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Abstract This chapter addresses the integration of knowledge discovery in databases
(KDD) and evolutionary algorithms (EAS), particularly genetic dgorithms and genetic
programming. First we provide abrief overview of EAs. Then the remaining text is
divided into threeparts. Sedion 2 dscusses the use of EAs for KDD. The emphasisis on
the use of EAsin attribute seledion and in the optimizaion of parameters for other kinds
of KDD agorithms (such as dedsion trees and neaest neighbour algorithms). Sedion 3
discusss three reseach problems in the design of an EA for KDD, namely: how to
discover comprehensible rules with genetic programming, how to discover surprising
(interesting) rules, and how to scde up EAs with paralel processng. Findly, sedion 4
discusses what the alded value of KDD isfor EAs. This sdion includes the remark that
generalizaion performance on a separate test set (unseen during training, or EA run) isa
basic principle for evaluating the quality of discovered knowledge, and then suggests that
this principle should be followed in other EA applicaions.

1. Introduction

The evolutionary agorithms paradigm consists of stochastic search algorithms that are
based on abstradions of the processes of Neo-Darwinian evolution. The basic ideais that
ead “individua” of an evolving population encodes a cadidate solution (e.g. a
prediction rule) to a given problem (e.g. classficaion). Eadh individua is evaluated by a
fitnessfunction (e.g. the predictive acaracy of the rule). Then these individuals evolve
towards better and better individuals via operators based on retural seledion, i.e
survival and reproduction of the fittest, and genetics, e.g. crosver and mutation
operators - Goldberg (1989, Michalewicz (1996, Koza (1992 1994, Koza ¢ 4a.
(1999, Banzhaf et a. (1998.

The aossover operator esentialy swaps genetic material between two individuals,
Figure E8.1.1 illustrates a smple form of crosover between two individuals, ead
represented as a string with four genes. In the context of KDD, ead gene auld be, say,
an attribute-value condition of arule (seebelow). Figure E8.1.1(a) shows the individuals
before aossover. A crossover point is randomly chosen, represented in the figure by the
symbol “|” between the second and third genes. Then the genes to the right of the
crosover point are swapped between the two individuals, yielding the new individuals
shown in Figure E8.1.1(b).

Y1Y2| Y3Y4 Y1YZ X3 X4

(a) Before aossover  (b) After crossover

X1X2| X3 X4 XlXj Y3Y4

Figure 1: Simple example of crosover



The mutation operator simply changes the value of a gene to a new random value.
Both crosover and mutation are stochastic operators, applied with user-defined
probabili ties. The probability of mutation is usualy much lower than that of crossover.
However, mutation is gill necessary to increase the genetic diversity of individuals in the
population. Note that mutation can yield gene values that are not present in the airrent
population, unlike aossover, which only swaps existing gene values between individuals.

An important charaderistic of evolutionary algorithms is that they perform a globd
seach. Inded, evolutionary algorithms work with a population of candidate solutions,
rather than working with a single candidate solution at a time. This, together with the
fad they use stochastic operators to perform their seach, reduce the probability that
they will get stuck in locd maxima, and increase the probability that they will find the
global maximum.

2 Use of Evolutionary Algorithmsfor KDD

2.1 Evolutionary Algorithmsfor Rule Discovery

Among the several kinds of evolutionary algorithms used in the literature, genetic
algorithms (GA) and genetic programming (GP) have been the most used in rule
discovery. These two kinds of agorithms differ mainly with resped to the representation
of anindividual.

In GA an individual is usually alinea string of rule conditions, where eat condition
is often an attribute-value pair. The individual can represent arule, asillustrated in Figure
E8.1.2(a), or a rule set, as illustrated in Figure E8.1.2(b). In both illustrations the
individual encodes only the anditions of the aitecedent (IF part) of a dasgfication rule,
and conditions are implicitly conneded by alogicad AND. In Figure E8.1.2(b) the symbol
“II" is used to separate rules within the individual. The predicted class(the THEN part of
the rule) can be diosen in a deterministic, sensible way as the mgjority class among all
data instances stisfying the rule axtecedent. Supposing that the rules in Figure E8.1.1
refer to a aedit data set, the system would choose apredicted classlike “credit = good
for those rules.

The severa-rules-per-individual approach hes the alvantage that the fitness of an
individual can be evaluated by considering its rule set as a whole, by taking into acount
rule interadions. However, this approadh makes the individual encoding more
complicaed and syntadicdly longer, which in turn may require more complex genetic
operators. Some dgorithms following this approach are proposed by De Jong et a.
(1993, Janikow (1993, Pei et a. (1997).

| Salary =“high” | [ Age >18]| ... (other rule conditions)
(@) GA individual = one rule artecedent

| Employed = “yes’ | [ C/A_balance =*high”| ||{Salary = “high” | ||. . . (other rules)
(b) GA individual = aset of rule atecalents

Figure 2: Examples of individual encoding in GA for rule discovery.

The single-rule-per-individual approach makes the individual encoding smpler and
syntaaicdly shorter. However, it introduces the problem that the fitnessof an individual
(a single rule) is not necessarily the best indicaor of the quality of the discovered rule



set. Some dgorithms using the one-rule-per-individual encoding are proposed by Greene
& Smith (1993, Giordana & Neri (1999, Freitas (199%), Noda d al. (1999.

In GP an individual is usually represented by a treg with rule conditions and/or
attribute values in the led nodes and functions (e.g. logicd, relational or mathematicd
operators) in the internal nodes. An individual’s tree ca grow in size and shape in a very
dynamicd way. Figure EB8.1.3 illustrates a GP individual representing the rule
antecalent: IF (Employed="yes’) AND ((Sdary — Mortgage debt) > 10,000.
Asaiming again a aedit applicaion domain, the rule mnsequent (THEN part) would be
a prediction such as “credit=good'.

e
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Csay) Mortgage did

Figure 3: Example of genetic programming individual for rule discovery

We emphasize that encoding rulesinto a GP individual is a nontrivial problem, due to
the dosure property of GP. This property requires that the output of a node can be used
as the input to any parent node in the tree Thisis a problem in the context of KDD. For
instance, the operator “<* can be used in a parent node if its children contain “Age” and
“18’, but not if they contain “SeX’ and “female’.

Several solutions have been proposed to cope with the requirement of closure in GP.
Most of these solutions involve some kind of constrained-syntax GP, often exploiting
domain-related semantics - Bhattadharyya d a. (1998, Ngan et a. (1998. A simpler
approad is to booleanize d attribute values and use only logicd (AND, OR, etc)
functions in the internal nodes — Hu (1998, Eggermont et a. (1999, Bojarczuk et a.
(21999.

The motivation for using evolutionary algorithmsin rule discovery

One of the magjor contributions of evolutionary algorithms for rule discovery is that they
tend to cope well with attribute interadions, as a @mnsequence of their global seach.
Thisisin contrast to the locd, grealy seach performed by often-used rule induction and
dedasion tree dgorithms.

Most rule induction algorithms generate (prune) a rule by seleding (removing) one-
rule-condti on-at-a-time. The problem with this approach is illustrated in Figure E8.1.4.
The figure contains data instances having either positive (“+”) or negative (“-”) class
depending on the value of two boolean attributes A; and A,. The god is to find rule
conditions that discriminate between instances with postive and negative dasses. The
rule condition A; = “false” (covering instances at the left of the verticd dashed line) is
not useful, since it covers as many positive-class examples as negative-class examples.
The same holds for its dua condition A; = “true’. The rule @ndition A, = “false”



(covering instances below the horizontal dashed line), as well asits dua A, = “true”’, are
not useful either, for the same reason. Hence, an algorithm that seleds one rule @ndition
at atime would consider A; and A; irrelevant attributes and choose another attribute to
form a rule cndition. However, an agorithm that seleds two or more wnditions a a
time auld easlly form arule such as:

IF (A = “false”) AND (A = “true’) THEN (positive-class.

Az
+ o+ - -
trug + + - -
+ + - -
- - + +
fase| - - + 0+
- - + o+
fase true Ay

Figure 4: Attribute interacion in classficaion.

Evolutionary algorithms usually evaluate arule & a whole via the fitness function,
rather than evaluating the impad of adding/removing one andition to/from a rule. In
addition, crossover usualy swaps <verd-rule-conditions-at-atime between two
individuals. Therefore, evolutionary algorithms tend to cope well with attribute
interadion.

Thisisnot to say that evolutionary algorithms are inherently superior to rule induction
algorithms. No rule discovery algorithm is superior in al cases - Domingos (1998,
Michie & al. (1994.

2.2 Use of Evolutionary Algorithmsin Attribute Selection

Evolutionary algorithms have been quite succesdul in attribute seledion [link to Sedion
C3.2] - Baa @ al. (1995, 199%), Vafaie & De Jong (1993, Guerra-Salcedo & Whitley
(1998 1999, Martin-Batista & Vila (1999, Hsu et a. (1999. The reason is that the
core problem of attribute seledion is to cope with attribute interadion, since the original
attributes can be redundant and correlated in a highly nonlinea manner. This ssemsto be
akind of problem where the global seach performed by evolutionary agorithms tends to
present better results than alocd seach-based approad seleding one dtribute & atime.

Most evolutionary attribute seledion methods are based on a smple GA, where an
individual diredly represents a candidate dtribute subset. In esence an individual is a
binay string with m genes, where m is the number of attributes. Each gene can take on
the value 1 or O, indicating whether or not the crresponding attribute is sleded. For
instance, the individual 0 11 0 1 00 O represents a candidate solution where the second,
third, and fifth attributes are seleded.

A more daborate individual encoding has been proposed by Cherkauer & Shavlik
(1996. In their approad, eadt gene of an individual contains either an attribute name or
no attribute, denoted by 0. All the atributes occurring in any of the genes of an
individual are the atributes sleded by the individual. For instance, the individual 0 0 A7



Az A2 0 A7 As 0 0 represents a candidate solution where the dtributes A7, A; and As are
seleded. This unconventional individual encoding has sme advantages, e.g. the fad that
occaurrences of very relevant attributes may be replicaed aaossthe genome.

Regardlessof the internal details of individual encoding, the dtribute subset seleded
by an individual is given to a KDD algorithm. The fitness of that individual depends on
the result (e.g. predictive acaracgy) adhieved by that algorithm using only those seleded
attributes. Hence, the GA ads as a wrapper around the KDD algorithm.

2.3 Optimization of Parametersfor Other KDD Algorithms
Genetic Algorithms (GA) have dso been succesqully used as a wrapper to optimize
parameters of several other kinds of KDD agorithms. Some examples are s follows.

Kelly & Davis (1991) and Punch et al. (1993 used a GA to optimize the dtribute
weights of a k-nn classfier [link to Sedion C5.1.6]. Ead individual consists of m red-
valued weights, where m is the number of attributes. The fitness of an individual is
measured by the predictive acaracgy of a k-nn clasgfier, by using the dtribute weights
contained in the individual. Raymer et a. (1999 extended this approach by using a
genetic programming system to construct new attributes.

Turney (1995 proposed a hybrid GA / deasion tree system [link to Sedion C5.1.3]
where eat individual of the GA consists essntialy of attribute wsts to be given as
input to a @st-senditive dedsion tree dgorithm. The fitnessof an individual is measured
by the misclassficaion cost of the dedsion tree generated by the ast-sensitive dedsion
tree dgorithm.

Janikow (1995 proposed a GA to optimize the fuzzy sets [link to Sedion B7] used
to build a dedsion tree The dedsion tree dgorithm is given fuzzy attributes taking on
linguistic values sich as “low”, “medium”, “high” - ead of which is a fuzzy set with an
asociated membership function. The GA optimizes the shape of the membership
function of ead fuzzy set.

3 Research problemsin evolutionary algorithmsrelevant for KDD

3.1 Discovering comprehensible ruleswith Genetic Programming (GP)

The usualy-large size and complexity of GP trees makes it difficult to understand them.
A partia solution for this problem is to include in the fitnessfunction a penalty term that
penalizes complex (syntadicdly long) rules - Bojarczuk et a. (2000.

More daborate gproadies for improving dscovered-rule comprehensibility include
the use of hybrid GP / dedsion trees gystems [link to Sedion C5.1.3]. For instance, Ryan
& Rayward-Smith (1998 proposed a hybrid system where adedsion tree dgorithm is
cdled not only to generate eat individual of the initial population but aso to modify
individual trees during the GP run. The fitness function favors the discovery of small,
acarate trees.

Marmelstein & Lamont (1998 proposed a system to construct a dedsion tree using
GP to implement the dedsion nodes. Each node of the deasion tree &olves a GP to
separate the data into two classes. Hence ead GP node in the dedsion treeis relatively
small (due to the divide-and-conquer approach of dedsion trees) and can be separately
analyzed.

3.2 Discovering surprising rules



Overdl, evolutionary algorithms san to have a good potentia to discover truly
surprising rules, due to their ability to cope well with attribute interadion. The rationale
for this argument is as follows.

Most users have a reasonably good idea of the relationship between a single
predicting attribute and the goa (clasg attribute. For instance in credit data sets the
higher the salary of an employeethe better his’her credit.

What users do not usually know is the more complex relationship between several-
attributes-at-a-time and the goal attribute. For instance, credit quality depends on the
interadion between salary, number of dependents, mortgage debt, etc.

Recently there has been a growing interest in rule surprisngness measures in the rule
induction literature - Liu et a. (1997, Suzuki & Kodratoff (1998, Padmanabhan &
Tuzhilin (1998, Freitas (1998, 199%). An interesting reseach diredion is to adapt
these measures or design new ones to evaluate the rules produced by evolutionary
algorithms - Noda d al. (1999.

3.3 Scaling up Evolutionary Algorithmswith Parallel Processing

In the context of mining very large databases, the vast mgority of the processng time of
an evolutionary algorithm is gent on evaluating an individual’s fitness This processng
time can be sgnificantly reduced by using peralel processng techniques - Freitas &
Lavington (1998, Anglano et a. (1997, Neri & Giordana (1995, Araujo et a. (1999,
Hockhart & Radcliffe (1995, Braud & Vrain (1999, Freitas (199%)).

The ae two broad ways of parall€lizing the cmputation of the fithessof individuals.
The first approad is a kind of inter-individual parallelization, distributing the population
individuals aaossthe available processors and computing their fitnessin pardlel. At a
given time different processors compute the fitness of different individuals, but eat
individua’s fitnessis computed by a single procesr. It is common to replicae dl the
data being mined in al the processors, so that the fitness of an individual can be
computed without accessng data in other processors. However, this drategy reduces
scdability for large databases.

The second approad is a kind of intra-individual parallelizaion, where the fitness of
ead individual is computed in parallel by all processors. Thisis adata-parallel approad,
where the data being mined is partitioned aaossthe procesors. At a given time, eah
processor is using its locd data to compute apartia quality measure for the individual.
These partial measures are then combined to compute the individua’s fitness Note that
these two parallelization approadies can be cmbined into a hybrid approad.

4 Added Value of KDD for Evolutionary Algorithms
KDD offers sveral reseach opportunities for new methodologicd developments in
evolutionary algorithms. We briefly draw attention here to two possbili ties.

First, KDD has a very interdisciplinary nature and uses many different paradigms of
knowledge discovery agorithms. This motivates the integration of evolutionary
algorithms with other knowledge discovery paradigms, as discussed in sedion E8.1.3.
There has also been reseach on the integration between genetic programming and
database systems - Martin et a. (1998, Freitas (1997, Ryu and Eick (1996.

Sewmnd, several KDD tasks involve some kind of prediction, where generalizaion
performance on a separate test set is much more important than the performance on a
training set. This is a basic principle for evaluating the quality of a solution in several
KDD tasks, and it should be followed in other kinds of problems where evolutionary
algorithms are being applied.



For instance, consider the problem of smulating the navigation behavior of an ant
aming at colleding all the food lying aong an irregular trail. Having implemented a GP
system to solve this problem in a particular trail, Koza (1992 states (pp. 150 that: “As
we will seethis one fitness case is sufficiently representative for this particular problem
to allow the ant to lean to navigate this trail and reasonable generalizaions of this trail.”
However, Kuscu (1998 has down that training the GP on a single trail does not lea to
a good performance in other similar trails. Kuscu has also shown that it is possble to
achieve agood generdlizaion performance on test trail s by using more training trails.
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