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ABSTRACT 
This paper proposes a new Lexicographic multi-objective Genetic 
Algorithm for Multi-Label Correlation-based Feature Selection 
(LexGA-ML-CFS), which is an extension of the previous single-
objective Genetic Algorithm for Multi-label Correlation-based 
Feature Selection (GA-ML-CFS). This extension uses a LexGA as 
a global search method for generating candidate feature subsets. In 
our experiments, we compare the results obtained by LexGA-ML-
CFS with the results obtained by the original hill climbing-based 
ML-CFS, the single-objective GA-ML-CFS and a baseline Binary 
Relevance method, using ML-kNN as the multi-label classifier. 
The results from our experiments show that LexGA-ML-CFS 
improved predictive accuracy, by comparison with other methods, 
in some cases, but in general there was no statistically significant 
different between the results of LexGA-ML-CFS and other 
methods. 

Keywords: Multi-label feature selection, Lexicographic Multi-
Objective Genetic Algorithm, Correlation-based feature selection, 
Classification. 

1. Introduction 
A classification algorithm aims to learn the predictive relationship 
between the values of the features (predictor attributes) of an 
instance and its class label(s). This relationship is learned from 
pre-classified instances in the training set, and then the learned 
classification model is used to predict the class labels of instances 
in the test set, unseen during training. The vast majority of works 
on the classification task have addressed a traditional single-label 
classification problem, where each instance in the data set is 
associated with just one class label. By contrast, this paper 
addresses a more difficult type of classification problem, namely 
multi-label classification. 

Unlike single-label classification, in multi-label classification 
each instance can be associated with multiple class labels. Multi-
label classification methods have been used in many application 
domains; such as text classification, music classification, 
bioinformatics and medical diagnosis [1]. In general, datasets from 
those application domains have a huge number of (often tens of 
thousands) features. Also, often most of the features are irrelevant 
for class prediction.  

Feature selection is often performed in a data pre-processing step 
of the knowledge discovery process, in order to select a 
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 relevant or useful feature subset according to an evaluation 
criterion. Feature selection can improve the predictive performance 
of the classification algorithm and eliminate irrelevant and/or 
redundant features [2]. In this work we focus on multi-label feature 
selection methods for multi-label classification problems. 

Evolutionary algorithms are stochastic global search methods 
inspired by the process of natural selection, based on Darwin’s 
evolutionary theory [3]. Genetic Algorithms (GAs), which are the 
most popular type of evolutionary algorithms for feature selection 
[4], are the focus of this paper. 

As a data preprocessing task, feature selection can be 
performed using the wrapper or filter approach. When using a GA 
as a feature selection method, in the wrapper approach the fitness 
function uses the accuracy of a classification model built with the 
features selected by the individual, while the filter approach uses a 
simpler fitness function that is independent from the classification 
algorithm in order to evaluate the quality of the feature subset 
represented by an individual. In this work we use the filter 
approach, which is much more efficient (faster) than the wrapper 
approach. 

In this paper we propose a new Lexicographic multi-objective 
Genetic Algorithm for Multi-Label Correlation-based Feature 
Selection (LexGA-ML-CFS) which is an extension of the single-
objective GA for Multi-Label Correlation-based Feature Selection 
(GA-ML-CFS) method recently introduced in [5]. This extension 
uses the lexicographic multi-objective approach, rather than the 
single-objective approach – see Section 4.  

We compare the results of the proposed LexGA-ML-CFS 
against the results of two other multi-label feature selection 
methods, GA-ML-CFS and Hill climbing-based ML-CFS, and 
against the well-known Binary Relevance approach for multi-label 
classification. In our experiments, the selected features were used 
as input by a Multi-Label k-Nearest Neighbours (ML-kNN) 
classification algorithm, which is a well-known multi-label 
classification algorithm proposed in [6]. Then, five multi-label 
predictive accuracy measures were used to evaluate the 
performance of ML-kNN. 

The rest of this paper is organized as follows. Section 2 briefly 
reviews related work on multi-label feature selection in general. 
Section 3 reviews previous work specifically on multi-label 
correlation-based feature selection methods. Section 4 briefly 
reviews the principles of lexicographic multi-objective genetic 
algorithms, contrasting them with Pareto dominance-based genetic 
algorithms. Section 5 describes the proposed Lexicographic multi-
objective Genetic Algorithm for Multi-label Correlation-based 
Feature Selection (LexGA-ML-CFS) method. Section 6 describes 
the datasets and experimental methodology. Section 7 reports the 
computational results. Section 8 concludes the paper and mentions 
future work. 
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2. Related Work on Multi-Label Feature 
Selection Methods in General 
There are a small number of published studies on feature selection 
methods for multi-label classification following a data 
preprocessing approach, as follows.  

First, several works first transform the multi-label problem 
into a single-label one, and then use a single-label feature selection 
method [7,8,9,10]. More precisely, in [7] the authors use greedy 
forward feature selection based on mutual information to select 
features, while multivariate mutual information was used in [8]. 
The disadvantage of these methods is that they cannot deal with 
the multi-label problem directly, while our approach directly copes 
with the original multi-label data.  

Multivariate mutual information for multi-label feature 
selection method without using problem transformation was 
proposed in [11]. However, this approach needs a parameter pre-
defined by the user (the number of features to be selected), which 
is difficult to predefine in many cases. 

Lastra et al. [12] modified the idea from the fast correlation-
based feature selection (FCFS) method proposed in [13] and 
applied it in a multi-label scenario. They used maximum spanning 
tree (MST) and symmetrical uncertainty (SU) to select features. 
They built a SU matrix which considers feature-feature 
correlations and feature-label correlations using SU as a criterion 
to measure correlations. However, they assumed all features were 
discrete, a drawback in datasets where many features are 
continuous. Continuous features can be discretized in a 
preprocessing step, but this leads to loss of relevant information.  

Zhang et al. [14] performed feature selection for the multi-
label naive Bayes algorithm. First they used Principle Component 
Analysis (PCA) to remove redundant features, and after that they 
used a Genetic Algorithm (GA) for selecting a relevant feature 
subset for multi-label Naive Bayes. However, note that PCA is an 
unsupervised learning method for dimensionality reduction, 
whereas classification is a supervised learning task. In addition, 
PCA creates new features that are difficult to be interpreted by 
users, whilst a dimensionality reduction approach based on feature 
selection has the advantage of preserving the meaning of the 
original features, facilitating the user’s interpretation of the 
classifier built with the selected features [15, 2]. 

Chi-squared was used in [16] for multi-label feature selection. 
In this paper, a problem transformation method was applied before 
measuring the quality of a feature. Chi-squared was used to 
measure the independence between the occurrence of a feature and 
the occurrence of a label. While the Chi-squared measure considers 
one feature at a time, our approach considers multiple features at a 
time. 

Another method proposed in [17] selects feature subsets 
which have a multi-label information gain (IG) value greater than 
or equal to a pre-defined threshold. This method has the drawback 
of requiring an ad-hoc user-defined threshold value. 

3. Multi-Label Correlation-Based Feature 
Selection Methods 
The Multi-label Correlation-based Feature Selection (ML-CFS) 
method based on hill-climbing search was proposed in [18]. The 
main idea is to extend the single-label correlation-based feature 
selection (CFS) method, proposed by Hall [19], to multi-label 
classification problems. In general, CFS searches for a feature 

subset F that has two main properties: (1) high values of the 
correlations between the features in F and the set of class labels L, 
in order to select features with high predictive accuracy; and (2) 
low values of the correlations between pairs of features in F, in 
order to avoid the selection of redundant features [18, 19]. Both the 
single-label CFS and ML-CFS use equation (1) to evaluate the 
quality of a candidate feature subset –where k is the number of 
features in a feature subset F and r is Pearson’s linear correlation 
coefficient. The main difference between those two methods is 
how they measure the average correlation between features and 
labels (ݎி௅തതതത). More precisely, ML-CFS computes the average 
correlation coefficient (ݎி௅തതതത) between each feature f in feature set F 
and each of the multiple class labels in label set L, using equation 
(2); and then averages the result of equation (2) over all features, 
as shown in equation (3). On the other hand, the average 
correlation value between features and label in the conventional 
single-label CFS method is simpler, because there is no need to 
measure average correlations over multiple class labels.  ݐ݅ݎ݁ܯ = ௞௥ಷಽതതതതതඥ௞ା௞(௞ିଵ)௥ಷಷതതതതത 

௙௅തതതതതݎ  = 	 ∑ ௥೑ಽ೔|ಽ|೔సభ|௅|  

ி௅തതതതݎ  = 	∑ |ܨ|௙௅തതതതത|ி|௙ୀଵݎ  

An extension of ML-CFS was proposed in [20], based on using 
the absolute value of the correlation coefficient, which improved 
the predictive performance of ML-CFS. This version is used in all 
experiments reported in Section 7. In this version, the terms in the 
merit formula (equation (1)) were modified to use the absolute 
(without sign) value of the correlation coefficient, as shown in 
equations (4) and (5), which compute the average correlation 
between all feature pairs (ݎிிതതതത) and the average correlation between 
features and class labels (ݎி௅തതതത), respectively. In equation (4), fp is 
the number of feature pairs in feature subset F. 

ிிതതതതݎ = ∑ 	ቚݎ௙೔௙ೕቚ|ி|௙೔௙ೕୀଵ,௜ஷ௝݂݌  

ி௅തതതതݎ  = 	∑ หݎ௙௅തห|ி|௙ୀଵ|ܨ|  

The motivation for using the absolute value of the correlation 
coefficient, rather than the original, signed valued of the 
correlation coefficient, is discussed in detail in [5]. 

Another version of ML-CFS proposed in [21] extended the 
work from [18] with the idea of using KEGG pathway information 
as a type of biological knowledge, to improve the performance of 
ML-CFS on two multi-label microarray datasets. The issue of 
using biological background knowledge to guide the ML-CFS 
search is out of the scope of this paper, since none of the datasets 
which were used in this paper is associated with biological 
background knowledge. 

A Genetic Algorithm for Multi-label Correlation-Based 
Feature Selection (GA-ML-CFS) was recently proposed in [5]. The 
main idea of this work is to change the search method from local, 
greedy hill climbing search to global search using a GA. Each 
individual in GA-ML-CFS is represented by a string of n bits, 



where n is the number of features considered by the GA. The i-th 
bit – i = 1,..,n – takes the value 1 or 0 to indicate whether or not a 
feature is selected, respectively, by an individual. Each individual 
is evaluated by a fitness function, given by equation (1). At each 
generation (iteration), individuals are selected by a combination of 
an elitism operator and the tournament selection operator, which 
selects individuals with a probability proportional to their fitness 
(quality) values. Conventional GA operators, uniform crossover 
and bit-flip mutation were used to produce new individual from 
selected parent individuals.  

The main problem for GA-ML-CFS is that the large number of 
selected features often led to a lower predictive accuracy when 
compared with the original hill climbing-based ML-CFS in the 
experiments reported in [5]. Hence, an important point is how to 
control the number of features selected by the GA. The main 
contribution of this paper is an extension of GA-ML-CFS, 
proposing a new Lexicographic multi-objective Genetic 
Algorithms (LexGA) which uses a fitness function with two 
objectives: the classification accuracy (to be maximized) and the 
number of selected features (to be minimized). This should help to 
prevent the GA from selecting too many features, as discussed 
next. 

4. Lexicographic Multi-Objective Genetic 
Algorithms 
Multi-Objective Optimization is a type of optimization technique 
which considers multiple objectives to be optimized 
simultaneously. There are three main approaches for coping with 
multi-objective optimization problems [22]: (1) the conventional 
weighted formula approach, (2) the Pareto approach and (3) the 
lexicographic approach. 

The conventional weighted formula approach essentially 
transforms a multi-objective problem to a single objective 
problem. This technique needs a user predefined weight for each 
objective and then combines the values of weighted criteria into a 
single value. The advantages of the conventional weighted formula 
approach are that it is simple and easy to implement, but the need 
for user-defined (usually ad-hoc) weights is an obvious problem. 
Moreover, when we combine the value of the weighted criteria into 
a single value, the different criteria often have different meanings, 
so the combined value may not be meaningful.  

The basic idea of the Pareto approach is that, instead of 
transforming a multi-objective problem into a single-objective 
problem and then solving it by using a single-objective search 
method, one should use a multi-objective algorithm to solve the 
original multi-objective problem. The Pareto approach never mixes 
different criteria into a single formula – all criteria are treated 
separately. Rather, it tries to find the set of non-dominated 
solutions. A solution s1 is dominated by a solution s2 if and only if 
s2 is not worse than s1 according to all objectives and s2 is better 
than s1 according to at least one objective. Note that a Pareto-based 
multi-objective algorithm returns a set of non-dominated solutions 
rather than a single solution. In addition, a Pareto-based multi-
objective algorithm is more complex than a weighted single-
objective algorithm because multi-objective algorithms should 
explore the search space to find as many solutions as possible in 
the Pareto set, consisting of the non-dominated solutions. The 
advantage of this approach is that it does not need any ad-hoc user-
defined weights, in contrast to weighted single-objective 
algorithms. One drawback is the difficulty of choosing the best 
solution out of all non-dominated solutions, especially for our 
feature selection problem, where we have to return the single best 

solution (feature subset) to the classification algorithm. Another 
drawback of the Pareto-based approach is that it does not naturally 
allow us to exploit information about the relative importance 
among objectives to be optimized when such information is readily 
available, like in this work – where maximizing predictive 
accuracy is more important than minimizing the number of 
selected features, as discussed next. 

The main idea of lexicographic multi-objective algorithms is to 
assign different priorities to different objectives and optimizing 
each of the objectives in order of their priority. In the feature 
selection problem, we want to select the best feature subset, with a 
primary goal of maximizing predictive accuracy, but with the 
secondary goal of reducing the number of selected features. In this 
case, we assign the highest and lowest priorities to optimizing the 
predictive accuracy and the number of selected features, 
respectively. If one solution is significantly better than another 
with respect to the first criterion, this solution will be chosen. 
Otherwise, the performance of the two solutions is compared using 
the second criteria. The advantage of this approach is that it avoids 
the problem of mixing objectives with different meanings into the 
same formula and the problem of requiring ad-hoc user-predefined 
weights, which happened in weighted formula approach. 
Moreover, the lexicographic approach is much simpler than the 
Pareto-based approach in terms of implementation and naturally 
returns the best single solution at the end, avoiding the need to 
choose among many non-dominated solutions. It also naturally 
allows us to exploit the information that one objective is more 
important than another, without using weights. 

5. The Proposed Method: Lexicographic 
Multi-Objective GA for ML-CFS (LexGA-ML-
CFS) 
In this section, we propose a multi-objective GA for multi-label 
feature selection based on the lexicographic approach. As 
mentioned before, in our LexGA-ML-CFS method, we need to 
assign the priorities of each objective for the lexicographic 
approach and then optimize each of the objectives in order of their 
priority.  

LexGA-ML-CFS uses a bit string individual representation. 
Each candidate solution is encoded by a string of n bits, where n is 
the number of input features used by the GA. The i-th bit takes the 
value ‘1’ or ‘0’ to indicate whether or not the i-th feature was 
selected. Each individual (feature subset) in the population was 
evaluated using equation (1) as the highest priority objective and 
using the number of features k as the lowest priority objective. 
Recall that the terms in the merit formula were modified to use the 
absolute (without sign) value of the correlation coefficient, as 
shown in equations (4) and (5), which compute the average 
correlation between all feature pairs (ݎிிതതതത) and the average 
correlation between features and class labels (ݎி௅തതതത), 
respectively.LexGA-ML-CFS uses uniform crossover and bit-flip 
mutation. Uniform crossover generates a string of L random 
variables in [0, 1], where L is the number of genes. In each 
position, if the value of that random variable is lower than a pre-
defined probability of crossover per gene, the gene values in this 
position are swapped between the two parents, to create two 
children. Bit-flip mutation considers each gene separately and 
allows each gene to flip according to the mutation probability. 

Parameters of the GA such as individual size (n), population size 
(p), the number of generations (g), the elitist set size (e), the 
tournament size (t), gene crossover probability (geneCrossProb) 
and gene mutation probability (geneMutProb) are optimized using 



a set of datasets different from the set of datasets used to measure 
the predictive accuracy associated with the LexGA; as explained 
later.   

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

    Figure 1. Pseudocode of LexGA-ML-CFS’ tournament 
selection. 

There are two main differences between the proposed multi-
objective LexGA-ML-CFS and the single objective GA-ML-CFS 
described in [5], which are the way that we evaluate each 
individual and the way that we select the winner in the tournament 
selection step. First, in LexGA-ML-CFS, the fitness of an 
individual is evaluated based on two criteria; (1) the merit 
function, which is shown in equation (1); and (2) the number of 
selected features (k). By contrast, GA-ML-CFS evaluates 
individuals using only the merit function shown in equation (1). 
Second, LexGA-ML-CFS uses a lexicographic optimization 
tournament selection, using the merit and k values as highest and 
lowest priority objective, respectively.  

The pseudocode of LexGA-ML-CFS’s tournament selection is 
shown in Figure 1. When comparing two individuals (feature 
subsets), if the difference between the merit values of the two 
individuals is greater than the standard error of the merit (SEmerit) 
across all individuals in the current population, then the best merit 
individual is chosen as the tournament’s winner. Otherwise, if the 
difference of the k value of the individual with larger k (more 
selected features) minus the k value of the individual with smaller 
k (fewer features) is greater than the standard error of k (SEk) 
across all individuals in the current population and the difference 
of the merit value of the individual with smaller k minus the merit 
value of the individual with larger k is larger than half the SEmerit, 
then the individual with smallest k (smallest feature subset) is 
chosen. Otherwise, the individual with the largest merit is chosen.  

The second condition in the above and statement – i.e., the 
condition for the difference in merit to be greater than half the 
SEmerit – was added because, in our preliminary experiments, a 
lexicographic optimization tournament using only a condition on 
the difference in k values was leading the GA to select individuals 
based on the second lexicographic criterion (after a tie being 
observed in the first criterion) very often, leading the GA to return 
solutions that had a relatively small number of features but 
relatively poor predictive accuracy. Hence, the addition of this 
second condition based on merit, when evaluating the second 
lexicographic criterion, helps to de-emphasize the importance of 

the second lexicographic objective (minimizing the number of 
selected features), which therefore helps to emphasize the 
importance of the first lexicographic objective (maximizing 
predictive accuracy).  

6. Datasets and Experimental Methodology 
6.1 Datasets 
We used 12 multi-label datasets (shown in Table I), which were 
obtained from the multi-label dataset repository website 
(http://mulan.sourceforge.net/datasets.html) [23]. We divided the 
12 datasets into two groups: (1) datasets for parameter 
optimization and (2) datasets for evaluating the multi-label feature 
selection methods. The parameter optimization group contains the 
4 datasets with less than 300 features, while all evaluation datasets 
have more than 300 features.  

TABLE I.  DATASET CHARACTERISTICS 
Dataset
Name 

Number of: 
Instances Features Labels Avg. Labels per 

Inst. 
Parameter Optimization Datasets 

CAL500 502 68 174 26.0
Scene 2407 294 6 1.1
Emotions 593 72 6 1.9
Yeast 2417 103 14 4.2

Evaluation Datasets 
Business 11314 21924 30 1.6
Art 7484 23146 26 1.7
Education 12030 27534 33 1.5
Recreation 12828 30324 22 1.4
Health 9205 30635 32 1.6
Enter.ment 12730 32001 21 1.4
Computer 12444 34096 33 1.5
Science 6428 37187 40 1.5

Note that using a few datasets to optimize parameters for the 
GAs and evaluating the GAs in the other datasets is not an optimal 
approach to optimize GA parameters. Intuitively, the predictive 
performance of the GAs could be improved by doing parameter 
optimization for each of the 12 datasets separately, using the 
training set of each dataset. However, we have chosen the former 
approach mainly for two reasons. First, the GAs have many 
parameters to be optimized, and it would be very time consuming 
to optimize parameters separately for each dataset. Hence, we 
optimize the GA parameters across the three smallest datasets, in 
terms of both the number of instances and number of features, 
saving a large amount of computational time. Second, this allows 
us to try to find GA parameters which are robust across different 
datasets and can be used as “default” parameters recommended 
when users do not have time to perform extensive parameter 
optimization experiments. 

Since the datasets in the evaluation group have very large 
numbers of features (from 21,924 to 37,187 features), before 
applying the time-consuming multivariate feature selection 
methods evaluated in this work, a simpler and much faster 
univariate filter approach was applied in a preliminary stage to all 
the evaluation datasets. This univariate approach evaluates the 
quality of each feature separately, ignoring feature interactions, 
unlike the multivariate methods investigated in this work. The 
main objective of using this univariate filter approach is to remove 
all features which have a low correlation with labels before 
running the multivariate feature selection methods, in order to 
reduce the search space for such multivariate methods. The multi-
label univariate filter method used here simply computes the 
average correlation between each feature and all class labels, using 

INPUT:  indPool 
SEmerit and SEk 

SET: sorted Pool = {} 
DO   

1st ind. = ind. with larger merit;  
2nd ind. = ind. with smaller merit; 
IF (merit 1st – merit 2nd) > SEmerit 

      Select 1st ind. and put it into sorted Pool 
ELSE 
         1st ind. = ind. with smaller k; 
         2nd ind. = ind. with larger k; 
         IF ((k 2nd – k 1st) > SEk and  
              (merit 1st – merit 2nd > 0.5 * SEmerit)) 
              Select 1st ind. And put it into sorted Pool 
         ELSE 
              Select ind with Larger merit   
         END 
END 
Remove selected ind. From indPool  

UNTIL (ind.Pool={}) 
 



equation (2), ranks the features in decreasing order of their 
equation (2) value, and selects the top n features in the rank. These 
selected n features are then used as input by the multivariate 
feature selection methods. We did experiments with four values of 
n, namely 100, 200, 300, 400. 

6.2 Experimental Setting  
There are two main steps in our experimental methodology to use a 
GA for feature selection: (1) finding the best parameter setting for 
the GA; and (2) running the GA using the parameter setting 
obtained from step (1). These steps are described in more detail 
next. 

Step 1: Finding the best parameter setting using parameter 
optimization datasets. In this step, we find a parameter setting 
optimized for each of the two GAs (GA-ML-CFS and LexGA-ML-
CFS) in order to make a fair comparison between these methods. 
Note that the Hill Climbing-based ML-CFS does not have any 
parameters to be optimized.  

We considered 6 parameters for the GAs, each with the range 
of possible values show in Table II. In total, 19 parameter setting 
combinations were considered (shown in Table III). In the 
parameter optimization step, the size of GA and LexGA 
individuals (i.e. the number of features used as input by the GA) is 
given by the number of features in the dataset used in the 
experiment; for example, the individual size is equal to 68 and 294 
for the CAL500 and Scene datasets, respectively.  

TABLE II.  RANGE OF POSSIBLE SETTINGS FOR EACH OF 6 PARAMETERS OF 
THE GA-ML-CFS AND LEXGA-ML-CFS 

Parameters Tried Settings 
population size (Pop.size) 100, 150, 200, 250 
number of generations (Max.Gen) 50, 100, 150, 200 
elitism size (Elite) 2, 4, 6, 8 
tournament size (Tour.size) 2, 4, 6, 8 
crossover probability (Gene.CrossProb) 0.2, 0.3, 0.4, 0.5 
mutation probability (Gene.MuteProb) 0.0025,0.005, 0.001, 0.01

TABLE III.  PARAMETER SETTINGS FOR THE PARAMETER OPTIMIZATION 
PROCESS 

No. 
Parameters 

POP 
Size 

Max 
Gen 

Elite 
Size 

Tour 
Size 

Gene 
CrossProb 

Gene 
MuteProb 

PS01 200 100 2 2 0.5 0.01 
PS02 100 100 2 2 0.5 0.01 
PS03 150 100 2 2 0.5 0.01 
PS04 250 100 2 2 0.5 0.01 
PS05 200 50 2 2 0.5 0.01 
PS06 200 150 2 2 0.5 0.01 
PS07 200 200 2 2 0.5 0.01 
PS08 200 100 4 2 0.5 0.01 
PS09 200 100 6 2 0.5 0.01 
PS10 200 100 8 2 0.5 0.01 
PS11 200 100 2 4 0.5 0.01 
PS12 200 100 2 6 0.5 0.01 
PS13 200 100 2 8 0.5 0.01 
PS14 200 100 2 2 0.4 0.01 
PS15 200 100 2 2 0.3 0.01 
PS16 200 100 2 2 0.2 0.01 
PS17 200 100 2 2 0.5 0.005 
PS18 200 100 2 2 0.5 0.0025 
PS19 200 100 2 2 0.5 0.001 

Step 2: running the GAs on the evaluation datasets using the 
parameter setting optimized in the previous step. In this step, we 
run four types of experiments: (1) running LexGA-ML-CFS using 

the parameters optimized in step 1; (2) running GA-ML-CFS using 
the parameters optimized in step 1; (3) running Hill Climbing-
based ML-CFS; and (4) running the Binary Relevance method 
using kNN. Binary Relevance (BR) is a simple method that 
transforms the multi-label classification problem into multiple 
single-label problems – where each problem has a different class 
label to be predicted, but all problems use the same set of 
predictive features. Then, the single-label kNN classification 
algorithm is applied to each problem separately (without any 
feature selection), and the set of class labels predicted for each test 
instance is the union of all the class labels predicted by the 
individual kNN classifiers for that instance [1].  

7. Computational Results 

7.1 Computational Results for the Parameter 
Optimization Step for the GA and the LexGA 
After running GA-ML-CFS and LexGA-ML-CFS using 19 
parameter settings on the 4 parameter optimization datasets, the 
merit (equation (1)) value of the selected feature subset (the best 
individual returned by the GA) for each parameter setting was 
calculated. Then we compute the rank of each parameter setting for 
each dataset based on its merit. That is, the parameter setting with 
the best merit value for a given GA is given merit rank 1, and the 
worst parameter setting is assigned rank 19, for each combination 
of dataset and multi-label predictive accuracy measure (for each of 
the two GAs separately) – the accuracy measures used are 
mentioned in the next Section. 

TABLE IV.  SUMMARY OF RANKING RESULTS FOR PARAMETER SETTING 
OPTIMIZATION FOR GA-ML-CFS AND LEXGA-ML-CFS 

PS Overall ranking for each dataset Overall 
Ranking CAL500 Emotion Scene Yeast 

GA LexGA GA LexGA GA LexGA GA LexGA GA LexGA 
PS01 8 11 7 9 6 5 9 10 7.50 8.75 
PS02 17 18 17 16 17 18 18 18 17.25 17.50 
PS03 7 3 16 17 14 15 15 13 13.00 12.00 
PS04 3 3 6 10 8 4 10 12 6.75 7.25 
PS05 19 19 19 19 19 19 19 19 19.00 19.00 
PS06 2 3 2 8 5 3 5 8 3.50 5.50 
PS07 1 1 1 5 4 1 3 7 2.25 3.50 
PS08 10 8 9 14 10 7 8 14 9.25 10.75 
PS09 15 9 13 13 13 11 6 11 11.75 11.00 
PS10 13 14 18 15 15 2 17 15 15.75 11.50 
PS11 11 16 3 2 11 12 12 5 9.25 8.75 
PS12 12 13 12 2 12 13 13 2 12.25 7.50 
PS13 9 5 14 2 7 14 7 1 9.25 5.50 
PS14 14 7 10 11 9 9 11 9 11.00 9.00 
PS15 6 15 5 12 16 10 14 16 10.25 13.25 
PS16 5 10 11 18 18 6 16 17 12.50 12.75 
PS17 4 6 4 7 3 8 2 6 3.25 6.75 
PS18 16 17 8 4 2 16 1 4 6.75 10.25 
PS19 18 12 15 6 1 17 4 3 9.50 9.50 

Next, for each dataset, we produced a ranking of the 19 
parameter settings by computing the average of their rank across 
the accuracy measures. Finally, we produced the overall ranking of 
the 19 parameter settings by averaging the previously computed 
rank across all 4 datasets. The results of this ranking procedure are 
shown in Table IV. These results are averaged over 10 runs with 
different random seeds. The parameter setting optimized for both 
the GA and the LexGA is PS07, where population size = 200, 
number of generations = 200, elitist set size = 2, tournament size = 



2, gene crossover probability = 0.5, gene mutation probability = 
0.01. These parameter settings are used in all experiments reported 
in the next Section. 

7.2 Experiment Results on Evaluation 
Datasets 
After running GA-ML-CFS, LexGA-ML-CFS and HC-ML-CFS 
on the 8 evaluation datasets, the predictive accuracy of the 
corresponding selected features was evaluated by running the ML-
kNN algorithm. Due to the complexity of multi-label classification, 
no single accuracy measure is enough to capture different aspects 
of multi-label classification [23,24]. Hence, five different popular 
measures of multi-label predictive accuracy were used in our 
experiments: Average Precision (Avg.Pre), which is to be 
maximized, while Coverage (Cov.), Hamming Loss (H-Loss), 
One-error (One.Err) and Ranking Loss (R-Loss) are to be 
minimized. All those measures are discussed in [25].  

TABLE V.  PREDICTIVE ACCURACIES ON EVALUATION DATASETS 
(INDIVIDUAL LENGTH = 100) 

DT method 
ML-KNN Classifier 

Avg.Pre Cov. H-Loss OneErr R-Loss AR

B
us

in
es

s GA 0.873(2) 2.382(1) 0.029(2) 0.127(2) 0.044(2) 1.8
LexGA 0.874(1) 2.391(2) 0.028(1) 0.126(1) 0.044(1) 1.2
HC 0.866(3) 2.418(3) 0.029(3) 0.136(3) 0.044(3) 3.0
BR 0.855(4) 2.726(4) 0.043(4) 0.14(4) 0.049(4) 4.0

A
rt

 

GA 0.529(2) 5.318(2) 0.059(2) 0.588(2) 0.147(3) 2.2
LexGA 0.53(1) 5.32(3) 0.059(1) 0.588(1) 0.147(2) 1.6
HC 0.524(3) 5.307(1) 0.06(3) 0.61(3) 0.134(1) 2.2 
BR 0.432(4) 5.971(4) 0.229(4) 0.753(4) 0.177(4) 4.0

E
du

ca
tio

n GA 0.542(3) 3.906(2) 0.042(3) 0.608(3) 0.092(2) 2.6
LexGA 0.542(2) 3.914(3) 0.042(2) 0.605(2) 0.093(3) 2.4
HC 0.544(1) 3.872(1) 0.042(1) 0.605(1) 0.092(1) 1.0
BR 0.477(4) 4.645(4) 0.146(4) 0.682(4) 0.11(4) 4.0

R
ec

re
at

io
n GA 0.535(3) 4.328(3) 0.059(3) 0.604(3) 0.158(2) 2.8

LexGA 0.537(1) 4.295(1) 0.059(1) 0.601(2) 0.157(1) 1.2
HC 0.536(2) 4.327(2) 0.059(2) 0.6(1) 0.158(3) 2.0
BR 0.377(4) 5.604(4) 0.346(4) 0.805(4) 0.222(4) 4.0

H
ea

lth
 GA 0.63(1) 3.799(1) 0.05(1.5) 0.48(3) 0.075(1) 1.5

LexGA 0.629(2) 3.803(2) 0.05(3) 0.48(2) 0.075(3) 2.4
HC 0.629(3) 3.803(3) 0.05(1.5) 0.479(1) 0.075(2) 2.1
BR 0.617(4) 4.062(4) 0.13(4) 0.489(4) 0.079(4) 4.0

E
nt

.m
en

t GA 0.576(3) 3.183(2) 0.057(2) 0.576(3) 0.12(2) 2.4
LexGA 0.577(2) 3.181(1) 0.057(3) 0.575(2) 0.12(1) 1.8
HC 0.579(1) 3.186(3) 0.056(1) 0.57(1) 0.121(3) 1.8
BR 0.466(4) 3.984(4) 0.281(4) 0.715(4) 0.16(4) 4.0 

C
om

pu
te

r GA 0.621(3) 4.392(3) 0.042(3) 0.455(3) 0.094(3) 3.0 
LexGA 0.622(2) 4.388(2) 0.041(2) 0.454(2) 0.094(2) 2.0
HC 0.633(1) 4.2(1) 0.04(1) 0.453(1) 0.09(1) 1.0
BR 0.599(4) 4.84(4) 0.113(4) 0.476(4) 0.102(4) 4.0

Sc
ie

nc
e GA 0.447(2) 6.871(2) 0.035(2) 0.699(2) 0.136(2) 2.0

LexGA 0.455(1) 6.837(1) 0.035(1) 0.689(1) 0.135(1) 1.0
HC 0.42(3) 7.462(3) 0.036(3) 0.718(3) 0.151(3) 3.0
BR 0.391(4) 8.113(4) 0.237(4) 0.759(4) 0.165(4) 4.0

M
ea

n 

GA 2.38 2.00 2.31 2.63 2.13 2.29
LexGA 1.50 1.88 1.75 1.63 1.75 1.70
HC 2.13 2.13 1.94 1.75 2.13 2.01
BR 4.00 4.00 4.00 4.00 4.00 4.00

Tables V-VIII show the predictive performance of the proposed 
LexGA-ML-CFS  and the other methods with different individual 
lengths – i.e, different number of features pre-selected by the 
univariate filter method (as explained in Section 6.1), namely 100, 
200, 300 and 400 features, respectively. For each method, each table 
reports the values of each of the five measures of multi-label 
predictive accuracy mentioned earlier. In Tables V-VIII, LexGA 

stands for the LexGA-ML-CFS, GA stands for the single-objective 
GA-ML-CFS, HC stands for Hill Climbing-based ML-CFS and BR 
stands for the Binary Relevance method. In these tables, the GA and 
LexGA results are an average over the results of 5 runs with a 
different random seed used to create the initial population in each 
run. The results for HC and BR are based on a single run, since these 
methods are deterministic.  

The numbers between brackets right after the accuracy results denote 
the ranks achieved by each method – in the range from 1 (best) to 4 
(worst). The tables also report, in the last column, the average rank 
(AR) of each method across all five predictive accuracy measures, 
for each dataset. The last 4 rows of each table show the mean rank 
for each method across the 8 datasets, and finally the last column of 
the last 4 rows shows the average ranks over the 5 predictive 
accuracy measures and over the 8 datasets. 

TABLE VI.  PREDICTIVE ACCURACIES ON EVALUATION DATASETS 
(INDIVIDUAL LENGTH = 200) 

DT method 
ML-KNN Classifier 

Avg.Pre Cov. H-Loss OneErr. R-Loss AR

B
us

in
es

s GA 0.876(2) 2.291(2) 0.028(2) 0.124(2) 0.041(2) 2.0
LexGA 0.876(1) 2.282(1) 0.028(1) 0.124(1) 0.041(1) 1.0
HC 0.868(3) 2.364(3) 0.029(3) 0.136(3) 0.043(3) 3.0
BR 0.853(4) 2.727(4) 0.043(4) 0.14(4) 0.049(4) 4.0

A
rt

 

GA 0.53(1) 5.301(1) 0.06(2) 0.59(1) 0.147(1) 1.2
LexGA 0.528(2) 5.32(2) 0.06(1) 0.594(2) 0.148(2) 1.8
HC 0.523(3) 5.395(3) 0.06(3) 0.604(3) 0.15(3) 3.0
BR 0.414(4) 7.523(4) 0.558(4) 0.753(4) 0.226(4) 4.0

E
du

ca
tio

n GA 0.546(2) 3.912(2) 0.042(2) 0.598(2) 0.093(2) 2.0
LexGA 0.546(3) 3.914(3) 0.042(3) 0.598(3) 0.093(3) 3.0
HC 0.552(1) 3.839(1) 0.042(1) 0.592(1) 0.09(1) 1.0
BR 0.468(4) 5.435(4) 0.272(4) 0.682(4) 0.126(4) 4.0

R
ec

re
at

io
n GA 0.572(3) 4.143(2) 0.056(3) 0.545(2) 0.15(2) 2.4

LexGA 0.573(2) 4.157(3) 0.055(1) 0.544(1) 0.15(3) 2.0
HC 0.573(1) 4.12(1) 0.055(2) 0.545(3) 0.148(1) 1.6 
BR 0.314(4) 7.562(4) 0.56(4) 0.804(4) 0.312(4) 4.0

H
ea

lth
 GA 0.681(1) 3.41(1) 0.044(1) 0.405(1) 0.065(1) 1.0

LexGA 0.676(2) 3.43(2) 0.045(2) 0.413(2) 0.065(2) 2.0
HC 0.675(3) 3.444(3) 0.045(3) 0.415(3) 0.065(3) 3.0
BR 0.607(4) 4.038(4) 0.158(4) 0.489(4) 0.082(4) 4.0

E
nt

.m
en

t GA 0.608(1) 3.051(1) 0.055(2) 0.524(1) 0.112(1) 1.2
LexGA 0.604(2) 3.082(2) 0.055(3) 0.532(3) 0.113(2) 2.4
HC 0.602(3) 3.122(3) 0.054(1) 0.53(2) 0.115(3) 2.4
BR 0.451(4) 4.844(4) 0.46(4) 0.715(4) 0.193(4) 4.0

C
om

pu
te

r GA 0.637(1) 4.215(1) 0.04(2) 0.437(2) 0.09(1) 1.4
LexGA 0.637(2) 4.224(2) 0.04(3) 0.436(1) 0.091(2) 2.0
HC 0.631(3) 4.28(3) 0.039(1) 0.451(3) 0.091(3) 2.6
BR 0.589(4) 5.1(4) 0.161(4) 0.476(4) 0.111(4) 4.0

Sc
ie

nc
e GA 0.465(1) 6.727(1) 0.035(1) 0.668(1) 0.132(1) 1.0

LexGA 0.457(2) 6.83(2) 0.035(2) 0.679(2) 0.135(2) 2.0
HC 0.423(3) 7.402(3) 0.037(3) 0.714(3) 0.15(3) 3.0
BR 0.386(4) 8.877(4) 0.49(4) 0.759(4) 0.183(4) 4.0 

M
ea

n 

GA 1.50 1.38 1.88 1.50 1.38 1.53 
LexGA 2.00 2.13 2.00 1.88 2.13 2.03
HC 2.50 2.50 2.13 2.63 2.50 2.45
BR 4.00 4.00 4.00 4.00 4.00 4.00

In general, both GA-ML-CFS and Lex-ML-CFS obtained substantially 
better predictive accuracy (lower average rank) than the BR approach 
in every case (individual length = 100, 200, 300 and 400). GA-ML-
CFS showed a better average rank (1.53) than LexGA-MLCFS (2.03) 
and HC-ML-CFS (2.45) when we set the individual length equal to 
200 (Table VI), while LexGA-ML-CFS showed a better average rank 
(1.70) than GA-ML-CFS (2.29) and HC-ML-CFS (2.01) when the 
individual length was equal to 100 (Table V). 



HC-ML-CFS obtains the best results with the two largest 
individual lengths, i.e. 300 and 400. When the individual length is 
300 (Table VII), HC-ML-CFS obtained the best rank of 1.83, versus 
1.86 for GA-ML-CFS and 2.31 for LexGA-ML-CFS. In Table VIII, 
when the individual length is 400, HC-ML-CFS shows the best rank 
of 1.88, versus 2.18 for GA-ML-CFS and 1.95 for LexGA-ML-
CFS.Table IX, third column, compares the average number and 
percentage of features selected by each method across all datasets for 
each individual length. The entries for Binary Relevance in this 
column are “Not applicable” because this method does not perform 
feature selection. Note that, as the individual length (number of input 
features) increases, the number of features selected by LexGA-ML-
CFS and GA-ML-CFS increases much faster than the number 
selected by HC-ML-CFS. GA-ML-CFS selected the biggest number 
of features (between 32-37% of individual length), while LexGA-
ML-CFS selected a smaller number of features (between 27-31% of 
the individual length).  

TABLE VII.  PREDICTIVE ACCURACIES ON EVALUATION DATASETS 
(INDIVIDUAL LENGTH = 300) 

DT method 
ML-KNN Classifier 

Avg.Pre Cov. H-Loss One.Err R-Loss AR

B
us

in
es

s GA 0.874(2) 2.315(1) 0.029(2) 0.129(2) 0.041(2.5) 1.9
LexGA 0.874(1) 2.32(2) 0.029(1) 0.126(1) 0.041(2.5) 1.5
HC 0.868(3) 2.372(3) 0.029(3) 0.136(3) 0.041(1) 2.6
BR 0.855(4) 2.736(4) 0.045(4) 0.14(4) 0.049(4) 4.0

A
rt

 

GA 0.528(2) 5.305(2) 0.059(2) 0.595(1) 0.147(2) 1.8 
LexGA 0.528(1) 5.28(1) 0.059(1) 0.596(2) 0.146(1) 1.2
HC 0.509(3) 5.487(3) 0.061(3) 0.621(3) 0.154(3) 3.0
BR 0.235(4) 8.568(4) 0.628(4) 0.979(4) 0.27(4) 4.0

E
du

ca
tio

n GA 0.551(3) 3.844(2) 0.041(3) 0.592(3) 0.091(3) 2.8
LexGA 0.553(2) 3.851(3) 0.041(2) 0.588(2) 0.091(2) 2.2
HC 0.56(1) 3.766(1) 0.041(1) 0.58(1) 0.089(1) 1.0
BR 0.151(4) 10.153(4) 0.471(4) 0.987(4) 0.284(4) 4.0

R
ec

re
at

io
n GA 0.583(2) 4.048(2) 0.055(2) 0.537(2) 0.146(2) 2.0

LexGA 0.579(3) 4.096(3) 0.055(3) 0.538(3) 0.149(3) 3.0
HC 0.586(1) 3.988(1) 0.055(1) 0.53(1) 0.144(1) 1.0
BR 0.155(4) 9.75(4) 0.674(4) 0.995(4) 0.414(4) 4.0

H
ea

lth
 GA 0.678(2) 3.389(2) 0.044(1) 0.417(2) 0.064(2) 1.8

LexGA 0.677(3) 3.397(3) 0.045(2) 0.42(3) 0.064(3) 2.8
HC 0.682(1) 3.359(1) 0.045(3) 0.415(1) 0.064(1) 1.4 
BR 0.602(4) 4.386(4) 0.221(4) 0.489(4) 0.089(4) 4.0 

E
nt

.m
en

t GA 0.605(2) 3.053(2) 0.055(2) 0.52(1) 0.112(2) 1.8 
LexGA 0.604(3) 3.062(3) 0.056(3) 0.53(3) 0.113(3) 3.0
HC 0.609(1) 3.024(1) 0.054(1) 0.529(2) 0.112(1) 1.2
BR 0.212(4) 7.262(4) 0.514(4) 0.924(4) 0.324(4) 4.0

C
om

pu
te

r GA 0.641(2) 4.178(1) 0.039(2) 0.436(1) 0.089(2) 1.6
LexGA 0.638(3) 4.208(3) 0.04(3) 0.439(3) 0.09(3) 3.0
HC 0.641(1) 4.187(2) 0.039(1) 0.438(2) 0.089(1) 1.4
BR 0.252(4) 8.629(4) 0.508(4) 0.939(4) 0.206(4) 4.0

Sc
ie

nc
e GA 0.46(1) 6.804(1) 0.035(2) 0.673(1) 0.134(1) 1.2

LexGA 0.453(2) 6.891(2) 0.034(1) 0.681(2) 0.136(2) 1.8
HC 0.422(3) 7.411(3) 0.036(3) 0.715(3) 0.15(3) 3.0
BR 0.119(4) 14.553(4) 0.559(4) 0.967(4) 0.332(4) 4.0

M
ea

n 

GA 2.00 1.63 2.00 1.63 2.06 1.86
LexGA 2.25 2.50 2.00 2.38 2.44 2.31
HC 1.75 1.88 2.00 2.00 1.50 1.83
BR 4.00 4.00 4.00 4.00 4.00 4.00

The smallest number of selected features was obtained by HC-ML-
CFS; this number was between 16-26% of the individual length. 
Hence, although LexGA-ML-CFS has consistently selected fewer 
features than GA-ML-CFS, the former still selected more features 
than HC-ML-CFS, particularly when the size of the feature space is 
larger.  

TABLE VIII.  PREDICTIVE ACCURACIES ON EVALUATION DATASETS 
(INDIVIDUAL LENGTH=400) 

DT method 
ML-KNN Classifier 

Avg.Pre Coverage H-Loss One.Err R-Loss AR

B
us

in
es

s GA 0.875(2) 2.29(2) 0.029(1) 0.128(2) 0.041(1) 1.6
LexGA 0.876(1) 2.287(1) 0.029(2) 0.126(1) 0.041(2) 1.4
HC 0.866(3) 2.386(3) 0.029(3) 0.138(3) 0.043(3) 3.0
BR 0.768(4) 4.008(4) 0.294(4) 0.14(4) 0.075(4) 4.0

A
rt

 

GA 0.324(3) 6.982(3) 0.066(3) 0.848(3) 0.211(3) 3.0
LexGA 0.533(1) 5.278(1) 0.059(1) 0.587(1) 0.145(1) 1.0
HC 0.518(2) 5.414(2) 0.06(2) 0.614(2) 0.15(2) 2.0
BR 0.15(4) 12.523(4) 0.469(4) 0.98(4) 0.425(4) 4.0

E
du

ca
ti

on
 GA 0.55(2) 3.883(3) 0.042(3) 0.591(2) 0.092(3) 2.6

LexGA 0.549(3) 3.87(2) 0.041(2) 0.592(3) 0.091(2) 2.4
HC 0.563(1) 3.796(1) 0.041(1) 0.574(1) 0.089(1) 1.0
BR 0.144(4) 9.947(4) 0.508(4) 0.999(4) 0.272(4) 4.0

R
ec

re
at

io
n GA 0.574(3) 4.115(3) 0.056(3) 0.548(3) 0.15(3) 3.0

LexGA 0.578(2) 4.091(2) 0.055(2) 0.542(2) 0.148(2) 2.0
HC 0.587(1) 4.011(1) 0.054(1) 0.528(1) 0.145(1) 1.0
BR 0.176(4) 10.929(4) 0.685(4) 0.95(4) 0.452(4) 4.0

H
ea

lt
h 

GA 0.696(2) 3.256(2) 0.043(2) 0.394(3) 0.061(2) 2.2
LexGA 0.693(3) 3.328(3) 0.043(3) 0.393(2) 0.062(3) 2.8
HC 0.71(1) 3.177(1) 0.043(1) 0.372(1) 0.059(1) 1.0
BR 0.378(4) 5.173(4) 0.304(4) 0.957(4) 0.115(4) 4.0

E
nt

.m
en

t GA 0.619(2) 2.981(2) 0.055(2) 0.512(1) 0.108(1) 1.6
LexGA 0.607(3) 3.036(3) 0.056(3) 0.523(3) 0.111(3) 3.0
HC 0.621(1) 2.975(1) 0.054(1) 0.512(2) 0.109(2) 1.4
BR 0.221(4) 6.824(4) 0.567(4) 0.961(4) 0.297(4) 4.0

C
om

pu
te

r GA 0.644(2) 4.13(1) 0.039(3) 0.433(2) 0.088(1) 1.8
LexGA 0.644(1) 4.172(2) 0.039(2) 0.432(1) 0.088(2) 1.6
HC 0.643(3) 4.19(3) 0.038(1) 0.435(3) 0.089(3) 2.6
BR 0.214(4) 8.452(4) 0.584(4) 0.967(4) 0.213(4) 4.0

S
ci

en
ce

 GA 0.46(2) 6.807(2) 0.035(1) 0.674(1) 0.134(2) 1.6
LexGA 0.461(1) 6.776(1) 0.035(2) 0.675(2) 0.133(1) 1.4
HC 0.422(3) 7.409(3) 0.036(3) 0.713(3) 0.15(3) 3.0
BR 0.145(4) 13.279(4) 0.593(4) 0.981(4) 0.293(4) 4.0

M
ea

n
 GA 2.25 2.25 2.25 2.13 2.00 2.18

LexGA 1.88 1.88 2.13 1.88 2.00 1.95
HC 1.88 1.88 1.63 2.00 2.00 1.88
BR 4.00 4.00 4.00 4.00 4.00 4.00

 
TABLE IX.  RESULTS’ SUMMARY: AVERAGE NUMBER AND PERCENTAGE 
OF SELECTED FEATURES ACROSS 8 DATASETS AND AVERAGE ACCURACY 
RANKS ACROSS 8 DATASETS AND 5 PREDICTIVE ACCURACY MEASURES 

Individual 
Length 

Method 
Num. of Selected 

Features 
Average predictive 

accuracy rank 

100 

GA 36.63 (36.63%) 2.29 
LexGA 31.05 (31.05%) 1.70 

HC 31.80 (31.80%) 2.01 
BR Not applicable 4.00 

200 

GA 67.80 (33.90%) 1.53 
LexGA 54.20 (27.10%) 2.03 

HC 46.50 (23.25%) 2.45 
BR Not applicable 4.00 

300 

GA 97.08 (32.36%) 1.86 
LexGA 81.18 (27.06%) 2.31 

HC 56.40 (18.80%) 1.83 
BR Not applicable 4.00 

400 

GA 130.10 (32.53%) 2.18 
LexGA 112.43 (28.11%) 1.95 

HC 68.10 (17.03%) 1.88 
BR Not applicable 4.00 

We used the non-parametric Friedman significance test (based on the 
methods ranks) to analyse the performance of GA-ML-CFS, 
LexGA-ML-CFS, HC-ML-CFS and BR. There is a statistically 
significant difference among these methods as a whole on the 
evaluation datasets, for each individual length. However, when using 



the Hommels post-hoc test to compare the best (control) method 
against the others, for each individual length, there are no 
statistically significant differences between the best and the other 
methods.  

8. Conclusions and Future Research 
The results from our experiments show that LexGA-ML-CFS 
improved predictive accuracy, by comparison with the baseline 
GA-ML-CFS, HC-ML-CFS and BR methods, when the individual 
length was set to 100. When the individual length was 200, 
LexGA-ML-CFS outperformed HC-ML-CFS and BR methods, but 
it was outperformed by GA-ML-CFS. When the individual length 
is larger (300 and 400) LexGA-ML-CFS was not able to find a 
solution (feature subset) better than the solution found by HC-ML-
CFS, but LexGA-ML-CFS still found a solution better than the one 
found by the BR approach. However, overall there was no 
statistically significant difference between the results of the 
proposed LexGA-ML-CFS method and other methods. 

We also investigated the number of features selected by 
LexGA-ML-CFS, GA-ML-CFS and HC-ML-CFS. We compared 
the number of selected features on each dataset across four 
individual lengths (number of input features). We found that the 
number of features selected by HC-ML-CFS slowly increases 
when the individual length is increased from 100 to 200, 300 and 
400, while the number of features selected by LexGA-ML-CFS 
and GA-ML-CFS increases considerably faster when the 
individual length is increased. Although LexGA-ML-CFS tends to 
select feature subsets smaller than the ones selected by GA-ML-
CFS, the feature subsets selected by LexGA-ML-CFS are still 
larger than the ones selected by HC-ML-CFS, particularly for 
larger sizes of the feature space.  

 One direction for future research is to develop another 
variation of the fitness function of LexGA-ML-CFS that puts more 
emphasis on reducing the number of selected features without 
unduly sacrificing predictive accuracy. Other research directions 
are to develop new multi-label correlation-based feature selection 
methods based on other types of search methods such as Beam 
Search and Ant Colony Optimization. 
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