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ABSTRACT
Regression problems provide some of the most challenging
research opportunities, where the predictions of such do-
mains are critical to a specific application. Problem do-
mains that exhibit large variability and are of chaotic na-
ture are the most challenging to predict. Rainfall being a
prime example, as it exhibits very unique characteristics that
do not exist in other time series data. Moreover, rainfall
is essential for applications that surround financial securi-
ties such as rainfall derivatives. This paper is interested
in creating a new methodology for increasing the predic-
tive accuracy of rainfall within the problem domain of rain-
fall derivatives. Currently, the process of predicting rainfall
within rainfall derivatives is dominated by statistical mod-
els, namely Markov-chain extended with rainfall prediction
(MCRP). In this paper, we propose a novel algorithm for
decomposing rainfall, which is a hybrid Genetic Program-
ming/Genetic Algorithm (GP/GA) algorithm. Hence, the
overall problem becomes easier to solve. We compare the
performance of our hybrid GP/GA, against MCRP, Radial
Basis Function and GP without decomposition. We aim to
show the effectiveness that a decomposition algorithm can
have on the problem domain. Results show that in gen-
eral decomposition has a very positive effect by statistically
outperforming GP without decomposition and MCRP.

CCS Concepts
•Computing methodologies → Classification and re-
gression trees; Genetic algorithms; Genetic program-
ming;

Keywords
Rainfall derivatives, Rainfall prediction, Decomposition, Ge-
netic Programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20 - 24, 2016, Denver, CO, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908894

1. INTRODUCTION
Regression based problems are some of the most challeng-

ing research opportunities. The problem difficulty is not just
based on how effective a certain technique is, but can be of
a direct result of the internal structure of the data. Com-
plex and chaotic data structures that exhibit few trends or
patterns can be exceptionally hard to predict, especially if
tackling the problem as a whole. One such data series that
exhibits high volatility, few reoccurring patterns and fluctu-
ating trends is rainfall. Such data sets are critical to predict
with the highest of accuracy when considering the applica-
tion domains where rainfall prediction is key.

Rainfall is one of the most important phenomena within
a climate system. It is well known that the variability and
intensity of rainfall impacts water resource planning, agricul-
ture and biological systems. In the financial aspects, predict-
ing the amount of rainfall is also a vital component for pre-
dicting financial securities. Over recent years, the abilities
in understanding and predicting rainfall has increased, due
to numerous models developed for increasing the accuracy
of prediction in rainfall amounts. Subsequently, such efforts
can lead to the correct predictions for weather derivatives.
Rainfall derivatives share similar principles with weather
derivatives and other regular derivatives, defined as con-
tracts between two or more parties. The value of the con-
tracts is dependent upon the underlying financial asset.
Hence, in the case of weather derivatives, the underlying as-
set is a weather type, such as rainfall. Another significant
difference between common derivatives and weather deriva-
tives is that weather derivative are not tradable. Therefore,
many existing methods in the literature for other derivatives
become unsuitable for the prediction of weather derivatives.

Rainfall derivatives is a new method for reducing the fi-
nancial risk posed by adverse or uncertain weather circum-
stances. Moreover, they are a better alternative than in-
surance, because it can be hard to prove that the rainfall
has had an impact unless it is destructive, such as severe
floods or drought. Similar contracts exist for other weather
variables, such as temperature.

The pricing of rainfall derivatives consists of two prob-
lems. The first problem is the prediction of accumulated
rainfall over a specified period. The second problem is de-
veloping a pricing framework1. The latter has its own unique
problematic features, as rainfall derivatives constitute an in-
complete market2. This paper focuses on the first aspect of

1Where deriving a fair price for a contract is key (i.e. how
much a unit of rainfall costs)
2In incomplete markets, the derivative can not be replicated



predicting the level of rainfall. Note it is important to have a
model that can accurately predict the level of rainfall before
pricing derivatives, because the contracts are priced on the
predicted accumulated rainfall over a period of time. Hence,
we want to reduce issues of mispricing.

Prediction in rainfall derivatives poses many obstacles,
both in research and in financial practice. There is a light
amount of literature researched in rainfall derivatives, be-
cause the concept is fairly new, as well as rainfall can be
very difficult to accurately measure. In financial practice,
investors also share the same kind of difficulties, which min-
imise the trades of rainfall derivatives in financial markets.
Therefore, our motivation is to develop a methodology for
accurate rainfall prediction.

The statistical approaches of Markov-chain extended with
rainfall prediction (MCRP) [9] is the most commonly and
successfully used rainfall prediction method in the litera-
ture3. Where the process is broken down into two stages.
The first stage is to produce an occurrence pathway using
a Markov-chain (i.e. a sequence of rainy or dry days). The
second stage is to generate a random rainfall amount (from
a distribution) for every rainy day in the sequence. We refer
the reader to [9] for a complete description and to [1] where
MCRP was most recently applied for rainfall derivatives.

MCRP is a popular approach, at the same time is also very
simplistic. MCRP is heavily reliant on past information be-
ing reflective of the future, by taking the past average to be
the major contribution to future rainfall. Thus, producing
weak predictive models as the annual deviations in rainfall
are not explicitly captured. Moreover, the model for each
city needs to be specifically tuned as each exhibits different
statistical properties, i.e. a new model for each city.

Due to the disadvantages highlighted above, the literature
has diverted away from the dominance of statistical meth-
ods, with machine learning methods becoming more popu-
lar over recent years. Typical applications within machine
learning revolve around short term predictions (e.g. rainfall-
runoff models up to a few hours [4] or monthly amounts [10]
[7]). For daily predictions, [8] used a feed-forward back-
propagation neural network for daily rainfall prediction in
Sri Lanka, which was inspired by the chain-dependent ap-
proach from statistics. [5] applied Genetic Programming
(GP) to daily rainfall data, but the GP performed poorly
by itself, although when assisted by wavelets the predictive
accuracy did improve. In the context of rainfall derivatives
there exists only one application of GP [2], which showed
that GP statistically outperformed the most common ap-
proach (MCRP). However, this implementation was a stan-
dard GP with a few modifications to tailor towards the prob-
lem. Despite few applications in rainfall prediction, GP is
very popular and has been applied successfully in many dif-
ferent regression based problems. Therefore, we continue
using GP, but due to the regression problems with extreme
and high variability, we will first decompose rainfall.

In this paper, the goal is to produce more accurate rain-
fall amount predictions, so that we avoid mispricing, which
as we have mentioned is the second step. Thus, we propose
a new methodology using a hybrid GP/GA for predicting

via cash and the underlying asset; this is because one can
not store, hold or trade weather variables.
3Our interests are in the approaches used within the rainfall
derivatives literature, instead of methods used for different
problem domains such as rainfall-runoff.

rainfall amounts using a divide and conquer strategy by de-
composing the problem. The motivation allows us to break
the problem of rainfall prediction into smaller partitions. As
a consequence, this reduces the difficulty when dealing with
data sets with high volatility and extreme values. Therefore,
rather than attempting to tackle the problem as a whole, the
GP/GA will evolve multiple equations. Thus, each regres-
sion equation is tailored to a specific partition of the data,
rather than one size fits all. We construct our algorithm
to be suitable within the final application of rainfall deriva-
tives, but could be easily adapted to suit other application
fields as well.

Due to breaking the prediction process down into par-
titions, we require a classification technique to help assist
predicting in the correct class. For this paper we propose
to extend the GP individual representation and operators
(based on trees) with a GA-like linear representation and
operators that first simplify the regression problem, by re-
stricting the range of values to be predicted to one of three
classes (low, medium, high), in order to facilitate the final
prediction to be performed by the GP component of the hy-
brid GP/GA. Thus, by combining GP/GA throughout the
evolution process, we aim to increase the overall predictive
performance.

Hence, our main contribution is the development of a spe-
cialised algorithm for the prediction of rainfall, based on a
new hybrid combination of GP and GA. In order to compare
the overall predictive performance of our approach against
the current approaches of GP and MCRP.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the setup of the data including the data
sets that will be used. Section 3 describes the GP used for
rainfall prediction. Section 4 examines the criteria for par-
titioning the data for GP to handle (i.e. the decomposition
of rainfall amounts). Section 5 presents the GA component
of the hybrid GP/GA. Section 6 will discuss the techniques
required for integration of GP and GA component. Section
7 discusses the experimental setup, and Section 8 will dis-
cusses the results from decomposition. Finally, Section 9
will conclude findings and suggest future research.

2. DATA SETUP
The daily rainfall data used is summarised in Table 1,

which includes a total of 21 cities from around Europe. We
use the same cities that were implemented in [2] and also
initialise each data set into the most recent 10 years for
training and 1 year for testing.

Following the same procedure in [2], we transform the
daily rainfall data into accumulated amounts for a particular
contract length4, given by:

rts =

te∑
t=ts

rt, (1)

where, rts is the accumulated amount of rainfall for a given
day over a contract period from ts till te. The effects of this
transformation are shown in Figure 1. Thus, this allows us
to determine more easily patterns that exist within the data.

4The contract length refers to the period coverage of the
derivative one is looking to price, e.g. March’s contract
length would be 31 days, whereas, April would be 30 days



Table 1: The list of all cities whose daily rainfall amounts
will be used for experiments.

Cities used for daily rainfall

Amsterdam (Netherlands) Ljubljana (Slovenia)
Arkona (Germany) Luxembourg (Luxembourg)
Basel (Switzerland) Marseille (France)
Bilbao (Spain) Oberstdorf (Germany)
Bourges (France) Paris (France)
Caceres (Spain) Perpignan (France)
Castricum (Netherlands) Potsdam (Germany)
De Kooy (Netherlands) Regensburg (Germany)
Delft (Netherlands) Santiago (Portugal)
Gorlitz (Germany) Strijen (Netherlands)
Hamburg (Germany)

Figure 1: The effect of transforming Luxembourg rainfall
data using a sliding window for the year 2014.

3. GENETIC PROGRAMMING
Each individual of the hybrid GP/GA consists of a GP-

like part and a GA-like part. The GP-like part consists
of 3 expression trees, where nodes represent functions or
terminals as usual in GP. The GA-like part consists of a
linear chromosome with a string of n rules, each with 5 genes.
n can either be specified by the user, or can be randomly
generated during the evolution period. We define our n as
12, 5 genes for each month. In this section we describe the
GP-like part of the individual representation, which is based
on a Strongly-Typed GP (STGP) with modifications used
in [2] for the problem of rainfall prediction. Hereafter we
use the terms GP and GA, for short, to refer to the GP and
GA components of the hybrid GP/GA.

3.1 Terminals
The variables are defined by the rt’s and ry’s calculated

based on the data from Section 2, where rt is the accu-
mulated rainfall amount in the last known non overlapping
sliding window t periods ago. Similarly, ry is the accumu-
lated rainfall amount in the current sliding window y years
ago. The attributes for a single instance are shown in Figure
2.

Figure 2: The sliding window value with the targets day
amount with its respective t’s and y’s. The daily rainfall
amounts within each boundary would be accumulated.

The second element is an ephemeral random constant (ERC),
which will pick a uniformly distributed random number.
The third element is a set of constants from -4 to 4, at 0.25
intervals, which will take a separate type from the terminals
already discussed. These are constants that are specific to
the power function. Due to using STGP, we can ensure that
the second argument of the power function is always one of
these constants and does not create an illegal tree.

Table 2: GP function and terminal sets.

Set Value

Functions
ADD, SUB, MUL, DIV,
POW, SQRT, LOG

Terminals

11 rt periods {rt−1, rt−2, . . . , rt−11},
10 ry periods {ry−1,ry−2,. . . ,ry−10},
ERC,
Constants in the range [-4,4]

3.2 Function set
The function set includes: Add (ADD), Subtract (SUB),

Multiply (MUL), Divide (DIV), power (POW), square root
(SQRT), and log (LOG). The functions LOG, SQRT and
DIV are protected. Additionally, the second argument for
POW will be a constant in a specified range as mentioned in
3.1. Since we allow for fractional powers, we force a whole
number for the second argument, if the first argument is
negative.

3.3 Management of Trees
Due to rainfall being a strictly non-negative data set, a

wrapper around each individual is included to modify the
prediction to zero if the tree evaluates to a negative amount.
The final adjustment is to ensure a balance between variables
and random numbers in an individual. Thus, the first child
of each node is either a function or a variable. Whereas,
the second child of each node can be a variable, ERC or a
function. We initialise the population using ramped-half-
and-half method.

3.4 Fitness Function
The fitness used for evaluation will be the root mean

squared error, given by:



RMSE =

√√√√ 1

N

N∑
t=1

(rt − r̄t)2, (2)

where N is the length of the training set, rt represents
the predicted rainfall amount and r̄t represents the actual
rainfall amount for the tth data point (time index).

4. DECOMPOSING RAINFALL AMOUNTS
In order to decompose rainfall, we propose partitioning

the data into three different partitions (low, medium and
high rainfall amounts), thus simplifying the prediction pro-
cess. More could be considered, but we anticipate that three
partitions is sufficient by analysing previous experimenta-
tion, where the low and high levels of rainfall received little
coverage by a single regression equation. We discuss the
process of splitting the data in Section 4.1. Then, in Sec-
tion 4.2, we will discuss how GP will be adapted to create
multiple regression equations for all partitions.

4.1 Splitting the data
We require a lower criterion LC and upper criterion UC

to split our data into partitions as shown by Figure 3. Thus,
anything below LC is considered low rainfall, anything be-
tween LC and UC is considered medium rainfall and above
UC is considered high rainfall. Each GP individual will
have its own LC and UC based on the accumulated rainfall
amounts in the training data. For simplicity we keep these
values constant over time, but it would be an area of interest
to investigate how these values could change over time.

Figure 3: Luxembourg rainfall data split into three parti-
tions according to a lower criterion and upper criterion.

4.2 Genetic Programming Trees
Based on the LC and UC, we require an independent

equation that predicts the level of rainfall within each data
partition. Therefore, we map each partition to a particular
GP branch (bn), shown by Figure 4. Having independent
equations allows the GP to evolve each branch to maximise
the predictive performance within each partition. To keep
the independency between branches we create a crossover
and mutation operator that can only evolve the same branch
amongst individuals. The procedure is similar to the stan-
dard genetic operators, but is performed branch wise, rather
than once per individual. A random node/leaf chosen from
b1 individual1 can only crossover with b1 individual2 and not
b2. Similarly, the two randomly chosen individuals must be
used for each of the three branches.

Elitism places an equal number of b1, b2 and b3 into the
next generation based on the predictive performance of each
branch. In order to create the elite individual, we merge the
best from b1, b2 and b3, creating the best overall individual

DecisionCriteria

~~ ��   
b1 b2 b3

Low Medium High

Figure 4: The representation of the decision criteria and
the three branches for regression. Upon evaluation of the
decision criteria, this leads to one of the three branches;
each branch is a different GP tree, representing a different
rainfall prediction equation.

from the previous generation. For this paper, we use b1 to
represent low rainfall, b2 to represent medium rainfall and
b3 to represent high rainfall, as shown by Equation 3.

Parent

 b1 if rt−1 ≤ LC
b3 if rt−1 ≥ UC
b2 otherwise.

(3)

5. THE GA COMPONENT OF THE GP/GA
In this section we outline the GA to classify each data

point into the correct partition. First, we introduce the
representation of our GA in Section 5.1. Then, we discuss
the fitness criteria to be used in Section 5.2. Finally, the
breeding of our GA in Section 5.3.

5.1 Decomposing the Problem with the GA
Component

Partitioning the data (based on an individuals LC and
UC) increases the complexity by having to choose which
branch (GP equation) to use. We propose using a GA-like
linear representation, as part of a hybrid GP/GA individ-
ual, to classify. Figure 3 shows the importance of classifying
correctly, especially when considering the impact of misclas-
sifying by more than one class. For example, if the the
actual rainfall amount is within the high rainfall partition
(amounts > 110mm) and a classifier predicts low rainfall,
then this will point to the wrong branch (tree) in the GP-
part representation of the GP/GA individual, leading to an
equation predicting much lower rainfall amounts, possibly
in the range of less than 50mm, thus causing an error of at
least 50%.

The decision criteria for a given time point consists of
a rule list the size of the number of chosen partitions (for
our experimentation 3), making the procedure very intuitive
and very comprehensive to understand. We will be using the
same attributes (rt’s and ry’s) as used within the terminal
set for GP given in Table 2. We have decided not to use more
complex rules for the decision criteria, as this could affect
the comprehensibility of the results. Furthermore, the rules
will be based on a single term and we do not consider rules
involving logical operators such as AND, OR, and NOT.

The GA-part of the GP/GA individual representation con-
sists of 5 genes; predictor, period, lower criterion, upper cri-
terion and order. The predictor refers to one of the features
from Table 2, e.g. rt−1, rt−2 and so on. Period refers to
the number of days covered by a rule e.g., a value of 31



Table 3: All the possible values for each gene, except for
order. As we have a rule for each month, only the total
number of days per month is given.

Genes of the GA-part of an individual

Predictor {rt−1, rt−2 . . . rt−11},
{ry−1, ry−2 . . . ry−10}

Period 31, 30 and 28
Lower Criteria 0.05 - 0.45
Upper Criteria 0.55 - 0.95

would cover the next 31 days. The lower and upper criteria
is the decision threshold for choosing which class to predict,
predLC and predUC respectively. For our experimentation
we define the predLC and predUC in terms of percentiles
of the training set, but this can be modified accordingly to
any real number or function. The complete list (excluding
order) of criteria is specified in Table 3. The order is one of
the unique permutations of the three branches, given below:

Order reference[
1
] [

2
] [

3
] [

4
] [

5
] [

6
]

 b1
b2
b3

  b1
b3
b2

  b2
b1
b3

  b2
b3
b1

  b3
b1
b2

  b3
b2
b1


where each permutation corresponds to the following crite-
ria:  predictor < predLC

predLC < predictor < predUC
predictor > predUC

 . (4)

For example order 3, whenever the predictor is less than
predLC we classify medium rainfall (b2). If greater than
predUC we classify high rainfall (b3), otherwise low rainfall
(b1). For order 5, whenever the predictor is less than predLC
we classify high rainfall (b3), if greater than predUC we
classify medium rainfall (b2), otherwise low rainfall (b1).

Due to rainfall features exhibiting very complex and chaotic
processes, it is highly unlikely that a single predictor can
classify accurately. Such low probability in classification
motivates us to allow larger number of rules to be created
throughout the year, which is able to simplify complexity
in rainfall, hence the period criteria. To best describe the
characteristics of each month throughout each year, we set
12 rules, one for each corresponding month. However, the
number of rules can be adjusted according to user’s or mod-
els preferences. Furthermore, the order predLC and predUC
is an important aspect within the classification process, be-
cause the same predictor could be used in a different month
under different criteria. Figure 5, shows a sample represen-
tation of the above description, where we demonstrate the
rules for January, February and December.

January February December︸︷︷︸ ︸︷︷︸ ︸︷︷︸

[rt−1, 31, 37, 91, 2, ry−3, 28, 22, 77, 2 . . . rt−1, 31, 11, 64, 6]

Figure 5: An example of a GA for 3 out of 12 months

The classification rules for January, February and Decem-

ber is shown in Equation 5, Equation 6 and Equation 7
respectively, showing the impact of a different order (by
cross-referencing Equation 5.1 with Figure 5) and the dif-
ferent criteria to split the predictor. The period refers to
the number of days the rules cover and is expressed in each
equation as the days covered during a year. Therefore, the
rules shown below are the same for every day in the respec-
tive months.

January (Days 1-31)

 b1 if rt−1 ≤ 37thpercentile
b2 if rt−1 ≥ 91stpercentile
b3 otherwise,

(5)

February (Days 32-60)

 b1 if ry−3 ≤ 28thpercentile
b2 if ry−3 ≥ 77stpercentile
b3 otherwise,

(6)

December (Days 335-365)

 b3 if rt−1 ≤ 11thpercentile
b1 if rt−1 ≥ 64thpercentile
b2 otherwise,

(7)

5.2 Fitness Criteria
Each individual of the hybrid GP/GA will have the out-

put of its GP component (which is partly determined by the
values of the GA-component genes) evaluated using RMSE
as outlined in Section 3.4. However, we also need to compute
the fitness of the GA-part of an individual separately, for the
purpose of operators like elitism (explained later). To com-
pute that GA-part’s fitness we use Kendall’s tau correlation
coefficient, which is used to measure the rank correlation be-
tween two variables taking into account the natural ordering
of nominal classes. Kendall’s tau is given by:

τB =
nc − nd√

(n0 − n1)(n0 − n2)
,where

n0 =
n(n− 1)

2
, n1 =

∑
i

ti(ti − 1)

2
, n2 =

∑
j

uj(uj − 1)

2
,

where nc = Number of concordant pairs, nd = Number
of discordant pairs. ti = Number of tied values in the ith
group of ties for the first quantity and uj = Number of tied
values in the jth group of ties for the second quantity. Let
(p1, a1), (p2, a2), . . . , (pn, an) be a set of observations, in our
case the predicted class and the actual class, where n refers
to the number of training instances. A pair is concordant
if the ranks for (pi, ai) and (pj , aj) both agree, such that
pi > pj and ai > aj or pi < pj and ai < aj and vice versa if
discordant.

5.3 Evaluating and Breeding of Genetic Algo-
rithm

The GA will be evaluated based on the Kendall’s corre-
lation mentioned above, which will return a value in the
range of [−1, 1]. For our experimentation a value of 1 rep-
resents a perfect agreement between rankings. Once the
population has been evaluated, selected individuals undergo
genetic operations. The GA-part of the individuals can un-
dergo point mutation and uniform crossover. The mutation
procedure will choose a random point within the individ-
ual and replace it with a random variable or value that is
of the same type. Therefore, one can not replace a predic-
tor (rt−4) with predLC, only with another predictor (ry−5).



Uniform crossover is applied separately to each of the 12
rules (corresponding to 12 months) encoded in the parent
individuals, so that for each month, each of the 5 genes has
its value swapped between parents with a fixed probability
(0.5). We choose each parent based on the GA-parts perfor-
mance using tournament selection. We will cover the process
of elitism in the next section, because it requires the inter-
action between the GP and GA components of the hybrid
GP/GA.

6. INTEGRATING THE GP AND GA COM-
PONENTS

In this section we outline three aspects of the integration
of the GP-part and GA-part of the individual representation
of the hybrid GP/GA, namely: penalizing the regression
trees, elitism, and the evolution of the LC and UC criteria
to partition the data for classification.

6.1 Penalising GP Regression Trees
Following the decomposition approach, it is key that each

regression equation (a GP tree) predicts values within its re-
spective partition. For example, it makes little sense for an
equation responsible for low rainfall class, predicting values
in medium and high rainfall class. Therefore, we implement
a penalty function based on the distance away from the cor-
rect partition, as shown in Figure 6. To integrate the GP
and GA components (hereafter GP and GA for short) and
together and maximise the usefulness of this idea, we imple-
ment a simple check before choosing whether to penalise or
not. The GP-related penalty will only apply to situations
where the GA has correctly classified. Therefore, we are not
penalising GP for making a wrong prediction given that the
GA was at fault. This modification should influence GP to
predict within a range similar to that of the specified par-
tition. From Figure 6 any deviation denoted by the dashed
vertical lines is penalised by Equations 8.

Actual class is low

pnew =

{
pold +m(pold − LC) if cp = ca & pold > LC

0 otherwise.

Actual class is medium

pnew =

 pold +m(pold − UC) if cp = ca & pold > UC
pold +m(pold − LC) if cp = ca & pold < LC

0 otherwise.

Actual class is high

pnew =

{
pold +m(pold − UC) if cp = ca & pold > UC

0 otherwise.
(8)

Where pnew represents the predicted rainfall amount by
GP after penalising and pold represents the predicted rainfall
amount originally predicted by GP. m represents a scaling
function on the penalty, cp is the predicted class and ca is
the actual class (i.e. the classified rainfall amount). UC and
LC are the upper and lower criteria for splitting the data
into its respective classes. For example, let us assume that
cp = ca, if GP predicted 1000 tenths of mm (pold), where the
UC is 1100 and m was 2, but the true class is high rainfall.
We would then update pnew by 1000 + 2 × (1100 − 1000),
hence pnew is penalised to 800. The idea is for GP to deter
from this individual given the large penalty effect.

Figure 6: The distance from the predicted amount to either
the lower bound or upper bound when GP predicts a rainfall
amount in the wrong partition. The deviance is then used
to calculate a penalty.

6.2 Elitism Merging Different Individuals
The use of elitism in our evolution process relies on ex-

changing information to create the best individual to put
into the next generation. Typically, elitism would take the
best GP trees and GA genes separately and put them into
the next generation. However, due to the close integration
between the GP and GA components of an individual, we
create our own elitism strategy.

The first consideration was mentioned in Section 4.2, where
we merge the best performing branches brank

number together in
ranking order. Thus, the best branch b11 will merge with b12
and b13. We do not allow a random pairing where b11 could
merge with b22 or b43. However, the GA component is jointly
responsible for achieving a better RMSE. For instance, b11,
b12 and b13 may not come from the same parent using the
same GA-based partition rules. Potentially, we may have
3 different GA-based rule lists influencing the performance.
Thus, we need an intermediate step to decide which of the
GA-based rule lists is responsible for the best overall indi-
vidual using all 3 branches. Therefore, we evaluate in turn
each GA-based rule list associated with the best branches
merged together. We also evaluate the best overall perform-
ing partition rule list, which may not be attached to any
branch. After re-evaluating the newly merged offspring, the
partition rule list that was responsible for returning the best
fitness in RMSE is moved into the next generation as part
of the offspring.

This helps evolve the partition rules that can perform the
best classification across the training period, helping the GP
to solve the regression problem.

6.3 Evolution of LC and UC

The last aspect of the hybrid GP/GA is the process of
evolving LC and UC (our decomposition approach). This
criteria is required for the GP component to construct re-
gression equations (trees) to predict within each data par-
tition and for the GA-based rule lists to classify into the
relevant classes. Recall that each individual consists of 3
GP regression trees and a GA-based rule list including LC
and UC values.
LC and UC allows us to focus on the whole problem,

which is what we are most interested in, but does not guar-
antee that the GA with the highest correlation is moved
into the next generation, likewise the GP branch that can
return the lowest RMSE. Meaning, that our evolution pro-
cess is based on finding an equilibrium that can best split



our data into its respective partitions that minimises the
overall RMSE. Unlike the previous two aspects, this aspect
is more subtle and directly affects the performance of both
GP and GA, and helps guide the evolution process of both
in turn.

To ensure the split points for decomposition are evolved,
during crossover the two parents’ LC and UC values un-
dergo uniform crossover to create the future offspring.

7. EXPERIMENTAL SETUP
The purpose of our experiments is to compare our de-

composition algorithm (GP/GA) against a previously im-
plemented GP [2], the most commonly used method in the
literature (MCRP) and Radial Basis Function (RBF). We
choose to use RBF, because it is a popular algorithm for
regression problems and has already been applied to the
rainfall problem [10]. We used a package called iRace [6]
to find the optimal parameters for GP/GA and RBF (using
the training set only), presented in Table 4. Additionally,
we use the same parameter settings as [2] for GP.

Table 4: The optimal configuration of GP/GA and RBF
found by iRace and the parameters of GP used in [2]. Pa-
rameters with a * represent parameters used by both the
GP-part and GA-part of GP/GA.

GP Parameters GP [2] GP/GA

Max depth of tree 8 8
Population size 1400 1000*
Crossover 76% 99%*
Mutation 69% 30%*
Primitive 55% 32%
Terminal/Node bias 20% 64%
Elitism 3% 3%*
Number of generations 30 70*
ERC negative low -495.36 -288.42
ERC negative high -102.56 -224.31
ERC positive low 100.77 210.43
ERC positive high 438.58 432.23

RBF Parameters

Minimum standard deviation 25.3373
Number of clusters 2
Ridge 3.2443

We will run the proposed GP/GA and compare its pre-
dictive performance against GP [2] and MCRP, on all 21
data sets specified in Table 1. We compare against GP (first
benchmark), since it is the only one in the rainfall deriva-
tives literature to outperform MCRP (second benchmark),
which is the most popular and successful approach for the
prediction of rainfall within rainfall derivatives.

We train GP/GA from 01/Jan/2004 - 31/Dec/2013 before
testing on the unseen test set (01/Jan/2014 - 31/Dec/2014).
As GP and RBF are stochastic algorithms, we run each for
50 times on each city (with parameters optimized by iRace),
and report the average predictive accuracy on the test set
over those 50 runs. For completeness we will include the
average performance of MCRP over 10,000 runs.

8. RESULTS
The performance of GP/GA, GP, MCRP, and RBF is pre-

sented in Table 5 based on the average RMSE performance
from the testing set for each city.

Table 5: The average RMSE performance in tenths of mm
for each of our approaches across each city. The best per-
formance is shown in bold.

Data GP [2] GP/GA MCRP RBF

Amsterdam 412.49 391.62 373.42 374.87
Arkona 310.45 280.81 290.72 272.11
Basel 425.13 412.68 467.23 397.40
Bilbao 519.67 470.13 659.03 474.69
Bourges 375.46 321.74 382.62 363.11
Caceres 438.41 403.11 687.74 390.75
Castricum 438.88 390.34 465.77 416.51
De Kooy 343.66 328.85 358.27 297.46
Delft 404.47 383.33 449.82 344.64
Gorlitz 304.38 279.29 304.92 254.08
Hamburg 408.25 389.95 409.56 376.89
Ljubljana 1027.62 901.20 1058.86 962.41
Luxembourg 517.34 458.46 585.23 461.39
Marseille 505.93 471.15 956.35 483.05
Oberstdorf 677.36 640.43 671.99 538.22
Paris 277.79 271.93 280.4 283.64
Perpignan 760.73 731.80 968.74 709.39
Potsdam 320.66 302.11 327.98 265.37
Regensburg 330.33 314.51 331.07 296.13
Santiago 1062.60 975.67 1085.1 1071.90
Strijen 298.62 293.43 343.21 278.94

GP/GA achieved the lowest RMSE over all data sets com-
pared to GP and against MCRP except for one. Despite
being outperformed by RBF in terms of victories, this is
a very good result given we comprehensively beat the GP
from [2], and also MCRP. Moreover, we perform similarly
to a state-of-the-art algorithm RBF. From the results the
percentage gains in lower RMSE from GP/GA over GP
ranges from 2% to 14%, with the most notable gains includ-
ing Bourges (15%), Ljubljana (12%), Luxembourg (11%),
Castricum (11%) and Bilbao (10%).

To check which approach performed better, we compute
the mean rank based on Table 5 — the lower the rank, the
better the performance. Furthermore, in order to determine
whether the above results are statistically significant, we
compare the four approaches by using the Friedman test [3].
The Friedman test is a nonparametric test for testing the
difference in mean rank between between multiple related
samples. The null hypothesis is that there is no significant
difference between the mean rank of the four approaches.
We apply the test at the 5% significance level.

Table 6 shows the mean rank of the four approaches, RBF,
GP/GA, GP and MCRP, with values of 1.57, 1.67, 3.05 and
3.71 respectively, where a lower rank indicates better per-
formance. Therefore, across all cities on average GP/GA
outperformed GP and MCRP and performed similarly to
RBF, with RBF just ranking marginally higher. As we can
observe, the Friedman test result has a p value of 6.06x10−8,
which is less than the 5% significance level. Therefore, there
is strong evidence to reject the null hypothesis, and con-



Table 6: The mean rankings of the four approaches, and the
Friedman test statistic

Approach Ranking

RBF 1.57
GP/GA 1.67
GP 3.05
MCRP 3.71

Friedman p-value 6.06x10−8

clude that there is a statistical difference between the three
approaches.

We perform the Holm post-hoc test, due to there being a
statistical difference. The pairwise comparison results show
that, GP/GA does statistically outperform GP and MCRP,
with a p value of 5.2794x10−4 and 2.7550x10−7 respectively
which is less than the Holm score of 0.0167 and 0.01. There-
fore, these results shows that decomposing the problem of
rainfall is a beneficial approach. Moreover, GP/GA per-
forms as well as RBF, a highly regarded regression algo-
rithm, by there being no statistical difference, with a p value
of 0.81.

From the above results, we can conclude that the use of
decomposition is highly beneficial for predicting rainfall in
the context of weather derivatives by three key results.

1. GP/GA outperforms the currently popular approach
of MCRP.

2. GP/GA outperforms a standard GP, because of its de-
composition abilities

3. GP/GA performs as well as RBF, a state-of-the-art
regression algorithm.

These results will help with the second stage of the rainfall
derivatives problem of pricing, by reducing potential mis-
pricing.

9. CONCLUSIONS
This paper introduces a novel algorithm for dealing with

complex data sets, which exhibit extreme values and volatil-
ity. Our novelty is the proposed use of decomposition on
the problem of rainfall, where it is critical to predict the
accumulated rainfall amounts for such applications as finan-
cial securities (e.g. rainfall derivatives). We developed a
hybrid Genetic Programming (GP) and Genetic Algorithm
(GA) method in order to predict the accumulated rainfall
amounts. The motivation for this paper is to make the pro-
cess of rainfall prediction a simpler problem space. There-
fore, we decompose the overall problem of rainfall prediction
into a set of partitions, where the GP component of the hy-
brid GP/GA can create multiple regression equations (trees)
to predict each partition more accurately. By implementing
the GP proposed in [2], we extended it with the proposed
GA component for classification (before performing regres-
sion). A classification technique is required, because we need
to determine which regression equation to evaluate.

We evaluated the performance on cities from around Eu-
rope using our proposed decomposition algorithm, and find
sufficient evidence that the proposed algorithm has a su-
perior predictive power than a stand alone GP. Thus, we

can show that our decomposition algorithm is a significant
contribution by the consistent gains in observed predictive
power. Additionally, we also perform as well as a state-of-
the-art regression algorithm Radial Basis Function.

Future work will include testing other regression and clas-
sification techniques, also to extend the GA component pro-
posed in this paper. Potential extensions could include,
variable lengths of coverage per rule, more complex rule
creations and a more dynamic approach for specifying the
partitions through time. Finally, since we have achieved sig-
nificantly better results than a stand alone GP and MCRP,
this will improve the pricing rainfall derivatives.
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