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Abstract. This paper addresses the classification task of data mining (a form of 

supervised learning) in the context of an important bioinformatics problem, 

namely the prediction of protein functions. This problem is cast as a 

hierarchical classification problem, where the protein functions to be predicted 

correspond to classes that are arranged in a hierarchical structure, in the form of 

a class tree. The main contribution of this paper is to propose a new Artificial 

Immune System that creates a new representation for proteins, in order to 

maximize the predictive accuracy of a hierarchical classification algorithm 

applied to the corresponding protein function prediction problem. 

Keywords: artificial immune systems, data mining, bioinformatics, 

classification, clustering. 

1   Introduction 

This paper addresses  classification within data mining in the context of 

bioinformatics, more precisely the prediction of protein function. In essence, a protein 

consists of a linear sequence of amino acids, and predicting the function of a protein, 

based on information derived from its sequence of amino acids, remains an important 

problem in bioinformatics. 

The main contribution of this paper is to propose a new Artificial Immune System 

(AIS) – a variant of opt-aiNet (a well-known AIS) – that creates a new representation 

for proteins, in order to maximize the predictive accuracy of a classification algorithm 

applied to the corresponding protein function prediction problem.  

In order to understand the task to be solved by the proposed AIS, it should first be 

noted that the type of attribute representation addressed in this paper involves local 

descriptors of amino acid sequences (Zhang et al., 2005; Cui et al., 2007). In 

developing the local descriptors technique, Cui et al. (2007) divided the amino acids 

into three functional groups (clusters); namely hydrophobic, neutral and polar, based 

upon the amino acid clustering suggested by Chothia and Finkelstein (1990). There 



are, however, many different ways of clustering amino acids, according to many 

different physical-chemical properties. Furthermore, it is unlikely that a given amino 

acid clustering will be the most effective one for all possible protein function 

prediction problems. The optimal amino acid clustering tends to be strongly 

dependent on the type of protein being classified. 

In this context, this paper proposes an AIS that evolves clusters of amino acids 

optimized for a given type of protein. The evolved clusters are then used to define the 

protein representation that will be used by the classification algorithm. In the words of 

machine learning and data mining,  the AIS algorithm  solves a clustering 

(unsupervised learning) problem, consisting of finding the optimal clustering of 

amino acids for the type of protein whose data is being mined, and the result of the 

AIS is then used to solve a classification (supervised learning problem). 

The proposed AIS is evaluated on a challenging real-world protein function 

prediction problem:  the classification of GPCRs (G-protein-coupled receptors) into 

their functional classes. GPCRs constitute a large and diverse group of proteins that 

perform many important physiological functions (Christopoulos & Kenakin, 2002; 

Gether et al., 2002; Bissantz, 2003). The addressed GPCR classification problem is 

challenging because it involves a large number of classes organized in a hierarchy – 

being an instance of the so-called hierarchical classification problem – as will be 

explained later. 

The remainder of this paper is organized as follows. Section 2 describes how the 

problem of predicting GPCR functions is cast into a classification problem. This 

section also provides some background on bioinformatics, in order to make the paper 

more understandable to readers without a biology background. Section 3 described 

the proposed AIS for clustering amino acids. Section 4 reports computational results, 

and Section 5 concludes the paper. 

2  Casting Protein Function Prediction as a Classification Problem 

in Machine Learning/Data Mining 

2.1 Representing Proteins by Local Descriptors of Amino Acid Sequences 

Proteins are large molecules that perform a wide range of vital functions in living 

organisms. A protein consists of a linear sequence of amino acids – each of which can 

be represented by a single letter. For instance, the sub-sequence "AVC…" 

corresponds to (A)lanine, (V)aline, (C)ysteine, … Given a protein's sequence of 

amino acids, one can try to determine its function via either biological experiments or 

computational prediction methods. The former produce in general more precise 

results, but are much more time consuming and expensive. Hence, the latter is often 

used in practice, and it can provide valuable information for the more cost-effective 

use of biological experiments. This work addresses the computational prediction of 

protein function, by casting this problem as a classification (supervised learning) 

problem in machine learning/data mining, where protein functions are classes and 

attributes derived from the protein's sequence of amino acids are the predictor 

attributes.  



The number of amino acids in the sequence varies widely across different proteins. 

Since the vast majority of classification algorithms can cope only with datasets where 

all examples (records, data items) have the same length, it is necessary to convert all 

proteins (examples) to the same fixed number of attributes, using an attribute 

representation at higher level of abstraction than the full sequence of amino acids. The 

high-level representation used here involves the attribute creation technique defined 

in (Zhang et al., 2005), which is based on summarizing the protein's entire sequence 

of amino acids by a fixed number of local descriptors (attributes), as follows.  

 

 

Fig. 1. The 10 descriptor regions (A-J) for a hypothetical protein sequence of 16 

amino acids. Adapted from Zhang et al. (Zhang et al., 2005) (unpublished) 

 

Cui et al. (2007) divided the amino acids into three functional clusters: 

hydrophobic (amino acids C,V,L,I,M,F,W), neutral (amino acids G,A,S,T,P,H,Y), and 

polar (amino acids R,K,E,D,Q,N), as suggested by Chothia and Finkelstein (1990). It 

is then possible to substitute the amino acids in the sequence for the cluster in which 

that amino acid belongs. Assuming H=hydrophobic, N=neutral and P=polar, the 

protein sequence CVGRK would be converted to HHNRR. The position or variation 

of these clusters within a sequence is the basis of three local descriptors: composition 

(C), transition (T), and distribution (D).  

C is the proportion of amino acids with a particular property (drawn from a 

particular cluster such as the hydrophobic one). As an example, given the cluster H, 

we can determine C(H) over the example sequence of HHNRR as 0.4 as 2 of 5 

positions in the sequence are of value H. T is the frequency with which amino acids 

with one property are followed by amino acids with a different property. Thus to 

compute T(N) over the example sequence, we can see there is a transition between H 

and N from positions 2 to 3, then a transition from N to R between positions 3 and 4. 

In this case T(N) = 2/4 = 0.5 as there are 4 places where a transition may occur. Any 

transitions between H and R are ignored here as neither of these clusters are the 



subject. Descriptor D measures the chain length within which the first, 25%, 50%, 

75% and 100% occurrences of the particular property are located.  

Given that the amino acids are divided into three clusters in this instance, the 

calculation of the C, T and D descriptors generates 21 attributes in total (3 for C, 3 for 

T and 15 for D). While this technique is valid if applied over the whole amino acid 

sequence, Zhang et al. (2005) split the amino acid sequences into 10 overlapping 

regions – see Fig 1. For sequences A-D and E-F there may be cases where the 

sequence cannot be divided exactly, in which case each subsequence may be extended 

by one residue. Each descriptor - C, T, and D - is calculated over the 10 

subsequences. The number of attributes created with this technique therefore 

generalises to 70n, where n is the number of amino acid clusters. In the case of 3 

clusters of amino acids, proteins are now represented by 210 numerical descriptors, 

which can be offered to any of the plethora of well understood, well documented 

classification algorithms. 

In the case of (Zhang et al., 2005), the three clusters as defined in (Cui et al., 2007) 

were used, however no explicit explanation was included to justify the use of this 

particular clustering scheme. The keys to the success or failure of the technique 

described thus far are: (a) the number of clusters used, and (b) the specific amino 

acids that are included in each cluster. While there exists a truly enormous number of 

ways to partition the 20 amino acids, it seems clear that some will be more useful than 

others. However, in general it is not possible to determine, a priori, which amino acid 

clustering will result in the optimal performance for a given protein dataset. In 

addition, the classifier used may have certain biases that can be exploited during the 

clustering procedure. Hence, in principle we can use a data-driven approach to evolve 

an amino acid clustering that approaches optimality with respect to both the data 

being mined and the classification algorithm applied to that data.  

This is the approach followed in this paper, whose main contribution is to present a 

new variant of the opt-aiNet algorithm for producing an amino acid clustering tailored 

to the problem of protein function prediction – cast as a classification problem. 

 

 

2.2 Hierarchical Classification of G-Protein-Coupled Receptors (GPCRs) 

Some data can be naturally organised as a hierarchy of classes. The classification of 

data in such a hierarchy poses some unique challenges to data miners, such as the 

large number of classes to be predicted. One particular case of this is the classification 

of G-Protein Coupled Receptor (GPCR) proteins by their function. GPCRs are 

important proteins as they can transmit messages from a cell’s exterior to its interior, 

changing that cell’s behaviour, and approximately 50% of all marketed drugs are 

targeted towards GPCRs (Klabunde & Hessler, 2002). 

The method of optimising clusters for a local descriptor-based attribute 

construction technique, as proposed in this paper, is generic to any protein dataset 

where it is sensible to represent the data using the local descriptors representation, but 

it should be pointed out that the GPCR dataset used in this study is hierarchical in 

nature. Because of this, the algorithm used to assess the quality of the attriute-

construction technique and compare it with a baseline is also hierarchical in nature. 

Most extant classifiers deal with flat data sets, i.e., data for which a single level of 



classes may be assigned to an example. In a hierarchical dataset an example may be 

assigned to one class at a number of levels of specialisation. The most general level 

being near the root of the tree and becoming more specialised as the tree’s branches 

are traversed. In this paper we deal only with structures where each class has exactly 

1 parent – i.e. the data is structured like a tree. The class structure of a typical flat 

dataset will contain, for example, classes A, B and C which are all equally different 

from each other. However, in a hierarchy some classes may be more alike than others. 

Classes A and B are equally dissimilar, but these classes may subdivide such that 

classes A1 and A2 are more alike than A1 and B1 as A1 and A2 share a common 

parent class. For more details about the hierarchical classification of GPCRs, see 

(Secker et al., 2007a). 

3 The Proposed Artificial Immune System for Amino Acid 

Clustering 

Pseudocode 1 shows the most general view of the process of attribute creation based 

on amino acid clustering (performed by an AIS) and subsequent use of a classification 

algorithm. Note that this process of attribute creation (or construction) based on 

clustering should not be confused with attribute selection. The goal of attribute 

selection is essentially to choose a subset of relevant attributes, out of all available 

attributes. This work rather involves attribute construction, where the goal is to create 

new attributes (new descriptors of amino acid sequences corresponding to higher-

level information about proteins) based on the original sequence of amino acids 

(corresponding to lower-level information about proteins). The actual process of 

attribute creation is performed by using a clustering algorithm that groups together 

similar amino acids, and the result of this clustering is then used to produce a new set 

of predictor attributes for the classification algorithm.  

 
1. Split full dataset into training and testing set s 
2. Split training set into sub-training and validat ion sets 
3. Generate initial random candidate clustering sol utions 
4. Evolve clustering 
   4a. Create attributes for sub-training and valid ation 
       data from clusters 
   4b. Train classifier on sub-training data 
   4c. Evaluate classifier on validation data 
   4d. Assign quality to this clustering 
   4e. Update population depending on individual’s quality 
   4f. Repeat from 4 until stopping criterion is me t 
5. Return the best clustering from the population 
6. Create attributes for training and testing datas ets using 
   this best clustering 
7. Train classifier using newly transformed trainin g set 
8. Evaluate classifier using newly transformed test  set. 

Pseudocode 1. High level description of amino acid clustering-based attribute 

creation and subsequent use of classification algorithm.  

 



In Pseudocode 1, points 1 and 2 are standard pre-processing tasks. Point 3 

initialises the population for the AIS that performs amino acid clustering; while point 

4 and sub-points thereof describe, at a high level of abstraction, the evolutionary 

process of amino acid clustering. Point 6 uses the output of the AIS (point 5) to create 

the data which will form the input to the classification algorithm, while points 7 and 8 

are the standard training/testing steps used in a classification scenario.  

The proposed AIS for amino acid clustering is a new variant of opt-aiNet, which 

we call opt-aiNet-AA-Clust (opt-aiNet for Amino Acid Clustering). The original opt-

aiNet is an optimiser based on abstract ideas of clonal selection and somatic 

hypermutation as found in natural immune systems (de Castro & Timmis, 2002b). 

Opt-aiNet was first proposed in (de Castro & Von Zuben, 2001; de Castro & Timmis, 

2002a), and updated slightly in (Timmis & Edmonds, 2004). In this latter paper, opt-

aiNet was proposed as a function optimisation tool. In this case, each immune cell 

would encode a single floating point value – the input to the function to be optimised. 

Several modifications were required to allow the opt-aiNet algorithm to work in 

our scenario of amino acid clustering. These included the changing of the individual 

representation from a real value to a string of symbols to represent clusters, the 

changing of the fitness evaluation from a straightforward mathematical function to a 

much more complex system for creating and evaluating the attributes produced by the 

clustering results and some minor procedural changes such as the termination 

function. In the case of the original opt-aiNet, the algorithm will terminate when there 

has been no improvement above a threshold in the population between successive 

iterations. In this case, it is possible that many iterations could pass before an 

improvement is found and thus the system terminates after a given number of 

iterations. These changes are explained in more detail below. 

 

Individual (Immune Cell) Representation – Each individual (immune cell) 

encodes a candidate solution to the problem of clustering the 20 amino acids. More 

precisely, each individual consists of a vector with 20 elements, <c1, …, c20>, where 

the ith element, ci = 1,..,20, indicates the id of the cluster to which the ith amino acid 

is assigned – since there are 20 amino acids. To consider a simple hypothetical 

example, if the first five elements of a vector were 3, 1, 2, 1, 3, this would mean that 

the second and fourth amino acids would be assigned to the same cluster (arbitrarily 

denoted as cluster 1); the first and fifth amino acids would be assigned to another 

cluster (denoted as cluster 3); and the third amino acid would be assigned to yet 

another cluster (denoted as cluster 2); and so on, for all the 20 amino acids. Different 

individuals can produce different numbers of clusters. 

 

The Algorithm's Pseudocode and Search Operators – The opt-aiNet-AA-Clust 

algorithm proceeds as shown in Pseudocode 2, which is a more detailed description of 

points 4a-4f from Pseudocode 1. Thus, the algorithm is initialised by generating a 

population of immune cells such that the representation of each immune cell is in a 

random configuration. That is, amino acids are randomly assigned to clusters. Next, 

the quality of each immune cell (that is, the accuracy of the attributes defined by the 

clustering represented by that individual) is assessed. This is a somewhat complex 

process, explained in the Fitness Function paragraph. Each immune cell is then cloned 

(copies of that cell are produced) mimicking the clonal expansion stage of an immune 



reaction. These clones are mutated with a rate inversely proportional to their parent’s 

(and therefore their) quality. The mutation scheme used in this algorithm is somewhat 

different to the original opt-aiNet. In the latter, the single value encoded by each 

immune cell will be incremented or decremented with a magnitude based on its 

fitness. However, a mutation in this context is simply a change in one or more 

positions in the immune cell’s representation. This has the effect of switching an 

amino acid from one cluster to another. As well as switching an amino acid between 

clusters, this would include taking the amino acid out of a cluster with others and 

placing it in a cluster on its own or vice versa. The better the solution encoded by an 

immune cell the fewer positions are mutated. This has the effect of drastically 

changing poorly performing clustering schemes in the hope that a better solution may 

be found, while at the same time not destroying solutions that are already good. These 

newly mutated clones are then assessed for quality once again and the best solution is 

kept to form part of the next generation. When all immune cells in the population 

have been cloned and mutated a small number of badly performing cells are 

discarded. These are replaced in the population with an equal number of randomly 

configured immune cells. This injection of randomness into the population 

discourages the population converging prematurely on a single local optimum. 

 
1.Initalise population with each cell having random ly generated 

features 
2. While (stopping criteria not met) 
   2a. Determine fitness of each cell 
   2b. Generate clones for each cell, keeping the p arent cell in 

the population 
   2c. Mutate each clone based on the fitness of it s parent 
   2d. Determine the fitness of all new clones 
   2e. For each parent cell, select its fittest clo ne for 

survival into next generation 
   2f. Determine average fitness of the population.  If it has 

improved significantly, then loop from 2. 
   2g. Remove the least fit cells from the populati on 
   2h. Replace the cells removed in 2.g. with rando mly generated 

new cells 

Pseudocode 2. opt-aiNet (adapted from (de Castro & Timmis, 2002a)) 

Fitness Function – The original opt-aiNet used a single mathematical function as a 

measure of quality whereas the assessment of quality for each immune cell in this 

scenario is not as straightforward. Several stages must be gone through to assess the 

quality of the representation as encoded by the immune cell. For each immune cell, 

the clustering must firstly be translated from the immune cell representation, as 

explained earlier. The clusters defined can then be used to create a set of predictor 

attributes. In detail, each protein sequence in the training data set is split into 10 

regions as defined in Fig. 1. Then the C, T and D (Composition, Transition and 

Distribution) values are determined for each protein subsequence (A-J) based on the 

clusters defined by the immune cell. This produces a dataset consisting of 70n 

predictor attributes (where n is the number of clusters as defined by the immune cell). 

This dataset (the training data) must then be split into two further sets – sub-training 

and validation. For this algorithm the split between these datasets is 80%/20%. The 

chosen classification algorithm is now trained on the sub training data and evaluated 



using the validation data. The quality of the cell’s representation is defined as the 

percentage predictive accuracy output from the classifier on the validation set. Note 

that this predictive accuracy is measured on the validation set, separated from the sub 

training set (used to build a classification model), because the goal is to estimate the 

generalization ability of classification models, as is usual in classification.  

 

Parallel processing – As each immune cell encodes a different set of clusters, it is 

important to note here that the above-described entire process of creating the new 

training set from the encoded clustering and then training/evaluating the classifier 

must be repeated every time a fitness evaluation is requested and each iteration of opt-

aiNet-AA-Clust may require many hundreds of such evaluations to occur. The fitness 

evaluation in this AIS is therefore extremely processor-intensive and as such the 

assessment of immune cell fitness was distributed over a cluster of 30 computers. 

Given each node in the cluster has its own copy of the training partition of the data 

set, each fitness evaluation is atomic in nature. Therefore multiple fitness evaluations 

can occur simultaneously while the algorithm pauses until all evaluations are 

complete. The main algorithm can then resume and continue as if the fitness 

evaluations had taken place in the normal, serial manner. It was found that executing 

these fitness evaluations in parallel was the only way to ensure the algorithm 

completed a reasonable number of iterations in a reasonable amount of time. 

4   Computational Results 

The new variant of opt-aiNet proposed in Section 3 – opt-aiNet-AA-Clust – was 

implemented by modifying the original opt-aiNet’s code kindly obtained from 

Andrews (2007), which formed part of (Andrews & Timmis, 2005). The WEKA data 

mining toolkit (Witten & Frank, 2005) was used to provide the classification 

algorithm used in the fitness function, many of the algorithms used in the selective 

top-down classifier and a number of auxiliary functions regarding data manipulation. 

Some algorithms from (Brownlee, 2006) were also used in the selective top down 

classifier. The dataset used for training and testing was our own comprehensive 

dataset of GPCR sequences. This dataset, called the GDS dataset, originally contained 

8354 protein sequences (examples), but classes with fewer than 10 examples were 

discarded – since in general such rare classes cannot be reliably predicted. This left 

8222 protein sequences in the dataset. The dataset contains 5 classes (A-E) at the 

family level (the first level), 40 classes at the sub-family level and 108 classes at the 

sub-sub-family level (the third level). This dataset is described in more detail in 

(Davies et al., 2007). 

For each run of opt-aiNet-AA-Clust, the algorithm was run on the training data and 

then the classification algorithm was trained on the same training data. Hence, 

following standard machine learning principles, no data used during the amino acid 

clustering stage was present in the ultimate testing of the classifier. For each run of 

the algorithm the number of training items was reduced to half the size by random 

sampling, in order to reduce processing time – due to the rather processor-intensive 

fitness function.  



Ideally, the opt-aiNet-AA-Clust’s fitness function would use a classification 

algorithm to predict classes in all  3 hierarchical levels of GPCR function. However, 

this is prohibitively slow with each individual evaluation likely to take many hours. 

Clearly a faster solution must be found. It was decided that just one classifier should 

be used in the fitness function. As 1-Nearest Neighbour (1-NN) has appeared to be the 

more accurate than other classifiers on this type of data in preliminary tests, it was 

chosen here. As only one classifier is to be used, it was decided that for the purpose of 

fitness computation the classifier will distinguish between classes only at the top level 

of the hierarchy (GPCR families A-E). 

For each opt-aiNet-AA-Clust run, the algorithm performs 40 generations, using a 

population size of 20 individuals. While the algorithm was allowed to form clusters 

using any combination of amino acids, a limit of 5 clusters per individual was 

enforced. Because of the way the clustering is used to produce the predictor attributes, 

large number of clusters per individual results in a very large number of predictor 

attributes, and so the classifier becomes too slow to train and test in a reasonable 

amount of time. Thus, it was decided that 5 clusters struck a reasonable balance 

between the algorithm’s flexibility and constraining the time taken during evaluation 

of the representation. Table 1 shows the parameters used for each run of opt-aiNet-

AA-Clust. 

Table 1. opt-aiNet-AA-Clust parameters 

Number of initial cells in the network 20 

Number of clones for each immune cell during clonal selection 20 

Number of algorithm iterations 40 

Suppression threshold for network cell affinities 0.5 

Maximum number of clusters that can be produced by each 

immune cell 

5 

Fitness evaluation method 1-NN classifier 

 

To assess the effectiveness of the proposed algorithm, an experiment was 

undertaken to compare the accuracy of a classifier when attributes are evolved by the 

algorithm against a baseline. As stated above, the dataset used was our GDS dataset. 

In the case of the baseline, attributes were generated from raw protein sequences by 

the approach of Zhang et al. (2005), as described earlier. For each set of constructed 

attributes the same classification algorithm was used. In this case it was the selective 

top down classification algorithm as defined in (Davies et al., 2007) and (Secker et 

al., 2007b). In other words, the experiments compare the performance of a given 

hierarchical classification method in two different scenarios, using two different types 

of predictor attributes: the attributes created by using our proposed opt-aiNet-AA-

Clust and the baseline attributes proposed by Zhang et al. (2005). Hence, what is 

ultimately being compared is the effectiveness of two different protein 

representations: one of them automatically evolved by opt-aiNet-AA-Clust and the 

other manually proposed by Zhang et al. using their domain knowledge about proteins 

and amino acid properties. 

Because of the sheer amount of time taken to evolve the protein representations, 

only one run of a 10-fold cross-validation procedure – a standard procedure for 

evaluating predictive accuracy in data mining (Witten & Frank 2005) – was 



performed with opt-aiNet-AA-Clust. However, as the experiments with the baseline 

representation have been run before during other investigations, the results of 10 runs 

of a 10-fold cross-validation procedure (100 runs of the classifier in total) are 

available. The results are shown in Table 2 where the mean predictive accuracy over 

the 10 folds of the cross-validation procedure is shown. The mean accuracies for the 

baseline are shown and finally the statistical significance of the difference between 

the accuracies of the evolved representation and the baseline is displayed. This has 

been computed using Student’s t-test with 2-tails. This test was used as the number of 

runs is small while it can be used to compare distributions where there are different 

numbers of observations for each. In this case, 10 observations for the evolved 

attributes and 100 for the baseline.  

 

Table 2. Predictive accuracy (%) per class level 

 1st 

level 

2nd 

level 

3rd 

level 

Classifier using attributes 

evolved by opt-aiNet-AA-Clust 96.91 83.14 72.75 

Classifier using baseline attributes 96.97 82.72 70.46 

P value result of Student’s t-test 0.775 0.280 0.003 

 

It can be seen from the table that the difference in the predictive accuracy of the 

two approaches on the first (most general) and second class levels are statistically 

negligible – the t-tests produced high p values. On the other hand, at the third class 

level the attributes evolved by opt-aiNet-AA-Clust led to a very significant 

improvement in predictive accuracy over the baseline attributes, statistically 

significant at the 1% level.  

It should be noted that the third class level represents the most challenging 

classification scenario, since it involves many classes and typically a smaller number 

of examples per class (making generalization more difficult), as compared with the 

first two levels. In addition, classes at the third level are often more informative to 

biologist users, since they specify a protein’s function more precisely. 

It should be stressed that, although the automatically evolved clusters of amino 

acids have led to an improvement for the particular dataset of GPCR proteins used in 

our experiments,  there is no guarantee that the same evolved amino acid clusters will 

be optimal for predicting other types of protein functions. However, the proposed 

algorithm is generic enough to be easily applicable to other types of proteins, offering 

us an automated approach for trying to find a near-optimal cluster of amino acids 

tailored to the type of protein whose functions have to be predicted. 

5   Conclusions 

Previous experience has shown that the protein representation generated by the local 

descriptors method results in highly competitive predictive accuracies when 

attempting to classify GPCR proteins. The local descriptors technique, as currently 



published in the literature, divides amino acids into 3 clusters, leading to a specific set 

of predictor attributes. When evaluating this published representation, , we found no 

clear reason why these three clusters were used. It was therefore hypothesised that 

predictive accuracy could be improved over this “one size fits all” set of clusters by 

assigning amino acids to clusters in a data driven manner. In this spirit, this paper 

proposed a new variant of opt-aiNet, called opt-aiNet-AA-Clust, that optimizes the 

clustering of amino acids for the type of protein being mined and for the type of 

classification algorithm being used. 

When compared against the original local descriptors-based representation, which 

was not optimized for the data nor for the classification algorithm, it was found that a 

significant increase in predictive accuracy was observed at the 3rd level of the class 

hierarchy, which is the most informative (most specialized) type of protein function 

for the user. 

One future direction would be to let the AIS algorithm have free reign to decide the 

number of clusters. It is thought that allowing an unlimited number of clusters could 

result in better predictive accuracy. However, in the experiments reported here this 

was impractical as, firstly, the AIS would have a hugely increased solution space to 

search, which would require an increase in time taken to solve the clustering problem. 

Secondly, an increase in the number of clusters defined by the solution returned by 

the AIS would result in a huge number of attributes being created for the data, which 

can be impractical when using a hierarchical classification algorithm. 
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