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Abstract This chapter addresses the integration of knowledge discovery in databases
(KDD) and evolutionary algorithms (EAs), particularly genetic algorithms and genetic
programming. First we provide a brief overview of EAs. Then the remaining text is
divided into three parts. Section 2 discusses the use of EAs for KDD. The emphasis is on
the use of EAs in attribute selection and in the optimization of parameters for other kinds
of KDD algorithms (such as decision trees and nearest neighbour algorithms). Section 3
discusses three research problems in the design of an EA for KDD, namely: how to
discover comprehensible rules with genetic programming, how to discover surprising
(interesting) rules, and how to scale up EAs with parallel processing. Finally, section 4
discusses what the added value of KDD is for EAs. This section includes the remark that
generalization performance on a separate test set (unseen during training, or EA run) is a
basic principle for evaluating the quality of discovered knowledge, and then suggests that
this principle should be followed in other EA applications.

1. Introduction
The evolutionary algorithms paradigm consists of stochastic search algorithms that are
based on abstractions of the processes of Neo-Darwinian evolution. The basic idea is that
each “individual” of an evolving population encodes a candidate solution (e.g. a
prediction rule) to a given problem (e.g. classification). Each individual is evaluated by a
fitness function (e.g. the predictive accuracy of the rule). Then these individuals evolve
towards better and better individuals via operators based on natural selection, i.e.
survival and reproduction of the fittest, and genetics, e.g. crossover and mutation
operators - Goldberg (1989), Michalewicz (1996), Koza (1992, 1994), Koza et al.
(1999), Banzhaf et al. (1998).

The crossover operator essentially swaps genetic material between two individuals.
Figure E8.1.1 ill ustrates a simple form of crossover between two individuals, each
represented as a string with four genes. In the context of KDD, each gene could be, say,
an attribute-value condition of a rule (see below). Figure E8.1.1(a) shows the individuals
before crossover. A crossover point is randomly chosen, represented in the figure by the
symbol “|” between the second and third genes. Then the genes to the right of the
crossover point are swapped between the two individuals, yielding the new individuals
shown in Figure E8.1.1(b).

                X1 X2    X3 X4         X1 X2   Y3 Y4
    Y1 Y2    Y3 Y4         Y1 Y2   X3 X4

              (a) Before crossover      (b) After crossover

             Figure 1: Simple example of crossover



The mutation operator simply changes the value of a gene to a new random value.
Both crossover and mutation are stochastic operators, applied with user-defined
probabili ties. The probabili ty of mutation is usually much lower than that of crossover.
However, mutation is still necessary to increase the genetic diversity of individuals in the
population. Note that mutation can yield gene values that are not present in the current
population, unlike crossover, which only swaps existing gene values between individuals.

An important characteristic of evolutionary algorithms is that they perform a global
search. Indeed, evolutionary algorithms work with a population of candidate solutions,
rather than working with a single candidate solution at a time. This, together with the
fact they use stochastic operators to perform their search, reduce the probabili ty that
they will get stuck in local maxima, and increase the probabili ty that they will find the
global maximum.

2 Use of Evolutionary Algorithms for KDD

2.1 Evolutionary Algorithms for Rule Discovery
Among the several kinds of evolutionary algorithms used in the literature, genetic
algorithms (GA) and genetic programming (GP) have been the most used in rule
discovery. These two kinds of algorithms differ mainly with respect to the representation
of an individual.

In GA an individual is usually a linear string of rule conditions, where each condition
is often an attribute-value pair. The individual can represent a rule, as ill ustrated in Figure
E8.1.2(a), or a rule set, as ill ustrated in Figure E8.1.2(b). In both ill ustrations the
individual encodes only the conditions of the antecedent (IF part) of a classification rule,
and conditions are implicitly connected by a logical AND. In Figure E8.1.2(b) the symbol
“||” is used to separate rules within the individual. The predicted class (the THEN part of
the rule) can be chosen in a deterministic, sensible way as the majority class among all
data instances satisfying the rule antecedent. Supposing that the rules in Figure E8.1.1
refer to a credit data set, the system would choose a predicted class like “credit = good”
for those rules.

The several-rules-per-individual approach has the advantage that the fitness of an
individual can be evaluated by considering its rule set as a whole, by taking into account
rule interactions. However, this approach makes the individual encoding more
complicated and syntactically longer, which in turn may require more complex genetic
operators. Some algorithms following this approach are proposed by De Jong et al.
(1993), Janikow (1993), Pei et al. (1997).

    Salary = “high”      Age > 18     . . . (other rule conditions)
(a) GA individual = one rule antecedent

    Employed = “yes”     C/A_balance = “high”  ||  Salary = “high”   || . . . (other rules)
(b) GA individual = a set of rule antecedents

Figure 2: Examples of individual encoding in GA for rule discovery.

The single-rule-per-individual approach makes the individual encoding simpler and
syntactically shorter. However, it introduces the problem that the fitness of an individual
(a single rule) is not necessarily the best indicator of the quality of the discovered rule



set. Some algorithms using the one-rule-per-individual encoding are proposed by Greene
& Smith (1993), Giordana & Neri (1995), Freitas (1999a), Noda et al. (1999).

In GP an individual is usually represented by a tree, with rule conditions and/or
attribute values in the leaf nodes and functions (e.g. logical, relational or mathematical
operators) in the internal nodes. An individual’s tree can grow in size and shape in a very
dynamical way. Figure E8.1.3 ill ustrates a GP individual representing the rule
antecedent: IF (Employed=“ yes” ) AND ((Salary – Mortgage_debt) > 10,000).
Assuming again a credit application domain, the rule consequent (THEN part) would be
a prediction such as “credit=good” .

                                      AND

                      =                                 >

     Employed      yes                  -                                10,000

                                 Salary          Mortgage_debt

Figure 3: Example of genetic programming individual for rule discovery

We emphasize that encoding rules into a GP individual is a nontrivial problem, due to
the closure property of GP. This property requires that the output of a node can be used
as the input to any parent node in the tree. This is a problem in the context of KDD. For
instance, the operator “<“ can be used in a parent node if its children  contain “Age” and
“18” , but not if they contain “Sex” and “ female” .

Several solutions have been proposed to cope with the requirement of closure in GP.
Most of these solutions involve some kind of constrained-syntax GP, often exploiting
domain-related semantics - Bhattacharyya et al. (1998), Ngan et al. (1998). A simpler
approach is to booleanize all attribute values and use only logical (AND, OR, etc)
functions in the internal nodes – Hu (1998), Eggermont et al. (1999), Bojarczuk et al.
(1999).

The motivation for using evolutionary algorithms in rule discovery
One of the major contributions of evolutionary algorithms for rule discovery is that they
tend to cope well with attribute interactions, as a consequence of their global search.
This is in contrast to the local, greedy search performed by often-used rule induction and
decision tree algorithms.

Most rule induction algorithms generate (prune) a rule by selecting (removing) one-
rule-condition-at-a-time. The problem with this approach is ill ustrated in Figure E8.1.4.
The figure contains data instances having either positive (“+”) or negative (“-” ) class,
depending on the value of two boolean attributes A1 and A2. The goal is to find rule
conditions that discriminate between instances with positive and negative classes. The
rule condition A1 = “ false” (covering instances at the left of the vertical dashed line) is
not useful, since it covers as many positive-class examples as negative-class examples.
The same holds for its dual condition A1 = “ true” . The rule condition A2 = “ false”



(covering instances below the horizontal dashed line), as well as its dual A2 = “ true” , are
not useful either, for the same reason. Hence, an algorithm that selects one rule condition
at a time would consider A1 and A2 irrelevant attributes and choose another attribute to
form a rule condition. However, an algorithm that selects two or more conditions at a
time could easily form a rule such as:

IF (A1 = “ false” ) AND (A2 = “ true” ) THEN (positive-class).

    A2

              +     +            -    -
  true       +     +            -     -
            +       +          -     -

               -       -           +      +
false        -    -             +    +
              -        -            +     +

               false                   true         A1

Figure 4: Attribute interaction in classification.

Evolutionary algorithms usually evaluate a rule as a whole via the fitness function,
rather than evaluating the impact of adding/removing one condition to/from a rule. In
addition, crossover usually swaps several-rule-conditions-at-a-time between two
individuals. Therefore, evolutionary algorithms tend to cope well with attribute
interaction.

This is not to say that evolutionary algorithms are inherently superior to rule induction
algorithms. No rule discovery algorithm is superior in all cases - Domingos (1998),
Michie et al. (1994).

2.2 Use of Evolutionary Algorithms in Attribute Selection
Evolutionary algorithms have been quite successful in attribute selection [link to Section
C3.2] - Bala et al. (1995a, 1995b), Vafaie & De Jong (1993), Guerra-Salcedo & Whitley
(1998, 1999), Martin-Batista & Vila (1999), Hsu et al. (1999). The reason is that the
core problem of attribute selection is to cope with attribute interaction, since the original
attributes can be redundant and correlated in a highly nonlinear manner. This seems to be
a kind of problem where the global search performed by evolutionary algorithms tends to
present better results than a local search-based approach selecting one attribute at a time.

Most evolutionary attribute selection methods are based on a simple GA, where an
individual directly represents a candidate attribute subset. In essence, an individual is a
binay string with m genes, where m is the number of attributes. Each gene can take on
the value 1 or 0, indicating whether or not the corresponding attribute is selected. For
instance, the individual 0 1 1 0 1 0 0 0 represents a candidate solution where the second,
third, and fifth attributes are selected.

A more elaborate individual encoding has been proposed by Cherkauer & Shavlik
(1996). In their approach, each gene of an individual contains either an attribute name or
no attribute, denoted by 0. All the attributes occurring in any of the genes of an
individual are the attributes selected by the individual. For instance, the individual 0 0 A7



A7 A2 0 A7 A5 0 0 represents a candidate solution where the attributes A7, A2 and A5 are
selected. This unconventional individual encoding has some advantages, e.g. the fact that
occurrences of very relevant attributes may be replicated across the genome.

Regardless of the internal details of individual encoding, the attribute subset selected
by an individual is given to a KDD algorithm. The fitness of that individual depends on
the result (e.g. predictive accuracy) achieved by that algorithm using only those selected
attributes. Hence, the GA acts as a wrapper around the KDD algorithm.

2.3 Optimization of Parameters for Other KDD Algorithms
Genetic Algorithms (GA) have also been successfully used as a wrapper to optimize
parameters of several other kinds of KDD algorithms. Some examples are as follows.

Kelly & Davis (1991) and Punch et al. (1993) used a GA to optimize the attribute
weights of a k-nn classifier [link to Section C5.1.6]. Each individual consists of m real-
valued weights, where m is the number of attributes. The fitness of an individual is
measured by the predictive accuracy of a k-nn classifier, by using the attribute weights
contained in the individual. Raymer et al. (1996) extended this approach by using a
genetic programming system to construct new attributes.

Turney (1995) proposed a hybrid GA / decision tree system [link to Section C5.1.3]
where each individual of the GA consists essentially of attribute costs to be given as
input to a cost-sensitive decision tree algorithm. The fitness of an individual is measured
by the misclassification cost of the decision tree generated by the cost-sensitive decision
tree algorithm.

Janikow (1995) proposed a GA to optimize the fuzzy sets [link to Section B7] used
to build a decision tree. The decision tree algorithm is given fuzzy attributes taking on
linguistic values such as “low”, “medium”, “high” - each of which is a fuzzy set with an
associated membership function. The GA optimizes the shape of the membership
function of each fuzzy set.

3 Research problems in evolutionary algorithms relevant for KDD

3.1 Discovering comprehensible rules with Genetic Programming (GP)
The usually-large size and complexity of GP trees makes it diff icult to understand them.
A partial solution for this problem is to include in the fitness function a penalty term that
penalizes complex (syntactically long) rules - Bojarczuk et al. (2000).

More elaborate approaches for improving discovered-rule comprehensibili ty include
the use of hybrid GP / decision trees systems [link to Section C5.1.3]. For instance, Ryan
& Rayward-Smith (1998) proposed a hybrid system where a decision tree algorithm is
called not only to generate each individual of the initial population but also to modify
individual trees during the GP run. The fitness function favors the discovery of small,
accurate trees.

Marmelstein & Lamont (1998) proposed a system to construct a decision tree using
GP to implement the decision nodes. Each node of the decision tree evolves a GP to
separate the data into two classes. Hence, each GP node in the decision tree is relatively
small (due to the divide-and-conquer approach of decision trees) and can be separately
analyzed.

3.2 Discovering surprising rules



Overall, evolutionary algorithms seem to have a good potential to discover truly
surprising rules, due to their abili ty to cope well with attribute interaction. The rationale
for this argument is as follows.

Most users have a reasonably good idea of the relationship between a single
predicting attribute and the goal (class) attribute. For instance, in credit data sets the
higher the salary of an employee the better his/her credit.

What users do not usually know is the more complex relationship between several-
attributes-at-a-time and the goal attribute. For instance, credit quality depends on the
interaction between salary, number of dependents, mortgage debt, etc.

Recently there has been a growing interest in rule surprisingness measures in the rule
induction literature - Liu et al. (1997), Suzuki & Kodratoff (1998), Padmanabhan &
Tuzhili n (1998), Freitas (1998a, 1999b). An interesting research direction is to adapt
these measures or design new ones to evaluate the rules produced by evolutionary
algorithms - Noda et al. (1999).

3.3 Scaling up Evolutionary Algorithms with Parallel Processing
In the context of mining very large databases, the vast majority of the processing time of
an evolutionary algorithm is spent on evaluating an individual’s fitness. This processing
time can be significantly reduced by using parallel processing techniques - Freitas &
Lavington (1998), Anglano et al. (1997), Neri & Giordana (1995), Araujo et al. (1999),
Flockhart & Radcliffe (1995), Braud & Vrain (1999), Freitas (1998b).

The are two broad ways of parallelizing the computation of the fitness of individuals.
The first approach is a kind of inter-individual parallelization, distributing the population
individuals across the available processors and computing their fitness in parallel. At a
given time different processors compute the fitness of different individuals, but each
individual’s fitness is computed by a single processor. It is common to replicate all the
data being mined in all the processors, so that the fitness of an individual can be
computed without accessing data in other processors. However, this strategy reduces
scalabili ty for large databases.

The second approach is a kind of intra-individual parallelization, where the fitness of
each individual is computed in parallel by all processors. This is a data-parallel approach,
where the data being mined is partitioned across the processors. At a given time, each
processor is using its local data to compute a partial quality measure for the individual.
These partial measures are then combined to compute the individual’s fitness. Note that
these two parallelization approaches can be combined into a hybrid approach.

4 Added Value of KDD for Evolutionary Algorithms
KDD offers several research opportunities for new methodological developments in
evolutionary algorithms. We briefly draw attention here to two possibili ties.

First, KDD has a very interdisciplinary nature and uses many different paradigms of
knowledge discovery algorithms. This motivates the integration of evolutionary
algorithms with other knowledge discovery paradigms, as discussed in section E8.1.3.
There has also been research on the integration between genetic programming and
database systems - Martin et al. (1998), Freitas (1997), Ryu and Eick (1996).

Second, several KDD tasks involve some kind of prediction, where generalization
performance on a separate test set is much more important than the performance on a
training set. This is a basic principle for evaluating the quality of a solution in several
KDD tasks, and it should be followed in other kinds of problems where evolutionary
algorithms are being applied.



For instance, consider the problem of simulating the navigation behavior of an ant
aiming at collecting all the food lying along an irregular trail. Having implemented a GP
system to solve this problem in a particular trail, Koza (1992) states (pp. 150) that: “As
we will see this one fitness case is sufficiently representative for this particular problem
to allow the ant to learn to navigate this trail and reasonable generalizations of this trail.”
However, Kuscu (1998) has shown that training the GP on a single trail does not lead to
a good performance in other similar trails. Kuscu has also shown that it is possible to
achieve a good generalization performance on test trails by using more training trails.
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