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ABSTRACT
Multi-label classification (MLC) is the task of assigning mul-
tiple class labels to an object based on the features that
describe the object. One of the most effective MLC meth-
ods is known as Classifier Chains (CC). This approach con-
sists in training q binary classifiers linked in a chain, {y1 →
y2 → ... → yq}, with each responsible for classifying a spe-
cific label in {l1, l2, ..., lq}. The chaining mechanism allows
each individual classifier to incorporate the predictions of
the previous ones as additional information at classification
time. Thus, possible correlations among labels can be au-
tomatically exploited. Nevertheless, CC suffers from two
important drawbacks: (i) the label ordering is decided at
random, although it usually has a strong effect on predic-
tive accuracy; (ii) all labels are inserted into the chain, al-
though some of them might carry irrelevant information to
discriminate the others. In this paper we tackle both prob-
lems at once, by proposing a novel genetic algorithm capable
of searching for a single optimized label ordering, while at
the same time taking into consideration the utilization of
partial chains. Experiments on benchmark datasets demon-
strate that our approach is able to produce models that are
both simpler and more accurate.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
In recent years, multi-label classification (MLC) [25, 29]

has become one of the most active research topics in the
fields of data mining and machine learning. In this problem,
each object of a dataset may belong to multiple class labels
and the goal is to learn a system that can infer the correct
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labels of new, previously unseen, objects. A popular applica-
tion is the classification of free text documents. For instance,
an MLC system trained to infer movie genres according to
their plots, could process a document containing the text
summary of the Pedro Almodóvar’s movie “Volver” and de-
termine its genres as “Comedy”, “Crime”, and “Drama”. Be-
sides text classification, other modern applications of MLC
include functional genomics (determining the multiple bio-
logical functions of genes), medical diagnosis (predicting the
set of diseases a patient may develop) and direct marketing
(recommendation of products for customers).

An important issue in MLC relates to the existence of
dependence relationships among labels. For example, in
the movie classification domain, intuitively a film is unlikely
to be simultaneously considered as “Crime” and “Musical”,
since these two genres have a negative correlation. Analo-
gously, the likelihood of a movie being labeled as “Crime”
becomes stronger if it has been labeled as “Action” and
“Thriller”. Thus, it is expected that MLC methods capa-
ble of exploiting label dependencies should be more accu-
rate. Indeed, a large number of recent proposals have con-
centrated efforts to tackle this issue by making use of diverse
probabilistic techniques [13, 23, 24, 28].

In a different vein, the Classifier Chains (CC) method [22]
employs a simpler non-probabilistic strategy to incorporate
label dependencies into the classification process. In this
approach, q binary classifiers are inserted at random order
into a chain {y1 → y2 → ... → yq}, where each one is re-
sponsible for predicting a specific label in {l1, l2, ..., lq}. The
chain structure allows each binary classifier yj to incorpo-
rate the labels inferred by the previous y1, ..., yj−1 classifiers
as additional predictive information. Although the adopted
principle is quite simple, a comprehensive empirical study
[20] demonstrated that CC is able to outperform most of
the other existing state-of-the-art MLC methods.

Nevertheless, the CC method suffers from two major draw-
backs. First, it decides the label sequence at random. As
demonstrated in [3], the use of distinct chain orderings can
lead to large differences in the predictive accuracy of the
model. Second, CC forces all labels to be present in the
chain, despite the fact that some of them might carry re-
dundant and irrelevant information. This might confuse the
classification model instead of helping in discriminating the
various other labels. To overcome these disadvantages, in
this work we propose a novel Genetic Algorithm (GA) that
performs a global search for an optimized chain (i.e., a label
sequence that leads to an improvement on the predictive ac-



curacy of the CC model), by exploring partial chains with
only a subset of labels. To the best of our knowledge, this is
the first approach proposed with the explicit goal of finding
an optimized partially chained model for MLC.

This paper is organized as follows. Section 2 gives a
short overview on MLC. Section 3 reviews the original CC
framework. Section 4 reviews work related to our proposal.
Section 5 formally defines the concept of partially chained
(PartCC) model for MLC. Section 6 describes the character-
istics of our proposed GA. Section 7 reports the experimental
results. Concluding remarks and future research directions
are given in Section 8.

2. MULTI-LABEL CLASSIFICATION
The MLC problem can be defined as follows.

Definition 1. (Multi-label Classification Problem). Let
X = {A1, ..., Ad} be a finite set of d predictive (input) at-
tributes. Let L = {l1, ..., lq} be a finite set of q possible class
labels, where q ≥ 2. Consider a training dataset D composed
by N instances of the form {(x1, Y1), (x2, Y2), ..., (xN , YN )},
where each xi is a vector {(x1, ..., xd)} that stores values for
the d predictive attributes in X and each Yi ⊆ L is a subset
of labels. The goal of the multi-label classification task is to
learn a classifier (classification model) h(x) → Y from D
that, given an unlabeled instance t = (x, ?), predicts its set
of labels (labelset) Y .

The evaluation of MLC methods typically uses multiple
performance measures, mainly because in MLC a result can
be fully correct, fully wrong or partially correct. Hence,
different performance measures provide the user with alter-
native analyses of the results, giving a better understanding
about the actual predictive performance of a MLC method
(an illustrative example is given in [11]).

In what follows, we introduce the measures used to assess
the quality of the methods evaluated in our experiments.
In the definitions, we use the following notation: n is the
number of test instances; q is the number of labels; Yi and
Zi represents, respectively, the actual and the predicted la-
belset of the ith test instance.

The Exact Match (EM), defined in Eq. 1, assesses the
percentage of instances fully correctly predicted in the test
set. Consider that I(true) = 1 and I(false) = 0.

EM =
1

n

n∑
i=1

I(Yi = Zi) (1)

Note that EM can deal with results that are both fully
wrong and fully correct. However, it is unable to evaluate
partially correct results. To cope with this issue, we also
use the Accuracy (ACC), F-Measure (FM) and Hamming
Loss (HL) measures, respectively defined in Eqs. 2, 3, 4. In
Eq. 4, the expression Yi4Zi gives the symmetric difference
between Yi and Zi. For EM, ACC and FM, greater values
indicate better performance; whilst for HL, smaller values
indicate better performance.

ACC =
1

n

n∑
i=1

|Zi ∩ Yi|
|Zi ∪ Yi|

(2)

FM =
1

n

n∑
i=1

2× |Zi ∩ Yi|
|Zi|+ |Yi|

(3)

HL =
1

n

n∑
i=1

|Zi 4 Yi|
q

(4)

3. CLASSIFIER CHAINS
Among several MLC methods proposed in the literature

[20, 25, 29], the Binary Relevance (BR) is perhaps the sim-
plest one. In this approach, the MLC problem is transformed
into q independent binary classification problems. One bi-
nary classifier is separately trained to predict each label. To
infer the labelset of a new object, the BR model simply ag-
gregates the labels positively predicted by each of the inde-
pendent classifiers. Figure 1 shows a BR model, viewed as a
graph, in a problem with four labels. The node X represents
the set of predictive attributes whereas the nodes l1, l2, l3,
l4 represent the target labels. The directed edges from X
to each of the four labels indicate that, in the BR approach,
the binary classifiers responsible for the prediction of each
label are trained using exclusively the attributes in X as the
set of input attributes. Hence, all binary classifiers in the
group are isolated from each other, being unable to exchange
information at both the training and the classification steps.

The BR strategy has several advantages. First it is sim-
ple. Second, it is algorithm independent, i.e., it enables
abstraction from the underlying base algorithm for binary
classification. This is a major advantage, because different
classifiers (such as decision trees, SVM, Bayesian methods,
etc. [27]) are more or less effective in different application
domains. Finally, BR scales linearly with q and can be easily
parallelized. Nonetheless, an obvious and critical drawback
lies in that the BR model completely ignores the possible
correlations among labels, as the binary classifiers make de-
cisions independently from each other. Thus, the method
is more suitable for problems where only a small number of
labels exhibit correlation with each other.

Proposed in [22], the Classifier Chains (CC) method can
be seen as a direct extension of the BR approach, capable
of exploiting label dependencies though. Similar to BR, the
CC method involves training a group of q binary classifiers.
Nevertheless, instead of being kept isolated from each other,
these q classifiers are linked in a chain structure, which al-
lows each one to pass their predictions to the other binary
classifiers ahead in the chain. In order to better explain the
CC method, consider the graph depicted in Figure 2, repre-
senting a CC model with four labels chained in the sequence
{l1 → l2 → l3 → l4}. The directed edges in the graph in-
dicate that the binary classifier y1, which is responsible for
classifying the first label in the chain (l1), will be trained
using solely the attributes that compose the attribute set X
as its input attributes. However, the binary classifier y2, re-

Figure 1: BR model



sponsible for the prediction of the second label in the chain
(l2), will be trained using X augmented with l1 as the set
of input attributes. Analogously, each subsequent classifier
yj will be trained using X augmented with the labels asso-
ciated to the previous j − 1 classifiers in the chain. Once
the model is trained, the classification mechanism must be
performed according to the chain sequence. To predict the
labelset of a new object, q binary classifications are needed,
with the process beginning at the first classifier in the se-
quence (y1 in the example of Figure 2) and going along the
chain. In this procedure, the classifier yj predicts the rele-
vance of label lj , given the feature space augmented by the
predictions carried out by the previous j − 1 classifiers.

Although CC employs a direct and non-probabilistic ap-
proach to incorporate label dependencies into the classifica-
tion model, it is considered one of the most effective MLC
methods, in the sense that it has proven to be superior
to state-of-the-art techniques in terms of predictive perfor-
mance [20]. Besides this, CC still maintains most of the at-
tractive characteristics of BR: it is algorithm independent,
scales linearly with q and its training step can be easily par-
allelizable. Not surprisingly, CC has become one of the most
adopted and representative frameworks for MLC [29].

4. RELATED WORK
A number of variations of the CC method have recently

been proposed [3, 11, 16, 21, 24]. A common characteristic
of these proposals is that they try to eliminate a key draw-
back in the original method: the fact that the label ordering
is decided at random. In a recent study [3], an exhaustive
experiment that compared the predictive performance of CC
models built with thousands of distinct label orderings re-
vealed that the differences in accuracy tend to be very large.
The same study also revealed that, for many datasets, the
original CC method (trained with a random order) might
present a performance inferior to the BR method even in
problems where most labels are correlated with each other.
It is thus important to invest in algorithmic solutions to
find an optimized chain order. Nonetheless, this is a dif-
ficult problem because of the enormous search space of q!
different possible label permutations.

Current extensions to the CC method make use of dif-
ferent approaches to solve the label sequence optimization
problem (LSOP). The authors of the original CC model pro-
posed the combination of random orders via an ensemble
of classifier chains (ECC) in order to mitigate the effect of
poorly ordered chains [22]. Differently, the approaches pro-
posed in [3, 11, 16, 21] employ heuristic methods. In [16], the

Figure 2: CC model

Figure 3: PartCC model

LSOP is addressed by performing a beam search over a tree
in which every distinct path represents a different label per-
mutation. The M2CC algorithm, described in [21], employs
a double-Monte Carlo optimization technique to efficiently
generate and evaluate a small population of distinct label
sequences. The GACC method proposed in [11] performs
a genetic algorithm search to solve the LSOP. In this tech-
nique, each chromosome represents a different label permu-
tation. Crossover works by transferring sub-chains of ran-
dom length between two individuals whilst mutation swaps
pairs of labels of an individual. Finally, [3] proposes a lazy
approach capable of searching for a distinct and more effec-
tive label sequence to each new instance t. In this strategy,
for each instance in the training dataset, an effective label
sequence is previously identified. At classification time, the
label sequence for the new instance t is chosen based on
the sequences associated with the instances in the training
dataset that are more similar to t.

5. PARTIALLY CHAINED MODELS
The variations of the CC method aim at improving the

model’s effectiveness by handling the LSOP problem using
different techniques. However, there is another important
drawback in the original CC method that has been neglected
in the literature. It corresponds to the fact that CC forces all
labels to be present in the chain. None of the extensions have
yet explored the idea of generating models defined by par-
tial chains. In this context, the aim is to build a CC model
in which one or more labels may be absent from the chain
because their presence would lead to a decrease in the pre-
dictive accuracy. This is because some classifiers may pass
redundant and irrelevant information, or wrongly predicted
labels, along the chain, which might confuse the subsequent
classifiers in the chain. Therefore, it might be interesting to
remove these irrelevant or redundant labels from the chain
structure (using independent binary classifiers for predicting
each of them) and to create a partial chain with an optimized
sequence using only the remaining labels.

An example of partially chained model (PartCC) for a
MLC problem with four labels is shown in Figure 3. In this
example, the classifiers associated to labels l2, l3 and l4 are
linked together in an optimized classifier chain model in the
sequence {y3 → y2 → y4}. The label l1 is not in the chain.
The intuition behind this representation is to indicate that
l1 will be treated by an independent binary classifier, be-
cause its presence in the chain would decrease the predictive
accuracy of the multi-label classifier as a whole.

The PartCC model can be seen as an hybrid strategy be-
tween a BR model and a CC model using an optimized la-
bel sequence. Thus, it is expected to be effective in both



situations: when the majority of the labels are dependent
on each other and also in the converse case, when most
labels are independent. More interestingly, since it deals
with partial chains, it is capable of producing simpler, more
compact multi-label chain classifiers, offering gains in terms
of efficiency. Furthermore, a PartCC model is particularly
suitable for problems that require the construction of com-
prehensible predictive models [9], as the shorter sequence is
more realistic for the representation of true label dependen-
cies in comparison with a full length sequence. Nonetheless,
the problem of finding an optimized PartCC model is much
more challenging than the traditional LSOP as the search
space is composed by an ordinary BR model (where all labels
are “disconnected”) plus the models formed by all possible
chain permutations of length 2 to q. Consequently, while the
search space in the LSOP has size equal to q!, the size of the
search space in the problem of optimizing PartCC models is
much higher, being given by Eq. 5.

1 +

q∑
r=2

q!

(q − r)!
(5)

In this paper, a genetic algorithm for learning optimized
PartCC models is proposed: GA for Optimizing Partially-
Chained Models (GA-PartCC). To the best of our knowl-
edge, this is the first method proposed with the following
two explicit goals: (i) defining the most relevant labels to be
chained and (ii) searching for an optimized sequence to place
them in regard to the improvement of the classification accu-
racy. Our main motivations for presenting a solution based
on the GA paradigm are as follows:

• GAs have been widely employed to solve a large num-
ber of classification problems in the most distinct con-
texts and application domains [1, 2, 5, 6, 8, 18].

• GAs are a global search method capable of effectively
exploring the extremely large search spaces associated
to the partially chained optimization problem. Due to
this, GAs tend to cope better with attribute interac-
tions than greedy methods [6, 8].

• GAs have been successfully applied to solve optimiza-
tion problems where a candidate solution is represented
as a permutation, like the classical traveling salesman
problem (TSP) [17] and the vehicle routing problem
(VRP) [19]. Note, however, that LSOP, as a classifica-
tion problem, involve prediction and overfitting issues,
unlike the TSP and VRP problems.

• As the CC and BR approaches, GAs are also easily
parallelizable.

6. THE GA-PARTCC ALGORITHM

6.1 Representation and Initial Population
In GA-PartCC, individuals are represented by variable-

length lists. Each candidate solution specifies both a subset
of labels and the order they are placed into the chain. For in-
stance, the model in Figure 3 is encoded as the list [l3, l2, l4].
Similarly, the models in Figures 1 and 2 are respectively en-
coded as [ ] (empty list) and [l1, l2, l3, l4].

We adopted a simplified controlled approach for gener-
ating the initial population. Let P be the population size.

The first individual is an empty chain (i.e., a BR model) and
the second individual constitutes a complete CC model with
the default chain sequence (as the one shown in Figure 2).
The remainder individuals are generated as follows. First,
individual lengths are randomly drawn following a uniform
distribution in the range [2, q]. As a consequence, P−2 chro-
mosomes with distinct lengths will be generated. For each
of these chromosomes, starting from an empty chromosome
and from the leftmost allele, the chain sequence is defined by
randomly selecting integer numbers (representing the label
indexes) according to a uniform distribution in the range [1,
q]. Repeated integers are not allowed in a chromosome.

6.2 Lexicographic Fitness Function
We adopted a multi-objective lexicographic approach [7]

to determine the fitness of the candidate solutions. In this
technique, two or more objectives with distinct predeter-
mined priorities are taken into consideration to define the
quality of each chromosome. Consider the following exam-
ple. Let ci and cj be two candidate solutions. In the lex-
icographic approach used in GA-PartCC, when comparing
two chromosomes, the GA first tries to determine which one
is better considering the highest priority objective. If ci is
not better than cj , and vice-versa, then both are compared
considering the second objective. The process is repeated
until either a winner is found or all the criteria have been
tested (in the later case, if no winner was found, one of the
chromosomes is randomly chosen as winner).

In GA-PartCC, we only consider two objectives: predic-
tive accuracy (first priority) and model simplicity (second
priority). To assess the predictive accuracy of a chromo-
some, we use the Quality (fitness) function defined in [3,
11]. This function simultaneously takes into account the
measures of Exact Match, Accuracy and Hamming Loss, re-
spectively defined in Equations 1, 2 and 4. The Quality of
a chromosome ci is computed as:

Quality(ci) =
(1−HL) + ACC + EM

3
(6)

If two chromosomes have the same value for the Quality
function, they must be compared with regard to model’s sim-
plicity (second objective). We consider a solution ci simpler
than cj if ci encodes a chain sequence shorter than the one
encoded in cj . The rationale lies primarily in the Occam’s
Razor principle [4] which states that “given two models with
the same generalization error, the simplest one should be
preferred because simplicity is desirable in itself”. Indeed,
as discussed in Section 5, a shorter model offers two other im-
portant advantages. First, it is more efficient, as it involves a
smaller number of attributes. Second, it gives higher fidelity
for representing label dependencies, since only the most rel-
evant labels with regard to the classification problem are
present in the chain.

By comparison with the simple use of a weighted formula
to combine the two objective values, the lexicographic ap-
proach has the advantage of avoiding the specification of ad-
hoc numeric weights; it requires only the specification of the
relative priority of the objectives, which is well-defined in the
context of classification (accuracy clearly has priority over
the chain size). By comparison with the Pareto dominance-
based approach for multi-objective optimization, the lexico-
graphic approach has the advantages of being simpler and
avoiding the issue of how to choose one single solution to be



used in practice (out of all non-dominated solutions). Also,
the usual Pareto approach would not allow us to specify
that maximizing accuracy is more important than reduc-
ing the chain size, an important application-specific piece of
knowledge that is naturally specified using the lexicographic
approach.

The GA-PartCC follows the wrapper approach [6] in which
the quality of an individual (candidate PartCC model) is de-
termined by using the target MLC algorithm (i.e., the CC
algorithm). The fitness function is calculated using only
the training set, according to a holdout method that works
as follows. First, the training set is partitioned into two
mutually-exclusive subsets: building (2/3 split) and vali-
dation (1/3 split). Next, for each chromosome we build a
PartCC model using only the building set, and then that
model is evaluated with the validation set.

6.3 Selection Method
GA-PartCC uses the tournament selection method [6]. In

this method, first k individuals are randomly drawn from
the population, where k is a user-specified parameter called
tournament size. Their fitness values are then compared
according to the lexicographic approach presented in the
previous subsection. The winner is the individual with the
best lexicographic evaluation among the k participants. The
selection procedure also implements elitism, in which a per-
centage of elite individuals are preserved from the previous
generation according to their fitness values.

6.4 Genetic Operators
GA-PartCC implements crossover and mutation to deal

with the two levels of representation encoded in the chro-
mosomes (chain sequence and chain length).

The crossover operation consists in a modified version of
the order crossover [5] method, which is often used in in
GAs for permutation problems. The adaptation was neces-
sary because the original method can deal only with chro-
mosomes of the same length. In order to facilitate the ex-
planation, consider the example shown in Figure 4. As the
original method, our version of order crossover generates two
children (represented by O1 and O2) from two parents (rep-
resented by P1 and P2). As shown in the figure, child O1

must have the same length as P2 and O2 the same length
as P1. The crossover operates as follows. Two crossover
points (represented by the two vertical thick lines in Figure
4) are chosen at random. The first step to generate O1 is
to copy the segment between the crossover points from P1

into O1 (Figure 4a). The second step consists in filling the
remainder empty alleles in O1 with genetic material from P2

(Figure 4b). The procedure works as follows. Starting from
the position next to the second crossover point (the fourth
position in our example), the values that are present in P2

but are not contained in O1 are transferred to the empty al-
leles in O1, wrapping around when the last position of both
chromosomes is reached. O2 is analogously generated.

The main advantages of the order crossover method used
by GA-PartCC are the facts that it preserves the relative
order in the parents in their children and always generates
valid solutions. However, it does not create children with
lengths difference form their parents’ lengths, since the first
child has the same length of the second parent and vice-
versa. In order to increase the population’s variability of
length, in GA-PartCC, children resulting from crossover can

(a) Step 1

(b) Step 2

Figure 4: Adapted order crossover operation

be also subject to mutation, which consists in either insert-
ing or removing a subchain. In the insertion procedure, a
single insertion point is chosen at random in the current
child. Next, a subchain with maximum length of 5% of q
is randomly generated and inserted at that insertion point.
The inserted sub-chain contains only labels that do not oc-
cur in the current child. The deletion procedure removes a
segment between two randomly-chosen points.

7. EXPERIMENTS

7.1 Experimental Methodology
The performance of GA-PartCC was compared to the

baseline methods BR and CC, and also against the GACC
method [11], which can only deal with the optimization of
full-length chains. We evaluated all methods using MU-
LAN [26], an open-source package of Java classes for MLC
that works on the top of the popular WEKA data mining
tool [14]. The WEKA’s J48 decision tree algorithm with de-
fault parameters was used as the base binary classification
algorithm for all evaluated methods.

Table 1 presents the nine distinct benchmark datasets
used in our experiments. In this table, the second column (q)
presents the number of labels and the third (N) the number
of instances. Observe that the datasets vary considerably
in the number of labels, number of instances and applica-
tion domain. Further information about the datasets can be
found at the MULAN1 and MEKA2 repositories. The only
exception is the “ces” dataset, described in [10].

The predictive performance of the algorithms was evalu-
ated in terms of Accuracy, F-Measure, Hamming Loss and
Exact Match. We used the well-known Friedman test and
the Nemenyi post-hoc test to verify the statistical signifi-
cance of the results at a confidence level of 95% [15]. As
in the extensive evaluation of [20], a holdout evaluation was
performed, where 2/3 of each dataset was used for learning
the classifier and 1/3 for testing. We used the same training
and test splits that come with the datasets.

As GACC and GA-PartCC algorithms are probabilistic

1http://mulan.sourceforge.net/datasets-mlc.html
2http://meka.sourceforge.net/#datasets



Table 1: Datasets used in the experiments

Dataset q N Domain
birds 19 645 audio
cal500 174 502 music
enron 53 1702 text

genbase 27 662 genomics
llog 74 1,460 text

medical 45 978 text
thyroid 25 9,172 medical diagnosis
yeast 14 2,147 genomics
ces 17 903 social research

methods, the results reported are averaged over 10 execu-
tions with distinct seeds (except for the larger datasets “en-
ron” and “llog” which were averaged over 5 executions). The
results reported for CC are also averaged over 10 execu-
tions with distinct random seeds (5 executions for “enron”
and “llog”). The parameters of the genetic algorithms were
set by performing calibrating tests with three benchmark
datasets obtained from the MULAN repository: emotions
(q = 6, N = 593), scene (q = 6, N = 2407) and flags (q = 7,
N = 194). These three datasets used for parameter calibra-
tion were not included in the experimental evaluation. The
final settings are the following: number of generations: 50;
population size: 200; crossover rate: 100%; mutation rate:
25%; tournament size: 2; elitist strategy: preserve the 2
best individuals at each generation. During the calibration
tests, we observed the occurrence of overfitting, i.e., candi-
date solutions that have a high predictive accuracy on the
training data, but do not generalize well for test instances
[12]. To cope with this issue, we adopted the strategy of
changing the building and validation sets at each generation
of the GA by re-splitting the training set. It is worth rein-
forcing the fact that only the training set is used during the
evolution process, as previously stated in Subsection 6.2.

7.2 Results
The results for the measures of Accuracy, F-Measure, Ex-

act Match, and Hamming Loss are respectively shown in
Tables 2, 3, 4 and 5. The best results for each dataset are
highlighted in bold type. The rank obtained by each method
in each dataset is presented in parenthesis. In the rows be-
low Tables 2 and 3, the symbol � represents a statistically
significant difference between one or more methods. For in-
stance, {a} � {b, c} shows that the method a is significantly
better than b and c.

The results presented in Tables 2 and 3 show that the GA-
PartCC obtained the smallest rank sum (i.e., the best overall
result) for both Accuracy and F-Measure. The Friedman
test reported a significant difference between the evaluated
methods. The Nemenyi post-hoc test indicated that GA-
PartCC and GACC are significantly better than BR and
CC for Accuracy and that GA-PartCC is significantly better
than GACC, BR and CC for F-Measure.

Tables 4 and 5 show the results regarding the Exact Match
and Hamming Loss measures. Although the Friedman and
Nemenyi tests indicated that no statistically significant dif-
ferences exist between the results of the four methods, note
that the GA-PartCC obtained a competitive result, with the
second smallest rank sum for both measures.

The GA-PartCC method was also evaluated with respect

to the length of the chains associated to the best solutions.
Table 6 shows the results averaged over the number of exe-
cutions. Note that, for the datasets “llog” and “medical”, the
best models are on average composed by about half of the
labels. For the other datasets, except “genbase”, the best
found models are, on average, composed by a large num-
ber of labels (but not all labels). This can be explained by
the fact that in these datasets, a large number of labels ex-
hibit dependence with each other. A notable exception is
the dataset “genbase”, in which the performance of the four
evaluated methods is equivalent for all evaluation measures.
In this case, the GA-PartCC method was consistent with
the Occam’s Razor principle, being able to choose the sim-
plest model, an empty chain (equivalent to the BR model),
as the best solution.

In summary, the results indicate that the proposed GA-
PartCC method exhibits a very competitive performance,
obtaining results significantly superior to the BR and CC
methods according to two of the four evaluated measures
of predictive accuracy. It was also significantly superior to
GACC in one of the measures, and obtained competitive
results in the other measures, yet with the advantage of
generating simpler models than both CC and GACC.

8. CONCLUSIONS
This paper presented a novel method for multi-label classi-

fier chains (CC) based on a genetic algorithm. This method,
named GA-PartCC, differs from current extensions to the
original CC model because it is capable of evaluating chain
sequences that vary not only in the ordering but also in the
length. In order to accomplish this task, GA-PartCC uses
a variable-length list representation and a multi-objective
lexicographic fitness function, taking into account two ob-
jectives: the model’s accuracy and the model’s size. In our
experiments, GA-PartCC achieved statistically significantly
better results than BR and CC in two of the four evalu-
ated measures and a performance significantly superior to
GACC in one of the measures, yet with the advantage of
generating simpler models. None of the evaluated methods
was significantly superior to GA-PartCC in any of the four
performance measures.

As future research we plan to develop a memetic version of
GA-PartCC. The idea is to identify, during the evolutionary
process, groups of labels that tend to cause a decrease in the
accuracy of most other labels when they take part into the
chain. These labels could then be either removed from chil-
dren resulting from crossover or placed in the last positions
of these children. Similarly, groups of labels that tend to
cause an increase in the predictive accuracy of other labels
could be identified by the memetic procedure and placed in
the first positions of new children.
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