
190 Parpinelli, Lopes and Freitas

PART FOUR:

ANT COLONY OPTIMIZATION
AND IMMUNE SYSTEMS

An Ant Colony Algorithm for Classification Rule Discovery 191

Chapter X

An Ant Colony Algorithm
for Classification Rule

Discovery
Rafael S. Parpinelli and Heitor S. Lopes

CEFET-PR, Curitiba, Brazil

Alex A. Freitas
PUC-PR, Curitiba, Brazil

Copyright © 2002, Idea Group Publishing.

This work proposes an algorithm for rule discovery called Ant-Miner (Ant
Colony-based Data Miner). The goal of Ant-Miner is to extract classifi-
cation rules from data. The algorithm is based on recent research on the
behavior of real ant colonies as well as in some data mining concepts. We
compare the performance of Ant-Miner with the performance of the well-
known C4.5 algorithm on six public domain data sets. The results provide
evidence that: (a) Ant-Miner is competitive with C4.5 with respect to
predictive accuracy; and (b) The rule sets discovered by Ant-Miner are
simpler (smaller) than the rule sets discovered by C4.5.

INTRODUCTION
In essence, the classification task consists of associating each case (object, or

record) to one class, out of a set of predefined classes, based on the values of some
attributes (called predictor attributes) for the case.

There has been a great interest in the area of data mining, in which the general
goal is to discover knowledge that is not only correct, but also comprehensible and
interesting for the user (Fayyad, Piatetsky-Shapiro, & Smyth, 1996; Freitas &

192 Parpinelli, Lopes and Freitas

Lavington, 1998). Hence, the user can understand the results produced by the system
and combine them with their own knowledge to make a well-informed decision,
rather than blindly trusting on a system producing incomprehensible results.

In data mining, discovered knowledge is often represented in the form of IF-
THEN prediction (or classification) rules, as follows: IF <conditions> THEN
<class>. The <conditions> part (antecedent) of the rule contains a logical combina-
tion of predictor attributes, in the form: term1 AND term2 AND Each term is
a triple <attribute, operator, value>, such as <Gender = female>.

The <class> part (consequent) of the rule contains the class predicted for cases
(objects or records) whose predictor attributes satisfy the <conditions> part of the
rule.

To the best of our knowledge the use of Ant Colony algorithms (Dorigo,
Colorni, & Maniezzo, 1996) as a method for discovering classification rules, in the
context of data mining, is a research area still unexplored by other researchers.
Actually, the only Ant Colony algorithm developed for data mining that we are
aware of is an algorithm for clustering (Monmarche, 1999), which is, of course, a
data mining task very different from the classification task addressed in this paper.
Also, Cordón et al. (2000) have proposed another kind of Ant Colony Optimization
application that learns fuzzy control rules, but it is outside the scope of data mining.

We believe the development of Ant Colony algorithms for data mining is a
promising research area, due to the following rationale. An Ant Colony system
involves simple agents (ants) that cooperate with one another to achieve an
emergent, unified behavior for the system as a whole, producing a robust system
capable of finding high-quality solutions for problems with a large search space. In
the context of rule discovery, an Ant Colony system has the ability to perform a
flexible, robust search for a good combination of logical conditions involving values
of the predictor attributes.

This chapter is organized as follows. The second section presents an overview
of real Ant Colony systems. The third section describes in detail artificial Ant
Colony systems. The fourth section introduces the Ant Colony system for discov-
ering classification rules proposed in this work. The fifth section reports on
computational results evaluating the performance of the proposed system. Finally,
the sixth section concludes the chapter.

SOCIAL INSECTS AND REAL ANT COLONIES
Insects that live in colonies, such as ants, bees, wasps and termites, follow their

own agenda of tasks independent from one another. However, when these insects
act as a whole community, they are capable of solving complex problems in their
daily lives, through mutual cooperation (Bonabeau, Dorigo, & Theraulaz, 1999).
Problems such as selecting and picking up materials, and finding and storing foods,
which require sophisticated planning, are solved by insect colonies without any
kind of supervisor or controller. This collective behavior which emerges from a

An Ant Colony Algorithm for Classification Rule Discovery 193

group of social insects has been called “swarm intelligence”.
Ants are capable of finding the shortest route between a food source and the nest

without the use of visual information, and they are also capable of adapting to
changes in the environment (Dorigo et al., 1996).

One of the main problems studied by ethnologists is to understand how almost-
blind animals, such as ants, manage to find the shortest route between their colony
and a food source. It was discovered that, in order to exchange information about
which path should be followed, ants communicate with one another by means of
pheromone trails. The movement of ants leaves a certain amount of pheromone (a
chemical substance) on the ground, marking the path with a trail of this substance.
The collective behavior which emerges is a form of autocatalytic behavior, i.e. the
more ants follow a trail, the more attractive this trail becomes to be followed by other
ants. This process can be described as a loop of positive feedback, where the
probability of an ant choosing a path increases as the number of ants that already
passed by that path increases (Bonabeau et al., 1999), (Dorigo et al., 1996), (Stutzle
& Dorigo 1999), (Dorigo, Di Caro, & Gambardella, 1999).

The basic idea of this process is illustrated in Figure 1. In the left picture the ants
move in a straight line to the food. The middle picture illustrates what happens soon
after an obstacle is put in the path between the nest and the food. In order to go around
the obstacle, at first each ant chooses to turn left or right at random (with a 50%-50%
probability distribution). All ants move roughly at the same speed and deposit
pheromone in the trail at roughly the same rate. However, the ants that, by chance,
choose to turn left will reach the food sooner, whereas the ants that go around the
obstacle turning right will follow a longer path, and so will take longer to circumvent
the obstacle. As a result, pheromone accumulates faster in the shorter path around
the obstacle. Since ants prefer to follow trails with larger amounts of pheromone,
eventually all the ants converge to the shorter path around the obstacle, as shown in
the right picture.

Artificial Ant Colony Systems
An artificial Ant Colony System (ACS) is an agent-based system which

simulates the natural behavior of ants and develops mechanisms of cooperation and

Figure 1: Ants finding the shortest path around an obstacle

194 Parpinelli, Lopes and Freitas

learning. ACS was proposed by Dorigo et al. (1996) as a new heuristic to solve
combinatorial-optimization problems. This new heuristic, called Ant Colony Opti-
mization (ACO), has been shown to be both robust and versatile – in the sense that
it can be applied to a range of different combinatorial optimization problems. In
addition, ACO is a population-based heuristic. This is advantageous because it
allows the system to use a mechanism of positive feedback between agents as a
search mechanism. Recently there has been a growing interest in developing rule
discovery algorithms based on other kinds of population-based heuristics – mainly
evolutionary algorithms (Freitas, 2001).

Artificial ants are characterized as agents that imitate the behavior of real ants.
However, it should be noted that an artificial ACS has some differences in
comparison with a real ACS, as follows (Dorigo et al., 1996):

• Artificial ants have memory;
• They are not completely blind;
• They live in an environment where time is discrete.

On the other hand, an artificial ACS has several characteristics adopted from
real ACS:

• Artificial ants have a probabilistic preference for paths with a larger amount
of pheromone;

• Shorter paths tend to have larger rates of growth in their amount of pheromone;
• The ants use an indirect communication system based on the amount of

pheromone deposited in each path.
The key idea is that, when a given ant has to choose between two or more paths,

the path that was more frequently chosen by other ants in the past will have a greater
probability of being chosen by the ant. Therefore, trails with greater amount of
pheromone are synonyms of shorter paths.

In essence, an ACS iteratively performs a loop containing two basic proce-
dures, namely:

i) a procedure specifying how the ants construct/ modify solutions of the
problem being solved; and

ii) a procedure to update the pheromone trails.
The construction/modification of a solution is performed in a probabilistic

way. The probability of adding a new item to the current partial solution is given by
a function that depends on a problem-dependent heuristic (η) and on the amount of
pheromone (τ) deposited by ants on this trail in the past. The updates in the
pheromone trail are implemented as a function that depends on the rate of phero-
mone evaporation and on the quality of the produced solution. To realize an ACS
one must define (Bonabeau et al., 1999):

• An appropriate representation of the problem, which allows the ants to
incrementally construct/modify solutions through the use of a probabilistic
transition rule based on the amount of pheromone in the trail and on a local
heuristic;

• A heuristic function (η) that measures the quality of items that can be added
to the current partial solution;

An Ant Colony Algorithm for Classification Rule Discovery 195

• A method to enforce the construction of valid solutions, i.e. solutions that are
legal in the real-world situation corresponding to the problem definition;

• A rule for pheromone updating, which specifies how to modify the pheromone
trail (τ);

• A probabilistic rule of transition based on the value of the heuristic function
(η) and on the contents of the pheromone trail (τ).

ANT-MINER – A NEW ANT COLONY
SYSTEM FOR DISCOVERY

OF CLASSIFICATIONS RULES
In this section we discuss in detail our proposed Ant Colony System for

discovery of classification rules, called Ant-Miner (Ant Colony-based Data Miner).
This section is divided into six parts, namely: an overview of Ant-Miner, rule
construction, heuristic function, pheromone updating, rule pruning, and system
parameters.

An Overview of Ant-Miner
Recall that each ant can be regarded as an agent that incrementally constructs/

modify a solution for the target problem. In our case the target problem is the
discovery of classification rules. As mentioned in the Introduction, the rules are
expressed in the form:

IF <conditions> THEN <class> .
The <conditions> part (antecedent) of the rule contains a logical combination

of predictor attributes, in the form: term1 AND term2 AND Each term is a triple
<attribute, operator, value>, where value is a value belonging to the domain of
attribute. The operator element in the triple is a relational operator. The current
version of Ant-Miner can cope only with categorical attributes, so that the operator
element in the triple is always “=”. Continuous (real-valued) attributes are discretized
as a preprocessing step. The <class> part (consequent) of the rule contains the class
predicted for cases (objects or records) whose predictor attributes satisfy the
<conditions> part of the rule.

Each ant starts with an empty rule, i.e. a rule with no term in its antecedent, and
adds one term at a time to its current partial rule. The current partial rule constructed
by an ant corresponds to the current partial path followed by that ant. Similarly, the
choice of a term to be added to the current partial rule corresponds to the choice of
the direction to which the current path will be extended, among all the possible
directions (all terms that could be added to the current partial rule).

The choice of the term to be added to the current partial rule depends on both
a problem-dependent heuristic function and on the amount of pheromone associated
with each term, as will be discussed in detail in the next subsections.

196 Parpinelli, Lopes and Freitas

An ant keeps adding terms one-at-a-time to its current partial rule until the ant
is unable to continue constructing its rule. This situation can arise in two cases,
namely: (a) when whichever term that could be added to the rule would make the rule
cover a number of cases smaller than a user-specified threshold, called
Min_cases_per_rule (minimum number of cases covered per rule); (b) when all
attributes have already been used by the ant, so that there is no more attributes to be
added to the rule antecedent.

When one of these two stopping criteria is satisfied the ant has built a rule (i.e.
it has completed its path), and in principle we could use the discovered rule for
classification. In practice, however, it is desirable to prune the discovered rules in
a post-processing step, to remove irrelevant terms that might have been unduly
included in the rule. These irrelevant terms may have been included in the rule due
to stochastic variations in the term selection procedure and/or due to the use of a
shortsighted, local heuristic function - which considers only one-attribute-at-a-
time, ignoring attribute interactions. The pruning method used in Ant-Miner will be
described in a separate subsection later.

When an ant completes its rule and the amount of pheromone in each trail is
updated, another ant starts to construct its rule, using the new amounts of pheromone
to guide its search. This process is repeated for at most a predefined number of ants.
This number is specified as a parameter of the system, called No_of_ants. However,
this iterative process can be interrupted earlier, when the current ant has constructed
a rule that is exactly the same as the rule constructed by the previous
No_Rules_Converg – 1 ants. No_Rules_Converg (number of rules used to test
convergence of the ants) is also a system parameter. This second stopping criterion
detects that the ants have already converged to the same constructed rule, which is
equivalent to converging to the same path in real Ant Colony Systems.

The best rule among the rules constructed by all ants is considered a discovered
rule. The other rules are discarded. This completes one iteration of the system.

Figure 2: Overview of Ant-Miner

An Ant Colony Algorithm for Classification Rule Discovery 197

Then all cases correctly covered by the discovered rule are removed from the
training set, and another iteration is started. Hence, the Ant-Miner algorithm is
called again to find a rule in the reduced training set. This process is repeated for as
many iterations as necessary to find rules covering almost all cases of the training
set. More precisely, the above process is repeated until the number of uncovered
cases in the training set is less than a predefined threshold, called
Max_uncovered_cases (maximum number of uncovered cases in the training set).

A summarized description of the above-discussed iterative process is shown in
the algorithm of Figure 2.

When the number of cases left in the training set is less than
Max_uncovered_cases the search for rules stops. At this point the system has
discovered several rules. The discovered rules are stored in an ordered rule list (in
order of discovery), which will be used to classify new cases, unseen during training.
The system also adds a default rule to the last position of the rule list. The default
rule has an empty antecedent (i.e. no condition) and has a consequent predicting the
majority class in the set of training cases that are not covered by any rule. This default
rule is automatically applied if none of the previous rules in the list cover a new case
to be classified.

Once the rule list is complete the system is finally ready to classify a new test
case, unseen during training. In order to do this the system tries to apply the
discovered rules, in order. The first rule that covers the new case is applied – i.e. the
case is assigned the class predicted by that rule’s consequent.

Rule Construction
Let term

ij
 be a rule condition of the form A

i
 = V

ij
, where A

i
 is the i-th attribute

and V
ij
 is the j-th value of the domain of A

i
. The probability that term

ij
 is chosen to

be added to the current partial rule is given by equation (1).

Pij()
() .

() . ,

()t
ij t ij

ij t ijj

bi
i I

i

a
=

∑ ∀ ∈∑

τ η

τ η

1

where:
• η

ij
 is the value of a problem-dependent heuristic function for term

ij
;

• τ
ij
(t) is the amount of pheromone currently available (at time t) in the position

i,j of the trail being followed by the ant;
• a is the total number of attributes;
• b

i
 is the total number of values on the domain of attribute i;

• I are the attributes i not yet used by the ant.
The problem-dependent heuristic function η

ij
 is a measure of the predictive

power of term
ij
. The higher the value of η

ij
 the more relevant for classification the

term
ij
 is, and so the higher its probability of being chosen. This heuristic function will

be explained in detail in the next subsection. For now we just mention that the value

198 Parpinelli, Lopes and Freitas

of this function is always the same for a given term, regardless of which terms
already occur in the current partial rule and regardless of the path followed by
previous ants.

The amount of pheromone τ
ij
(t) is also independent of the terms which already

occur in the current partial rule, but is entirely dependent on the paths followed by
previous ants. Hence, τ

ij
(t) incorporates an indirect form of communication between

ants, where successful ants leave a “clue” (pheromone) suggesting the best path to
be followed by other ants, as discussed earlier. When the first ant starts to build its
rule, all trail positions i,j – i.e. all term

ij
, ∀i,j – have the same amount of pheromone.

However, as soon as an ant finishes its path the amounts of pheromone in each
position i,j visited by the ant is updated, as will be explained in detail in a separate
subsection later. Here we just mention the basic idea: the better the quality of the rule
constructed by the ant, the higher the amount of pheromone added to the trail
positions visited by the ant. Hence, with time the “best” trail positions to be followed
– i.e. the best terms (attribute-value pairs) to be added to a rule – will have greater
and greater amounts of pheromone, increasing their probability of being chosen.

The term
ij
 chosen to be added to the current partial rule is the term with the

highest value of equation (1) subject to two restrictions. The first restriction is that
the attribute i cannot occur yet in the current partial rule. Note that to satisfy this
restriction the ants must “remember” which terms (attribute-value pairs) are
contained in the current partial rule. This small amount of “memory” is one of the
differences between artificial ants and natural ants, as discussed earlier.

The second restriction is that a term
ij
 cannot be added to the current partial rule

if this makes the extended partial rule cover less than a predefined minimum number
of cases, called the Min_cases_per_rule threshold, as mentioned above.

Note that the above procedure constructs a rule antecedent, but it does not
specify which rule consequent will be assigned to the rule. This decision is made
only after the rule antecedent is completed. More precisely, once the rule antecedent
is completed, the system chooses the rule consequent (i.e. the predicted class) that
maximizes the quality of the rule. This is done by assigning to the rule consequent
the majority class among the cases covered by the rule.

In the next two subsections we discuss in detail the heuristic function and the
pheromone updating procedure.

Heuristic Function
For each term that can be added to the current rule, Ant-Miner computes a

heuristic function that is an estimate of the quality of this term, with respect to its
ability to improve the predictive accuracy of the rule. This heuristic function is based
on information theory (Cover & Thomas, 1991). More precisely, the value of the
heuristic function for a term involves a measure of the entropy (or amount of
information) associated with that term. For each term

ij
 of the form A

i
=V

ij
 – where A

i

is the i-th attribute and V
ij
 is the j-th value belonging to the domain of A

i
 – its entropy

is given by equation (2).

An Ant Colony Algorithm for Classification Rule Discovery 199

infoTij = −














=

∑
















freqTij
w

Tijw

k freqTij
w

Tij| |
* log

| |
()

1 2 2

where:
• k is the number of classes;
• |T

ij
| is the total number of cases in partition T

ij
 (partition containing the cases

where attribute A
i
 has value V

ij
);

• freqT
ij

 w is the number of cases in partition T
ij
 that have class w.

The higher the value of infoT
ij
, the more uniformly distributed the classes are,

and so the lower the predictive power of term
ij
. We obviously want to choose terms

with a high predictive power to be added to the current partial rule. Therefore, the
value of infoT

ij
 has the following role in Ant-Miner: the higher the value of infoT

ij
,

the smaller the probability of an ant choosing term
ij
 to be added to its partial rule.

Before we map this basic idea into a heuristic function, one more point must be
considered. It is desirable to normalize the value of the heuristic function, to
facilitate its use in a single equation – more precisely, equation (1) – combining both
this function and the amount of pheromone. In order to implement this normaliza-
tion, we use the fact that the value of infoT

ij
 varies in the range:

0 ≤ infoT
ij
 ≤ log

2
(k)

where k is the number of classes.
Therefore, we propose the normalized, information-theoretic heuristic func-

tion given by equation (3).

?ij

infoTij

infoTij

=
−

−∑∑

log ()

log ()

()
2

2

3
k

k
j

bi

i

a

where:
• a is the total number of attributes;
• b

i
 is the number of values in the domain of attribute i.

Note that the infoT
ij
 of term

ij
 is always the same, regardless of the contents of

the rule in which the term occurs. Therefore, in order to save computational time,
we compute the infoT

ij
 of all term

ij
, ∀i, j, as a preprocessing step.

In order to use the above heuristic function, there are just two minor caveats.
First, if the partition T

ij
 is empty, i.e. the value V

ij
 of attribute A

i
 does not occur in the

training set, then we set infoT
ij
 to its maximum value, i.e. infoT

ij
 = log

2
(k). This

corresponds to assigning to term
ij
 the lowest possible predictive power.

Second, if all the cases in the partition T
ij
 belong to the same class then infoT

ij

= 0. This corresponds to assigning to term
ij
 the highest possible predictive power.

200 Parpinelli, Lopes and Freitas

Rule Pruning
Rule pruning is a commonplace technique in rule induction. As mentioned

above, the main goal of rule pruning is to remove irrelevant terms that might have
been unduly included in the rule. Rule pruning potentially increases the predictive
power of the rule, helping to avoid its over-fitting to the training data. Another
motivation for rule pruning is that it improves the simplicity of the rule, since a
shorter rule is in general more easily interpretable by the user than a long rule.

The rule pruning procedure is performed for each ant as soon as the ant
completes the construction of its rule. The search strategy of our rule pruning
procedure is very similar to the rule pruning procedure suggested by Quinlan (1987),
although the rule quality criterion used in the two procedures are very different from
each other.

The basic idea is to iteratively remove one-term-at-a-time from the rule while
this process improves the quality of the rule. A more detailed description is as
follows.

In the first iteration one starts with the full rule. Then one tentatively tries to
remove each of the terms of the rule – each one in turn – and computes the quality
of the resulting rule, using the quality function defined by formula (5) – to be
explained later. (This step may involve re-assigning another class to the rule, since
a pruned rule can have a different majority class in its covered cases.) The term
whose removal most improves the quality of the rule is effectively removed from the
rule, completing the first iteration. In the next iteration one removes again the term
whose removal most improves the quality of the rule, and so on. This process is
repeated until the rule has just one term or until there is no term whose removal will
improve the quality of the rule.

Pheromone Updating
Recall that each term

ij
 corresponds to a position in some path that can be

followed by an ant. All term
ij
, ∀i, j, are initialized with the same amount of

pheromone. In other words, when the system is initialized and the first ant starts its
search all paths have the same amount of pheromone.

The initial amount of pheromone deposited at each path position is inversely
proportional to the number of values of all attributes, as given by equation (4).

?ij(t 0)= =

=
∑

1

1

4
()

()
bii

a

where:
• k is the number of classes;
• a is the total number of attributes;
• b

i
 is the number of values in the domain of attribute i.

The value returned by this equation is already normalized, which facilitates its

An Ant Colony Algorithm for Classification Rule Discovery 201

use in a single equation – more precisely, equation (1) – combining both this value
and the value of the heuristic function.

Each time an ant completes the construction of a rule (i.e. an ant completes its
path) the amount of pheromone in all positions of all paths must be updated. This
pheromone updating has two basic ideas, namely:

(a) The amount of pheromone associated with each term
ij
 occurring in the

constructed rule is increased;
(b) The amount of pheromone associated with each term

ij
 that does not occur in

the constructed rule is decreased, corresponding to the phenomenon of
pheromone evaporation in real Ant Colony Systems.
Let us elaborate each of these two ideas in turn.

Increasing the Pheromone of Used Terms
Increasing the amount of pheromone associated with each term

ij
 occurring in

the constructed rule corresponds to increasing the amount of pheromone along the
path completed by the ant. In a rule discovery context, this corresponds to increasing
the probability of term

ij
 being chosen by other ants in the future, since that term was

beneficial for the current ant. This increase is proportional to the quality of the rule
constructed by the ant – i.e. the better the rule, the higher the increase in the amount
of pheromone for each term

ij
 occurring in the rule.

The quality of the rule constructed by an ant, denoted by Q, is computed by the
formula: Q = sensitivity × specificity (Lopes, Coutinho, & Lima, 1998), as defined
in equation (5).

Q =
+

×
+

() () ()
TruePos

TruePos FalseNeg

TrueNeg

FalsePos TrueNeg
5

where
• TruePos (true positives) is the number of cases covered by the rule that have

the class predicted by the rule;
• FalsePos (false positives) is the number of cases covered by the rule that have

a class different from the class predicted by the rule;
• FalseNeg (false negatives) is the number of cases that are not covered by the

rule but that have the class predicted by the rule;
• TrueNeg (true negatives) is the number of cases that are not covered by the rule

and that do not have the class predicted by the rule.
The larger the value of Q, the higher the quality of the rule. Note that Q varies

in the range: 0 ≤ Q ≤ 1. Pheromone update for a term
ij
 is performed according to

equation (6), ∀i, j.

?ij()t ij t ij t Q i j to the rule+ = + ∀ ∈1 6τ τ() () . , , ()

Hence, for all term
ij
 occurring in the rule constructed by the ant, the amount of

pheromone is increased by a fraction of the current amount of pheromone, and this
fraction is directly proportional to Q.

202 Parpinelli, Lopes and Freitas

Decreasing the Pheromone of Unused Terms
As mentioned above, the amount of pheromone associated with each term

ij
 that

does not occur in the constructed rule has to be decreased, to simulate the
phenomenon of pheromone evaporation in real ant colony systems.

In our system the effect of pheromone evaporation is obtained by an indirect
strategy. More precisely, the effect of pheromone evaporation for unused terms is
achieved by normalizing the value of each pheromone t

ij
. This normalization is

performed by dividing the value of each t
ij
by the summation of all t

ij
, ∀i, j. To see

how this achieves the same effect as pheromone evaporation, note that when a rule
is constructed only the terms used by an ant in the constructed rule have their amount
of pheromone increased by equation (6). Hence, at normalization time the amount
of pheromone of an unused term will be computed by dividing its current value (not
modified by equation (6)) by the total summation of pheromone for all terms (which
was increased as a result of applying equation (6) to the used terms). The final effect
will be to reduce the normalized amount of pheromone for each unused term.

Used terms will, of course, have their normalized amount of pheromone
increased due to application of equation (6).

System Parameters
Our Ant Colony System has the following four user-defined parameters:

• Number of Ants (No_of_ants) → This is also the maximum number of
complete candidate rules constructed during a single iteration of the system,
since each ant constructs a single rule (see Figure 2). In each iteration, the best
candidate rule constructed in that iteration is considered a discovered rule.
Note that the larger the No_of_ants, the more candidate rules are evaluated per
iteration, but the slower the system is;

• Minimum number of cases per rule (Min_cases_per_rule) → Each rule must
cover at least Min_cases_per_rule, to enforce at least a certain degree of
generality in the discovered rules. This helps avoiding over-fitting to the
training data;

• Maximum number of uncovered cases in the training set
(Max_uncovered_cases) → The process of rule discovery is iteratively per-
formed until the number of training cases that are not covered by any
discovered rule is smaller than this threshold (see Figure 2);

• Number of rules used to test convergence of the ants (No_Rules_Converg) →
If the current ant has constructed a rule that is exactly the same as the rule
constructed by the previous No_Rules_Converg –1 ants, then the system
concludes that the ants have converged to a single rule (path). The current
iteration is therefore stopped, and another iteration is started (see Figure 2).
In all the experiments reported in this chapter these parameters were set as

follows:
• Number of Ants (No_of_ants) = 3000;
• Minimum number of cases per rule (Min_cases_per_rule) = 10;

An Ant Colony Algorithm for Classification Rule Discovery 203

• Maximum number of uncovered cases in the training set
(Max_uncovered_cases) = 10;

• Number of rules used to test convergence of the ants (No_Rules_Converg) =
10.
We have made no serious attempt to optimize these parameter values. Such an

optimization will be tried in future research. It is interesting to notice that even the
above non-optimized parameters’ setting has produced quite good results, as will be
seen in the next section.

There is one caveat in the interpretation of the value of No_of_ants. Recall that
this parameter defines the maximum number of ants per iteration of the system. In
our experiments the actual number of ants per iteration was on the order of 1500,
rather than 3000. The reason why in practice much fewer ants are necessary to
complete an iteration of the system is that an iteration is considered finished when
No_Rules_Converg successive ants converge to the same path (rule).

COMPUTATIONAL RESULTS
We have evaluated Ant-Miner across six public-domain data sets from the UCI

(University of California at Irvine) data set repository (Aha & Murphy, 2000). The
main characteristics of the data sets used in our experiment are summarized in Table
1. The first column of this table identifies the data set, whereas the other columns
indicate, respectively, the number of cases, number of categorical attributes,
number of continuous attributes, and number of classes of the data set.

As mentioned earlier, Ant-Miner discovers rules referring only to categorical
attributes. Therefore, continuous attributes have to be discretized as a preprocessing
step. This discretization was performed by the C4.5-Disc discretization algorithm,
described in Kohavi and Sahami (1996).This algorithm simply uses the C4.5
algorithm for discretizing continuous attributes. In essence, for each attribute to be
discretized we extract, from the training set, a reduced data set containing only two
attributes: the attribute to be discretized and the goal (class) attribute. C4.5 is then
applied to this reduced data set. Therefore, C4.5 constructs a decision tree in which
all internal nodes refer to the attribute being discretized. Each path from the root to
a leaf node in the constructed decision tree corresponds to the definition of a

Table 1: Data Sets Used in Our Experiments

Data set #cases #categ. attrib. #contin. attrib. #classes
breast cancer (Ljubljana) 282 9 0 2
breast cancer (Wisconsin) 683 0 9 2
Tic-tac-toe 958 9 0 2
Dermatology 358 33 1 6
Hepatitis 155 13 6 2
Heart disease (Cleveland) 303 8 5 5

204 Parpinelli, Lopes and Freitas

categorical interval produced by C4.5. See the above-mentioned paper for details.
We have evaluated the performance of Ant-Miner by comparing it with C4.5

(Quinlan, 1993), a well-known rule induction algorithm. Both algorithms were
trained on data discretized by the C4.5-Disc algorithm, to make the comparison
between Ant-Miner and C4.5 fair.

The comparison was carried out across two criteria, namely the predictive
accuracy of the discovered rule sets and their simplicity, as discussed in the
following.

Predictive accuracy was measured by a 10-fold cross-validation procedure
(Weiss & Kulikowski, 1991). In essence, the data set is divided into 10 mutually
exclusive and exhaustive partitions. Then a classification algorithm is run 10 times.
Each time a different partition is used as the test set and the other 9 partitions are used
as the training set. The results of the 10 runs (accuracy rate on the test set) are then
averaged and reported as the accuracy rate of the discovered rule set.

The results comparing the accuracy rate of Ant-Miner and C4.5 are reported in
Table 2. The numbers after the “±” symbol are the standard deviations of the
corresponding accuracy rates. As shown in this table, Ant-Miner discovered rules
with a better accuracy rate than C4.5 in four data sets, namely Ljubljana breast
cancer, Wisconsin breast cancer, Hepatitis and Heart disease. In two data sets,
Ljubljana breast cancer and Heart disease, the difference was quite small. In the
other two data sets, Wisconsin breast cancer and Hepatitis, the difference was more
relevant. Note that although the difference of accuracy rate in Wisconsin breast
cancer seems very small at first glance, this holds only for the absolute value of this
difference. In reality the relative value of this difference can be considered relevant,
since it represents a reduction of 20% in the error rate of C4.5. ((96.04 – 95.02)/(100
– 95.02) = 0.20)

On the other hand, C4.5 discovered rules with a better accuracy rate than Ant-
Miner in the other two data sets. In one data set, Dermatology, the difference was
quite small, whereas in the Tic-tac-toe the difference was relatively large. (This
result will be revisited later.) Overall one can conclude that Ant-Miner is competi-
tive with C4.5 in terms of accuracy rate, but it should be noted that Ant-Miner’s
accuracy rate has a larger standard deviation than C4.5’s one.

Table 2: Accuracy Rate of Ant-Miner vs. C4.5

Data Set Ant-Miner’s accuracy C4.5’s accuracy
rate (%) rate (%)

Breast cancer (Ljubljana) 75.42 ± 10.99 73.34 ± 3.21
Breast cancer (Wisconsin) 96.04 ± 2.80 95.02 ± 0.31
Tic-tac-toe 73.04 ± 7.60 83.18 ± 1.71
Dermatology 86.55 ± 6.13 89.05 ± 0.62
Hepatitis 90.00 ± 9.35 85.96 ± 1.07
Heart disease (Cleveland) 59.67 ± 7.52 58.33 ± 0.72

An Ant Colony Algorithm for Classification Rule Discovery 205

We now turn to the results concerning the simplicity of the discovered rule set.
This simplicity was measured, as usual in the literature, by the number of discovered
rules and the total number of terms (conditions) in the antecedents of all discovered
rules.

The results comparing the simplicity of the rule set discovered by Ant-Miner
and by C4.5 are reported in Table 3. Again, the numbers after the “±” symbol denote
standard deviations. As shown in this table, in five data sets the rule set discovered
by Ant-Miner was simpler – i.e. it had a smaller number of rules and terms – than
the rule set discovered by C4.5. In one data set, Ljubljana breast cancer, the number
of rules discovered by C4.5 was somewhat smaller than the rules discovered by Ant-
Miner, but the rules discovered by Ant-Miner was simpler (shorter) than the C4.5
rules. To simplify the analysis of the table, let us focus on the number of rules only,
since the results for the number of terms are roughly analogous. In three data sets
the difference between the number of rules discovered by Ant-Miner and C4.5 is
quite large, as follows.

In the Tic-tac-toe and Dermatology data sets Ant-Miner discovered 8.5 and 7.0
rules, respectively, whereas C4.5 discovered 83 and 23.2 rules, respectively. In both
data sets C4.5 achieved a better accuracy rate. So, in these two data sets Ant-Miner
sacrificed accuracy rate to improve rule set simplicity. This seems a reasonable
trade-off, since in many data mining applications the simplicity of a rule set tends
to be even more important than its accuracy rate. Actually, there are several rule
induction algorithms that were explicitly designed to improve rule set simplicity,
even at the expense of reducing accuracy rate (Bohanec & Bratko, 1994; Brewlow
& Aha, 1997; Catlett, 1991).

In the Heart disease data set Ant-Miner discovered 9.5 rules, whereas C4.5
discovered 49 rules. In this case the greater simplicity of the rule set discovered by
Ant-Miner was achieved without unduly sacrificing accuracy rate – both algorithms
have similar accuracy rates, as can be seen in the last row of Table 1.

There is, however, a caveat in the interpretation of the results of Table 3. The
rules discovered by Ant-Miner are organized into an ordered rule list. This means

Table 3: Simplicity of Rule Sets Discovered by Ant-Miner vs. C4.5

 No. of rules No. of terms
Data set Ant-Miner C4.5 Ant-Miner C4.5
breast cancer
(Ljubljana) 7.20 ± 0.60 6.2 ± 4.20 9.80 ± 1.47 12.8 ± 9.83
breast cancer
(Wisconsin) 6.20 ± 0.75 11.1 ± 1.45 12.2 ± 2.23 44.1 ± 7.48
Tic-tac-toe 8.50 ± 1.86 83.0 ± 14.1 10.0 ± 6.42 384.2 ± 73.4
Dermatology 7.00 ± 0.00 23.2 ± 1.99 81.0 ± 2.45 91.7 ± 10.64
Hepatitis 3.40 ± 0.49 4.40 ± 0.93 8.20 ± 2.04 8.50 ± 3.04
Heart disease
(Cleveland) 9.50 ± 0.92 49.0 ± 9.4 16.2 ± 2.44 183.4 ± 38.94

206 Parpinelli, Lopes and Freitas

that, in order for a rule to be applied to a test case, the previous rules in the list must
not cover that case. As a result, the rules discovered by Ant-Miner are not as modular
and independent as the rules discovered by C4.5. This has the effect of reducing a
little the simplicity of the rules discovered by Ant-Miner, by comparison with the
rules discovered by C4.5. In any case, this effect seems to be quite compensated by
the fact that, overall, the size of the rule list discovered by Ant-Miner is much smaller
than the size of the rule set discovered by C4.5. Therefore, it seems safe to say that,
overall, the rules discovered by Ant-Miner are simpler than the rules discovered by
C4.5, which is an important point in the context of data mining.

Taking into account both the accuracy rate and rule set simplicity criteria, the
results of our experiments can be summarized as follows.

In three data sets, namely Wisconsin breast cancer, Hepatitis and Heart disease,
Ant-Miner discovered a rule set that is both simpler and more accurate than the rule
set discovered by C4.5. In one data set, Ljubljana breast cancer, Ant-Miner was
more accurate than C4.5, but the rule sets discovered by Ant-Miner and C4.5 have
about the same level of simplicity. (C4.5 discovered fewer rules, but Ant-Miner
discovered rules with a smaller number of terms.)

Finally, in two data sets, namely Tic-tac-toe and Dermatology, C4.5 achieved
a better accuracy rate than Ant-Miner, but the rule set discovered by Ant-Miner was
simpler than the one discovered by C4.5.

It is also important to notice that in all six data sets the total number of terms
of the rules discovered by Ant-Miner was smaller than C4.5’s one, which is a strong
evidence of the simplicity of the rules discovered by Ant-Miner.

These results were obtained for a Pentium II PC with clock rate of 333 MHz
and 128 MB of main memory. Ant-Miner was developed in C++ language and it
took about the same processing time as C4.5 (on the order of seconds for each data
set) to obtain the results.

It is worthwhile to mention that the use of a high-performance programming
language like C++, as well as an optimized code, is very important to improve the
computational efficiency of Ant-Miner and data mining algorithms in general. The
current C++ implementation of Ant-Miner is about three orders of magnitude (i.e.,
thousands of times) faster than a previous MatLab implementation.

CONCLUSIONS AND FUTURE WORK
This work has proposed an algorithm for rule discovery called Ant-Miner (Ant

Colony-based Data Miner). The goal of Ant-Miner is to extract classification rules
from data. The algorithm is based on recent research on the behavior of real ant
colonies as well as in some data mining concepts.

We have compared the performance of Ant-Miner with the performance of the
well-known C4.5 algorithm in six public domain data sets. Overall the results show
that, concerning predictive accuracy, Ant-Miner is competitive with C4.5. In
additions, Ant-Miner has consistently found considerably simpler (smaller) rules
than C4.5.

An Ant Colony Algorithm for Classification Rule Discovery 207

We consider these results very promising, bearing in mind that C4.5 is a well-
know, sophisticated decision tree algorithm, which has been evolving from early
decision tree algorithms for at least a couple of decades. By contrast, our Ant-Miner
algorithm is in its first version, and the whole area of artificial Ant Colony Systems
is still in its infancy, by comparison with the much more traditional area of decision-
tree learning.

One research direction consists of performing several experiments to investi-
gate the sensitivity of Ant-Miner to its user-defined parameters.

Other research direction consists of extending the system to cope with continu-
ous attributes as well, rather than requiring that this kind of attribute be discretized
in a preprocessing step.

In addition, it would be interesting to investigate the performance of other kinds
of heuristic function and pheromone updating strategy.

REFERENCES
Aha, D. W. & Murphy P. M. (2000). UCI Repository of Machine Learning Databases.

Retrieved August 05, 2000 from the World Wide Web: http://www.ics.uci.edu/~mlearn/
MLRepository.html

Bohanec, M. & Bratko, I. (1994). Trading accuracy for simplicity in decision trees. Machine
Learning, 15, 223-250.

Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999). Swarm Intelligence: From Natural to
Artificial Systems. New York: Oxford University Press.

Brewlow, L.A. & Aha, D.W. (1997). Simplifying decision trees: a survey. The Knowledge
Engeneering Review, 12, No. 1, 1-40.

Catlett, J. (1991). Overpruning large decision trees. Proc. 1991 Int. Joint Conf. on Artif.
Intel. (IJCAI). Sidney.

Cordón, O., Casillas J. & Herrera F. (2000). Learning Fuzzy Rules Using Ant Colony
Optimization. Proc. ANTS’2000 – From Ant Colonies to Artificial Ants: Second
International Workshop on Ant Algorithms, 13-21.

Cover, T. M. & Thomas, J. A. (1991). Elements of Information Theory. New York: John
Wiley & Sons.

Dorigo, M., Colorni A. & Maniezzo V. (1996). The Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 26,
No. 1, 1-13.

Dorigo, M., Di Caro, G. & Gambardella, L. M. (1999). Ant algorithms for discrete
optimization. Artificial Life, 5, No. 2, 137-172.

Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. (1996). From data mining to knowledge
discovery: an overview. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy,
R. (Eds.) Advances in Knowledge Discovery & Data Mining, 1-34. Cambridge: AAAI/
MIT.

Freitas, A. A. & Lavington, S. H. (1998). Mining Very Large Databases with Parallel
Processing. London: Kluwer.

Freitas, A.A. (2001). A survey of evolutionary algorithms for data mining and knowledge
discovery. To appear in: Ghosh, A.; Tsutsui, S. (Eds.) Advances in evolutionary
computation. Springer-Verlag.

Kohavi, R. & Sahami, M. (1996). Error-based and entropy-based discretization of continu-

208 Parpinelli, Lopes and Freitas

ous features. Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining, 114-119.
Lopes, H. S., Coutinho, M. S. & Lima, W. C. (1998). An evolutionary approach to simulate

cognitive feedback learning in Medical Domain. In: Genetic Algorithms and Fuzzy Logic
Systems: Soft Computing Perspectives, Singapore: Word Scientific, 193-207.

Monmarche, N. (1999). On data clustering with artificial ants. In: Freitas, A.A. (Ed.) Data
Mining with Evolutionary Algorithms: Research Directions – Papers from the AAAI
Workshop. AAAI Press, 23-26.

Quinlan, J.R. (1987). Generating production rules from decision trees. Proc. 1987 Int. Joint
Conf. on Artif. Intel.(IJCAI), 304-307.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Francisco: Morgan
Kaufmann.

Stutzle, T. & Dorigo. M. (1999). ACO algorithms for the traveling salesman problem. In K.
Miettinen, M. Makela, P. Neittaanmaki, J. Periaux. (Eds.) Evolutionary Algorithms in
Engineering and Computer Science, New York: John Wiley & Sons.

Weiss, S.M. & Kulikowski, C.A. (1991). Computer Systems That Learn. San Francisco:
Morgan Kaufmann.

