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Abstract

In most classification problems, a classifier assigns a single class to each instance and

the classes form a flat (non-hierarchical) structure, without superclasses or subclasses. In

hierarchical multilabel classification problems, the classes are hierarchically structured,

with superclasses and subclasses, and instances can be simultaneously assigned to two or

more classes at the same hierarchical level. This article proposes two new hierarchical

multilabel classification methods based on the well-known local approach for hierarchical

classification. The methods are compared with two global methods and one well-known

local binary classification method from the literature. The proposed methods presented

promising results in experiments performed with bioinformatics datasets.
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1 Introduction

In traditional classification problems, each instance from a dataset is associated with just one

out of two or more classes. In hierarchical multilabel classification (HMC), the classification

task is more complex, since the classes are hierarchically structured and an instance can simul-

taneously belong to more than one class at the same hierarchical level. These problems are

very common in applications like protein and gene function prediction and text classification.

HMC problems can be treated using two major approaches, referred to as local (or top-

down) hierarchical classification, and global (or one-shot) hierarchical classification. In the local

approach, traditional classification algorithms are trained to produce a hierarchy of classifiers,

which typically are applied in a top-down fashion to classify each new (test) instance. In

contrast, the global approach induces a single classification model considering the class hierarchy

as a whole.

According to [39], there are different training versions for the local approach: a local classifier

per node, a local classifier per parent node, and a local classifier per level. These versions use

a similar local procedure to predict the class of a new instance. The experiments presented in

this work use only the local classifier per parent node version. In this version, for each parent

node in the class hierarchy, a classifier is induced considering the classes of its child nodes.

When this classifier has to deal with more than two classes, a multiclass classification approach

must be used.

For the classification of a new instance, the system initially predicts its most generic class,

which is a class node at the first level in the hierarchy. The predicted class is used to reduce

the set of possible child classes at the next level, defining its subclasses. Thus, in the test

phase, when an instance is assigned to a class that is not a leaf node, it is further classified

into one or more subclasses of this class. A disadvantage of this approach is that, as the tree

is traversed toward the leaves, classification errors are propagated to the deeper levels of the

class hierarchy. However, it has the positive aspect that any traditional (non-hierarchical)

classification algorithm can be used at each node of the class hierarchy.

In the global approach, after inducing a single classification model using the whole training

set, the classification of a new instance occurs in just one step. Since global methods must

consider the peculiarities of hierarchical classification, traditional classification algorithms can-
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not be used, unless adaptations are made to consider the whole class hierarchy. As a result,

global methods have a more complex implementation. However, they avoid the error propaga-

tion problem associated with the local approach. In addition, if the global approach is used to

generate a set of classification rules, the induced global rule set tends to be less complex (with

much fewer rules) than the collection of all local rule sets generated by classifiers following the

local approach [2, 47].

This article proposes and evaluates two local methods, named HMC-Label-Powerset and

HMC-Cross-Training. These new methods are hierarchical variations of non-hierarchical multi-

label methods found in the literature: Label-Powerset [44] and Cross-Training [38]. The HMC-

Label-Powerset method uses a label combination strategy to combine sibling classes assigned to

an instance into a new class, transforming the original HMC problem into a hierarchical single-

label problem. The HMC-Cross-Training method applies a label decomposition strategy, which

transforms the original HMC problem into a set of hierarchical single-label problems. In spite

of the transformations performed, in the end, both methods produce solutions to the original

hierarchical multilabel problem. Thus, the main difference between the proposed methods is:

• HMC-Label-Powerset: based on local label combination, where the set of labels assigned

to an instance is combined into a new class;

• HMC-Cross-Training: based on local label decomposition, where the HMC problem is

decomposed into a set of single-label problems.

In this work, these two methods are compared with three well-known HMC methods: the

well-known local binary-relevance method (HMC-Binary-Relevance) [39], used as baseline in

many works, and two global methods, HC4.5 [11] and Clus-HMC [47]. The main aspects of

these three methods are:

• HMC-Binary-Relevance: local method based on local binary classification, where a clas-

sifier is associated with each class and trained to solve a binary classification task;

• HC4.5: global hierarchical multilabel variation of the C4.5 algorithm [34], where the

entropy formula is modified to cope with HMC problems;

• Clus-HMC: global method based on the concept of Predictive Clustering Trees (PCTs)

[6], where a decision tree is structured as a cluster hierarchy.
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An experimental comparison between the global and local approaches is another contri-

bution of this work, since the analysis of the results can lead to the improvement of existing

hierarchical classification methods and to the development of new methods. Besides, there are

few empirical comparisons of these two approaches in the literature [14, 47], since most of the

works compare a proposed method with a non-hierarchical counterpart.

The five methods investigated are evaluated using 10 datasets related with gene function

prediction for the Saccharomyces cerevisiae (a specific type of Yeast) model organism, regarding

different data conformations. Specific metrics developed for the evaluation of HMC classifiers

are used. The experimental results show that the proposed methods, specially the HMC-Label-

Powerset method, can provide a good alternative to deal with HMC problems.

This article is organized as follows: Section 2 introduces the basic concepts of hierarchical

and multilabel classification; Section 3 has a brief review of recent HMC works found in the

literature; the proposed methods are explained in details in Section 4; the experimental setup

and the analysis of the results are presented in Sections 5 and 6, respectively; finally, Section 7

discusses the main conclusions and future research directions.

2 Hierarchical and Multilabel Classification

This section briefly introduces hierarchical and multilabel classification problems. For such,

it starts with hierarchical single-label problems followed by non-hierarchical multilabel prob-

lems. These types of problems are then combined in the discussion of hierarchical multilabel

classification problems, which are formally defined.

2.1 Hierarchical Single-Label Classification

In most of the classification problems described in the literature, a classifier assigns a single class

to each instance xi and the classes form a non-hierarchical structure, with no consideration of

superclasses or subclasses. However, in many real classification problems, one or more classes

can be divided into subclasses or grouped into superclasses. In this case, the classes follow

a hierarchical structure, usually a tree or a Directed Acyclic Graph (DAG). These problems

are known in the literature of Machine Learning (ML) as hierarchical classification problems.

In these problems, new instances are classified into the class(es) associated with one or more
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nodes in a class hierarchy. When each new instance must be assigned to a leaf node of the

class hierarchy, the hierarchical classification task is named mandatory leaf node classification.

When the most specific class assigned to an instance can be an internal (non-leaf) node of the

class hierarchy, the task is named non-mandatory leaf node classification [22].

Figure 1 illustrates examples of two text classification problems, one whose classes are

structured as a tree and the other as a DAG. The main difference between the tree 1(a) and

the DAG 1(b) structures is that, in the tree structure, each node (except the root) has exactly

one parent node, while, in the DAG structure, each node can have more than one parent node.

In tree structures, each class has a unique depth, because there is only one path from the

root to any given class node. In DAG structures, however, the depth of a class is no longer

unique, since there can be more than one path between the root and a given class node. These

characteristics must be taken into account in the design and evaluation of classification models

based on these structures.

Any Class

Biomedicine

Microbiology

Bioinformatics

Artificial
Intelligence

Computer
Networks

Medicine Biology Computer
Science

Cardiology

Biomedicine

Microbiology

Biostatistics

Bioinformatics

Artificial
Intelligence

Computer
Networks

Medicine Biology Computer
Science

Any Class

(a) (b)

Fig. 1: Classification problems of scientific reports: (a) hierarchy structured as a tree; (b)
hierarchy structured as a DAG.

In both structures, classes associated with deeper nodes in the hierarchy usually have lower

prediction accuracy. This occurs because these classes are more specific and the classifiers for

these nodes are trained with fewer instances than classes associated with shallower nodes.

2.2 Non-Hierarchical Multilabel Classification

In multilabel classification problems, each instance xi can be associated to two or more classes

at the same time. A multilabel classifier can be represented by a function H : X → 2C , which

maps an instance xi ∈ X (space of instances) into a set of classes Ci ∈ C (space of classes).
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Figure 2 illustrates a comparison between a conventional classification problem, where in-

stances can be assigned to only one class, and a multilabel classification problem. Figure 2(a)

represents a classification problem in which a document can belong to one of the two classes

“Biology” or “Computer Science”, but never to both classes at the same time. Figure 2(b)

shows a classification problem in which a document can be simultaneously assigned to the

classes “Biology” and “Computer Science”, referred to as “Bioinformatics” documents.

Fig. 2: Examples of classification problems: (a) traditional single-label classification; (b) mul-
tilabel classification.

Similar to hierarchical problems, where local and global approaches can be used to solve the

classification task, two major approaches have been used in multilabel problems, referred to

as algorithm independent and algorithm dependent [9]. The algorithm independent approach

transforms the original multilabel problem into a set of single-label problems and, as in the

local approach, any traditional classification algorithm can be used. In the algorithm depen-

dent approach, as the name suggests, new algorithms are developed specifically for multilabel

problems, or modifications are made in the internal mechanisms of existing traditional algo-

rithms. The global approach for hierarchical problems can be seen as an algorithm dependent

approach, as new or modified algorithms are used.

As stated by [7], it is worth noting that multilabel classification is different from fuzzy

classification. Fuzzy classification is used to deal with ambiguity between multiple classes for

a given instance. It is not used to achieve a multilabel classification. Usually, a defuzzification

step is used to derive a crisp classification decision. The multilabel classification, on the other

hand, is a problem where an instance can have properties of multiple classes, and these classes

can be very distinct. Additionally, the use of membership functions in both problems is different.

While, in fuzzy systems, for each instance, the sum of the degrees of memberships in all “fuzzy
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classes” is 1, this constraint in not applied to multilabel problems, where each instance can be

assigned to more than one class, belonging 100% to each class, which would be equivalent to a

“total degree of membership” much larger than 1.

2.3 Hierarchical Multilabel Classification

In hierarchical multilabel classification problems, the multilabel and hierarchical characteristics

are combined, and an instance can be assigned to two or more subtrees of the class hierarchy.

The HMC problem is formally defined by [47] as follows:

Given:

• a space of instances X;

• a class hierarchy (C,≤h), where C is a set of classes and ≤h is a partial order representing

the superclass relationship (for all c1, c2 ∈ C : c1 ≤h c2 if and only if c1 is a superclass

of c2);

• a set T of instances (xi, Ci) with xi ∈ X and Ci ⊆ C, such that c ∈ Ci ⇒ ∀c′ ≤h c : c′ ∈ Ci;

• a quality criterion q that rewards models with high accuracy and low complexity.

Find:

• a function f : X → 2C , where 2C is the powerset of C, such that c ∈ f(x) ⇒ ∀c′ ≤h c :

c′ ∈ f(x) and f optimizes q.

The quality criterion q can be the mean accuracy of the predicted classes or the distances

between the predicted and real classes in the class tree. It can also consider that misclassifica-

tions in levels close to the root node are worse than misclassifications in deeper levels. Besides,

the complexity of the classifiers and the induction time can be taken into account as quality

criteria.

An example of HMC problem is illustrated in Figure 3, in which the class hierarchy is

structured as a tree. In this example, a scientific article can be classified in the classes “Biol-

ogy/Biostatistics”, “Biology/Bioinformatics”, and “Computer Science/Artificial Intelligence”.

When a prediction is made in the internal nodes of the tree, it generates a subtree. In the case

of hierarchical single-label classification, this subtree is reduced to a path.

7



Any Class

Biomedicine

Microbiology

Bioinformatics

Artificial
Intelligence

Computer
Networks

Medicine Biology Computer
Science

Cardiology

Biomedicine

Microbiology

Computer
Networks

Medicine

Any Class

(a) (b)

Fig. 3: HMC problem structured as a tree: (a) class hierarchy; (b) predictions generating a
subtree.

It is important to notice the difference between hierarchical single-label problems and mul-

tilabel problems. A hierarchical single-label problem can be seen as being naturally multilabel

in a kind of trivial way, due the fact that a path in the hierarchy has more than one class.

When the class “Biology/Bioinformatics” is assigned to an instance, this prediction means that

the instance belongs to two classes: “Biology” and “Bioinformatics”. However, in this paper,

a hierarchical problem is considered multilabel only in the non-trivial case where classes from

more than one path in the hierarchy are assigned to an instance.

3 Related work

Many methods have been proposed in the literature to deal with HMC problems. The majority

of them are applied to protein and gene function prediction and text classification. This section

reviews some of the recent methods, organizing them according to the taxonomy proposed

by [39]. In this taxonomy, a hierarchical classification algorithm is described by a 4-tuple

< ∆, Ξ, Ω, Θ >, where:

• ∆: indicates if the algorithm is hierarchical single-label (SPP - Single Path Prediction)

or hierarchical multilabel (MPP - Multiple Path Prediction);

• Ξ: indicates the prediction depth of the algorithm - MLNP (Mandatory Leaf-Node Pre-

diction) or NMLNP (Non-Mandatory leaf-node prediction);

• Ω: indicates the taxonomy structure the algorithm can handle - T (tree structure) or D

(DAG structure);
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• Θ: indicates the categorization of the algorithm under the proposed taxonomy - LCN

(Local Classifier per Node), LCL (Local Classifier per Level), LCPN (Local Classifier per

Parent Node) or GC (Global Classifier).

A LCN method was proposed in [4], where a hierarchy of SVM classifiers [46] is used for the

classification of gene functions according to the biological process hierarchy of the GO (Gene

Ontology) [3]. Classifiers are trained for each class separately. The predictions are combined

using a Bayesian network model, with the objective of finding the most probable consistent set

of predictions.

Another LCN method, [10], proposed a Bayes-optimal classifier and applied it to two

document datasets: the Reuters Corpus Volume 1, RCV1 [29] and a specific subtree of the

OHSUMED corpus of medical abstracts [25]. In this method, the relationships between the

classes in the hierarchy are seen as a forest. Trees in this forest represent a class taxonomy G.

The method starts by putting all nodes of G in a set S. The nodes are then removed from S

one by one. Every time an instance is assigned to a class ci, it is also assigned to the classes in

the path from the root of its tree to the class ci.

Also based on the LCN strategy, an ensemble where each base classifier is associated with a

class of the hierarchy was investigated in [45]. It was applied to datasets with genes annotated

according to the FunCat scheme developed by MIPS [30]. The base classifiers were trained to

become specialized on the classification of one class in the hierarchy. For such, each trained

classifier estimates the local probabilities p̂i(x), that a given instance x belongs to a class ci.

The ensemble phase estimates the “consensus” global probability pi(x).

A local strategy that initially trains a classifier for the first hierarchical level is proposed

in [27]. The dataset used was composed by MedLine articles associated with GO codes. The

training process follows a LCPN strategy, and, during the top-down classification process, each

classifier outputs a real value, representing the probability that the input instance belongs to

a class ci. Only the classes whose probability is higher than a given threshold are assigned to

the instance.

A second LCPN method was proposed by [20]. This method is a hierarchical variation of

the AdaBoost [37], named TreeBoost.MH. It was applied to the hierarchical multilabel classi-

fication of documents, using a hierarchical version of the Reuters-21578 corpus, generated in
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[42], and the Reuters Corpus Volume 1 - version 2 (RCV1-v2) [29]. The TreeBoost.MH is a

recursive algorithm that uses the AdaBoost.MH as its base step, and is called recursively over

the hierarchical class structure.

There also works proposing GC methods. The work of [36], for example, investigated a

kernel based algorithm for the hierarchical multilabel classification. This method was applied

to text and biological classification problems (RCV1, WIPO-alpha patent dataset [48] and

Enzyme classification dataset [32]). The classification method is based on a variation of a

framework named Maximum Margin Markov Network [41, 43], where the hierarchical structure

is represented as a Markov tree. For the learning process, the authors defined a joint feature

map φ(x, y) over the input and output spaces. In the HMC context, the output space can be

defined as all possible subtrees or subgraphs of the class hierarchy.

Another GC method was proposed in [11]. This global method, named HC4.5, is based on

decision tree induction. It was applied to the classification of gene functions of the Saccha-

romyces cerevisiae organism. It uses a variation of the C4.5 algorithm, in which modifications

in the use of the class entropy are made. In the original C4.5 algorithm, the entropy is used to

decide the best split in the decision tree. The authors’ variation of C4.5 employed the sum of

the entropies of all classes to choose the best attribute to label an internal node of the tree.

The GC strategy was also used in the work of [8], where two new HMC methods were

proposed and applied to the task of document classification, also using the WIPO-alpha patent

dataset. The first method is a generalized version of the Perceptron algorithm, and the second

is a hierarchical multilabel SVM. For the multilabel version of the SVM, the authors generalized

the multiclass formulation [15] to a multilabel formulation similar to [19]. The proposed hier-

archical Perceptron algorithm uses the minimum-overlap (Minover) learning rule [28], so that

the instance that most violates the desired margin is used to update the separating hyperplane.

The work of [2] also followed the GC strategy to developed an Artificial Immune System

(AIS), named Multilabel Hierarchical Classification with an Artificial Immune System (MHC-

AIS), for the prediction of protein functions described in the GO. The proposed algorithm is

able to find a set of rules that are both hierarchical and multilabel, so that a single classification

rule can assign more than one class to a given protein (instance). The algorithm training is

divided into two basic procedures, named Sequential Covering (SC) and Rule Evolution (RE).
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These procedures produce candidate classification rules, each rule composed of two parts: an

antecedent (IF part), represented by a vector of attribute-value conditions, and a consequent

(THEN part), represented by a set of predicted classes.

Still based on the GC approach, the work of [47] compared three methods that use decision

trees, based on PCTs [6], for HMC problems. The methods are compared using datasets related

to functional genomics. The authors compared the performance of the Clus-HMC method that

induces a single decision tree making predictions for all the classes of the hierarchy at once,

with other two methods that induce a decision tree for each hierarchical class, named Clus-

SC and Clus-HSC. Clus-SC defines an independent single-label hierarchical classification task

for each class, ignoring the hierarchical relationships between the classes. Clus-HSC explores

the hierarchical relationships to induce a decision tree for each class in the hierarchy. The

authors also applied the methods to class hierarchies structured as DAGs, discussing the issues

that arise when dealing with these kinds of structures and the modifications required to the

algorithms to be able to deal with such hierarchies.

Table 1 presents the methods reviewed in this section, organized according to the taxonomy

presented by [39].

Table 1: Detailed categorization of the algorithms according to the taxonomy proposed by [39].
< ∆, Ξ, Ω, Θ > List of Works
< MPP, NMLNP, D, LCN > [4]
< MPP, NMLNP, T, LCN > [10, 45]
< MPP, NMLNP, D, LCPN > [27]
< MPP, MLNP, T, LCPN > [20]
< MPP, NMLNP, T,GC > [36, 11]
< MPP, NMLNP, D, GC > [8, 2, 47]

4 Proposed Methods

This section presents the HMC methods proposed in this work. The first method, named Hier-

archical Multilabel Classification with Label-Powerset (HMC-LP), performs a combination of

labels (classes), where all labels assigned to an instance, at a specific level, are combined into

a new and unique label. This creates a hierarchical single-label problem. The second method,

named Hierarchical Multilabel Classification with Cross-Training (HMC-CT), carries out a de-

composition of labels, creating many hierarchical single-label problems. According to the tax-
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onomy proposed by [39], these new methods can be classified as < MPP,MLNP, T, LCPN >.

4.1 Hierarchical Multilabel Classification with

Label-Powerset (HMC-LP)

The HMC-LP method uses a label combination process to transform the HMC problem into a

hierarchical single-label problem. It is a hierarchical adaptation of the Label-Powerset method

used for non-hierarchical multilabel classification in [7] and [44]. Different from the HMC-

Binary-Relevance (HMC-BR) method, HMC-LP considers the sibling relationships between

classes.

In the Label-Powerset method used for multilabel non-hierarchical classification, all classes

assigned to each instance are combined into a new and unique class. Figure 4 illustrates an

example of the application of the label combination process. This figure illustrates a combina-

tion of the classes in the instances 1 and 3. For each of these two instances, a new class was

created, labeled “Biomedicine”.

Multilabel Problem

Instances Classes

1
2
3
4
5
6

Biology, Medicine
Biology
Biology, Medicine
Computer Science
Medicine
Biology

Single-Label Problem

Instances Classes

1
2
3
4
5
6

Biomedicine
Biology
Biomedicine
Computer Science
Medicine
Biology

Fig. 4: Label combination process of the Label-Powerset method.

In the HMC-LP method, labels are combined at each level of the class hierarchy. This

occurs by combining all classes assigned to each instance, at a specific level, creating a new

class.

To illustrate this process, consider an instance belonging to the classes A.D and A.F , and

another instance belonging to the classes E.G, E.H, I.J and I.K, where A.D, A.F , E.G, E.H,

I.J and I.K are hierarchical structures, such that A ≤h D, A ≤h F , E ≤h G, E ≤h H, I ≤h J

and I ≤h K with A, E and I belonging to the first level and D, F , G, H, J and K belonging

to the second level, as shown in Figure 5. When the HMC-LP method is applied, the resulting

combination of classes for the two instances would be a new hierarchical structure with the

label paths CA.CDF and CEI .CGHJK , respectively. In the first instance, CDF is a new label
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formed by the combination of the labels D and F at the second level. In the second instance,

CGHJK is a label formed by the combination of the labels G, H, J and K at the second level.

Figure 5 illustrates this process of label combination. To the best of our knowledge, this type

of adaptation was not yet reported in the literature.

Fig. 5: Label combination process of the HMC-Label-Powerset method.

As can be seen in Figure 5, after the label combination process, the original problem is

transformed into a hierarchical single-label problem. During the training and test phases, the

local approach is used, with one or more multiclass classifiers at each internal hierarchical

level. At the end of the classification process, the predictions referring to the combined classes

are transformed into predictions of their original, individual classes. The label combination

procedure is presented in Algorithm 1.

Algorithm 1: Label combination procedure of the HMC-LP method.

Procedure LabelCombination(X, C)
Input: set of instances X, set of classes C
Output: NewClasses
foreach level j of the class hierarchy do1

foreach subset Ci of the set C, assigned to an instance xi in level j do2

Get a new class ci,j for the instance xi from Ci3

NewClassesi,j ← ci,j4

return NewClasses5

One problem with the label combination process is that it can considerably increase the

number of classes in the dataset. As a small example, Figure 4 shows a multilabel problem

with three classes. After the label combination procedure, the number of classes is increased to

four. If there are many possible multilabel combinations in the dataset, the new formed classes

may have few positive instances, resulting in sparse training data. Despite this disadvantage, if

multiclass classifiers are used at each internal node, instead of binary classifiers, the induction

time might decrease considerably when compared with the HMC-Binary-Relevance method.
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4.2 Hierarchical Multilabel Classification with

Cross-Training (HMC-CT)

The HMC-CT method uses a label decomposition process to modify the original hierarchical

multilabel problem, transforming it into a set of hierarchical single-label problems. In the

decomposition process, if the maximum number of labels per instance is N , the original problem

is decomposed into N single-label problems. For each instance, each possible class is considered

the positive class in turn. Thus, multilabel instances participate more than once in the training

process. As an example, if a dataset has multilabel instances belonging to the classes cA, cB

and cC , when a classifier for the class cA is trained, each multilabel instances that has the class

cA as one of its classes becomes a single-label instance for the class cA. The same procedure is

adopted for the classes cB and cC . The method, named Cross-Training, was originally proposed

by [38] for non-hierarchical multilabel classification.

The label decomposition process of the Cross-Training method for non-hierarchical clas-

sification is illustrated in Figure 6. It is possible to see in the figure that when a classifier

is trained for the class “Biology”, all multilabel instances that belong to the class “Biology”

become single-label instances for that class, and the same procedure is adopted for the other

classes.
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Multilabel Problem

Instances Classes

1
2
3
4
5
6

Biology, Medicine
Biology
Biology, Medicine, Physics
Physics, Medicine
Medicine
Biology

Single-Label Problem 1

Instances Classes

1
2
3
4
5
6

Biology
Biology
Biology
Physics
Medicine
Biology

Single-Label Problem 2

Instances Classes

1
2
3
4
5
6

Medicine
Biology
Medicine
Medicine
Medicine
Biology

Single-Label Problem 3

Instances Classes

1
2
3
4
5
6

Medicine
Biology
Physics
Physics
Medicine
Biology

Fig. 6: Label decomposition process of the Cross-Training method.

When using multiclass classifiers, the number of classifiers used in the Cross-Training

method is equal to the number of classes assigned to, at least, one multilabel instance. When

using binary classifiers, however, the number of classifiers is equal to the number of classes

in the problem. The method allows the original multilabel problem to be recovered from the

single-label problems generated. In the example of Figure 6, three classifiers were used, because

the three classes “Biology”, “Medicine” and “Physics” are assigned to a multilabel instance.

It is important to notice in the figure that the method does not consider all possible cross-

combinations of labels. As explained, the number of classifiers used is equal to the number of

classes assigned to, at least, one multilabel instance. This method is named Additive Cross-

Training. If all possible cross-combinations are considered, the method is named Multiplicative

Cross-Training.

In the new hierarchical variation of the Cross-Training method proposed here, the label

decomposition process is applied to all hierarchical levels, and the local approach is used during

the test and training phases. Figure 7 illustrates a label decomposition process performed by

the HMC-CT method. In this figure, when an instance belongs to more than one class, these
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classes are separated by a slash (/).

Level 1 Level 2

Instance 1

Instance 2

Instance 3

Instance 4

Instance 5

Instance 6

A

B

A/B

B

A

A/B

C/D

C/E

F/G

F/H

C/E/D

G/H

A

B

A

B

A

A

Level 1 Level 2

Problem 1

Instance 1

Instance 2

Instance 3

Instance 4

Instance 5

Instance 6

A

B

B

B

A

B

Problem 2

C

C

F

F

C

G

Problem 1

D

E

G

H

E

H

Problem 2

D

E

G

H

D

H

Problem 3

Fig. 7: Label decomposition process of the HMC-Cross-Training method.

It is important to notice the difference between the HMC-CT and HMC-BR methods. In the

HMC-CT method, a classifier is not associated with each class. Thus, it does not transform the

original problem into a binary problem. Instead, because all classes participate in the training

process, it uses multiclass classifiers. Therefore, given a multilabel instance xi, if xi belongs to

two classes, cA and cB, the training process occurs twice, first considering xi as belonging to

class cA and later considering xi as belonging to class cB. Algorithm 2 shows the classification

process of the HMC-CT method.

Algorithm 2: Classification process of the HMC-CT method.

Procedure Classify(x,Cl)
Input: instance x, set of classifiers Cl
Output: Classes
Classes← ∅1

foreach classifier cli from the set of classifiers Cl do2

Predict a class ci for the instance x using the classifier cli3

if not the last hierarchical level then4

Get the set Cli of children classifiers of the classifier cli trained with instances5

from class ci

Classes← Classes ∪ {ci}∪Classify(x,Cli)6

else7

Classes← Classes ∪ {ci}8

return Classes9

A problem with this method is its computational cost, which is higher than the cost for the
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HMC-BR and HMC-LP methods. It is higher because the training process uses each instance

several times, since it considers all its classes.

5 Experimental Setup

5.1 Datasets

The datasets used in the experiments are related to gene functions of the Saccharomyces cere-

visiae (a specific type of Yeast), often used in the fermentation of sugar for the production of

ethanol. This organism is also used in the fermentation of wheat and barley for the production

of alcoholic beverages. It is one of the biology’s classic model organisms, and has been the

subject of intensive study for many years [47].

The gene functions (classes to be predicted) in these datasets are structured as a tree fol-

lowing the FunCat annotation scheme (http://mips.gsf.de/projects/funcat) developed by

MIPS [30]. These datasets are freely available at http://www.cs.kuleuven.be/~dtai/clus/

hmcdatasets.html. The FunCat scheme has 28 main categories for the functions, including

cellular transport, metabolism and cellular communication. Its tree structure has up to six

levels and a total of 1632 functional classes. To reduce computational cost, for each dataset,

four classes of the FunCat scheme (01, 02, 10, and 11) were randomly selected at the first

level. These classes and all its descendant classes up to the fourth class level were used in the

experiments. Tables 2 and 3 show the main characteristics of the reduced datasets.

Table 2: Characteristics of the datasets.
Dataset Num. Atrib.

Num. Instances Avg. Num. Instances per Class Avg. Num. Classes per Instance
Total Multilabel L1 L2 L3 L4 L1 L2 L3 L4

Expr 551 2444 1451 611.0 111.1 29.7 17.4 1.3 1.6 1.4 0.9
CellCycle 77 2445 1451 611.2 111.1 29.7 17.4 1.3 1.6 1.4 0.9
Church 27 2441 1449 610.2 110.9 29.7 17.4 1.3 1.6 1.4 0.9
Derisi 63 2438 1449 609.5 110.8 29.6 17.3 1.3 1.6 1.4 0.9
Eisen 79 1579 988 394.7 71.7 21.3 13.1 1.3 1.7 1.5 1.0
Gasch1 173 2444 1450 611.0 111.0 29.7 17.4 1.3 1.6 1.4 0.9
Gasch2 52 2454 1456 613.5 111.5 29.8 17.4 1.3 1.6 1.4 0.9
Phenotype 69 1059 634 264.7 48.1 13.6 8.1 1.4 1.7 1.4 0.9
Sequence 478 2480 1477 620.0 112.7 30.2 17.6 1.3 1.6 1.4 0.9
SPO 80 2419 1439 604.7 109.9 29.4 17.2 1.3 1.6 1.4 0.9
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Table 3: Number of classes per level for each dataset.

Dataset
Number of Classes

Level 1 Level 2 Level 3 Level 4
Expr 4 22 70 84
CellCycle 4 22 70 84
Church 4 22 70 84
Derisi 4 22 70 84
Eisen 4 22 66 78
Gasch1 4 22 70 84
Gasch2 4 22 70 84
Phenotype 4 22 66 76
Sequence 4 22 70 84
SPO 4 22 70 84

5.2 Evaluation of the Classification Methods

For the experimental evaluation, the real and predicted sets of classes are represented as boolean

vectors, where each position represents a class in the dataset. If an instance belongs to a class

ci, the ith position of the vector that represents the real set of classes receives the value 1. The

same representation is used for the predicted set of classes.

The datasets were divided using k-fold cross-validation, with k = 5. Statistical tests were

applied to verify the statistical significance of the results with a confidence level of 95%. The

tests employed were Friedman [23] and Nemenyi [31], which are recommended for comparisons

involving many datasets and several classifiers [16].

The evaluation was carried out level by level in the classification hierarchy. For each hier-

archical level, a value resulting from the evaluation of the predictive accuracy at that level is

reported. The metrics used were those proposed by [40], named Hierarchical Micro Precision

and Recall. A combination of these metrics, the Hierarchical-Fβ metric, with β = 1, was also

used. The value β = 1 was chosen so that the Precision and Recall metrics have the same

importance in the calculation of the Hierarchical-Fβ metric.

These metrics are calculated by computing, for each class, the contribution of the instances

erroneously assigned to the class. For such, it is necessary to define an acceptable distance

(Disθ) between two classes, which must be higher than zero. Equations (1) and (2) define

the contribution of an instance xj to a class ci, where xj.agd and xj.lbd are, respectively, the

predicted and the real classes of xj, and Dis(c′, ci) is the distance between two classes in the

hierarchy, which is given by the number of edges between these two classes.

• If xj is a False Positive:
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Con(xj, ci) =
∑

c′∈xj .lbd

(1.0− Dis(c′, ci)

Disθ

) (1)

• If xj is a False Negative:

Con(xj, ci) =
∑

c′∈xj .agd

(1.0− Dis(c′, ci)

Disθ

) (2)

The contribution of an instance xj is therefore restricted to the interval [−1, 1]. This refine-

ment, denoted by RCon(xj, ci), is defined by Equation (3).

RCon(xj, ci) = min(1,max(−1, Con(xj, ci))) (3)

The total contribution of False Positives (FP) (FpConi) and False Negatives (FN) (FnConi),

for all instances, is defined by Equations (4) and (5), respectively.

FpConi =
∑

xj∈FPi

RCon(xj, ci) (4)

FnConi =
∑

xj∈FNi

RCon(xj, ci) (5)

After calculating the contributions of each instance, Equations (6) and (7) define the values

of the Hierarchical Precision and Recall for each class, respectively.

PrCD
i =

max(0, |TPi|+ FpConi + FnConi)

|TPi|+ |FPi|+ FnConi

(6)

ReCD
i =

max(0, |TPi|+ FpConi + FnConi)

|TPi|+ |FNi|+ FpConi

(7)

The extended values of Hierarchical Precision and Recall (Hierarchical Micro Precision and

Recall) are presented in Equations (8) and (9), respectively, where m represents the number of

classes.

P̂ r
µCD

=

∑m
i=1(max(0, |TPi|+ FpConi + FnConi))∑m

i=1(|TPi|+ |FPi|+ FnConi)
(8)

R̂e
µCD

=

∑m
i=1(max(0, |TPi|+ FpConi + FnConi))∑m

i=1(|TPi|+ |FNi|+ FpConi)
(9)

According to the value of Disθ, the values of FpConi and FnConi can be negative. There-

fore, a max function is applied to the numerators of the Equations (8) and (9) to make
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their values positive. As FpConi ≤ |FPi|, if |TPi| + |FPi| + FnConi ≤ 0, the numerator

max(0, |TPi|+ FpConi + FnConi) = 0. The P̂ r
µCD

value can be considered zero in this case.

The same rule is applied to the calculation of R̂e
µCD

[40].

The Hierarchical Micro Precision and Recall metrics can then be combined in the Hierarchical-

Fβ metric (Equation (10)).

Hierarchical − Fβ =
(β2 + 1)× hP × hR

β2 × hP + hR
(10)

In the experiments, the value Disθ = 2 was chosen as the acceptable distance between two

nodes for the calculation of the Micro Precision and Recall metrics. Thus, if the number of

edges (in the class tree) between a predicted class and a real class for a given instance is equal to

2, it will not be counted as a false positive or false negative. On the other hand, if the number

of edges between a predicted class and a real class is larger than 2, this distance is counted as a

false positive or false negative. The value Disθ = 2 was also used in the experiments reported

by [40].

As the objective of the evaluation metric is to consider that closer classes in the hierarchy

are more similar to each other, the use of Disθ = 2 defines that when the distance between

a predicted class and a real class is equal to 2, this error should not contribute negatively to

the metric value, because the metric considers that these two classes are similar. When the

distance is larger than 2, the error should contribute negatively to the value of the metric.

It should be noted that the metrics used in this work and in [40] artificially increase a little

the values of Precision and Recall due to the fact that misclassifications involving similar true

and predicted classes are not counted as errors. However, this is not a problem for the analysis

of the results, since all algorithms being compared in our experiments have been evaluated

according to the same metric.

5.3 Comparison with Other Local and Global Approaches

In the experiments carried out, the proposed local hierarchical multilabel methods were com-

pared against the well-known HMC-Binary-Relevance method, based on the local approach,

and the HC4.5 [11] and Clus-HMC [47] methods, based on the global approach. Five ML tech-

niques were used as the base classifiers for the local methods: SVM [46], BayesNet [24], Ripper
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[12], C4.5 [34] and KNN [1].

To compare the local and global hierarchical classification methods, modifications were

needed in the vectors of predicted classes produced by the global methods. In these methods,

the membership of an instance xj to a given class ci is given by a probability (real) value.

Figure 8 shows an example of the vector of predicted classes obtained using the local and

global methods. In the Figure 8(a), an instance xj has a probability of 0.8 of belonging to

the class c2, a probability of 0.4 of belonging to the class c3, and so on. To assign classes of

the vector to an instance, a threshold value can be used. Thus, if a threshold value of 0.6 is

chosen, only those classes with a value higher than or equal to 0.6 are assigned to the instance.

Regarding Figure 8(a), these classes are c2, c4, c6, c10, c11 and c16. Unlike the global methods,

the vectors of predicted classes of the local methods contain only the values 0 and 1 (Figure

8(b)), indicating if an instance belongs (1) or does not belong (0) to a class.
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Fig. 8: Examples of predicted class vectors: (a) using the global methods; (b) using the local
methods.

In this paper, five different threshold values were used in the evaluation of the global methods

(0.0, 0.2, 0.4, 0.6 and 0.8), so that different performances could be obtained, i.e., different values

of precision and recall. As the threshold value increases, the precision value tends to increase,

and the recall value tends to decrease.

It is important to notice that there is no best threshold value. For example, suppose that

after building a given decision tree (using the HC4.5 or Clus-HMC method), a given leaf node

has 50 instances belonging to a class A and 50 instances belonging to a class B. There is no

correct classification decision for this new instance, since it can belong to both classes A and
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B, only to class A, or only to class B. There can also be a leaf node with 97 class A instances

and 3 class B instances. In this case, instances from class B can represent noisy data or truly

rare and important information. Thus, it is difficult to know if the correct decision is to classify

a new instance that reaches this leaf in both classes A and B, in the class A with probability

of 0.97 and in the class B with probability 0.03, or just in the class A. Due to these issues,

different threshold values were used.

Since the main goal of this paper is to experimentally compare global and local approaches

in a way as controlled as possible, the HC4.5 method used in the experiments was modified to

work as described in [14]. This version of the algorithm includes the restriction of mandatory

leaf node prediction, which is the prediction process used in this work.

5.4 Software Tools

The local methods used in this work were implemented using the R language [35], which has

many ML-related packages. The e1071 [17] package was used to generate the SVM classifiers.

The RWeka [26] package was used to induce the classifiers BayesNet, Ripper, C4.5 and KNN.

6 Experiments and Discussion

Table 4 presents the ranking of the algorithms, considering their average hierarchical f-measure

values across the 10 datasets used. The table shows in each row the ranking obtained at a

specific level of the class hierarchy. Bold numbers represent the algorithms that achieved the

top three positions in the ranking.

Table 4: Ranking of the algorithms considering their average hierarchical f-measure values
across all datasets. The top three positions of the rank are shown in bold face.

Local Global

HMC-BR HMC-LP HMC-CT HC4.5 Clus-HMC

KNN C4.5 Rip BN SVM KNN C4.5 Rip BN SVM KNN C4.5 Rip BN SVM 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Level 1 9 14 10 4 11 15 12 20 8 7 5 3 1 6 2 18 17 21 24 25 16 13 19 22 23

Level 2 10 15 16 3 7 5 1 24 14 4 12 23 21 19 8 18 13 9 25 22 11 6 2 17 20

Level 3 10 12 15 8 7 4 1 21 9 5 20 25 24 23 19 18 14 3 16 22 11 6 2 13 17

Level 4 9 10 15 8 7 4 1 18 12 5 22 25 24 23 21 19 14 3 16 20 13 6 2 11 17

According to Table 4, the HMC-CT method achieved the best overall performance at the

first hierarchical level. At the second level, the best overall performance was obtained by the
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HMC-LP method, followed by the Clus-HMC and the HMC-BR methods, in this order. At the

third and fourth hierarchical levels, the first, second and third best overall performances were

achieved by the HMC-LP, Clus-HMC and HC4.5 methods, respectively.

The accuracy results of the experimental comparisons of the local and global approaches, for

each dataset, are shown in tables 5, 6, 7 and 8, each one for a different hierarchical level. The

best results, for each dataset, are shown in bold face and the standard deviations are shown

between parentheses.

Table 5: Comparison of local and global approaches at the first hierarchical level using the
hierarchical f-measure metric.

Datasets Classifier
Local

Threshold
Global

HMC-BR HMC-LP HMC-CT C4.5H Clus-HMC

Expr

KNN 53.45 (0.7) 52.37 (2.2) 57.01 (0.5) 0.0 50.05 (1.5) 51.73 (1.6)
C4.5 53.86 (1.6) 53.00 (2.2) 59.94 (1.1) 0.2 50.13 (1.4) 51.72 (1.5)
Ripper 56.21 (1.9) 49.81 (1.7) 61.56 (1.0) 0.4 48.80 (1.6) 50.70 (1.4)
BayesNet 61.92 (1.9) 60.44 (2.3) 59.48 (2.9) 0.6 45.34 (2.1) 49.30 (1.3)
SVM 49.66 (2.2) 51.28 (1.7) 56.50 (1.0) 0.8 41.82 (2.3) 48.41 (1.3)

CellCycle

KNN 54.99 (2.0) 53.54 (1.9) 58.00 (1.8) 0.0 47.51 (1.7) 47.13 (1.6)
C4.5 51.64 (2.2) 50.00 (1.7) 58.32 (1.2) 0.2 47.45 (1.3) 47.12 (1.5)
Ripper 51.64 (0.6) 47.65 (2.2) 59.08 (2.1) 0.4 45.31 (1.1) 46.45 (1.6)
BayesNet 56.60 (2.6) 53.64 (2.0) 58.03 (1.4) 0.6 41.57 (1.6) 43.11 (0.9)
SVM 57.45 (2.1) 58.50 (2.7) 61.85 (1.6) 0.8 38.42 (1.3) 42.00 (0.6)

Church

KNN 44.76 (1.9) 43.94 (0.6) 53.80 (0.9) 0.0 47.63 (1.2) 47.27 (1.2)
C4.5 44.40 (2.0) 45.06 (0.4) 54.69 (1.5) 0.2 51.43 (1.1) 50.27 (0.9)
Ripper 46.14 (1.6) 40.77 (0.7) 54.74 (2.0) 0.4 47.34 (1.8) 47.95 (1.9)
BayesNet 55.32 (0.5) 44.48 (1.3) 49.16 (3.0) 0.6 28.35 (2.1) 30.55 (3.1)
SVM 44.36 (1.8) 45.56 (1.2) 55.85 (1.6) 0.8 20.50 (1.6) 26.51 (3.3)

Derisi

KNN 47.89 (1.7) 46.23 (1.2) 52.37 (1.4) 0.0 45.51 (1.0) 46.23 (2.3)
C4.5 40.59 (6.7) 46.11 (1.1) 55.33 (0.9) 0.2 45.26 (0.9) 46.22 (2.3)
Ripper 47.15 (1.5) 42.76 (0.5) 56.76 (1.6) 0.4 42.54 (1.7) 44.72 (2.6)
BayesNet 54.35 (1.5) 45.30 (3.5) 49.56 (2.0) 0.6 39.37 (1.5) 41.65 (2.8)
SVM 47.48 (1.4) 46.77 (1.5) 54.76 (1.9) 0.8 34.44 (1.8) 39.79 (2.6)

Eisen

KNN 55.90 (2.1) 54.14 (1.3) 59.83 (2.2) 0.0 48.78 (1.7) 50.66 (1.5)
C4.5 52.53 (1.5) 52.13 (1.2) 58.35 (2.5) 0.2 48.79 (1.7) 50.66 (1.4)
Ripper 54.13 (2.1) 50.20 (1.9) 61.59 (1.9) 0.4 47.21 (2.3) 50.17 (1.5)
BayesNet 60.40 (1.9) 54.18 (2.5) 59.85 (1.7) 0.6 43.26 (2.4) 46.48 (2.3)
SVM 58.17 (2.4) 59.85 (1.2) 62.02 (2.9) 0.8 38.05 (3.1) 44.80 (2.1)

Gasch1

KNN 55.80 (2.7) 54.63 (1.5) 59.03 (1.5) 0.0 48.90 (1.9) 49.53 (1.6)
C4.5 55.39 (1.7) 52.85 (1.5) 59.44 (1.6) 0.2 48.92 (1.8) 49.53 (1.5)
Ripper 53.66 (2.4) 46.43 (1.0) 61.40 (1.7) 0.4 46.98 (2.0) 49.50 (1.1)
BayesNet 60.30 (1.1) 54.99 (1.2) 53.19 (1.7) 0.6 43.52 (1.3) 46.81 (1.1)
SVM 59.96 (2.1) 60.60 (1.7) 63.44 (2.1) 0.8 40.58 (1.2) 45.76 (1.0)

Gasch2

KNN 52.97 (1.4) 49.88 (1.2) 56.77 (2.2) 0.0 46.82 (1.6) 47.42 (1.3)
C4.5 49.20 (2.2) 49.80 (1.8) 57.21 (0.9) 0.2 46.80 (1.1) 47.42 (1.2)
Ripper 49.92 (3.3) 45.61 (1.8) 57.99 (1.2) 0.4 45.03 (1.4) 46.59 (1.9)
BayesNet 55.65 (1.4) 48.01 (1.1) 55.31 (1.6) 0.6 41.12 (0.9) 44.00 (1.7)
SVM 55.31 (1.4) 55.80 (1.0) 57.59 (0.7) 0.8 37.54 (1.1) 42.99 (1.6)

Phenotype

KNN 40.29 (3.9) 44.08 (1.3) 50.76 (2.6) 0.0 48.90 (0.9) 47.43 (1.7)
C4.5 40.69 (4.3) 46.16 (2.3) 53.70 (1.6) 0.2 49.32 (1.0) 47.03 (1.4)
Ripper 44.08 (3.4) 44.55 (1.0) 54.11 (1.1) 0.4 45.82 (1.6) 44.48 (1.7)
BayesNet 46.69 (2.6) 44.21 (2.0) 47.95 (2.5) 0.6 25.04 (1.9) 25.45 (5.1)
SVM 46.06 (3.0) 45.69 (1.9) 54.23 (1.6) 0.8 15.32 (2.1) 15.08 (3.0)

Sequence

KNN 50.73 (2.6) 49.58 (1.7) 53.67 (2.1) 0.0 48.31 (1.7) 49.11 (2.7)
C4.5 53.24 (0.9) 51.62 (2.4) 59.22 (1.3) 0.2 48.17 (1.8) 49.10 (2.6)
Ripper 53.07 (1.9) 45.52 (1.4) 59.73 (0.8) 0.4 46.53 (1.7) 48.47 (2.9)
BayesNet 61.02 (0.8) 54.21 (1.8) 57.04 (1.8) 0.6 43.19 (1.6) 46.63 (2.0)
SVM 45.37 (2.7) 52.69 (2.4) 59.05 (0.9) 0.8 40.01 (1.9) 46.32 (1.7)

SPO

KNN 46.05 (1.9) 44.94 (1.2) 52.43 (2.0) 0.0 45.27 (1.0) 45.83 (1.9)
C4.5 47.14 (6.0) 47.78 (1.5) 55.02 (1.3) 0.2 44.98 (1.3) 45.83 (1.8)
Ripper 47.34 (2.9) 45.72 (1.8) 58.78 (1.2) 0.4 42.27 (1.8) 45.21 (2.0)
BayesNet 52.69 (1.7) 47.87 (1.8) 48.71 (1.8) 0.6 38.31 (1.6) 42.32 (1.8)
SVM 50.12 (1.6) 49.68 (1.9) 54.66 (1.5) 0.8 33.86 (1.4) 41.13 (1.4)
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Table 6: Comparison of local and global approaches at the second hierarchical level using the
hierarchical f-measure metric.

Datasets Classifier
Local

Threshold
Global

HMC-BR HMC-LP HMC-CT C4.5H Clus-HMC

Expr

KNN 31.03 (0.5) 32.05 (1.2) 30.90 (0.5) 0.0 30.32 (1.1) 32.12 (0.6)
C4.5 30.93 (0.5) 33.20 (0.7) 24.54 (0.9) 0.2 30.74 (0.7) 32.11 (0.6)
Ripper 32.07 (1.2) 26.81 (1.7) 27.00 (1.6) 0.4 31.57 (0.4) 32.05 (0.7)
BayesNet 34.21 (1.2) 35.30 (1.0) 30.94 (1.2) 0.6 29.76 (0.9) 31.40 (0.7)
SVM 27.70 (1.3) 26.29 (0.7) 25.89 (0.8) 0.8 26.93 (1.0) 30.50 (0.6)

CellCycle

KNN 31.76 (1.0) 32.46 (0.7) 30.88 (0.9) 0.0 29.16 (0.9) 30.53 (0.7)
C4.5 30.71 (0.8) 32.52 (1.1) 23.74 (0.3) 0.2 29.76 (0.9) 30.52 (0.6)
Ripper 29.16 (0.4) 24.96 (1.1) 27.17 (1.1) 0.4 30.19 (0.6) 31.01 (0.7)
BayesNet 31.75 (1.4) 30.34 (1.2) 28.89 (0.6) 0.6 27.72 (1.0) 28.62 (0.7)
SVM 33.63 (0.8) 35.17 (1.1) 32.17 (0.6) 0.8 24.81 (0.9) 27.45 (0.4)

Church

KNN 25.63 (1.2) 27.89 (0.4) 28.83 (0.6) 0.0 16.32 (1.1) 18.82 (1.7)
C4.5 24.79 (0.9) 29.25 (0.6) 26.83 (1.0) 0.2 30.76 (0.5) 30.86 (1.0)
Ripper 25.50 (1.1) 19.74 (0.4) 25.18 (1.4) 0.4 33.53 (1.1) 33.33 (1.0)
BayesNet 28.94 (0.5) 25.46 (0.9) 24.63 (1.2) 0.6 16.96 (1.5) 18.41 (2.1)
SVM 24.91 (0.6) 28.10 (0.7) 28.71 (1.2) 0.8 11.31 (1.0) 15.28 (2.1)

Derisi

KNN 28.75 (0.9) 29.93 (0.8) 28.98 (0.5) 0.0 27.86 (0.3) 29.57 (1.2)
C4.5 22.97 (5.1) 30.52 (0.3) 23.46 (0.6) 0.2 28.19 (0.5) 29.57 (1.1)
Ripper 26.72 (0.8) 21.31 (0.3) 26.59 (0.5) 0.4 28.84 (1.0) 29.43 (1.0)
BayesNet 29.39 (0.9) 25.53 (1.5) 25.61 (1.1) 0.6 26.66 (0.7) 27.82 (1.4)
SVM 28.42 (0.8) 30.49 (0.9) 29.83 (0.8) 0.8 22.04 (1.3) 25.94 (1.3)

Eisen

KNN 32.03 (1.2) 32.98 (0.8) 31.12 (0.8) 0.0 30.09 (1.0) 31.71 (0.5)
C4.5 31.33 (1.0) 33.11 (0.4) 24.21 (1.5) 0.2 30.52 (0.9) 31.70 (0.5)
Ripper 30.20 (1.0) 27.87 (1.6) 27.01 (1.3) 0.4 31.11 (0.8) 32.22 (0.7)
BayesNet 33.07 (1.5) 31.56 (1.1) 29.52 (0.8) 0.6 28.36 (1.1) 29.98 (1.4)
SVM 33.66 (0.9) 35.64 (0.8) 31.88 (0.8) 0.8 24.01 (1.9) 28.39 (1.2)

Gasch1

KNN 32.71 (1.2) 33.27 (0.9) 31.13 (0.9) 0.0 28.91 (0.8) 31.24 (0.8)
C4.5 32.38 (0.8) 33.59 (1.1) 24.11 (0.7) 0.2 29.85 (0.8) 31.23 (0.8)
Ripper 30.47 (1.4) 24.54 (0.4) 27.01 (1.9) 0.4 30.55 (1.1) 31.78 (0.5)
BayesNet 31.75 (0.4) 32.35 (0.6) 27.44 (0.8) 0.6 28.79 (1.0) 30.12 (0.6)
SVM 34.47 (1.0) 35.84 (0.9) 32.87 (0.8) 0.8 26.03 (0.9) 29.19 (0.8)

Gasch2

KNN 31.27 (0.6) 31.11 (0.7) 31.30 (1.2) 0.0 28.76 (1.1) 30.10 (0.3)
C4.5 28.35 (1.7) 32.26 (0.9) 23.74 (0.5) 0.2 29.26 (0.7) 30.10 (0.2)
Ripper 28.00 (1.8) 23.29 (0.9) 26.64 (0.5) 0.4 30.13 (0.6) 30.36 (1.0)
BayesNet 30.24 (0.4) 27.09 (0.7) 28.21 (0.9) 0.6 27.67 (0.6) 28.94 (1.0)
SVM 33.06 (0.4) 34.57 (0.5) 31.04 (0.5) 0.8 24.30 (0.5) 27.80 (0.7)

Phenotype

KNN 22.81 (2.6) 26.09 (1.2) 26.11 (1.1) 0.0 15.64 (0.4) 20.47 (3.2)
C4.5 22.42 (2.8) 27.60 (1.5) 26.75 (0.7) 0.2 33.61 (0.8) 29.15 (2.6)
Ripper 24.67 (2.6) 21.41 (0.6) 22.52 (0.6) 0.4 30.10 (1.4) 29.32 (2.1)
BayesNet 28.76 (1.8) 25.38 (1.5) 23.16 (0.7) 0.6 14.15 (1.7) 14.36 (3.7)
SVM 26.30 (2.2) 27.61 (1.4) 28.03 (1.4) 0.8 08.44 (2.2) 08.01 (1.5)

Sequence

KNN 29.30 (1.5) 30.08 (0.9) 27.92 (0.8) 0.0 30.06 (1.1) 30.95 (1.2)
C4.5 31.21 (1.2) 32.48 (1.3) 24.01 (0.9) 0.2 30.23 (1.1) 30.94 (1.1)
Ripper 29.81 (1.7) 24.09 (0.7) 25.93 (0.7) 0.4 30.76 (1.0) 31.35 (1.5)
BayesNet 34.70 (0.4) 32.83 (1.5) 28.59 (0.3) 0.6 28.47 (0.7) 30.02 (1.2)
SVM 27.05 (2.4) 28.06 (1.2) 27.98 (0.6) 0.8 25.67 (0.9) 29.30 (0.9)

SPO

KNN 27.58 (0.9) 29.05 (0.8) 29.23 (0.6) 0.0 27.80 (0.5) 29.68 (0.9)
C4.5 27.91 (4.5) 31.34 (0.8) 22.79 (0.6) 0.2 28.19 (0.8) 29.68 (0.9)
Ripper 26.30 (1.7) 23.19 (1.0) 27.65 (0.8) 0.4 28.77 (1.1) 29.92 (1.2)
BayesNet 29.37 (1.2) 27.90 (0.7) 25.72 (0.7) 0.6 25.75 (0.8) 27.82 (1.1)
SVM 30.70 (0.8) 32.04 (0.9) 29.87 (0.6) 0.8 21.54 (0.8) 26.61 (0.9)
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Table 7: Comparison of local and global approaches at the third hierarchical level using the
hierarchical f-measure metric.

Datasets Classifier
Local

Threshold
Global

HMC-BR HMC-LP HMC-CT C4.5H Clus-HMC

Expr

KNN 22.84 (0.4) 24.71 (1.0) 17.78 (0.5) 0.0 21.30 (0.6) 24.13 (0.5)
C4.5 23.29 (0.5) 26.78 (0.4) 11.27 (0.6) 0.2 22.40 (0.5) 24.13 (0.4)
Ripper 23.51 (0.9) 19.06 (1.6) 12.98 (1.0) 0.4 25.39 (0.4) 25.15 (0.5)
BayesNet 24.79 (1.2) 26.76 (0.8) 18.03 (0.5) 0.6 23.16 (0.6) 24.23 (0.4)
SVM 19.32 (0.9) 17.96 (0.4) 14.97 (0.4) 0.8 19.98 (0.7) 23.14 (0.4)

CellCycle

KNN 23.33 (0.5) 24.86 (0.6) 18.16 (0.6) 0.0 19.81 (0.8) 23.06 (0.3)
C4.5 23.29 (0.5) 26.45 (1.0) 10.51 (0.3) 0.2 21.53 (0.9) 23.06 (0.3)
Ripper 21.21 (0.3) 17.41 (0.8) 13.57 (0.7) 0.4 24.37 (0.7) 24.69 (0.6)
BayesNet 23.19 (1.1) 22.07 (0.9) 16.42 (0.5) 0.6 21.25 (1.0) 22.23 (0.6)
SVM 25.31 (0.7) 27.51 (0.5) 19.12 (0.5) 0.8 17.99 (0.7) 20.87 (0.4)

Church

KNN 18.42 (0.9) 20.97 (0.6) 16.22 (0.5) 0.0 07.24 (0.6) 09.13 (1.4)
C4.5 17.56 (0.7) 22.55 (0.9) 13.70 (0.4) 0.2 24.91 (0.6) 24.80 (0.9)
Ripper 17.80 (1.0) 13.17 (0.3) 13.99 (1.1) 0.4 26.91 (0.9) 26.76 (1.0)
BayesNet 19.92 (0.6) 17.69 (0.6) 13.41 (0.9) 0.6 11.80 (1.1) 13.20 (1.6)
SVM 17.61 (0.4) 21.17 (0.8) 15.97 (0.7) 0.8 07.59 (0.7) 10.64 (1.5)

Derisi

KNN 21.20 (0.7) 23.54 (0.7) 16.60 (0.4) 0.0 19.21 (0.5) 22.30 (0.8)
C4.5 16.40 (4.0) 25.01 (0.6) 10.71 (0.4) 0.2 20.04 (0.6) 22.29 (0.8)
Ripper 19.11 (0.6) 14.46 (0.3) 13.82 (0.1) 0.4 23.45 (0.8) 23.86 (0.7)
BayesNet 20.41 (0.4) 17.83 (1.1) 13.63 (0.6) 0.6 20.40 (0.5) 21.48 (1.1)
SVM 21.54 (0.7) 24.74 (0.3) 16.60 (0.5) 0.8 15.86 (0.9) 19.47 (1.0)

Eisen

KNN 23.44 (0.9) 25.06 (0.6) 17.70 (0.7) 0.0 20.53 (0.9) 23.64 (0.5)
C4.5 23.63 (0.7) 26.33 (0.5) 10.95 (0.8) 0.2 21.89 (0.8) 23.63 (0.5)
Ripper 21.88 (0.8) 19.87 (1.3) 12.95 (0.5) 0.4 24.62 (0.4) 25.13 (0.6)
BayesNet 23.81 (0.7) 23.14 (0.9) 16.81 (0.7) 0.6 21.61 (0.6) 22.93 (1.4)
SVM 25.00 (0.6) 27.39 (0.6) 18.64 (0.4) 0.8 17.40 (1.4) 21.32 (1.0)

Gasch1

KNN 24.27 (1.1) 25.55 (0.8) 18.01 (0.8) 0.0 19.39 (0.7) 23.54 (0.7)
C4.5 24.57 (0.6) 27.37 (0.8) 11.11 (0.3) 0.2 21.39 (0.7) 23.54 (0.6)
Ripper 22.14 (0.9) 17.24 (0.4) 13.14 (1.4) 0.4 24.56 (1.0) 25.42 (0.7)
BayesNet 21.67 (0.6) 23.73 (0.4) 15.09 (0.5) 0.6 21.96 (0.8) 23.46 (0.4)
SVM 25.50 (0.8) 27.02 (0.8) 19.98 (0.8) 0.8 19.00 (0.6) 22.23 (0.5)

Gasch2

KNN 23.31 (0.8) 24.24 (0.5) 17.93 (0.9) 0.0 19.66 (0.8) 22.48 (0.3)
C4.5 20.63 (1.5) 26.24 (0.8) 10.72 (0.4) 0.2 20.84 (0.6) 22.48 (0.2)
Ripper 20.14 (1.3) 16.07 (0.7) 13.38 (0.2) 0.4 24.56 (0.6) 23.93 (0.9)
BayesNet 21.49 (0.3) 19.63 (0.6) 15.70 (0.4) 0.6 21.37 (0.5) 22.55 (0.7)
SVM 25.43 (0.6) 27.63 (0.4) 17.94 (0.2) 0.8 17.72 (0.3) 21.07 (0.4)

Phenotype

KNN 16.21 (1.9) 18.96 (1.1) 15.00 (0.9) 0.0 07.01 (0.2) 12.31 (3.1)
C4.5 15.85 (1.9) 19.91 (0.9) 14.24 (0.7) 0.2 26.68 (1.0) 21.06 (2.8)
Ripper 17.46 (1.7) 14.25 (0.4) 11.53 (0.5) 0.4 23.25 (1.6) 22.18 (2.4)
BayesNet 20.64 (1.2) 18.61 (1.0) 13.91 (1.0) 0.6 09.89 (1.0) 10.07 (2.6)
SVM 18.98 (1.8) 20.26 (1.1) 15.37 (1.1) 0.8 05.99 (2.0) 05.38 (1.0)

Sequence

KNN 21.15 (1.1) 22.52 (0.7) 14.59 (0.5) 0.0 21.70 (0.6) 23.35 (0.9)
C4.5 23.56 (0.9) 26.16 (1.0) 10.56 (0.4) 0.2 22.32 (0.7) 23.34 (0.8)
Ripper 21.60 (1.3) 16.96 (0.5) 12.15 (0.5) 0.4 24.80 (0.6) 25.04 (1.3)
BayesNet 24.77 (0.3) 25.66 (1.4) 16.25 (0.4) 0.6 21.88 (0.5) 23.35 (1.1)
SVM 19.57 (1.8) 19.22 (0.9) 16.56 (0.4) 0.8 18.89 (0.7) 22.34 (0.6)

SPO

KNN 20.30 (0.6) 22.63 (0.8) 16.43 (0.4) 0.0 18.90 (0.3) 22.21 (0.6)
C4.5 20.42 (3.8) 25.62 (0.7) 10.26 (0.4) 0.2 19.95 (0.6) 22.20 (0.5)
Ripper 18.83 (1.4) 15.86 (0.7) 14.33 (0.6) 0.4 23.36 (1.3) 23.73 (0.8)
BayesNet 20.54 (0.7) 20.54 (0.5) 14.88 (0.6) 0.6 19.59 (0.5) 21.51 (0.9)
SVM 23.85 (0.8) 25.77 (0.7) 17.09 (0.5) 0.8 15.51 (0.7) 20.19 (0.7)
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Table 8: Comparison of local and global approaches at the fourth hierarchical level using the
hierarchical f-measure metric.

Datasets Classifier
Local

Threshold
Global

HMC-BR HMC-LP HMC-CT C4.5H Clus-HMC

Expr

KNN 19.28 (0.3) 21.05 (0.7) 12.28 (0.4) 0.0 16.78 (0.4) 19.98 (0.6)
C4.5 19.84 (0.4) 23.33 (0.5) 07.24 (0.4) 0.2 18.08 (0.6) 19.98 (0.6)
Ripper 19.71 (0.6) 15.48 (1.4) 08.12 (0.7) 0.4 22.12 (0.4) 21.55 (0.4)
BayesNet 20.65 (0.8) 22.88 (0.9) 12.87 (0.4) 0.6 19.60 (0.6) 20.69 (0.3)
SVM 16.04 (0.7) 14.41 (0.3) 09.93 (0.6) 0.8 16.51 (0.7) 19.58 (0.3)

CellCycle

KNN 19.46 (0.4) 21.16 (0.7) 12.37 (0.5) 0.0 15.39 (0.6) 19.07 (0.4)
C4.5 19.69 (0.5) 23.12 (1.0) 06.64 (0.3) 0.2 17.45 (0.8) 19.06 (0.3)
Ripper 17.70 (0.2) 14.07 (0.7) 08.31 (0.5) 0.4 21.26 (0.7) 21.27 (0.5)
BayesNet 19.29 (0.9) 18.24 (0.8) 11.15 (0.4) 0.6 17.78 (1.1) 18.92 (0.5)
SVM 21.49 (0.7) 23.63 (0.4) 13.49 (0.5) 0.8 14.57 (0.7) 17.60 (0.4)

Church

KNN 15.21 (0.7) 17.75 (0.7) 11.11 (0.5) 0.0 04.76 (0.4) 06.18 (1.1)
C4.5 14.46 (0.7) 18.80 (0.9) 09.03 (0.3) 0.2 21.32 (0.6) 20.92 (1.2)
Ripper 14.48 (0.7) 10.36 (0.2) 08.77 (0.9) 0.4 22.96 (0.9) 22.83 (1.3)
BayesNet 16.22 (0.5) 14.10 (0.4) 09.23 (0.7) 0.6 09.43 (0.9) 10.70 (1.3)
SVM 14.42 (0.3) 17.40 (0.7) 10.81 (0.6) 0.8 05.98 (0.6) 08.49 (1.2)

Derisi

KNN 17.89 (0.6) 20.06 (0.7) 11.00 (0.3) 0.0 15.05 (0.4) 18.50 (0.8)
C4.5 13.54 (3.5) 21.92 (0.6) 06.80 (0.3) 0.2 15.94 (0.6) 18.49 (0.8)
Ripper 15.79 (0.6) 11.49 (0.3) 08.54 (0.3) 0.4 20.44 (0.5) 20.57 (0.9)
BayesNet 16.66 (0.3) 14.35 (0.9) 09.29 (0.5) 0.6 16.96 (0.3) 18.10 (0.9)
SVM 18.36 (0.6) 21.56 (0.2) 11.28 (0.4) 0.8 12.85 (0.8) 16.18 (0.8)

Eisen

KNN 18.95 (0.7) 21.12 (0.5) 11.80 (0.5) 0.0 15.93 (0.7) 19.39 (0.5)
C4.5 19.87 (0.6) 22.74 (0.3) 06.94 (0.5) 0.2 17.44 (0.6) 19.38 (0.5)
Ripper 18.14 (0.9) 16.35 (1.2) 08.09 (0.3) 0.4 20.96 (0.5) 21.18 (0.7)
BayesNet 19.48 (0.5) 19.19 (0.9) 11.07 (0.5) 0.6 18.04 (0.5) 19.32 (1.5)
SVM 20.98 (0.5) 23.54 (0.3) 12.95 (0.3) 0.8 14.09 (1.1) 17.84 (0.9)

Gasch1

KNN 20.58 (1.1) 21.92 (0.6) 12.44 (0.6) 0.0 14.77 (0.8) 19.55 (0.6)
C4.5 20.78 (0.5) 23.77 (0.9) 07.19 (0.2) 0.2 17.15 (0.8) 19.55 (0.6)
Ripper 18.51 (0.8) 13.89 (0.4) 08.16 (0.9) 0.4 21.25 (0.8) 21.95 (0.8)
BayesNet 17.73 (0.7) 19.69 (0.4) 10.81 (0.5) 0.6 18.35 (0.8) 20.00 (0.4)
SVM 21.61 (0.7) 22.59 (0.8) 14.11 (0.6) 0.8 15.51 (0.5) 18.72 (0.4)

Gasch2

KNN 19.82 (0.8) 20.67 (0.4) 12.12 (0.9) 0.0 15.19 (0.9) 18.64 (0.4)
C4.5 17.20 (1.2) 23.06 (0.7) 06.86 (0.3) 0.2 16.48 (0.5) 18.63 (0.3)
Ripper 16.82 (1.0) 12.94 (0.6) 08.41 (0.2) 0.4 21.35 (0.6) 20.55 (0.8)
BayesNet 17.79 (0.2) 16.19 (0.5) 10.79 (0.6) 0.6 17.95 (0.4) 19.19 (0.7)
SVM 21.76 (0.7) 24.02 (0.3) 12.42 (0.2) 0.8 14.42 (0.2) 17.70 (0.5)

Phenotype

KNN 13.48 (1.8) 15.62 (1.0) 10.01 (0.6) 0.0 04.71 (0.1) 09.05 (2.6)
C4.5 13.17 (1.6) 16.12 (0.6) 09.09 (0.4) 0.2 22.82 (0.9) 17.01 (2.9)
Ripper 14.50 (1.4) 11.23 (0.3) 07.05 (0.5) 0.4 19.86 (1.8) 18.48 (2.3)
BayesNet 17.47 (1.1) 14.90 (0.8) 10.33 (1.0) 0.6 07.95 (0.9) 08.27 (2.1)
SVM 15.93 (1.5) 16.58 (0.8) 10.13 (0.5) 0.8 04.84 (1.5) 04.27 (0.8)

Sequence

KNN 17.61 (0.9) 18.89 (0.6) 09.57 (0.3) 0.0 17.25 (0.7) 19.16 (0.8)
C4.5 19.98 (0.7) 22.90 (0.9) 06.64 (0.2) 0.2 18.12 (0.6) 19.16 (0.7)
Ripper 18.11 (1.2) 13.77 (0.4) 07.69 (0.4) 0.4 21.48 (0.5) 21.27 (1.2)
BayesNet 21.27 (0.4) 22.15 (1.2) 11.32 (0.5) 0.6 18.40 (0.2) 19.84 (1.0)
SVM 17.04 (1.0) 15.37 (0.7) 11.38 (0.2) 0.8 15.56 (0.6) 18.77 (0.6)

SPO

KNN 17.04 (0.5) 19.29 (0.8) 10.71 (0.3) 0.0 14.51 (0.5) 18.40 (0.4)
C4.5 16.83 (3.1) 22.34 (0.7) 06.56 (0.2) 0.2 15.72 (0.5) 18.40 (0.3)
Ripper 15.61 (1.2) 12.65 (0.5) 08.91 (0.6) 0.4 20.25 (1.2) 20.29 (0.5)
BayesNet 16.70 (0.7) 16.98 (0.5) 10.83 (0.5) 0.6 16.35 (0.5) 18.20 (0.7)
SVM 20.33 (0.6) 22.33 (0.5) 11.74 (0.2) 0.8 12.59 (0.6) 16.93 (0.7)

It can be observed in these tables that, in most of the results, the performance of the methods

decreases as the class level becomes deeper. This is expected, because the deeper a hierarchical

level, the larger the number of classes involved and the smaller the number of instances per class,

making the classification process more difficult. In addition, the error propagation problem is

associated with the methods based on the local approach, i.e., misclassifications at shallower

hierarchical levels are propagated to the deeper levels, contributing to decrease the classification
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performance at these levels.

The HMC-CT, Clus-HMC and HC4.5 methods made more errors in all class levels, probably

due to the large number of class predictions made for each instance. These methods achieved

high Micro Hierarchical Recall values and low Micro Hierarchical Precision values. High Recall

values and low Precision values can indicate that the methods make more errors because of the

increasing number of false positives and the decreasing number of true positives.

Despite the higher number of errors, Table 5 shows that the best performance at the first

level was obtained by the HMC-CT method. Although less accurate at the first level, making

more errors, the HMC-CT method achieved a better coverage on the instances of the dataset,

obtaining a higher Micro Hierarchical Recall value. Thus, this method achieved a better balance

between the Micro Hierarchical Precision and Recall metrics, resulting in a better performance

for the Hierarchical-Fβ metric.

The smaller number of classes at the first level also seemed to favor the HMC-CT method.

When using the data more than once during the training process, in a reduced number of

classes (four classes at the first level), the data may have become less sparse, which improved

the classification performance.

At the second, third and fourth levels (Tables 6, 7 and 8), the best results were obtained by

the HMC-LP method. The evaluation metrics used consider the distances between the classes

of the hierarchy, which may have contributed to this best performance.

An analysis of the errors committed by the methods showed that the HMC-LP method

committed more errors in the subtrees rooted at the classes “01” and “10”. In the datasets,

these subtrees have most of the classes of the hierarchical structure and also have many classes

that are leaf nodes at the third level (the class hierarchy has four levels). The subtrees rooted

by the classes “02”and “11” have fewer classes. Besides, the subtree rooted at the class “02”

does not have classes at the fourth level of the hierarchy.

When an instance x is a false positive for a class c, the false positive and false negative

contributions are calculated through the sum of the distances between all real classes of x and

the predicted class c assigned to it. When the instance is classified as a false negative for the

class c, the contributions are calculated through the sum of the distances of all classes assigned

to the instances and the class c. Therefore, it may be the case that the distances between the
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predicted and real classes, in the final classification produced by the HMC-LP method, were

smaller than in the other methods. As the metric considers that closer classes are more similar,

the misclassifications were less penalized, resulting in a better classification performance.

The methods based on the global approach had the worst performance because, depending

on the threshold value used, they predicted a larger number of classes than the methods based

on the local approach. The Hierarchical Precision and Recall metrics reflect the variation in

the classification performance of the methods according to the threshold values selected. In

many cases, the global methods obtained values for these metrics higher than values obtained

by the methods based on the local approach. The larger number of predicted classes is also a

feature of the HMC-CT method. In this method, the training instances are used several times

due to the class decomposition process, increasing the number of classifiers, and, as a result,

increasing the number of predictions.

Despite the worst predictive performance overall, it is possible to observe that, in some cases,

the methods based on the global approach achieved better performance than the methods based

on the local approach in the last hierarchical levels, especially in comparison with the HMC-CT

method. A possible reason is that in the local approach, misclassifications in the shallower levels

of the class hierarchy are propagated to the deeper levels. This error propagation problem is

not present in the methods based on the global approach.

The variation of the threshold values used in the methods based on the global approach is

another characteristic that influences their predictive performance. It is possible to see that, in

some cases, the use of different thresholds values significantly influenced the accuracy obtained

by the HC4.5 and Clus-HMC methods, as can be seen in the Church and Phenotype datasets.

Therefore, the value selected for the threshold may be an important parameter in such methods,

and it can be adjusted according to the desirable behavior. High threshold values lead to more

precise classifiers, while low threshold values lead to classifiers with a higher coverage (recall)

of the instances.

It is important to consider that, although the worst values of predictive performance were

obtained by the methods based on the global approach, these methods produce a less complex

(smaller) classifier, which may result in classification models easier to be interpreted by users.

The HC4.5 and Clus-HMC methods both produce decision trees that can be translated into a
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set of rules, making the model more interpretable for specialists in the problem domain. Such

aspects were not taken into consideration in this work, but a multi-objective evaluation could

be used to consider the interpretability of the generated classifiers.

Although this paper addressed a problem related to functional genomics, there are other

application domains which could be investigated, like, for example, human diseases. In fact,

examples of HMC problems can be found in many domains, like protein function prediction

[36, 2, 47, 33], text classification [21, 5], and image classification [18]. The multilabel hierarchical

classification methods proposed in this work are generic enough to be applied to all these and

other types of problems, in the same sense that a single-label flat classification algorithm can

be applied to any application domain.

The comparisons of the algorithms’ predictive accuracies using statistical significance tests

are shown in Tables 10, 11, 12 and 13. To facilitate the understanding of the tables, the symbols

presented in Table 9 are used.

Table 9: Legend for the results of statistical tests.
Symbol Meaning

N
Indicates that the algorithm located at the row of the table obtained
statistically significant better results than the algorithm located at
the column of the table

M
Indicates that the algorithm located at the row of the table obtained
better results than the algorithm located at the column of the table,
but with no statistically significant difference

O
Indicates that the algorithm located at the column of the table
obtained better results than the algorithm located at the row of
the table, but with no statistically significant difference

H
Indicates that the algorithm located at the column of the table
obtained statistically significant better results than the algorithm
located at the row of the table
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Table 10: Results of statistical tests at the first hierarchical level.
HMC-BR HMC-LP HMC-CT HC4.5 Clus-HMC

C4.5 Rip BN SVM KNN C4.5 Rip BN SVM KNN C4.5 Rip BN SVM 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

HMC-BR

KNN M M O M M M M O O O O O O O M M M N N M M M M M
C4.5 O O O M O M O O O O O O O M M M M M M O M M M
Rip O M M M M O O O O O O O M M M N N M M M M M
BN M M M N M M M O O M O M M N N N M M N N N
SVM M M M O O O O O O O M M M N N M M M M M

HMC-LP

KNN O M O O O O H O O M M M M M M O M M M
C4.5 M O O O O O O O M M M M M M M M N M
Rip O O H H H O H O O M M M O O O M M
BN O O O O O O M M M N N M M M M M
SVM O O O O O M M M N N M M M N N

HMC-CT

KNN O O O O M M N N N M M M N N
C4.5 O M O N M M N N M M N N N
Rip M M M N N N N N M N N N
BN O M M N N N M M M N N
SVM N N N N N M M N N N

HC4.5

0.0 O M M M O O M M M
0.2 M M M O O M M M
0.4 M M O O O M M
0.6 M O O O O O
0.8 O O O O O

Clus-HMC

0.0 O O M M
0.2 O M M
0.4 M M
0.6 M

Table 11: Results of statistical tests at the second hierarchical level.
HMC-BR HMC-LP HMC-CT HC4.5 Clus-HMC

C4.5 Rip BN SVM KNN C4.5 Rip BN SVM KNN C4.5 Rip BN SVM 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

HMC-BR

KNN M M O O O O M M O M M M M O M M O M N M O O M M
C4.5 M O O O O M O O O M M M O M O O M M O O O M M
Rip O O O O M O O O M M M O M O O M M O O O M M
BN M M O N M M M N N M M M M M N N M M O M N
SVM O O N M O M N M M M M M M M N M O O M M

HMC-LP

KNN O N M O M N N M M M M M N N M M O M N
C4.5 N M M M N N N M N M M N N M M M N N
Rip O H O O O O H O O H O M O H H O O
BN O O M M M O M O O M M O O O M M
SVM M N N M M M M M N N M M O M N

HMC-CT

KNN M M M O M M O M N O O O M M
C4.5 O O H O O H O M O H H O O
Rip O O O O O M M O H H O O
BN O O O O M M O O O O M
SVM M M M M N M O O M M

HC4.5

0.0 O O M M O O O O M
0.2 O M N O O O M M
0.4 M N M O O M M
0.6 M O H H O O
0.8 H H H O O

Clus-HMC

0.0 O O M M
0.2 O M N
0.4 M N
0.6 M
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Table 12: Results of statistical tests at the third hierarchical level.
HMC-BR HMC-LP HMC-CT HC4.5 Clus-HMC

C4.5 Rip BN SVM KNN C4.5 Rip BN SVM KNN C4.5 Rip BN SVM 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

HMC-BR

KNN M M O O O O M O O M N M M M M M O M M M O O M M
C4.5 M O O O O M O O M M M M M M M O M M O O O M M
Rip O O O O M O O M M M M M M O O M M O O O O M
BN O O O M M O M N N N M M M O M N M O O M M
SVM O O N M O M N N N M M M O M N M O O M M

HMC-LP

KNN O N M M N N N N N N M O M N M M O M M
C4.5 N M M N N N N N N M M N N M M M M N
Rip O H O M M M O O O H O M O H H O O
BN O M N N M M M M O M O O M M O O
SVM N N N N N N M O M N M M O M M

HMC-CT

KNN M M M O O O H O M O O H O O
C4.5 O O O O O H O O H H H O O
Rip O O O O H O O O H H O O
BN O O O H O O O H H O O
SVM O O H O M O O H O O

HC4.5

0.0 O H O M O O H O O
0.2 O M M O O O O M
0.4 M M N M O M M
0.6 M O O O O M
0.8 O H H O O

Clus-HMC

0.0 O O M M
0.2 O M M
0.4 M N
0.6 M

Table 13: Results of statistical tests at the fourth hierarchical level.
HMC-BR HMC-LP HMC-CT HC4.5 Clus-HMC

C4.5 Rip BN SVM KNN C4.5 Rip BN SVM KNN C4.5 Rip BN SVM 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

HMC-BR

KNN M M O O O O M M O M N N M M M M O M M M O O M M
C4.5 M O O O O M M O M N N M M M M O M M M O O M M
Rip O O O O M O O M M M M M M O O M M O O O O M
BN O O O N M O M N N M M M M O M M M O O M M
SVM O O M M O N N N N M M M O M M M O O M M

HMC-LP

KNN O N M M N N N N N N M O M N M M O M M
C4.5 N M M N N N N N N M M N N M M M M N
Rip O H M M M M M M O H O M O O H O O
BN O M N N M M M M O M M M O O O M
SVM N N N N N N M O M N M M O M M

HMC-CT

KNN M M M O O O H O O O H H O O
C4.5 O O O O O H O O O H H H O
Rip O O O O H O O O H H H O
BN O O O H O O O H H O O
SVM O O H O O O O H O O

HC4.5

0.0 O H O M O H O O O
0.2 O M M O O O O M
0.4 M N M M O M M
0.6 M O O O O M
0.8 O O H O O

Clus-HMC

0.0 O O O M
0.2 O M M
0.4 M M
0.6 M

7 Conclusions and Future Work

This paper investigated the Hierarchical Multilabel Classification (HMC) problem. In this

problem, classes are structured in a hierarchy, where classes can be superclasses or subclasses

of other classes, and each example can simultaneously belong to more than one class. These

two aspects increase the difficulty of the classification task.
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The hierarchical classification methods investigated in this paper are divided into two ap-

proaches: local and global. The local approach performs the classification one class level at a

time, discriminating among sibling classes of the hierarchy at each step, using a “Divide and

Conquer” strategy. The local approach allows the development of methods using conventional

ML algorithms as base classifiers. In this work, three methods based on this approach were im-

plemented. The HMC-BR method, previously proposed in the literature; and two new methods

proposed in this work, named HMC-LP and HMC-CT. These methods were evaluated using

five ML algorithms as base classifiers: KNN, C4.5, Ripper, BayesNet and SVM. Methods fol-

lowing the global approach, unlike the local approach, induce classifiers considering all classes

simultaneously. As a result, a single classifier is used for the classification process, instead of

conventional ML algorithms. In this work, two existing methods based on this approach were

evaluated: HC4.5 and Clus-HMC.

Experiments were performed in order to compare the local and global approaches. As HMC

problems are common in bioinformatics, the experiments used datasets related with functional

genomics. In particular, 10 datasets of the Saccharomyces cerevisiae organism, a specific type

of Yeast, were used. These datasets are structured according to the schema of the FunCat

catalog (http://mips.gsf.de/projects/funcat), developed by MIPS, and describe different

aspects of the genes in the Yeast genome, like sequence statistics, phenotype and expression.

The experimental results were evaluated with the use of specific metrics for HMC problems,

based on the distances between the real and predicted classes in the hierarchy. All results were

reported separately for each level of the class hierarchies, and statistical tests were used to

analyze the statistical significance of the differences in the predictive accuracy performances of

the different HMC methods.

The results show that the proposed local HMC methods can obtain predictive accuracy

better than, or similar to, the global methods investigated. These results were observed mainly

for the HMC-Label-Powerset method proposed in this work.

As future work, HMC methods for non-mandatory leaf node classification will be inves-

tigated. In these problems, the deepest classification level associated with each instance is

automatically defined by the classifier, without the requirement for the instances to be always

assigned to classes represented by leaf nodes.
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In the local approach, an important improvement that can be incorporated is a mechanism

for the correction of the error propagation problem. This mechanism could detect, at each

step of the local strategy, the instances that were previously incorrectly classified and perform

their reclassification later. The incorporation of such mechanism could improve the predictive

performance of the local approach.

Techniques for combining classifiers can also be employed to improve the predictive accuracy

of methods based on the local approach. Ensemble strategies have been already adopted in the

development of hierarchical single-label local classification methods, as the method proposed

in [13], improving their predictive performance.

Different local approaches can be combined to improve the classification performance. Ac-

cording to the experiments reported in this work, the best performance at the first level was

obtained by the HMC-CT method. Therefore, this method could be combined with the HMC-

LP method, through the use of HMC-CT at the first level and the HMC-LP method at the

other levels.

The development of methods based on the global approach is also a promising research

direction. Although more complex to develop, these methods usually produce a simpler and

more interpretable classification model than the models induced by methods based on the local

approach, especially if the generated model is a decision tree or a set of classification rules, such

as the HC4.5 and Clus-HMC methods used in this work.

The consideration of other types of hierarchical structures, such as hierarchies structured

as Directed Acyclic Graphs (DAG), is also a topic that deserves future research. In DAG

structures, a node can have more than one parent in the hierarchy, which makes the classification

process more difficult. To consider class hierarchies structured as DAGs, modifications are

necessary in the classification methods.

The evaluation of hierarchical multilabel classifiers also presents good opportunities for

future studies. Although several metrics have been proposed in the literature, many consider-

ations can still be made with respect to their performance. Moreover, new evaluation metrics

can be developed, and modifications can be incorporated into the existing metrics.

Finally, in addition to the analysis of different evaluation metrics, one can analyse how

different classification methods are influenced by different hierarchical and multilabel charac-
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teristics of the datasets. This study can support the improvement of existing methods and the

development of new methods.
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