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Abstract
In data mining it is usually desirable that discovered knowledge have some
characteristics such as being as accurate as possible, comprehensible and
surprising to the user. The vast majority of data mining algorithms produce, as
part of their results, information of a statistical nature that allows the user to
assess how accurate and reliable the discovered knowledge is. However, in many
cases this is not enough for the user. Even if discovered knowledge is highly
accurate from a statistical point of view, it might not be interesting for the user.
Few data mining algorithms produce, as part of their results, a measure of the
degree of surprisingness of discovered knowledge. However, these measures can
be computed in a post-processing phase, as a form of additional evaluation of the
quality of discovered knowledge, complementing (rather than replacing)
statistical measures of discovered knowledge accuracy. This papers presents a
review of four measures of classification-rule surprisingness, discussing their
main characteristics, advantages and disadvantages. Hence, the main
contribution of this paper is to improve our understanding of these rule
surprisingness measures, which is a step towards solving the very difficult
problem of selecting the “best” rule surprisingness measure for a given
application domain.
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1 Introduction
The process of knowledge discovery in databases (KDD) aims at discovering
knowledge that is interesting and useful to the user. Some desirable properties of
discovered knowledge are: accuracy, comprehensibility and surprisingness
(unexpectedness) (Han & Kamber, 2001).

The vast majority of data mining algorithms produce, as part of their results,
information of a statistical nature that allows the user to assess how accurate and
reliable the discovered knowledge is. However, in many cases this is not enough



for the user. Even if discovered knowledge is highly accurate from a statistical
point of view, it might not be interesting for the user.

For instance, a set of discovered rules might be too large to be analyzed by a
user, or contain too much redundancy, which would be assigned a low mark in
the comprehensibility criterion of discovered knowledge.

Furthermore, it should be noted that the discovery of surprising, unexpected
knowledge is even more difficult than the discovery of accurate and
comprehensible knowledge, and the two latter criteria do not imply the former.
As a simple example of this point, consider the following hypothetical rule that
could be discovered from a medical database: IF (patient is pregnant) THEN
(gender is female). This rule is highly accurate and comprehensible, but it is
useless because it represents an obvious, previously-known pattern.

Few data mining algorithms produce, as part of their results, a measure of the
degree of surprisingness of discovered knowledge. However, these measures can
be computed in a post-processing phase, as a form of additional evaluation of the
quality of discovered knowledge, complementing (rather than replacing)
statistical measures of discovered knowledge accuracy.

This paper presents a review of four measures of classification-rule
surprisingness, discussing their main characteristics, advantages and
disadvantages. Hence, the main contribution of this paper is to improve our
understanding of these rule surprisingness measures, as a step towards solving
the very difficult problem of selecting the “best” rule surprisingness measure for
a given application domain. This contribution is important because works
dedicated specifically to discuss and compare a number of rule “interestingness”
measures usually focus on statistical, accuracy-oriented measures, rather than
focusing on measures involving the notion of surprisingness to the user – see e.g.
(Hilderman & Hamilton, 2001), (Tan et al., 2002).

The remainder of this paper is organized as follows. Section 2 reviews four
rule surprisingness measures proposed in the literature. Section 3 presents a
comparative discussion of those measures, evaluating them according to several
criteria. Finally, section 4 concludes the paper.

2 Rule Surprisingness Measures
There are several surprisingness measures proposed in the literature. In general
these measures can be divided into two broad groups, namely user-driven and
data-driven measures (Silberchatz & Tuzhilin, 1996), (Freitas, 1999). The basic
idea of user-driven measures is that the user specifies his/her believes or previous
knowledge about the application domain, and then a rule is considered surprising
to the extent that it captures knowledge that is unexpected with respect to the
user’s believes or previous knowledge. In contrast, data-driven measures try to
estimate how surprising a rule will be to the user in a more automatic and
indirect fashion, without requiring the user to specify his/her believes or previous
knowledge.

A note on terminology is appropriated here. Most of the literature uses the
terms subjective and objective measures, rather than user-driven and data-driven



measures. However, we prefer to use the latter terminology, because the term
“subjective measure” is somewhat deceiving. The believes of the user are
certainly subjective, but those believes are just an input for the rule
surprisingness measure. The rule surprisingness measure ultimately consists of a
mathematical formula that will assign a numerical degree of surprisingness to the
rule. This degree is usually  computed in an objective manner, using a well-
defined formula. Hence, the term user-driven seems more appropriate.

User-driven measures have the advantage of directly taking into account the
user’s believes or previous knowledge, but have the disadvantages of being
strongly domain-dependent and less automatic, requiring a significant effort from
the user to make his/her believes explicit. Actually, they are not only domain-
dependent, but also user-dependent, since within the same application domain
two or more users might have very different believes or previous knowledge.
Data-driven measures have the disadvantage of being an indirect estimate of how
surprising the rule will be to the user, but have the advantages of being more
domain-independent and more automatic, relieving the user from the
responsibility of making his/her believes explicit, which could be difficult or
very time-consuming for the user. Hence, intuitively user-driven measures are
particularly indicated when a specific user is available and has enough time and
expertise to produce a good specification of his/her believes and previous
knowledge; whereas data-driven measures are particularly indicated when there
are several potential users or when the user(s) do not have the time or the
expertise necessary to produce a good specification of his/her believes and
previous knowledge. In any case, the two kinds of measure are not mutually
exclusive, i.e., one can use both in a given system.

This paper reviews data-driven rule surprisingness measures only, since this
study is not focused on any particular application domain or user. Hence, we
avoid the difficult issues associated with the specification of believes or previous
knowledge in the user-driven approach, and focus on comparing the main
characteristics of several data-driven rule surprisingness measures. All the
measures discussed in this paper are based on the knowledge representation of
IF-THEN rules, which has the advantage of being intuitively comprehensible for
the user – an important criterion in data mining (Han & Kamber, 2001).

2.1 Rule surprisingness based on exception rules and information change
(Hussain et. al., 2000) proposes a method that identifies, in a set of discovered
rules, a subset consisting of exception rules. Figure 1 shows the general structure
of exception rules, with respect to a common sense rule and a reference rule. In
this figure, A and B are non-empty sets of attribute-value pairs, and X is the class
predicted by the rule. The symbol “¬” denotes logical negation. Note that an
exception rule is a specialization of a “common sense” rule, and the exception
rule predicts a class different from its corresponding (generalized) common sense
rule. The method assumes that common sense rules represent patterns that are
probably known by the user – since they have a large coverage (number of
examples covered by the rule). On the other hand, users are considerably less
likely to know the patterns represented by exception rules, since they have a low



coverage. Hence, exception rules tend to be surprising, because they tend to
represent novel patterns that contradict the common sense rules. Note that, in
order for an exception rule to be considered interesting, both the common sense
rule and the exception rule must have a high classification accuracy. Note also
that the reference rule helps to explain the cause of the exception rule.

We emphasize that the rule surprisingness measure that we discuss in this
section is not the same as proposed by (Hussain et al. 2000), but rather a
variation of that proposal adapted for the context of this paper, as follows. First,
(Hussain et al. 2000) do not make a clear distinction between association and
classification rules. On one hand their method discovers rules predicting a single
class attribute, like classification rules. On the other hand it refers to association-
rule terminology such as support and confidence, it involves pre-specified
minimum support thresholds, and it does not try to discover a set of rules that
could be used to classify any unseen example in the test set – which are
characteristics of association rules. Considering that association rules have a
semantics quite different from classification rules – see (Freitas, 2000) for details
– and that the focus of this paper is on classification rules, we have simplified the
rule surprisingness measure proposed by (Hussain et al. 2000). In essence, the
authors’ proposed surprisingness measure takes into account both support and
confidence, whereas the simplified surprisingness measure discussed here takes
into account only confidence. We also avoid the issue of minimum support and
confidence thresholds, not only because this is related to association (rather than
classification) rules but also because this is related to the algorithm to discover
the rules, which is beyond the scope of the paper. We are interested only in
measuring the degree of surprisingness of rules, regardless of how this measure
will be used by a given data mining algorithm.
_________________________________________________________________

A → X  (common sense rule) (high coverage, high accuracy)

A, B → ¬ X  (exception rule) (low coverage, high accuracy)

B → ¬ X (reference rule) (low coverage and/or low accuracy)

_________________________________________________________________

Figure 1: Structure of exception rules

The measure of surprisingness of an exception rule is based on calculating the
amount of change in information relative to common sense rules. More precisely,
consider a rule of the form AB → X. The method calculates the difference in the
amount of information (number of bits) associated with the description of this
rule, denoted IABo, and the amount of information associated with the description
of the two rules A → X and B → X, denoted IAB1. In other words, IABo denotes
the number of bits required to describe the specific rule AB → X in the absence
of knowledge represented by the generalized rules A → X and B → X, whereas
IAB1 is the corresponding number of bits when the relationship between X and
AB is rather described by the two rules A → X and B → X. Mathematically, the



measure of surprisingness of the rule AB → X with respect to the rules A → X
and B → X, denoted by RIAB, is given by – see (Hussain et al. 2000) for details:

InfoChange = IAB1 - IABo

IABo = (- Pr(X|AB) log 2 Pr(X|AB) +(- Pr(¬X |AB) log 2 Pr(¬X |AB)))
IAB1 = - Pr(X|AB) [log 2 Pr(X|A)+ log 2 Pr(X|B)] - Pr(¬X |AB) [log 2 Pr(¬X|A)+ log 2 Pr(¬X|B)]

One limitation of this measure, which is inherent to its design, is that it
addresses a specific kind of surprising rule, namely an exception rule with
respect to a common sense rule. Hence, in an extreme case, if there is no pair of
common sense rule and exception rule, no surprising rule will be reported to the
user, even though other kinds of surprising rules might be hidden in the data.

2.2 Rule surprisingness based on multiple minimum generalizations
(Freitas, 1998) proposed a measure of the degree of surprisingness of a rule

that is based on considering several generalizations of that rule and counting how
many of those generalized rules predict a class different from the original rule.
This measure was originally proposed in the context of small disjuncts, i.e. rules
covering a small number of examples, but the issue of whether or not a rule is a
small disjunct is not relevant for the context of this paper. Hence, in this paper
we will refer to the rule whose surprisingness we want to measure simply as a
“specific” rule. Given a specific rule r, the method first computes the “minimum
generalizations” of r. Let m be the number of conditions (attribute-value pairs) in
the antecedent of rule r. Then rule r has k minimum generalizations, each of
them a generalized rule with k – 1 conditions. The k-th minimum generalization
of r, k=1,...m, is obtained by removing the k-th condition from the specific rule.

(Actually, this procedure for obtaining minimum generalizations is a
somewhat simplified version of the procedure described in (Freitas, 1998). In
that reference it is made a distinction between conditions with a categorical
attribute and conditions with a continuous attribute (such as Age > 25). The latter
can be generalized not only by removing the condition but also by modifying the
“cut point” in the inequality associated with the condition. However, this is a
detail that is not essential to the discussion of the rule surprisingness measure per
se, so we abstracted away this detail in our discussion in the following.)

Note that each of the m generalized rules produced by this procedure cover a
superset of the examples covered by the original, specific rule r. As a result, the
distribution of classes in the set of examples covered by each generalized rule
can be significantly different from the distribution of classes in the rule r. Hence,
the rule consequent (predicted class) is re-computed for each generalized rule,
i.e., each of those m generalized rules will predict the most frequent class in its
set of examples. The rule surprisingness measure can now be defined as follows.

Let C be the class predicted by the original specific rule r and Ck be the class
predict by the rule produced by the k-th minimum generalization. The system
compares C with each Ck and computes N, the number of times where C is
different from Ck. The number N, in the range 0....m, could be defined as the
degree of surprisingness of rule r – the larger N, the more surprising rule r is, in
the sense of predicting a class different from its minimum generalizations.



However, that measure would be biased to favour very long rules (with many
conditions), i.e., the value of the measure would tend to grow with the value of
m. In order to avoid a potential confusion between the issues of rule length and
rule surprisingness, measuring the latter in a way as independent as possible
from the former, we use the following normalized version of the rule
surprisingness measure, denoted MinGen:

MinGen = N / m .
The larger the value of this measure, the more surprising the rule is.

One disadvantage of this rule surprisingness measure is its relatively high
computational cost. Note that, for each specific rule being evaluated, the system
needs to compute m generalized rules. It is quite possible that many or most of
those m rules will not have been generated by the system before, i.e., they have
to be generated only for the purpose of measuring the degree of surprisingness of
the original specific rule. In this case the computation of the class to be assigned
to the consequent of each of those generalized rules will involve scanning the
training set to identify the coverage of that generalized rule and its corresponding
majority class.

2.3 Surprisingness at the level of individual attributes
(Freitas, 1998) proposed another rule surprisingness measure called AttSurp

(Attribute Surprisingness), based on the degree of surprisingness associated with
the individual attributes occurring in a rule antecedent. The basic idea is that the
degree of surprisingness of an attribute is estimated as the inverse of its
information gain – see (Mitchell, 1997) for a review of the concept of
information gain. The rationale for this measure is that the occurrence of an
attribute with a high information gain in a rule will not tend to be surprising to
the user, since users often know the most relevant attributes for the classification
task at hand. On the other hand, the occurrence of an attribute with a low
information gain in a rule tends to be more surprising, because this kind of
attribute is usually considered little relevant for classification purposes. Note
that, although an attribute can have a low information gain individually, it is
possible that, when combined with other attributes in the rule antecedent,
attribute interaction makes the former relevant for classification, and this kind of
attribute interaction has the potential to be very surprising to the user.

Mathematically, AttSurp was originally defined as:
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where InformationGain(Ai) is the information gain of the i-th attribute in the rule
antecedent and K is the number of attributes in the rule antecedent. In this
formula the value of AttSurp can be very large when the information gain values
are very low, which makes it difficult to compare the value of this formula with
other rule surprisingness measures. However, the original formula was later
normalized to return values in the range 0..1 (Noda et al., 1999), as follows:
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It is well-known that the information gain measure has a bias favouring
attributes with many values. As the AttSurp measure favours attributes with a
small information gain, AttSurp has a bias favouring attributes with few values.

This measure has the advantage of being very generic. It can be applied to
virtually any classification rule. It does not require that the current rule be an
exception rule, does not require the existence of other rules more generic than the
current rule, etc. Another advantage of this measure is that it can be computed
very fast. Actually, the measure only requires the computation of the information
gain of each attribute in a preprocessing step. When a given rule is being
evaluated, the system simply computes the mean of the precomputed information
gain values for the attributes occurring in the rule, which does not require any
access to the data set.

One potential disadvantage of this measure is that it requires a careful
handling of the trade-off between accuracy and surprisingness. Since it favours
attributes with a low information gain, it tends to favour rules where accuracy is
not so large. Obviously, this measure should not be used alone to evaluate rule
quality. It is essential that it be used together with another rule quality criterion
favouring more accurate rules. One possibility is to use AttSurp just in a post-
processing step, in order to select the most surprising rules among all the
discovered (and presumably accurate) rules. Another possibility is to use it
during the search for rules, using it as one of terms in a weighted formula where
at least one of the other terms is a measure of rule accuracy (Noda et al., 1999).

2.4 Rule surprisingness based on exception rules and intensity of implication
(Suzuki & Kodratoff, 1998) proposed a method that searches for surprising

rules based, at a high level of abstraction, in the same framework of finding
exception rules with respect to a common sense rule and a reference as discussed
in section 2.1 in regard to the work of (Hussain et al. 2000). However, there is a
great difference between these two references with respect to how the degree of
surprisingness of a rule is computed. As discussed earlier, (Hussain et al., 2000)
use an information-theoretic measure. In contrast, (Suzuki & Kodratoff, 1998)
proposed the use of the intensity of implication measure, as discussed next.

First, let us review the notation used by (Suzuki & Kodratoff, 1998), which
will also be used here. Let Aµ → c be a common sense rule, Aµ ∧ Bν → c‘ be an
exception rule and Bν → c‘ be a reference rule, where Aµ ≡ a1 ∧ a2 ∧ ... ∧ aµ and
Bµ ≡ b1 ∧ b2 ∧ ... ∧ bν.

In essence, the intensity of implication represents the degree of
surprisingness that a rule Aµ → c‘ has so few counter-examples. Let U and V be



sets of examples randomly-selected from the data being mined with the
restriction that the set cardinalities |U| and |V| are equal to the set cardinalities |c|
and |Aµ|, respectively, that is: |U| = |c|,  |V| = |Aµ|. The intensity of implication I
for the rule Aµ → c‘ is:

IntImp = 1 – Pr (|VU‘| ≤ |Ac‘|)
Note that in this formula the term |VU‘| represents the number of counter-

examples (false positives) of the randomly-generated rule V → U, so that the
term Pr(|VU‘| ≤ |Ac‘|) is essentially measuring the probability that the rule Aµ →
c‘ has at least as many counter-examples as a randomly-generated rule. The
smaller the value of this probability, the higher the value of I, and the better the
rule. The value of this probability is computed assuming that U and V are
independent, so that the random variable |VU‘| follows the hypergeometric law –
see (Suzuki & Kodratoff, 1998) for details.

Some desirable properties of the intensity of implication are as follows. First,
it takes into account the size of the data set in order to evaluate the reliability of a
rule: it increases as the data set size increases. Note that a conventional
conditional probability measure – Pr(c|Aµ) – does not have this property. Second,
it increases as |c| decreases, favouring rarer classes, whose prediction tend to be
more interesting to the user than the prediction of the majority class.

In order to apply this measure to exception rules, recall that the examples
covered by the antecedent of a common sense rule can be considered as the
“universe” for the exception rule (since the latter is a specialization of the
former). Hence, in the above formula Aµ and c are replaced by AµBν and Aµc‘, so
that the intensity of implication of the rule Aµ ∧ Bν → c‘ is given by:

IntImp = 1 – Pr (|VU‘| ≤ |AµBν c‘|)

3 A Comparative Study of Rule Surprisingness Measures
Table 1 summarizes the main characteristics of the rule surprisingness measures
discussed in this paper, in order to better identify their advantages and
disadvantages. The characteristics included in this table are:

Computational Cost: can be low, medium or high. A rule surprisingness
measure is classified as a low cost one if the computation of that measure does
not require an access to the training set for every rule being evaluated. This is the
case only for the AttSurp measure, as discussed earlier. Indeed, that measure
requires only a single scan of the data set in a preprocessing phase, whose result
(information gain for each attribute) is simply re-used in any rule to be evaluated.
MinGen has a high computational cost, since it involves potentially several scans
of the training set, as explained in section 2.2.

 Cardinal dilatation: indicates whether or not the value of the rule
surprisingness measure is altered with a cardinal dilatation of the data set – i.e.,
an increase in the size of the data set with all other things (particularly the
probabilities of rule antecedent, rule consequent and rule consequent given rule
antecedent) being equal.

Rule Interaction: indicates whether or not the evaluation of a rule takes into
account the interaction between that rule and other rules. For instance, the



AttSurp measure involves no rule interaction, but the other three measures
discussed in this paper involve rule interaction. Note that the general structure of
rule interaction is quite similar in the measures proposed by (Hussain et al.,
2000) and (Suzuki & Kodratoff, 1998), since in both projects there is an
interaction between a common sense rule and an exception rule and both projects
require that the common sense rule be an accurate rule. In contrast, the measure
proposed by (Freitas, 1998) involves a more complex interaction between a rule
and all of its minimum generalizations. In particular, many minimum
generalizations might be generated only for the specific purpose of evaluating
the original specific rule, and there is no quality requirement (such as a high
accuracy) associated with the generalized rules.

Granularity of the evaluation: indicates the level of granularity of the rule
evaluation, classifying it into one of three possible cases: rule antecedent (i.e.,
the rule surprisingness measure considers the antecedent as a whole, rather than
its individual conditions), condition (i.e., the measure considers individual
conditions – attribute-value pairs – in the rule antecedent), or attribute (i.e., the
measure considers individual attributes in the rule antecedent).

Range of values: indicates the range of values that can be taken on by the
rule surprisingness measure.

Table 1 – Comparison of four rule surprisingness measures
Characteristics InfoChange MinGen AttSurp IntImp

Computational

cost

Medium High Low Medium

Cardinal

Dilatation

Independent Independent Independent Dependent

Rule interaction Yes Yes No Yes

Granularity of

evaluation

condition condition attribute condition

Range of values -1 ... 1 0 .. 1 0 ...1 >0 ... +∞

4 Conclusion and Future Research
This paper discussed four measures of classification-rule surprisingness. It is
well-known that no classification algorithm is universally best across all data
sets. The same principle applies to rule surprisingness measures. There is no rule
surprisingness measure which is universally best across all application domains.
Actually, finding the “best” rule surprisingness measure for a given application
domain is even more difficult than finding the “best” algorithm (in the sense of
maximizing classification accuracy) for a given data set.

The reason is that, in the latter case, we can at least use an objective, purely
data-driven measure of performance, such as classification accuracy on the test



set. In the case of rule surprisingness measures, the definition of “best” is
problematic, since the notion of surprisingness is ultimately a subjective, user-
dependent one. However, there are several data-driven, objective measures of
rule surprisingness, such as the ones discussed in this paper, and there is a
motivation for their use, as discussed in section 2.

Hence, given the great difficulty of finding the best surprisingness measure
for a given application domain, this paper aimed at contributing to a better
understanding of the advantages and disadvantages of four of those measures.

Future work will involve computational experiments measuring the value of
each of the rule surprisingness measures discussed in this paper in several data
sets. This will produce an empirical comparison of the pros and cons of these
measures, complementing the analytical comparison presented in this paper.
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