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Abstract—We propose a novel algorithm for hierarchical
classification, the Hierarchical Dependence Network based on
non-Hierarchical Predictive Classes (HDN-nHPC) algorithm.
HDN-nHPC uses relationships among predictive classes that
are not descendants or ancestors of each other to improve
classification performance and, at the same time, provide
insights to non-obvious predictive class relationships. To test
our algorithm and baselines, we have used hierarchical ageing-
related datasets where the classes are terms in the Gene
Ontology. We have concluded, based on our experiments, that
using non-hierarchical predictive class relationships improves
the performance of the classification algorithm and that,
considering one out of three accuracy measures, the HDN-
nHPC is statistically significantly better than the other three
algorithms that we have tested, while no statistical significant
differences were found on the other two measures.

I. INTRODUCTION

This work addresses the hierarchical classification task,
where the classes are organized into a hierarchy. The goal is
to build a classification model capable of assigning classes
to new instances (with unknown classes) given a dataset
containing instances with known classes.

This work’s contribution is the proposal of a new hierar-
chical classification algorithm based on Hierarchical Depen-
dence Networks (HDN). Our algorithm uses predictive class
relationships among hierarchically unrelated classes (i.e.,
classes which are not ancestors or descendants of each other)
to improve the performance of the hierarchical classifier.

We have explored HDNs in previous work [6], however,
the current paper differs from [6] in significant ways,
specifically: 1) the use of a data-driven approach to find
predictive class relationships instead of relying solely on the
pre-established structure of the class hierarchy; 2) the use of
a dataset split approach to train the base classifiers, instead of
extending instances with the classification of other classes;
3) potentially training several base classifiers to predict
one class label given the prediction of other class labels.
We show that these modifications improve the predictive
performance and the interpretation potential of our approach.

Recent work [12] has shown that using hierarchical class
relationships improves the performance of single hierar-
chical classifiers, while being unnecessary for classifier
ensembles. In this work we go one step further: we show that
using non-hierarchical relationships for single hierarchical
classifiers improves the predictive performance compared to

not using such non-hierarchical relationships.
In this work, we evaluate the proposed hierarchical classi-

fication algorithm, and three other algorithms, in 10 ageing
related datasets. Our motivation to focus on ageing, as the
target application domain, is as follows.

Ageing-related diseases are affecting an increasing portion
of the population [4], and, consequently, the pressure to
better understand the complex ageing process is increasing
in several areas of study. Although our understanding about
ageing has improved dramatically in the last decades, we
are still far from the ultimate goal of slowing down or even
reversing the ageing process in humans. Besides the increase
in population age, another factor driving ageing research is
the greater availability of datasets containing gene or protein
sequence information (e.g. Universal Protein Resource [16]),
as well as curated hierarchical ontologies used to annotated
these genes and proteins (e.g. Gene Ontology (GO) [15]).

Studies have found several ageing-related genes in model
organisms such as the mouse, the fruit fly, the worm, and
the yeast. These genes, when turned on or off, considerably
affect the lifespan of the organisms [4]. This suggests that the
ageing process may be, to some extent, controllable through
some intervention.

The development of hierarchical classification algorithms
like the one proposed in this work has a greater potential
to generate useful classification results for biologists than
the more common approach of performing flat classification
on the data, that is, using classical classification algorithms
and ignoring the class hierarchy. Also, the predictive class
relationships found by our algorithm may help biologists un-
derstanding biological aspects of ageing-related GO terms.

The remainder of this paper is organized as follows:
Section II presents background and related work. Section III
describes our proposed algorithm. Section IV explains the
creation of the ageing datasets. Section V exemplifies the
types of predictive class relationships found by our algorithm
and reports the predictive accuracy results of the algorithms
that we have tested. Section VI concludes our work.

II. BACKGROUND AND RELATED WORK

Hierarchical classification problems are common in bioin-
formatics since, usually, genes’ functional classes are spec-
ified by a hierarchical scheme like the GO [15]. In this
scenario the set of class labels is organized into a hierarchy,



usually a tree or a DAG (Directed Acyclic Graph), where
each node represents a class label and the edges represent
generalization-specialization relationships among classes.

Hierarchical classification algorithms may be divided into
two broad types [21]: global or local. Local Hierarchical
Classification (LHC) algorithms build a set of local classifi-
cation models (base classifiers) by training a traditional (flat)
classification algorithm for each (typically small) part of
the class hierarchy in the training phase. Global hierarchical
classification algorithms build a single global classification
model predicting classes in the full class hierarchy.

Broadly speaking, local hierarchical classification algo-
rithms have the advantage of algorithmic simplicity, since
they transform the original hierarchical classification prob-
lem into a set of simpler flat classification problems in the
training phase. Conversely, global hierarchical classification
algorithms have the advantage of producing a single coherent
global classification model, which tends to be more easily
interpreted than the large number of different classification
models produced by the local approach.

A. The Predictive Clustering Tree (PCT) algorithm

PCT (Predictive Clustering Tree) is a type of global
hierarchical classification algorithms that builds a single
decision tree by recursively finding a value for a predictive
feature that splits the current set of instances in two clusters,
maximizing the similarity of classes within each cluster
and the dissimilarity of the classes across the two clusters.
The algorithm recurses in each cluster that it forms and
eventually stops if the split does not have a good quality
(based on some quality measure) or the size of a cluster falls
below a pre-established threshold. In the prediction phase,
to classify an instance x, a PCT algorithm first identifies the
cluster associated with that instance and then assigns, to in-
stance x, classes whose probabilities in the class probability
vector of that cluster are greater than a probability threshold.
The threshold is varied when computing a Precision-Recall
curve, as explained later.

The most well-known version of the PCT algorithm is
the Clus-HMC algorithm [24]. There is also an ensemble
version of Clus-HMC, called Clus-HMC-Ens [20]. In our
experiments we do not use this ensemble version due to
the interpretation difficulty that is inherent on the use of
ensemble of classifiers [7].

The PCT algorithm has only one parameter to tune: the
s-value that dictates how statistically significantly differ-
ent two groups of instances in a tree node’s split must
be in order for the split to be accepted by a F-test.
Larger s-values correspond to a more permissive test, and
thus a larger decision tree. To tune this parameter we
have applied an internal 10-fold cross-validation proce-
dure (using only the training set) in each iteration of
the main (external) cross-validation run. We have tested
the default set of parameters suggested for the Clus Sys-

tem in [24]: {0.001, 0.005, 0.010, 0.050, 0.100, 0.125}, and
chose the one with highest predictive accuracy.

B. The Hierarchical Dependence Network (HDN) algorithm

Dependence Networks (DNs) are a relatively under-
explored type of probabilistic graphical model first described
in [11]. Each node of a DN represents a random variable
and encodes a probability distribution conditioned on the
values of its parents, like in Bayesian Networks (BNs).
However, DNs are more flexible than BNs since they allow
for cycles in their graphical representation. In addition, in
a DN the edges coming out of a node Ni connect Ni to
the Markov blanket of Ni (NMB

i ), i.e. the minimal set of
nodes that make Ni independent from all other nodes. In a
conventional “flat”, single-label, classification problem, the
Markov blanket of a class corresponds to the set of predictive
features that influences the value of the class variable.

Recently, DN classification algorithms were proposed for
multi-label classification, where an instance can be assigned
to multiple class labels [9, 13]. This type of problem still
involves flat classification, since there is no hierarchy among
class labels. In this paper we address the more difficult
problem of hiearchical multi-label classification.

C. Methods for Exploring Flat Multi-label Dependencies

Classifier Chains [18] (CC) is a method that decomposes
non-hierarchical multi-label classification problems into sev-
eral single-label classification problems using the predictions
of other classifiers in the chain as features, thus, potentially
capturing important relationships among classes.

Our approach is only tangentially related to CC in the
sense that it also uses the predictions of some classifiers as
information to be passed out to other classifiers. However,
we do not use predictions as features; there is no need to
establish a coherent chain ordering (as the Gibbs Sampling
algorithm allows for loops in the graph that represents
classifier dependencies); and we deal with probabilistic
predictions, instead of crisp ones.

In [3] authors propose ways to find class dependencies
in flat multi-label datasets using classifiers and the χ2 test.
In our work we build the classifiers using dataset splits,
the acceptance criterion is different and our algorithm is
designed for multi-label hierarchical classification.

III. THE HIERARCHICAL DEPENDENCE NETWORK
BASED ON NON-HIERARCHICAL PREDICTIVE CLASSES

In this section we present our Hierarchical Depen-
dence Network based on non-Hierarchical Predictive Classes
(HDN-nHPC) classifier. We begin our discussion with some
definitions and notations.

A DN for multi-label classification estimates
P (x, C1, C2, · · · , Cn) from

∏
Ci
P (Ci|CMB

i ), where:
• x is a feature vector;



• Ci, 1 ≤ i ≤ n , is a binary random variable (RV)
representing the presence or absence of class label ci;

• CMB
i is an approximation for the markov blanket

of RV Ci. In conventional, single-label classification
problems, the set CMB

i is the set of features that
affects the prediction of the class Ci. In multi-label
classification problems, the set CMB

i consists of two
parts:

– The first part, CFB
i , is the “Feature Blanket of Ci”,

a subset of x, the minimal set of predictive features
that affect the estimation of Ci. In this work,
this set is estimated using the feature selection
algorithm CFS [10].

– The second part, CCB
i , is the “Class Blanket of

Ci”, the minimal set of class variables that affect
the estimation of Ci. In Section III-A we describe
our approach to heuristically estimate CCB

i .
• P (Ci|CFB

i , CCB
i ) is estimated using a set of pairs of

SVM classifiers, one classifier pair for each class in
CCB

i , as described in Section III-B.

A. Estimating the Class Blanket of each Class Variable

This work relies on the hypothesis that among the vast
number of classes (typically hundreds) in typical hierarchical
classification problems, there are class labels that, when
present in an instance, change how the feature vector affects
the prediction of some other class label.

Let (Ci ↼ Cj) be an ordered pair of class variables such
that the estimation given by P (Ci|x, Cj) is significantly
different from P (Ci|x). We call the set containing all such
pairs of classes as set C.

To build set C and the Markov blanket of each RV Ci ∈
C, we created a method to find pairs of classes (Ci ↼ Cj).
These pairs of classes have the property that information
about class Cj affects the probability distribution of class
Ci. That is, knowing whether or not an instance is annotated
with class Cj affects our predictions about Ci.

To achieve this, first we create a candidate set of predictive
class relationships, Ccand, containing every pair of classes
(Ci ↼ Cj) that are not descendants (or ancestors) of
each other. This condition is necessary since if classes are
descendants (or ancestors) of each other, we would have
deterministic relationships between ci and cj , that is, if ci is
an ancestor of cj , Ci = 0⇒ Cj = 0 and Cj = 1⇒ Ci = 1,
where Ci = 0 means that a particular class label cj is not
present in a instance, and Ci = 1 otherwise.

These deterministic relationships have been observed,
in our preliminary experiments, to underfit classification
models, i.e., models that rely too much on the values of
classes that are descendants or ancestors of the current class
being predicted, resulting in over-simplified models. Another
condition that must be satisfied for a pair of classes to be in
Ccand is that both classes, Ci and Cj , take the value “1” in
at least 20 instances. We do this to avoid considering classes

with too few instances, thus inducing unreliable classifiers.
We used the 20 instances threshold based on exploratory
experiments that indicate that this is a good tradeoff between
classifier reliability and training set accuracy.

The next step is to induce two SVM models to classify Ci,
for each pair (Ci ↼ Cj) ∈ Ccand. The first model, M0

(i,j),
is trained using dataset D0

(i,j) and the second, M1
(i,j), using

dataset D1
(i,j), where D0

(i,j) ∪D
1
(i,j) ≡ Dlearn, and Dlearn

is a random partition of 70% of the training set. Instances
are assigned to D0

(i,j) if Cj = 0, conversely, assigned to
dataset D1

(i,j) if Cj = 1. We use SVM because of its good
predictive performance on preliminary experiments.

After training the two SVM models using the values
of the class variable Cj , we need to test if the resulting
pair of models (i.e., using M0

(i,j) and M1
(i,j) together) has

better predictive performance than a single SVM classifier
(M(i,j)), induced using dataset Dlearn, without splitting the
data based on Cj values.

To do so, we use the training instances in Dvalid, the
complement of Dlearn, as validation instances. Note that
the classifiers did not have access to these instances earlier.
To classify a new instance using the two classifiers, which
we shall call a classifier pair from now on, we use the actual
value of Cj to decide which classifier to use: if Cj = 0 we
use M0

(i,j), if Cj = 1, we use M1
(i,j).

Intuitively, we would expect that if two given class
variables are unrelated, i.e., the presence or absence of
one class label does not change the distribution of another
class label given the features (P (Ci|x, Cj) = P (Ci|x)), the
classifier pair would have similar predictive performance
to a single classifier that uses the whole “learning set”
Dlearn. In fact, due to the reduced individual sizes of
datasets D0

(i,j) and D1
(i,j), it is likely that the classifier pair

(M0
(i,j), M

1
(i,j)) would perform worse on average than the

single classifier (M(i,j)) trained using the whole learning
set Dlearn. On the other hand, if the presence or absence
of one class label affects the distribution of another class
label given the predictive features, our approach would yield
better classifiers than the single-classifier baseline if the
classification models in the pair of classifiers can exploit
such differences. Using this rationale, we select the pairs
(Ci ↼ Cj) whose classifiers achieved better predictive
accuracy performance than the single classifier M(i, j) on
the validation set Dvalid to construct the set of pairs of
predictive classes Cpred, which is a subset of Ccand.

To estimate P (Ci|CFB
i , CCB

i ) we need to define the class
labels’ class blankets, in other words, the sets CCB

i for each
Ci. This is done by inducing a directed graph G using set
Cpred. For each pair (Ci ↼ Cj) ∈ Cpred we create a
directed edge from Cj to Ci, representing the fact that the
value of Cj affects the value of Ci. Thus, the vertices that
point to Ci comprise the set CCB

i . In addition, recall that
CFB

i is estimated using the method CFS [10].



The procedures discussed thus far are presented in Algo-
rithm 1 using the additional notation: M1

(i,j)(x), M
0
(i,j)(x)

and M(i,j)(x) denote the prediction of the corresponding
models given the feature vector x. The function AUPRC(
predictions) calculates the Area Under the Precision and
Recall Curve for a single class, a measure of the predictive
quality of the predictions, on the validation set Dvalid.

Algorithm 1 Builds the set of predictive class relationships
1: procedure FIND THE SET OF PREDICTIVE CLASS RELATIONSHIPS

Cpred AND THE GRAPH INDUCED BY Cpred .(Inputs: Ccand, D)
2: Cpred ← ∅
3: Randomly partition D into Dlearn and Dvalid.
4: for Each (Ci ↼ Cj) ∈ Ccand do
5: predsPair ← ∅
6: predsSingle← ∅
7: Generate D0

(i,j)
and D1

(i,j)
from Dlearn using Cj to split the data

and the CFS algorithm to select the most relevant features.
8: Induce M0

(i,j)
using the features selected from D0

(i,j)
.

9: Induce M1
(i,j)

using the features selected from D1
(i,j)

.
10: Induce M(i,j) using the features selected from Dlearn.
11: for Each instance (x′, C′) ∈ Dvalid do
12: if C′

j = 1 then
13: predsPair ← predsPair ∪M1

(i,j)
(x′)

14: else
15: predsPair ← predsPair ∪M0

(i,j)
(x′)

16: end if
17: predsSingle← predsSingle ∪M(i,j)(x

′)
18: end for
19: if AUPRC(predsPair) > AUPRC(predsSingle) then
20: Cpred ← Cpred ∪ (Ci ↼ Cj)
21: end if
22: end for
23: Induce graph G, treating the pairs (Ci ↼ Cj) ∈ Cpred, as a directed

edges from Cj to Ci.
24: return G and Cpred.
25: end procedure

B. Estimating Class-label Probabilities

Once we have graph G, which represents the dependence
network among class labels, we train the classifier pairs for
the classes in Cpred using the whole training set, Dall, one
classifier pair for each class in CCB

i , for all i. The next
step is to develop a way to query the classifiers of each
class variable Ci and get a single prediction to estimate
P (Ci|CFB

i , CCB
i ). As each class variable Ci may have

several classifier pairs, one pair for each class in CCB
i , to

return a unified prediction, we calculate the average class-
probability computed by the classifier pairs of each class
variable Ci (one prediction for each element of CCB

i ) using
the predictions of the classes in CCB

i to choose which
models in the classifier pairs to use. This procedure is
presented in Algorithm 2.

Due to the fact that we may have cyclic dependencies
- i.e. one class variable Ci may depend on some other
class variable Cj that, directly or indirectly, depends on Ci

- and because of the large number of possible class-label
combinations, we must employ an strategy to query our
Dependence Network. To accomplish this, we use the Gibbs
sampling presented in [6] setting the number of iterations as

Algorithm 2 Estimates P (Ci|CFB
i , CCB

i ).

1: procedure ESTIMATION OF P (Ci|CFB
i , CCB

i )(Inputs: x: the in-
stance’s feature vector, Ci: Class variable to be predicted , G:
Dependence Network, Cpred: Current predictions of classes other
than Ci for the instance)

2: CCB
i ← The class variables that point to Ci in G.

3: predictions← ∅
4: for Each class variable Cj ∈ CCB

i do
5: if Cj = 1 then
6: CFB

j ← retrieve the features selected by CFS when Cj = 1.
7: predictions← predictions ∪M1

(i,j)
(CFB

i )

8: else
9: CFB

j ← retrieve the features selected by CFS when Cj = 0.
10: predictions← predictions ∪M0

(i,j)
(CFB

i )

11: end if
12: end for
13: return the average class probability of the class labels in

predictions
14: end procedure

100 and the number of burn-in iterations as 50. Preliminary
experiments showed that these numbers were sufficient to
achieve a stationary sampling distribution.

If the set CCB
i is empty for some class variable (either

because there is no edge in G from some other variable
to Ci, or because Ci is not in G), we use a standard
SVM classifier model (denoted as Mi(C

FB
i )) to estimate

P (Ci|CFB
i ). In this case, there is no need to run the Gibbs

sampling procedure for this particular class variable, as
its class probability distribution does not depend on the
presence of any other class variable.

After all posterior probabilities are calculated, we trans-
verse the class hierarchy in a bottom up-fashion, checking
if each class probability is greater than or equal to the class
probability of its descendants. If this is not the case, we
set the class probability of the offending class to be the
maximum probability of its descendants [17].

We call the conjunction of algorithms 1, 2 and the Gibbs
sampling algorithm, HDN-nHPC.

Now that we have precisely defined the HDN-nHPC
algorithm, we can clarify the differences between the current
work and the one proposed in [6], pointed out in the
introduction. 1) The data-driven approach to find predictive
class relationships is performed in Algorithm 1 by building
the graph G. This graph represents important predictive
class relationships. 2) The dataset split approach to induce
classifiers is performed in Algorithm 1 by the creation of
different classification models (M0

(i,j) and M1
(i,j)) using

different dataset splits (D0
(i,j) and D1

(i,j)). 3) the use of
several classification models to estimate probability of a
class is done in Algorithm 2 by averaging the predictions of
the classifiers in the Markov blanket of each class label.

IV. CREATION OF THE DATASETS OF AGEING-RELATED
GENES

To study the biological aspects of ageing/longevity using
our hierarchical classification algorithm, we have built 10



datasets containing features extracted from the proteins en-
coded by the genes in the Ageing Gene Database (GenAge)
[23]. GenAge is a catalog of ageing-related genes coming
from several species, including human and model organisms
such as S. cerevisiae (yeast) and M. musculus (mouse).

Salama and Freitas [19] have already compiled an ageing-
related dataset for the hierarchical classification of ageing-
related proteins. We build upon their work by updating
and expanding the dataset to contain more species and the
features used in [22], which focused on the hierarchical
classification of generic (not specifically ageing-related)
proteins functions. In our datasets, each instance represents
an ageing-related gene, and the hierarchical classes to be
predicted are Gene Ontology (GO) terms. In the following
sections we describe the steps that we followed to build the
ageing-related datasets.

All genes were collected from the GenAge database, build
17. This version contains 298 human ageing-related genes
and 1,825 genes from model organisms, related to both
ageing and longevity.

The human gene dataset contains a comprehensive list of
genes potentially associated with human ageing. The model
organism datasets contain genes associated with ageing in
non-human organisms.

After removing the species with less than 50 genes, we
are left with five species: S. cerevisiae (yeast), C. elegans
(worm), H. sapiens (human), D. melanogaster (fly), M.
musculus (mouse). For each species we derive two datasets
with numeric alignment independent features and protein
motif features, leaving us with 10 ageing-related datasets.

The GenAge database contains the “Entrez Gene Id” as an
external gene identifier; we use it to retrieve the “UniprotKB
AC ID” protein identifier using the UniProt ID Mapping
Tool. Because more than one protein may be associated
with a single gene, 2,855 UniProt identifiers were retrieved
from the 2,123 genes. However, from the 2,855 proteins, we
discard 1,243 whose functions were not manually reviewed
by experts or whose species is one of the four that were
discarded. After this step, we end up with 1,612 proteins
(instances), distributed among organisms as presented in the
last column of Table I.

Finally, we downloaded the amino acid sequence of each
protein from the UniProt-SwissProt database, using build
2014 02 1. In the next sections we briefly describe how we
created the features for our datasets.

The hierarchical classes were created for each model
organism by first retrieving the GO terms associated with
each protein sequence using the UniProt-SwissProt database.
Next, we used the DAVID tool2 to retrieve the over-
expressed GO terms of each model organism, considering

1ftp://ftp.uniprot.org/pub/databases/uniprot/current re-
lease/knowledgebase/

2http://david.abcc.ncifcrf.gov

Table I: Number of features and instances for each organism
(dataset type).

Species Number of features Number of
instances

Numeric Motifs

Caenorhabditis elegans 59 112 263
Drosophila melanogaster 59 55 79
Homo sapiens 60 284 301
Mus musculus 59 40 107
Saccharomyces cerevisiae 59 296 762

only these GO terms in our final dataset. We call these over-
expressed GO terms ageing-related GO terms, as they occur
significantly more often than statistically expected by chance
in our datasets of ageing-related proteins.

Numeric Alignment-Independent Features: We ex-
tracted the following numeric features described in [19, 22]:
“Amino Acid Composition”, “Composition”, “Transition”,
“Distribution”, and “Z-Values”. Furthermore, all datasets
(with all types of features) have two features: “Sequence
Length” (the amino acid sequence length), and “Molecu-
lar Weight” (the molecular weight of the protein). These
features are called alignment-independent, as they do not
require any alignment procedure such as “BLAST” to be
performed on the sequences prior to their calculation. In
addition, following [8], we extend each of the human ageing
datasets with the Dn/Ds ratio, which measures the degree
of conservation between two gene sequences. Using the
Dn/Ds ratios from the BioMart tool3 we extracted 288
Dn/Ds ratios from the human/rhesus genes.

Protein Motif Features: The binary motif features rep-
resent the presence or absence of a given motif in the amino
acid sequence of the protein. A motif is a template describing
similar sequences of amino acids that occur recurrently in
proteins. Motifs are a high-level representation of a protein
and it is expected that proteins sharing some specific motifs
share similar functions. We used the same four motif datasets
investigated in [22]: Interpro, Pfam, Prosite and PRINTS.
We have only considered motifs occurring in at least three
proteins (instances) in the dataset, to avoid overfiting.

Table I shows the number of features and instances of
each dataset type and model organism.

V. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation of
the HDN-nHPC algorithm in the ageing-related datasets.
In Section V-A we present the strongest predictive class
relationships found by the HDN-nHPC algorithm. In Section
V-B we show the predictive accuracy results of our algorithm
in several ageing-related datasets and the corresponding
statistical analysis.

3http://www.ensembl.org/biomart/



Table II: Mean, maximum and minimum AUPRC differences
(across the folds of the 10-fold cross validation process)
between the pair-wise classifiers (M0

(i,j) and M1
(i,j)) and the

single classifier (M(i,j)). From this table it is clear that the
SVM classifier predicting class C1 greatly benefits from the
dataset split based on C2 values.

C1 C2 Mean Max. Min.
GO:0046483 GO:0034641 0.56 0.50 0.59
GO:0034641 GO:0006725 0.55 0.51 0.62
GO:0006725 GO:0046483 0.54 0.51 0.58
GO:0006807 GO:0046483 0.53 0.52 0.53
GO:0034641 GO:1901360 0.51 0.41 0.58
GO:0006725 GO:0034641 0.51 0.49 0.54
GO:1901360 GO:0006807 0.49 0.43 0.60
GO:0046483 GO:0006807 0.49 0.46 0.53
GO:0034641 GO:0046483 0.49 0.35 0.57
GO:1901360 GO:0034641 0.47 0.42 0.52

A. Analysis of the Predictive Class Relationships

As an example of the benefit of detecting predictive class
relationships and how to use them to improve predictive
accuracy, Table II presents the 10 strongest predictive class
relationships for the numeric yeast dataset, the biggest
dataset with respect to the number of instances. Relation-
ships are ranked in decreasing order of the mean AUPRC
accuracy measure difference, calculated as the AUPRC of
the pair of classifiers (M0

(i,j) and M1
(i,j)) minus the AUPRC

of the single classifier (M(i,j)), over the 10 folds of the
cross-validation procedure.

It is clear that there are strong relationships in the yeast
dataset that may be exploited by our algorithm. Table III
presents additional information about the GO terms from
Table II. This table contains in its columns the GO term Id,
its name, the average depth of the term and the average
height of the term. The average depth of the term is
computed by calculating the average length of all paths from
the root node of the hierarchy to the GO term being analysed.
Similarly, the average height of the GO term is computed by
calculating the average length of all paths from the GO term
being analysed to the reachable leaves of the term hierarchy.

The average depth and average height of the GO term are
used to inform us how specific a GO term is. More specific
GO terms tend to provide more information to users of
the classification system. Although average depth is a more
common measure of term specificity, we also use the average
height because sometimes a relatively shallower node may
be more specific than a deeper one.

Table III shows that the selected GO terms are located,
in general, in the middle of the GO, as far as depth and
height are concerned. In other words, there is a compromise
between specificity and generality, probably because deeper
GO terms are easier to differentiate from the other nodes
but, at the same time, contain less labeled instances.

Figure 1 shows the ancestors of the GO terms present in
Table III, with solid edges representing the original GO rela-
tionships and dashed edges representing the predictive class

Table III: Information about the GO terms in table II
Go term Name Avg. Depth Avg. Height

GO:0046483 heterocycle metabolic
process

4.0 4.5

GO:0034641 cellular nitrogen com-
pound metabolic process

4.0 4.0

GO:0006725 cellular aromatic com-
pound metabolic process

4.0 4.8

GO:0006807 nitrogen compound
metabolic process

3.0 4.8

GO:1901360 organic cyclic
compound metabolic
process

4.0 4.5

relationships detected by the algorithm. It is clear that the
relationships found by the algorithm connect classes that are
semantically related; all of them are related to metabolism
and are relatively close in the original hierarchy. This is
a sign that these predictive class relationships are in fact
meaningful. Note that the class dependencies represented
by the dashed edges (i.e., detected by our method) would
be ignored by a conventional local hierarchical classification
algorithm, which would consider only parent-child relation-
ships in the original class hierarchy.
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Figure 1: GO terms in Table III and their ancestors. Solid
edges represent the original GO term relationships. Dashed
edges represent the class dependencies present in Table II.

B. Predictive Accuracy Results and Statistical Analysis

We have used three measures of predictive accuracy:
AU(PRC), AUPRCw, and AUPRC [24]. These mea-
sures are variations of the hierarchical version of the
AUPRC measure, which we used as the criteria for
choosing the predictive class relationships. Notice that the
AUPRC measure is used for individual classes, while the
other measures work in the class hierarchy as a whole.
For each class and for each instance, we construct a PR
curve (a plot of the classifier’s precision as a function of
its recall) by thresholding the output (class probability)
of the classifier using values in the interval [0, 1]. Each
threshold is associated with a value of precision and recall,
corresponding to a point in the PR space. To obtain a single
performance measure from the curve, we calculate the area
under the curve using a trapezoidal approximation [2]. A
perfect classifier would have an AUPRC of 1.0.

To calculate AU(PRC), we use the hierarchical versions
of precision and recall for a fixed threshold, defined as:



hP ≡
∑

j |Pj∩Tj |∑
j |Pj | and hR ≡

∑
j |Pj∩Tj |∑

j |Tj | .

Where Pj is the set of predicted classes of the j-th
instance and Tj is the set of true classes of the j-th instance.

To calculate AUPRC we simply average all the
class-wise AUPRC performances. Similarly, to calculate
AUPRCw, we calculate the AUPRC of each class and
then the average over all classes weighted by the number
of instances belonging to each class, that is, AUPRCw ≡∑

i AUPRCi×Si∑
i Si

; where Si is the number of instances in the
i-th class.

Table IV shows the predictive accuracy results of our
algorithm (HDN-nHPC) in comparison with three baseline
algorithms: 1) the PCT algorithm, 2) the original HDN
algorithm and 3) a LHC classifier using one classifier per
node, SVM as a base classifier and CFS to select the
features for each class node. The LHC classifier for class
Ci uses as positive instances the ones belonging to class
Ci, and as negative instances the ones that do not belong
to Ci. The PCT algorithm is a strong baseline because
it is considered a state-of-the-art interpretable hierarchical
classifier with good predictive accuracy. The HDN is a
natural baseline since it also builds a Dependence Network
to estimate class-probabilities and also uses Gibbs sampling
to query the network. Comparing HDN-nHPC with the LHC
algorithm is important for checking if using non-hierarchical
predictive class relationships enhances the performance of
the base classifiers, since LHC does not use predictive class
relationships.

We also tested a version of HDN-nHPC where predictive
class relationships are found by a much faster statistical χ2

test, instead of SVMs. This approach (results not shown
due to lack of space) yields, on average, worst predictive
performance than our HDN-nHPC algorithm, indicating that
the use of SVMs to find predictive class relationships is more
effective than the simpler χ2 statistical test.

In Table IV, the best result for each dataset and each
AUPRC measure is shown in boldface. The best (lowest)
average rank over the 10 datasets and 3 accuracy measures
was obtained by HDN-nHPC with the AU(PRC).

We have carried out a statistical analysis of the results
in Table IV using the non-parametric Friedman test (based
on the algorithms’ ranks) to detect if there are statistically
significant differences among classifiers, followed by the
Hochberg’s post-hoc test to detect which classifiers were
statistically significant worse than the best performing clas-
sifier (the control). This procedure is explained in detail in
[5]. We have performed three individual tests, one for each
accuracy measure, using the significance level of 0.05.

The Friedman test has detected differences among clas-
sifiers for all three AUPRC measures. According to the
post-hoc test, our new algorithm, HDN-nHPC, was the
best considering the AU(PRC) measure, with statistically
significant better results than all three other algorithms.

HDN-nHPC was also the second best classifier considering
the other two measures, with no statistically significant
differences with respect to the best algorithm (PCT).

As AU(PRC) is a micro-average measure, it tends to
assign greater weight to classes containing more instances,
whereas the measures AUPRCw and AUPRC are varia-
tions of a macro-average measure, which tends to weight
classes uniformly [14]. Hence, the fact that our approach
achieves significantly better performance on classes with
more instances seems to be partly explained by the fact that
our approach does not consider predictive class relationships
occurring in classes with few instances (less than 20). Recall
that for those classes we use standard SVM classifiers, which
have a bias to overfit when dealing with very imbalanced
class distributions [1].

VI. CONCLUSION

We have proposed a novel hierarchical classification al-
gorithm, the Hierarchical Dependence Network based on
non-Hierarchical Predictive Classes (HDN-nHPC). We have
tested our method on 10 hierarchical classification datasets
where the classes are ageing-related Gene Ontology terms.

We have shown that our algorithm is capable of finding
strong predictive relationships among hierarchically unre-
lated classes in our datasets. Furthermore, the HDN-nHPC
algorithm achieved statistically significantly better predictive
accuracy than three other hierarchical classifiers in one of
the three measures that we used to test the algorithms, with
no statistically significant differences between our algorithm
and the PCT algorithm according to the other two predictive
accuracy measures. Also, the proposed HDN-nHPC algo-
rithm obtained the best mean rank out of 12 combinations
of 4 algorithms times 3 accuracy measures.

Considering that a version of the HDN-nHPC algorithm
without using predictive class relationships would degen-
erate to the Local Hierarchical Classification (LHC) algo-
rithm used in our experiments, we can also conclude that
using predictive relationships among hierarchically unrelated
classes improved the performance of the classification sys-
tem, as the HDN-nHPC algorithm had better or equal mean
rank than the LHC algorithm in all three accuracy measures
that we have used.
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