continuous at-

tribute x dynamically generates two intervals: x ≤ t and
x > t. The best threshold value is the value t that maximises
the interval accuracy in the set of examples S regarding the
class value c, given by

max(Lap(c, Sx≤t),Lap(c, Sx>t)) ∀ t ∈ Dx , (2)

where Sx≤t is the set of examples that satisfy the interval
x ≤ t, Sx>t is the set of examples that satisfy the interval
x > t and Dx are the values in the domain of attribute x.
The Laplace accuracy of an interval is given by

Lap(c, E) =
|Ec|+ 1

|E|+ k
, (3)

where E is the set of examples in the interval, |Ec| is the
number of examples in E that are associated with the class
value c, |E| is the number of examples in E and k is the num-
ber of different values in the domain of the class attribute.

After selecting the best threshold value t, a term for the
continuous attribute x is created based on the Laplace ac-
curacy of the two intervals generated, given by

termx =

{

x ≤ t if Lap(c, Sx≤t) > Lap(c, Sx>t)

x > t if Lap(c, Sx≤t) < Lap(c, Sx>t)
. (4)

3.4 Using a Set of Rules to Classify Examples
As aforementioned, in order to classify an example using

a set of rules, all rules that cover the example are identified.
The prediction of the class value of an example leads to one
of the following scenarios:

1. None of the rules covers the example: the example is
assigned the default class value, which corresponds to
the majority class value of the training set;

2. Only one rule covers the example: the example is as-
signed the class value predicted by the rule;

3. Multiple rules predicting the same class value cover the
example: the example is assigned the class value pre-
dicted by the rules;

4. Multiple rules predicting different class values cover the
example: a conflict resolution strategy is used to de-
termine the predicted class value. There are mainly
two strategies: (i) use the rule with the highest qual-
ity (rule selection strategy); (ii) combine (sum up)
the class distribution of covered examples amongst the
class values of each rule and predict the majority class
value in the sum (rule aggregation strategy), as pro-
posed in [1].

Let us consider an example in a 2-class problem {Y,N} that
is covered by rules R1⇒Y [7,0], R2⇒Y [4,0] and R3⇒N

[1,5] (the values between squared brackets correspond to
the class values distribution of the covered examples). Since
R3 predicts a class value different from the one predicted
by R1 and R2, we have a conflict. If we use a class rule
aggregation strategy to resolve the conflict, we first sum up

the class distribution of the rules (which is [12,5]) and then
predict the most common value in the summed distribution
(Y). In this example the use of a rule selection strategy would
produce the same prediction (Y), based on the assumption
that rule R1 is the rule with the highest quality.

Note that each of the conflict resolution strategies has
a different impact in the interpretability of the discovered
rules. In the case of the rule selection strategy, a single
rule is responsible for the classification of an example—the
rule with the highest quality—regardless if multiple rules
cover the example or not; in the case of the rule aggrega-
tion strategy, (potentially) multiple rules are responsible for
the classification of an example. While in the former case
the user has to analyse a single rule in order to interpret
a particular prediction, several rules should be analysed in
order to interpret a particular prediction in the latter case.
Hence, the rule selection strategy usually leads to simpler
interpretations.

4. COMPUTATIONAL RESULTS
We divided the computational results in three sets of ex-

periments. In the first set of experiments, we evaluated
different configurations of the proposed Unordered cAnt-
MinerPB. The aim is to determine the effects of the differ-
ent conflict resolution strategies, and also the effects of both
the dynamic rule quality function selection and the error-
based list quality function [13], in the performance of the
algorithm. In the second set of experiments, we evaluated
the Unordered cAnt-MinerPB configuration against state-of-
the-art rule induction classification algorithms in terms of
predictive accuracy. In the third set of experiments, we
compared the interpretability of the rules discovered by the
original cAnt-MinerPB against the rules discovereds by the
proposed Unordered cAnt-MinerPB algorithm.

In all the experiments, the performance of a classification
algorithm is measured using a tenfold cross-validation proce-
dure, which consists of dividing a dataset into ten stratified
partitions (i.e., each partition contains a similar number of
examples and class distribution). For each partition, the
classification algorithm is run using the remaining nine par-
titions as training data and the predictive accuracy of the
discovered model is evaluated in the unseen (hold-out) par-
tition. The final value of the predictive accuracy for a par-
ticular dataset is the average value obtained across the ten
partitions.

4.1 Evaluating different configurations
We evaluated 8 different configurations of the proposed

Unordered cAnt-MinerPB combining both conflict resolution
strategies with both the dynamic rule quality function selec-
tion and the error-based list quality function extensions pro-
posed in [13]: 2 different conflict resolution strategies (rule
selection and rule aggregation), 2 rule quality function selec-
tion approaches (static and dynamic), 2 list quality functions
(predictive accuracy and error-based); a total of 8 configu-
rations, varying those 3 general ‘parameters’.

In this first set of experiments, which can be considered
as a parameter tuning step, we selected 8 dataset from the
UCI Machine Learning repository [5], namely automobile,
blood-transfusion, ecoli, statlog heart, hepatitis, horse-colic,
voting records and zoo. For each of the datasets we carried
out a tenfold cross-validation procedure using the default pa-
rameters of cAnt-MinerPB [17]: colony size of 5, maximum

Table 1: Summary of the datasets used in the second
set of experiments.

dataset # attributes # classes # examples
nom. cont.

annealing 29 9 6 898

balance-scale 4 0 3 625

breast-l 9 0 2 286

breast-tissue 0 9 6 106

breast-w 0 30 2 569

credit-a 8 6 2 690

credit-g 13 7 2 1000

cylinder-bands 16 19 2 540

dermatology 33 1 6 366

glass 0 9 7 214

heart-c 6 7 5 303

heart-h 6 7 5 294

ionosphere 0 34 2 351

iris 0 4 3 150

liver-disorders 0 6 2 345

parkinsons 0 22 2 195

pima 0 8 2 768

wine 0 13 3 178

number of iterations of 500, evaporation factor of 0.9 (evap-
oration rate equal to 1−factor). Given the stochastic nature
of the algorithm, each of the Unordered cAnt-MinerPB con-
figurations was run 10 times for every dataset.

Using a separate set of datasets just for parameter tuning,
as in this Section, has the advantage that, after finding good
parameter settings in this set of 8 datasets, we can evalu-
ate the generalisation ability of those settings in a different
set of datasets (Section 4.2). Such generalisatin ability is
important in the classification task of data mining.

The results of these experiments showed that the use of
the error-based list quality function in the Unordered cAnt-
MinerPB algorithm had a negative impact in the predictive
accuracy of the discovered rules. Interesting, this is the op-
posite effect observed in the original cAnt-MinerPB, where
an improvement in predictive accuracy is observed when the
error-based list quality function is used [13]. The use of the
dynamic rule quality function selection led to an improve-
ment in predictive accuracy, independently of the conflict
resolution strategy. As a result of these experiments, we
determined that the dynamic rule quality function selection
and the predictive accuracy as the list quality function are
more suitable for the Unordered cAnt-MinerPB algorithm.
While the rule selection conflict resolution strategy led to
an improvement in the predictive accuracy compared to the
configuration using the rule aggregation strategy, we did not
select a specific strategy at this stage, since they have a dif-
ferent impact in the interpretability of the discovered rules.
Therefore, we carried out the remaining of the experiments
using both rule selection and rule aggregation conflict reso-
lution strategies.

Table 2: The 4 rule induction algorithms used in the
second set of experiments in addition to the cAnt-
MinerPB and Unordered cAnt-MinerPB algorithms.

name ref. description

Unordered CN2 [1] A version of the well-known
CN2 rule induction algorithm
that creates unordered rules
using a beam search proce-
dure to create a classification
rule

C4.5rules [21] A rule induction algorithm
that extracts a set of clas-
sification rules from an un-
pruned decision tree created
by the well-known C4.5 algo-
rithm [21, 20]

PART [6, 25] A rule induction algorithm
that combines a sequential
covering strategy with a deci-
sion tree induction procedure
to create a rule

JRip [25] Weka’s implementation of the
RIPPER [2] algorithm, a rule
induction algorithm that em-
ploys a global optimisation
step in order to produce a list
of rules, which takes into ac-
count both the quality and
length of the rules

4.2 Comparisons with state-of-the-art classi-
fication algorithms

The computational experiments comparing the proposed
Unordered cAnt-MinerPB

2 algorithm against state-of-the-
art rule induction algorithms were carried out using a set of
18 publicly available datasets from the UCI Machine Learn-
ing repository [5]—a summary of the datasets used in the
experiments is presented in Table 1. The second and third
columns give the number of nominal and continuous at-
tributes, respectively, for each dataset. The other column
names are self-explained.

We have selected 4 rule induction algorithms, in addition
to the cAnt-MinerPB

3 and Unordered cAnt-MinerPB algo-
rithms. The details of the selected algorithms are given in
Table 2. All algorithms were used with the default param-
eter values proposed by their corresponding authors—both
cAnt-MinerPB and Unordered cAnt-MinerPB were used with
the same parameter values from the first set of experiments
(see Subsection 4.1). We used 2 configurations for the Un-
ordered cAnt-MinerPB: one using the rule selection conflict
resolution strategy (denoted as U-cAMPB [S]) and one using

2The source-code and binaries of the new Unordered
cAnt-MinerPB algorithm are available for download at
http://sourceforge.net/projects/myra.
3We used the cAnt-MinerPB algorithm with the error-based
list quality function, as suggested by [13].

Table 3: Average predictive accuracy (average [standard error]) in %, measured by tenfold cross-validation.
The value of the most accurate algorithm for a given dataset is shown in boldface.

dataset U-cAMPB [S] U-cAMPB [A] Unordered CN2 C4.5rules PART JRip cAnt-MinerPB

annealing 97.70 [0.13] 95.53 [0.23] 88.10 [0.84] 94.22 [0.62] 94.88 [0.98] 94.43 [0.81] 97.34 [0.11]

balance-scale 77.82 [0.20] 88.85 [0.21] 79.34 [1.39] 74.87 [1.16] 77.12 [1.40] 72.95 [1.92] 76.26 [0.29]

breast-l 74.02 [0.19] 73.59 [0.35] 73.44 [1.81] 68.56 [1.93] 68.94 [1.80] 69.26 [2.04] 75.27 [0.35]

breast-tissue 65.91 [0.67] 67.58 [0.72] 63.35 [4.51] 66.16 [2.97] 64.36 [3.63] 60.18 [3.35] 64.16 [0.98]

breast-w 95.20 [0.12] 95.02 [0.19] 93.15 [1.51] 94.18 [1.14] 94.19 [1.12] 93.66 [1.42] 94.34 [0.16]

credit-a 84.93 [0.28] 85.68 [0.16] 82.93 [1.49] 85.53 [1.53] 83.33 [1.04] 86.52 [1.10] 86.10 [0.23]

credit-g 72.84 [0.32] 71.08 [0.22] 74.60 [0.98] 71.60 [0.92] 70.60 [1.49] 72.20 [1.07] 73.67 [0.28]

cylinder-bands 72.06 [0.42] 71.83 [0.41] 76.85 [2.05] 76.48 [2.56] 72.41 [2.23] 68.70 [2.33] 72.36 [0.35]

dermatology 90.54 [0.32] 90.08 [0.44] 87.43 [1.60] 93.45 [1.22] 94.26 [1.17] 88.01 [2.25] 92.40 [0.40]

glass 69.46 [0.81] 68.24 [0.81] 65.73 [3.97] 68.63 [1.70] 72.81 [3.42] 65.71 [3.74] 73.11 [0.61]

heart-c 56.66 [0.50] 57.13 [0.52] 55.81 [2.27] 53.12 [1.92] 53.83 [1.33] 53.50 [1.52] 55.21 [0.41]

heart-h 64.64 [0.45] 64.02 [0.33] 60.90 [1.20] 63.31 [1.40] 63.64 [1.58] 63.93 [1.29] 65.92 [0.35]

ionosphere 89.44 [0.33] 89.85 [0.35] 91.73 [2.77] 90.85 [2.59] 90.59 [2.00] 87.45 [2.64] 89.95 [0.23]

iris 94.33 [0.20] 93.87 [0.19] 92.66 [1.55] 95.32 [1.42] 93.33 [1.99] 96.00 [1.09] 93.13 [0.26]

liver-disorders 69.78 [0.64] 69.49 [0.46] 66.37 [1.52] 64.90 [3.21] 62.70 [3.40] 66.34 [2.80] 66.71 [0.41]

parkinsons 87.75 [0.45] 85.28 [0.62] 86.66 [1.38] 83.49 [2.23] 86.05 [2.47] 84.53 [2.55] 87.42 [0.50]

pima 74.55 [0.30] 74.32 [0.15] 73.42 [1.13] 74.32 [1.73] 71.73 [1.71] 73.55 [1.63] 74.67 [0.20]

wine 95.46 [0.30] 95.48 [0.32] 93.80 [1.54] 91.03 [2.05] 91.54 [1.52] 92.68 [2.09] 94.51 [0.31]

Table 4: Statistical test results of the algorithms’
average predictive accuracies according to the non-
parametric Friedman test with the Hommel’s post-
hoc test. Statistically significant differences at the
α = 0.5 level are shown in boldface.

Algorithm Avg. Rank p-value Hommel

U-cAMPB [S] (control) 2.72 – –

cAnt-MinerPB 2.89 0.8169 0.05

U-cAMPB [A] 3.28 0.4404 0.025

PART 4.55 0.0108 0.0166

Unordered CN2 4.55 0.0108 0.0125

C4.5rules 4.83 0.0034 0.0100

JRip 5.17 6.8E-4 0.0083

the rule aggregation conflict resolution strategy (denoted as
U-cAMPB [A]).

Table 3 presents the results concerning the predictive ac-
curacy, where the higher the value the better the algorithm
performance in terms of accuracy, measured as the aver-
age value obtained by an algorithm at the end of the ten-
fold cross-validation procedure. In the case of stochastic al-
gorithms cAnt-MinerPB and Unordered cAnt-MinerPB, the
average value is computed over 10 executions of the ten-
fold cross-validation procedure (i.e., each algorithm is run
10 × 10 times for each dataset); the remaining algorithms

are deterministic and the average is computed over a single
run of the tenfold cross-validation (i.e., each algorithm is run
1 × 10 times for each dataset). Table 4 presents the statis-
tical test results according to the non-parametric Friedman
test with the Hommel’s post-hoc test [3, 8]: the first column
corresponds to the algorithm’s name, the second column cor-
respond to the average rank—where the lower the rank the
better the algorithm’s performance—obtained in the Fried-
man test, the third column shows the p-value of the statis-
tical test when the average rank is compared to the average
rank of the algorithm with the best rank (the ‘control’ algo-
rithm), and the fourth column corresponds to the Hommel’s
critical value. A row is shown in boldface when there is a
statistically significant difference at the 5% significance level
between the average ranks of an algorithm and the control
algorithm, determined by the fact that the p-value is lower
than Hommel’s critical value—i.e., it corresponds to the case
where the control algorithm is significantly better than the
algorithm in that row.

The Unordered cAnt-MinerPB using the rule selection con-
flict resolution strategy (denoted as U-cAMPB [S]) achieved
the best average rank, outperforming state-of-the-art rule in-
duction algorithms with statistically significant differences,
namely PART, Unordered CN2, C4.5rules and JRip. The
use of the rule selection conflict resolution strategy led to
an improvement in predictive accuracy, as in our initial ex-
periments (Subsection 4.1), although the differences are not
statistically significant when compared to the use of the rule
aggregation conflict resolution strategy. While there are
no statistically significant differences between cAnt-MinerPB

and Unordered cAnt-MinerPB algorithms, the results ob-
tained by the proposed Unordered cAnt-MinerPB are pos-

itive, overall: the discovery of unordered rules explicitly
improves their interpretability (i.e., a particular rule has a
modular meaning independent of the others rules), without
sacrificing the predictive accuracy.

4.3 Interpretability of the discovered rules
In order to quantify the interpretability of the discov-

ered rules, we propose a new measure, called prediction-
explanation size. Before presenting the details of how this
measure is calculated, it is worth discussing the problems
with the commonly-used model size as a measure of com-
prehensibility (or interpretability). The model size measure,
usually determined by the number of rules and the size of
rules present in the list/set of rules, ignores how the rules
are used to make class predictions—e.g., if a single or mul-
tiple rules are needed to classify an example. In addition,
there is evidence showing that, in some applications, larger
models were considered by users as more comprehensible
than smaller ones, since they contained more informative
attributes to the user [11, 10]. An empirical study tested
the assumption that smaller models are more comprehensi-
ble to users [9]. The findings of this study indicate that the
comprehensibility of the model from a user perspective tends
to increase in line with the size of the model. Additionally,
the concept of ‘small’ or ‘large’ is subjective—e.g., in [22] it
is reported that users found that a model with 41 rules was
considered too large to be analysed by a user, while in [24] a
user analysed 29,050 rules and identified a subset of 220 in-
teresting rules. Therefore, the model size—either measured
as the number of rules or the total number of attribute-
conditions of the rules—is not an adequate indicator of the
comprehensibility of a classification model.

We define the prediction-explanation size as the average
number of attributes-conditions (terms) that are evaluated
in the model in order to predict the class value of an ex-
ample, where the average is computed over all examples
being classified in the test set. The rationale behind the
prediction-explanation size measure is that it provides an
estimate of the number of attributes-conditions that a user
has to analyse in order to interpret a model’s prediction
and those attribute-conditions can be regarded as an ex-
planation for the class prediction. In the case of the origi-
nal cAnt-MinerPB algorithm, which produces an ordered list
of rules, the prediction-explanation size is calculated taking
into account all rules that are evaluated in order to make a
prediction. E.g., if there are 3 rules in the list, each com-
posed by 3 attributes-conditions, and the second rule is used
to make a prediction, the prediction-explanation size is the
sum of the attributes-conditions of the first and second rules.
While the first rule is not directly involved in the prediction,
it is involved indirectly in the prediction, since the second
rule is only evaluated if the first rule is not used (i.e., its
attribute-conditions evaluate to false).

In the case of the Unordered cAnt-MinerPB algorithm,
which produces an (unordered) set of rules, the prediction-
explanation size depends on the conflict resolution strat-
egy used. When the rule selection strategy is used, only
one rule is responsible for the prediction and therefore, the
prediction-explanation size is the number of attribute-condi-
tions of the rule. When the rule aggregation strategy is used,
the prediction-explanation size is the sum of the attribute-
conditions of the rules that cover the example, since all rules
that cover the example contribute to the final prediction. It

Table 5: Average number of attribute-conditions
(terms) involved in the classification of an example.
The value of the algorithm with the lowest average
for a given dataset is shown in boldface.

dataset U-cAMPB [S] U-cAMPB [A] cAnt-MinerPB

annealing 2.28 [0.01] 5.65 [0.12] 8.00 [0.19]

balance-scale 1.40 [0.01] 5.09 [0.06] 4.94 [0.06]

breast-l 2.74 [0.05] 8.94 [0.12] 5.30 [0.34]

breast-tissue 1.47 [0.01] 4.35 [0.06] 3.89 [0.06]

breast-w 1.40 [0.01] 7.11 [0.08] 3.91 [0.14]

credit-a 2.76 [0.06] 8.73 [0.17] 6.61 [0.39]

credit-g 2.83 [0.05] 13.11 [0.15] 15.77 [0.36]

cylinder-bands 2.78 [0.04] 12.38 [0.15] 27.71 [0.77]

dermatology 3.46 [0.06] 14.11 [0.29] 14.91 [0.33]

glass 2.39 [0.04] 5.72 [0.06] 6.93 [0.15]

heart-c 3.12 [0.03] 14.50 [0.26] 11.89 [0.38]

heart-h 2.88 [0.05] 8.12 [0.04] 5.81 [0.21]

ionosphere 3.05 [0.03] 7.07 [0.10] 6.51 [0.14]

iris 1.38 [0.01] 3.09 [0.09] 2.80 [0.04]

liver-disorders 2.38 [0.02] 7.48 [0.06] 12.44 [0.27]

parkinsons 1.53 [0.03] 4.78 [0.06] 3.64 [0.07]

pima 2.19 [0.03] 6.38 [0.03] 5.24 [0.07]

wine 1.13 [0.01] 3.27 [0.05] 3.04 [0.03]

should be noted that in the Unordered cAnt-MinerPB algo-
rithm, each rule does have a modular meaning independent
of the others, regardless of the conflict resolution strategy
used, since the order of the rules is not important.

Table 5 presents the results (average [standard error]) con-
cerning the prediction-explanation size of the models dis-
covered by the cAnt-MinerPB and Unordered cAnt-MinerPB

algorithms, the lower the value the better the algorithm
performance. The advantage of unordered rules combined
with the rule selection strategy (denoted as U-cAMPB [S])
are clear: in all the datasets, it has the lowest number of
attribute-conditions involved in the classification of an ex-
ample. Overall, these results are positive: we were able to
improve the interpretablity of the rules (measured as the
prediction-explanation size) by discovering unordered rules,
with no negative impact on the predictive accuracy. The
Unordered cAnt-MinerPB with the rule selection strategy
was the algorithm that achieved the best rank in terms of
predictive accuracy and the best value for the prediction-
explanation size measure.

5. CONCLUSION
In this paper we have proposed an extension to the cAnt-

MinerPB in order to discover unordered rules, called Un-
ordered cAnt-MinerPB. The main motivation is to improve
the interpretation of individual rules. In an ordered list of
rules, the effect (meaning) of a rule depends on all previ-
ous rules in the list, since a rule is only used if all previous
rules do not cover the example. On the other hand, in an
unordered set of rules, an example is shown to all rules and,
depending on the conflict resolution strategy, a single rule is
used to make a prediction.

We compared the proposed Unordered cAnt-MinerPB al-
gorithm against state-of-the-art rule induction algorithms

in 18 publicly available datasets. The Unordered cAnt-
MinerPB algorithm achieved the best results in terms of
predictive accuracy, outperforming state-of-the-art rule in-
duction algorithms with statistically significant differences.
We also proposed a new measure to characterise the inter-
pretability of the discovered rules. Our results show that
the predictions made by an unordered set of rules are poten-
tially easier to be interpreted by a user, due to the nature of
unordered rules (i.e., each rule has a modular meaning inde-
pendent of the others) and there are less attribute-conditions
involved in the predictions.

While in this work we have evaluated different rule quality
and list quality functions, the Unordered cAnt-MinerPB al-
gorithm’s more specific parameters were not optimised, since
we focused in comparing the differences between ordered and
unordered rules. It might be possible to further improve the
algorithm evaluating different parameter settings. The eval-
uation of different conflict resolution strategies can also lead
to improvements to the predictive accuracy of the discovered
rules.

6. REFERENCES

[1] P. Clark and R. Boswell. Rule Induction with CN2:
Some Recent Improvements. In Machine Learning –
Proceedings of the Fifth European Conference
(EWSL-91), pages 151–163, 1991.

[2] W. Cohen. Fast effective rule induction. In Proceedings
of the 12th International Conference on Machine
Learning, pages 115âĂŞ–123. Morgan Kaufmann,
1995.

[3] J. Demšar. Statistical Comparisons of Classifiers over
Multiple Data Sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[4] U. Fayyad, G. Piatetsky-Shapiro, and P. Smith. From
data mining to knowledge discovery: an overview. In
U. Fayyad, G. Piatetsky-Shapiro, P. Smith, and
R. Uthurusamy, editors, Advances in Knowledge
Discovery & Data Mining, pages 1–34. MIT Press,
1996.

[5] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[6] E. Frank and I. Witten. Generating Accurate Rule
Sets Without Global Optimization. In J. Shavlik,
editor, Proceedings of the Fifteenth International
Conference on Machine Learning, pages 144–151.
Morgan Kaufmann, 1998.

[7] A. Freitas, R. Parpinelli, and H. Lopes. Ant colony
algorithms for data classification. In Encyclopedia of
Information Science and Technology, volume 1, pages
154–159. Information Science Reference, 2nd edition,
2008.

[8] S. Garćıa and F. Herrera. An Extension on “Statistical
Comparisons of Classifiers over Multiple Data Sets”
for all Pairwise Comparisons. Journal of Machine
Learning Research, 9:2677–2694, 2008.

[9] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen,
and B. Baesens. An empirical evaluation of the
comprehensibility of decision table, tree and rule
based predictive models. Decision Support Systems,
51:141–154, 2011.

[10] H. A. N. Lavesson. User-oriented assessment of
classification model understandability. In Proceedings

of the 11th Scandinavian Conference on Artificial
Intelligence (SCAI), pages 11–19. IOS Press, 2011.

[11] N. Lavrac. Selected techniques for data mining in
medicine. Artificial Intelligence in Medicine, 16:3–23,
1999.

[12] D. Martens, B. Baesens, and T. Fawcett. Editorial
survey: swarm intelligence for data mining. Machine
Learning, 82(1):1–42, 2011.

[13] M. Medland, F. Otero, and A. Freitas. Improving the
cAnt-MinerPB Classification Algorithm. In M. Dorigo,
M. Birattari, C. Blum, A. L. Christensen, A. P.
Engelbrecht, R. Groß, and T. Stützle, editors, Swarm
Intelligence, volume 7461 of Lecture Notes in
Computer Science, pages 73–84. Springer Berlin
Heidelberg, 2012.

[14] C. Nalini and P. Balasubramanie. Discovering
Unordered Rule Sets for Mixed Variables Using an
Ant-Miner Algorithm. Data Science Journal, 7:76–87,
2008.

[15] J. Olmo, J. Romero, and S. Ventura. Using Ant
Programming Guided by Grammar for Building
Rule-Based Classifiers. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics,
41:1585–1599, 2011.

[16] J. Olmo, J. Romero, and S. Ventura. Classification
rule mining using ant programming guided by
grammar with multiple pareto fronts. Soft Computing,
16:2143–2163, 2012.

[17] F. Otero, A. Freitas, and C. Johnson. A New
Sequential Covering Strategy for Inducing
Classification Rules With Ant Colony Algorithms.
IEEE Transactions on Evolutionary Computation,
17(1):64–76, 2013.

[18] R. Parpinelli, H. Lopes, and A. Freitas. Data mining
with an ant colony optimization algorithm. IEEE
Transactions on Evolutionary Computation,
6(4):321–332, 2002.

[19] G. Piatetsky-Shapiro and W. Frawley. Knowledge
Discovery in Databases. AAAI Press, 1991.

[20] J. Quinlan. Improved Use of Continuous Attributes in
C4.5. Artificial Intelligence Research, 7:77–90, 1996.

[21] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

[22] M. Schwabacher and P. Langley. Discovering
communicable scientific knowledge from
spatio-temporal data. In Proceedings of 18th
International Conference on Machine Learning
(ICML-2001), pages 489–496. Morgan Kaufmann,
2001.

[23] J. Smaldon and A. Freitas. A new version of the
ant-miner algorithm discovering unordered rule sets.
In Proc. Genetic and Evolutionary Computation
Conference (GECCO 2006), pages 43–50, 2006.

[24] S. Tsumoto. Clinical knowledge discovery in hospital
information systems: two case studies. In Proceedings
of European Conference on Principles and Practice of
Knowledge Discovery and Data Mining (PKDD-2000),
pages 652–656. Springer, 2000.

[25] H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, 2nd edition, 2005.

