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Abstract

Automatically inferring the function of unknown proteins is a chal-
lenging task in proteomics. There are two major problems in the task of
computational protein function prediction, which are the choice of the pro-
tein representation and the choice of the classification algorithm. There
are several ways of extracting features from a protein, and the choice of the
feature representation might be as important as the choice of the classifica-
tion algorithm. These problems are aggravated in the case of hierarchical
protein function prediction, where a hierarchy of classifiers is built and
each of those classifiers’ construction has to consider the aforementioned
selection problems. In this paper we address these problem by employing
three alternative selective hierarchical classification approaches: (a) select-
ing the best classifier given a fixed representation; (b) selecting the best
representation given a fixed classifier; and (c) selecting the best classifier
and representation simultaneously, in a synergistic fashion. The analysis
of the results have shown that the selective representation approach is al-
most always ranked number 1 when compared against the different fixed
representations and that the use of the selective classifier approach is not
able to surpass using only the best classifier for the target problem.

Keywords: Hierarchical Classification, Protein Function Prediction.

1 Introduction

The task of computational prediction of protein function based on the protein’s
amino acid sequence is an active area of research in the field of proteomics
[18, 47]. One approach that can be used to infer proteins functions is supervised
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machine learning – more precisely, the classification task of machine learning or
data mining. The goal is to use a set of proteins whose functions are known
to build a classification model that can be used to predict the functions of
proteins whose functions are unknown. The use of supervised machine learning
(classification) algorithms is common practice in the field [43, 20, 1, 37].

There are two major problems in the task of computational protein function
prediction with classification algorithms, which are the choice of the protein
representation and the choice of the classification algorithm. Those are open
problems, even in the conventional scenario of “flat” classification (where there
are no hierarchical relationships among classes), as there are many choices and
it is not clear which representation and classification algorithm are the best.
In the hierarchical classification scenario addressed in this paper, where protein
functional classes are organised into a hierarchy, these problems are aggravated,
due to the large number of classes and classification sub-problems (where dif-
ferent algorithms and different representations might be best for different class
levels).

There are several ways of extracting features from a protein, and the choice
of the feature representation might be as important as the choice of the clas-
sification algorithm. Apart from a few works, such as [28], the issue of which
feature representation to use is often overlooked as the authors are usually more
focused on which classification algorithm to use or related issues. One particular
challenge is that not all feature sets are available for every experiment, as some
biological databases are highly specialized in one particular organism and the
same information might not be available for other organisms.

According to [13] there are two broad types of representations that can be
derived for proteins: alignment-independent, which are features computed from
the sequence by using some computational method without performing sequence
alignment, and alignment-dependent, which are features obtained from biologi-
cal databases of motifs or domains that were typically discovered by performing
sequence alignment on a large-scale, in order to identify conserved regions in
the sequences of homologous proteins.

In this paper we address the problems of both protein representation selec-
tion and algorithm selection in a synergistic way by using selective hierarchical
classification approaches. More precisely, we dynamically select the best pro-
tein representation and the best classification algorithm for each class in the
hierarchy. Both selections are done in a data-driven way.

The remainder of this paper is organized as follows: Section 2 presents a
brief introduction to the task of protein function prediction and the 8 different
protein representations employed in this work. Section 3 briefly introduces the
task of hierarchical classification and the 3 hierarchical selective approaches:
(a) selecting the best classifier for each class node given a fixed representation
for all class nodes; (b) selecting the best representation for each class node
given a fixed classifier for all class nodes; and (c) selecting the best classifier
and representation for each class node. Section 4 presents the experimental
setup for the experiments. The computational results and their discussion are
presented in Section 5 and finally, in Section 6 we state our conclusions and
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future research directions.

2 Protein Function Prediction

2.1 Overview of the protein function prediction problem

Proteins are large molecules that execute the vast majority of the functions
performed by a living cell [2]. Proteins are produced from genes, by transform-
ing the genes’ DNA material into amino acids, the building blocks of proteins.
Hence, a protein essentially consists of a long sequence of amino acids, which
folds into a specific 3D structure, where different protein structures are suit-
able for performing different functions. In the last few years there has been an
enormous progress in genome sequencing technology (giving us the knowledge
of the full DNA contents of many organisms, including humans), and as a result
the number of proteins with known sequence of amino acids has been growing
very fast. Unfortunately, however, the number of proteins with known function
is growing at a much lower rate, because it is much more time-consuming and
expensive to determine the structure and function of a protein than just de-
termining its sequence of amino acids. Knowledge of protein functions is very
important in biomedical sciences, not only for a better understanding of cell
biology in general, but also because many diseases are caused by or at least
associated with defects in protein functions. Hence, an effective method for the
prediction of protein functions can potentially contribute to generate new bio-
logical knowledge that can lead to a better treatment and diagnosis of diseases,
design of more effective medical drugs, etc.

Therefore, there is a clear motivation to develop data mining methods (specif-
ically classification methods, based on supervised machine learning) that can
predict the function of a protein based on its sequence of amino acids. Although
such computational predictions are not so reliable as the results of biological ex-
periments that directly determine a protein’s function, computational methods
are much cheaper and faster, and so they can give researchers valuable clues for
the design of future biological experiments.

In this paper we predict protein function from the protein’s amino acid se-
quence by using classification methods. Hence, each example (data instance)
corresponds to a protein, the values of the predictor attributes for an example
represent properties of the corresponding protein and the classes represent func-
tion(s) associated with the protein. The problem is challenging for at least two
reasons. First, there are many different types of protein properties that could
be used as predictor attributes, and it is not clear which type of property(ies)
has(ve) greater predictive power. (To cope with this, our system automatically
selects the best type of protein representation in a data-driven manner, as will
be explained later.) Secondly, there are a large number of protein functions,
which are typically organized into a hierarchy of functions, naturally leading
to a hierarchical classification problem, where the classes to be predicted are
hierarchically-structured in the form of a tree of class nodes, in the case of our
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datasets. Hierarchical classification is, by comparison, a much less investigated
research area than standard (flat) classification, and the former tends to be a
considerably more difficult type of problem due mainly to the large number
of classes to be predicted. The definition of predictor attributes for protein
function prediction is discussed in the next sub-section (2.2), whilst methods
of hierarchical classification in the context of protein function prediction are
discussed in Section 3.

2.2 Protein Feature Types

In this section we describe the protein representations used and evaluated in
this work. The protein representations in Sub-sections 2.2.1, 2.2.2, 2.2.3, 2.2.4
are alignment-independent representations. The protein representations in Sub-
section 2.2.5 are alignment-dependent.

2.2.1 Sequence Length and Molecular Weight

The sequence length is a numerical value which is simply the count of amino
acids of a protein. The molecular weight is the sum of the molecular weights of
all amino acids in the protein.

These features have been used (with other attributes) in [28, 1, 23]. Since
these features are believed to be important for protein functional prediction
and they are easily available, we always use them in conjunction with the other
protein representation studied in this work.

2.2.2 Z-Values

The z-values [37, 12], also known as Sandberg Descriptors [36, 32], are the princi-
pal components of 26 different physicochemical measured and calculated prop-
erties of amino acids, and essentially represent hydrophobicity/hydrophilicity
(z1), steric/ bulk properties and polarizability (z2), polarity (z3), and electronic
effects (z4 and z5) of the amino acids [32].

In [37] 5 z-values are used to represent each amino acid of the protein se-
quence. For example, the Alanine (A) amino acid has 5z values: z1 = 0.24, z2 =
-2.32, z3 = 0.60, z4 = -0.14, z5 = 1.30. Therefore a protein sequence of length
n would be represented by n*5 features. In [12, 37] the authors suggested that
the z-values for all amino acids of each protein are averaged so that a protein
is represented by just 5 z-values, instead of 5*n. This is needed because most
machine learning methods cannot cope with instances (in this case proteins)
which have varying number of features (in this case the z-values). It should be
noted that they tried more complicated ways of aggregating z-values, but they
had better results with this simpler method.

Originally in [37] the authors used the averaged z-values from the whole
amino acid sequence. After some experimental research they found out that
in order to classify GPCR (G-Protein Coupled Receptor) proteins, it would be
better to use 15 z-values [12]. These z-values are then computed as follows:
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5-values are computed and averaged over the whole protein sequence. Another
5 z-values are computed from the N-terminus (the first 150 amino acids of the
protein sequence) of the protein and further 5 z-values are computed from the C-
terminus (the last 150 amino acids of the protein sequence). The number of 150
amino acids was found, in previous experiments, to give the largest improvement
in accuracy [12].

In this work we use both 5 z-values and 15 z-values.

2.2.3 Amino Acid Composition (AA)

Another feature which is very simple to compute based on the protein sequence
is the percentage occurrence of each amino acid within a protein sequence. This
will create a feature set of 20 features, each of them with the percentage of
how many times a particular amino acid occurs within the protein’s amino acid
sequence.

This type of feature has been used in [22, 28, 43, 1].

2.2.4 Local Descriptors (LD)

The local descriptors, also known as global protein sequence descriptors [16],
were used in [7, 9, 11, 44].

There are three types of local descriptors used in the aforementioned works
(and also used in our own experiments): Composition, Transition and Distri-
bution, which are computed based on the variation of occurrence of functional
groups of amino acids within the primary sequence of the protein. The func-
tional groups used were: hydrophobic (amino acids CVLIMFW), neutral (amino
acids GASTPHY), and polar (amino acids RKEDQN).

Composition accounts for the percentage composition (relative frequency) of
a particular functional group within the amino acid sequence. Therefore, there
are three composition features, one for each functional group of amino acids.

Transition features represent the relative frequency in which an amino acid
from a particular functional group is followed by an amino acid from another
functional group. More precisely, the following transitions are considered: Polar
→ Neutral or Neutral → Polar; Polar → Hydrophobic or Hydrophobic → Polar;
and Neutral → Hydrophobic or Hydrophobic → Neutral.

Distribution features are computed based on the percentage of how many
amino acids of a particular functional group are present on the first, 25%, 50%,
75% and 100% of the amino acid sequence.

In total there would be 21 features (3 composition, 3 transition, 15 distri-
bution) if they were computed from the whole amino acid sequence. However,
in [11, 44] the authors divided the protein sequence into 10 descriptor regions
(A-J) as follows: Regions A,B,C and D are obtained by dividing the entire pro-
tein sequence into four equal-length regions. Regions E and F are obtained by
diving the protein sequence in two equal-length regions. Region G represents
the middle with 50% of the sequence. Region H represents the first 75% of the
sequence, Region I the final 75% of the sequence and Region J the middle with
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Figure 1: The 10 regions used by the Local Descriptor technique as used in
[44, 11]

75% of the sequence. For each region the 21 local descriptors are extracted,
resulting in a 210 feature vector. These regions are illustrated in Figure 1.

2.2.5 Motif-Based Features

Instead of computing features directly from the protein sequence, like in the
previously described protein representations, it is possible to use features ob-
tained from biological databases. In [15, 5, 6, 20, 46, 23, 31, 35, 25] the authors
use the absence/presence of a particular type of protein signatures (“motifs”)
as binary features.

In this work we use protein signatures from four different databases as fea-
tures. The employed signatures are PROSITE patterns [26], which use regular
expressions to encode the motifs; Fingerprints from the PRINTS [3] database,
which are created by considering several motifs to be present in the same pro-
tein; motifs from the PFAM [4] database, which are created by using hidden
Markov models; and entries from the InterPro [34, 27] database.

The PROSITE patterns are encoded as regular expressions, and the rationale
behind its development is that a protein family could be characterized by a sin-
gle most conserved motif within a multiple alignment of its members sequences,
as this would likely encode a key biological feature [21]. However, as pointed out
in [21], most protein families are characterized not by one, but by several con-
served motifs. This is the rationale behind the development of the fingerprints
motifs used in the PRINTS database. Another approach to characterize protein
families adopts the principle that the variable regions between conserved mo-
tifs also contain valuable information. In the PFAM database, the profiles are
encoded using hidden Markov models. Although there is some overlap between
these three databases, their content is significantly different. Also, as pointed
out in [21], these motifs have different areas of application, e.g.: PROSITE
patterns are unreliable in the identification of members of highly divergent su-
perfamilies (where HMMs excel); fingerprints perform relatively poorly in the
characterization of very short motifs (where PROSITE patterns do well); and
HMMs are less likely to give specific subfamily diagnoses (where fingerprints ex-
cel). For these reasons, the curators of these databases (among others) decided
to combine efforts in the creation of the INTERPRO database, which combines
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Table 1: Summary of number of features per type.
Protein Feature Type # of features
5 Z-Values (5z) 5
15 Z-Values (15z) 15
Amino Acid Composition (AA) 20
Local Descriptors (LD) 210
Prosite Patterns 582 for EC, 127 for GPCR
Prints Fingerprints 380 for EC, 281 for GPCR
Pfam Profiles 706 for EC, 73 for GPCR
Interpro Entries 1,214 for EC, 448 for GPCR

the information from all these and other databases.

2.2.6 Summary of Protein Features Used in this work

Table 1 presents a summary of the feature types and the respective number of
features used in this work. As explained earlier, the top 4 features in Table 1
are alignment-independent features, whilst the bottom 4 features are alignment-
dependent. In this table EC and GPCR refer to the Enzyme and GPCR datasets
whose creation is explained in detail in section 4.2.

3 Hierarchical Protein Function Prediction

Protein functions are often specified in a functional class hierarchy, with more
generic functions at higher levels and more specific functions at deeper levels.
For instance, Figure 2 illustrates a small part of the Enzyme Commission hier-
archy. On the first level of the hierarchy, there are 6 classes. The meaning of
each class is as follows: EC 1 = Oxidoreductases, EC 2 = Transferases, EC 3 =
Hydrolases, EC 4 = Lyases, EC 5 = Isomerases, EC 6 = Ligases. The remain-
ing classes shown on Figure 2 have the following functions: EC 1.1 = Acting
on the CH-OH group of donors, EC 1.1.1 = With NAD or NADP as accep-
tor, EC 1.1.1.1 = alcohol dehydrogenase, EC 1.1.1.2 = alcohol dehydrogenase
(NADP+), EC 1.1.1.3 = homoserine dehydrogenase.

The existing hierarchical classification methods can be analyzed under dif-
ferent aspects [42, 17, 41], as follows:

• The type of hierarchical structure of the classes, which can be either a tree
structure of a DAG (Direct Acyclic Graph) structure. DAG-structured
classes are used for instance in the well-known Gene Ontology, but this
type of class structure is out of the scope of this paper. In this work,
the protein functions are organized into a tree-structured class hierarchy.
(This is a consequence of the fact that we are using datasets originally
developed in [25], as discussed later.)
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Figure 2: An excerpt of the Enzyme Commission class hierarchy

• How deep the classification in the hierarchy is performed. I.e., if the
output of the classifier is always a leaf class node (which [17] refers to as
Mandatory Leaf-Node Prediction and [42] refers to as Virtual Category
Tree) or if the most specific (“deepest”) class predicted by the classifier for
a given example could be a node at any level of the class hierarchy (which
[17] refers to as Non-Mandatory Leaf Node Prediction and [42] refers to as
Category Tree). In this work, we are dealing with a mandatory leaf node
prediction problem.

• Whether an example (protein) is assigned to exactly one leaf node in the
class hierarchy or potentially assigned to two or more leaf nodes. In this
work we use datasets where each protein is assigned to just one leaf node.

• How the hierarchical class structure is explored by the algorithm. The ex-
isting hierarchical classification approaches can be broadly classified into:
local and global approaches. In this work we use a set of local approaches.

In the global–model approach, a single (relatively complex) classification
model is built from the training set, taking into account the class hierarchy as
a whole during a single run of the classification algorithm. When used during
the test phase, each test example (unseen during training) is classified by the
induced model, a process that can assign classes at potentially every level of the
hierarchy to the test example [42, 17, 39].

The local–model approach consists of creating a local classifier for every par-
ent node (i.e., any non-leaf node) [30] in the class hierarchy (assuming a multi-
class classifier is available) or a local binary classifier for each class node (parent
or leaf node, except for the root node) [10]. In the former case the classifier’s
goal is to discriminate among the child classes of the classifier’s corresponding
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node. In the latter case, each binary classifier predicts whether or not an ex-
ample belongs to its corresponding class. In both cases, these approaches are
creating classifiers with a local view of the problem.

Despite the differences on creating and training the classifiers, these ap-
proaches are often used with the same “top-down” class prediction strategy in
the testing phase. The top-down class-prediction approach works in the test-
ing phase as follows. For each level of the hierarchy (except the top level),
the decision about which class is predicted at the current level is based on
the class predicted at the previous (parent) level. More precisely, once an in-
stance (protein) is assigned a class at a certain level, only the subclasses (child
nodes) of that class are considered as candidate classes to be assigned at the
next lower level. The main disadvantage of the local approach with the top-
down class-prediction approach is that a classification mistake at a high level
of the hierarchy is propagated through all the descendant nodes of the wrongly
assigned class.

3.1 Selective Classifier and Representation Approaches

In [37, 12] the authors hypothesise that it would be possible to improve the
predictive accuracy of the local, top-down approach by using different classifi-
cation algorithms at different nodes of the class hierarchy. The choice of which
classifier to use at a given class node is made on a data-driven manner using
the training set. More precisely, in order to determine which classifier should be
used at each node of the class hierarchy, during the training phase, the training
set is randomly split into mutually-exclusive sub-training and validation sets.
Different classifiers are then trained using this sub-training set and are then
evaluated on the validation set. The classifier chosen for the current class node
is the one with the highest classification accuracy on the validation set. In this
approach the protein representation is fixed, i.e. all classifiers are trained with
the same feature set. This approach is referred to as the Selective Classifier
(Sel. C.) approach.

In this work as components of the Sel. C. approach we have employed the k
nearest neighbor (k-NN) with k = 3, Naive Bayes (NB) and Support Vector Ma-
chines (SVM) classifiers. All these classifiers were used with the WEKA Data
mining Tool [45] with default parameters. The rationale behind the choice of
these particular classifiers is that they are well-known classifiers which have been
successfully used in flat (non-hierarchical) protein function prediction problems
and also they have very different inductive biases, meaning that they will con-
struct different classification models, therefore insuring a diversity of predictions
to be exploited by the Sel. C. approach.

Inspired by the selective classifier approach, in [40] the authors proposed
that instead of selecting the best classifier, it might be better to select the best
representation (feature set) at each node of the class hierarchy. In this approach
the classifier is fixed, i.e. at all class nodes the same type of classifier is trained
with each of the different types of feature set, and the best type of feature (on
the validation set) is chosen at each class node. This approach is referred to as
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the Selective Representation (Sel. R.) approach.
Another alternative [40] to selecting only the best classifier or only the best

representation is to try to select the best combination of both for each node
of the class hierarchy. In this approach, all the classifiers are trained with all
the available representations, and the best joint combination of classifier and
representation is selected. This approach is, therefore, the combination of Sel.
C. and Sel. R.. This approach has the advantage of having a greater flexibility as
it considers the interactions between classifiers and representations. However, it
has the drawback that it is computationally expensive, meaning that in practice,
we need to limit the number of classifiers and representations to a small number.

It should be noted that the Sel. R. and Sel. C. + Sel. R. approaches proposed
in [40] have originally been evaluated in a music genre classification dataset,
while in this work, we perform many more experiments on a very different
application domain, namely protein function prediction.

Note that, at a very high level of abstraction, the idea of representation se-
lection seems similar to the well-known idea of feature selection in data mining
[33]. However, the motivation for representation selection rather than feature
selection in a hierarchical classification scenario is explained by the following
reasons: (a) it is much more efficient (faster) to select a representation at each
class node than to perform feature selection at each class node; (b) Repre-
sentation selection produces results at a coarser grain of information, possibly
providing new insights to biologists, that is, it might reveal that some broad
type of representations (sets of features of the same type, rather than single
features) are particularly more effective to classify protein functions at particu-
lar levels. It also differs from feature selection as different representations in a
dataset are actually just “candidate representations”, because just one will be
chosen, unlike in feature selection where any subset of features could be chosen.

4 Experimental Setup

4.1 Evaluation Metrics for Hierarchical Predictive Accu-
racy

Unfortunately, in the task of hierarchical classification there are no standard
measures to evaluate the results. Comprehensive reviews of hierarchical classi-
fication measures can be found in [42, 8]. An aspect that can be criticized in
the field is that most researchers still use flat classification measures to evaluate
their hierarchical classification algorithms. Therefore, the question that natu-
rally arises, since there is no consensus in the literature, is “What evaluation
metric to use?”. In order to evaluate the algorithms we have used the metrics of
hierarchical precision (hP), hierarchical recall (hR) and hierarchical f-measure
(hF) proposed in [29]. These measures are extended versions of the well known
metrics of precision, recall and f-measure but tailored to the hierarchical classi-
fication scenario. They are defined as follows:
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hP =
∑

i
|P̂i∩T̂i|∑
i
|P̂i| , hR =

∑
i
|P̂i∩T̂i|∑
i
|T̂i| , hF = 2∗hP∗hR

hP+hR , where P̂i is the set con-

sisting of the most specific class predicted for test example i and all its ancestor
classes and T̂i is the set consisting of the most specific true class of test exam-
ple i and all its ancestor classes. The main advantage of using this particular
metric is that it can be applied to any hierarchical classification scenario (i.e.
single label, multi-label, tree-structured, dag-structured, mandatory-leaf node
or non-mandatory leaf node problems).

4.2 Data Preparation

The protein datasets used in this work were originally developed by [25]. These
datasets were originally created from the information about two types of proteins
(Enzymes and GPCRs – G-Protein Coupled Receptors) obtained from different
protein databases. For both datasets, the classes (protein functions) form a tree
where each node represents a class. An excerpt of the class tree associated with
the Enzymes dataset was shown in Figure 2, where classes at different levels are
separated by a ”.” E.g., as shown in that figure, there are 6 classes at the first
level, each of them sub-divided into sub-classes, and so on, until the fourth class
level. Each class essentially refers to the type of chemical reaction catalyzed
by an enzyme. In the case of the GPCR dataset, each class essentially denotes
the type of ligand that binds to the GPCR (GPCRs essentially transmit signals
received from ligands outside the cells to other molecules inside the cell). For
further details of the meaning of the functional classes in these two datasets,
see [25].

Originally there were 8 datasets (4 for Enzymes and 4 for GPCR) created
based on protein data available in the Uniprot database and motif information
obtained from the Interpro, Pfam, Prints and Prosite databases. Each of those
datasets contained only one type of motif representation. For example, the EC-
Interpro dataset had as predictive attributes only the Interpro entries motifs.

It should be noted that proteins obtained from biological databases contain
non-standard amino acids and in such cases we have made the following substi-
tutions, as it has been done in [12]: B (either an asparagine or aspartic acid) →
N (asparagine); Z (either a glutamine or a glutamic acid) → Q (glutamine); X
(unknown residues) → A (alanine); U (selenocysteine) → C (cysteine).

One of the objectives of this work is to evaluate the impact of the many differ-
ent types of representations discussed in Section 2.2. Therefore, we expanded the
number of representations used in each of the original eight datasets by extract-
ing the alignment-independent attributes described in Section 2.2. This means
that each of these 8 datasets now has 5 representations (5z,15z,AA,LD,one type
of motif). These datasets are hereafter referred to as single-motif datasets.

Although these datasets allow us to verify the impact of each of the alignment-
independent features against each of the motif representations, they do not
allow us to verify if there is any difference in the predictive power of the
different motifs representations. For this reason, we have also created two
new datasets, which we refer to as “multiple-motif EC” and “multiple-motif
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GPCR” which were created from the common proteins that appeared in all four
corresponding specific datasets, i.e. the four datasets about EC or the four
datasets about GPCR. Therefore, each multiple-motif dataset has 8 represen-
tations (5z,15z,AA,LD,Interpro motifs, Pfam motifs, Prints motifs and Prosite
motifs).

Table 2 presents a summarized description of the datasets. The last col-
umn of Table 2 presents the number of classes at each level of the hierarchy
(1st/2nd/3rd/ 4th levels). Note that concerning the number of protein rep-
resentations, the multiple-motif datasets are more comprehensive than their
single-motif counterpart datasets, because the 5 candidate representations used
in a single-motif dataset are a proper subset of the 8 candidate representations
used in the corresponding multiple-motif dataset. However, the motivation for
performing the experiments on both single-motif and multiple-motif datasets is
that the latter datasets have a reduced number of examples (specially in the case
of Enzymes), since a protein is included in a multiple-motif dataset only if it ap-
pears in all the four single-motif datasets for the protein in question (Enzymes or
GPCRs). Hence, the single-motif datasets have considerably more examples, of-
fering a better statistical support to some experiments. The datasets used in the
experiments are available at: http://sites.google.com/site/carlossillajr/resources.

Table 2: Dataset Details.
Dataset # of Examples (Proteins) # Classes per Level
Multiple-motif EC 5,221 6/35/47/70
EC-Interpro 14,027 6/41/96/187
EC-Pfam 13,987 6/41/96/190
EC-Prints 14,025 6/45/92/208
EC-Prosite 14,041 6/42/89/187
Multiple-motif GPCR 5,156 7/42/74/49
GPCR-Interpro 7,444 12/54/82/50
GPCR-Pfam 7,053 12/52/79/49
GPCR-Prints 5,404 8/46/76/49
GPCR-Prosite 6,246 9/50/79/49

5 Computational Results and Discussion

In this section, we will first discuss the impact of the different protein represen-
tations (which is less investigated in the literature) on the task of hierarchical
protein function prediction and we will also discuss the impact of the differ-
ent classifiers. Also, all the experiments were performed using 10-fold cross-
validation.
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Table 3: Hierarchical F-Measure (hF) for the single-motif datasets with 5 protein
representations

Dataset Type of Knn SVM NB Sel.C.
Feature hF hF hF hF

5z 42.36 18.56 21.68 40.85
15z 50.44 20.98 24.39 47.80

EC-Interpro AA 51.86 23.92 25.29 49.14
LD 57.76 31.52 15.71 55.79

Interpro Motif 84.28 83.02 77.01 83.01
Sel. R. 84.26 83.00 79.65 82.97

5z 40.39 18.74 21.98 39.40
15z 50.30 21.15 24.64 47.60

EC-Pfam AA 53.13 23.86 25.76 50.29
LD 58.94 33.45 17.81 57.28

Pfam Motif 83.94 82.36 76.30 82.73
Sel. R. 83.95 82.49 78.77 82.60

5z 39.17 19.32 21.93 39.25
15z 49.84 22.48 21.61 50.35

EC-Prints AA 53.04 25.63 25.50 53.29
LD 59.83 41.10 24.50 60.24

Prints Motif 83.10 80.63 79.96 82.04
Sel. R. 83.19 81.17 81.39 83.08

5z 42.92 16.60 19.73 43.65
15z 51.82 21.21 22.91 52.52

EC-Prosite AA 53.23 23.42 24.34 54.50
LD 59.26 32.60 14.14 58.52

Prosite Motif 85.19 83.57 81.96 85.26
Sel. R. 85.25 83.85 83.16 85.48

5z 60.80 45.06 46.98 60.58
15z 73.07 57.11 51.35 72.93

GPCR-Interpro AA 78.03 63.56 53.19 77.95
LD 82.12 77.51 60.35 82.27

Interpro Motif 79.44 74.36 65.80 79.52
Sel. R. 86.16 81.66 74.72 86.39

5z 62.24 46.40 48.29 62.10
15z 74.82 59.43 52.85 74.78

GPCR-Pfam AA 79.68 65.72 55.55 79.80
LD 83.54 78.79 62.06 83.57

Pfam Motif 68.06 59.07 57.44 67.27
Sel. R. 85.19 84.00 74.70 85.23

5z 67.91 50.56 52.09 67.67
15z 77.25 60.35 56.01 77.29

GPCR-Prints AA 80.97 66.21 55.93 81.08
LD 83.30 79.02 61.30 83.86

Prints Motif 76.64 72.02 64.54 76.64
Sel. R. 83.33 81.09 74.31 83.90

5z 67.05 49.45 50.95 66.87
15z 76.27 58.14 54.65 76.21

GPCR-Prosite AA 80.79 64.09 53.97 80.83
LD 82.69 78.47 61.73 82.92

Prosite Motif 64.54 53.56 49.80 64.54
Sel. R. 82.69 78.52 63.67 82.9713



Table 4: Hierarchical F-measures (hF) for the multiple-motif datasets with 8
protein representations

Dataset Type of Knn SVM NB Sel.C.
Feature hF hF hF hF

5z 54.92 33.39 40.99 63.56
15z 62.55 36.97 45.00 65.66
AA 63.70 40.11 47.34 73.32
LD 65.67 56.44 39.94 74.42

Multiple-motif EC Interpro 79.91 79.59 79.07 81.93
Pfam 79.43 79.07 77.39 79.37
Prints 79.59 78.56 81.18 82.34
Prosite 79.44 78.51 79.64 79.09
Sel. R. 79.82 79.56 82.33 81.58

5z 68.63 51.85 53.39 68.56
15z 77.97 61.87 57.39 77.96
AA 81.58 67.66 57.08 81.65
LD 83.58 79.60 62.49 84.30

Multiple-motif GPCR Interpro 79.79 75.47 64.54 79.89
Pfam 63.32 51.70 51.79 62.66
Prints 76.83 71.90 65.13 76.46
Prosite 65.82 54.91 52.29 65.78
Sel. R. 86.61 83.53 74.91 86.94
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3 2 1

Sel.R. (1.375)
Interpro motif (2.0)

4

5z (5.875)

56

15z (4.875)
AA (3.875)
LD (3.0)

Figure 3: Analysis of relative protein representation importance on the Interpro-
motif based datasets.

5.1 Impact of the different protein representations

5.1.1 Results for the single-motif datasets

One of the main contributions of this paper is to asses the impact of the choice of
a type of protein representation on the hierarchical protein function prediction
problem. Table 3 presents the results obtained by each representation on each
single-motif dataset. However, verifying the particular importance of each pro-
tein representation is not straightforward, since as seen in section 2.2.5 different
motif representations have very different rationale behind their development.
For this reason, in the analysis of the different protein representations based
on the single-motif datasets, we break down the analysis by the type of motif.
That is, for each of the 4 types of motif, we analyse the result for both EC and
GPCR datasets with that motif as a candidate representation to be selected.
E.g., taking into account the results on both EC-Interpro and GPCR-Interpro,
as they have the same type of motif-based protein representation.

For the Interpro-motif based datasets, considering all the representations
(including the selective representation method), the average ranking of the pro-
tein representations (computed by the Friedman statistical test, considering the
hierarchical f-measure values) is: Sel. R. (1.375), Interpro motifs (2.0), LD
(3.0), AA (3.875), 15z (4.875) and 5z (5.875) (the smaller the rank number, the
better the method). This ranking provides an overall order of the effectiveness
of each protein representation across all datasets without going into the merit
of wins/loses in individual datasets [14]. In order to identify on which pairwise
comparisons there is a statistical difference between the results, we conduct a
post-hoc test. As strongly recommended by [19] we use the Shaffer static pro-
cedure for α = 0.05. This combination of Friedman statistical test and Shaffer
post-hoc test was used to produce all results shown in Figures 3 to 8. Figure 3
shows the result of this test in a graphical way as suggested by [14]. In Figure
3 the bold horizontal lines connect the representations whose results are not
found to be statistically significantly different. (This graphical representation is
also used in Figures 4 through 8.) The analysis of the results in Figure 3 shows
that there is no statistical difference, when comparing the Sel. R., Interpro
Motifs, LD and AA. There is a statistical difference when comparing the Sel.
R., Interpro Motifs and LDs with 5z and 15z.

For the Pfam-motif based datasets, the average ranking of the protein rep-
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Sel.R. (1.25)

Pfam motif (3.125)

4

5z (5.875)

56

15z (4.5)
AA (3.5)

LD (2.875)

Figure 4: Analysis of relative protein representation importance on the Pfam-
motif based datasets.

3 2 1

Sel.R. (1.0)

Prints motif (2.875)

4

5z (5.875)

56

15z (4.75)
AA (3.75)

LD (2.75)

Figure 5: Analysis of relative protein representation importance on the Prints-
motif based datasets.

resentations is: Sel. R. (1.25), LD (2.875), Pfam motifs (3.125), AA (3.5), 15z
(4.5) and 5z (5.875). Figure 4 shows the graphical result of the Shaffer static
post-doc test. The analysis of the results in Figure 4 shows that there is no
statistical difference, when comparing the Sel. R., LD, Pfam Motifs and AA.
There is a statistical difference when comparing the Sel. R., Pfam Motifs and
LDs with 5z and 15z.

For the Prints-motif based datasets, the average ranking of the protein rep-
resentations is: Sel. R. (1.0), LD (2.75), Prints motifs (2.875), AA (3.75), 15z
(4.75) and 5z (5.875). The analysis of the results in Figure 5 shows that there
is no statistical difference, when comparing the Sel. R., LD, Pfam Motifs and
AA. There is a statistical difference when comparing the Sel. R., Prints Motifs
and LDs with 5z and 15z.

For the Prosite-motif based datasets, the average ranking of the protein
representations is: Sel. R. (1.0625), LD (2.8125), AA (3.5), Prosite motifs
(3.875), 15z (4.25) and 5z (5.5). The analysis of the results in Figure 6 shows
that there is no statistical difference, when comparing the Sel. R., LD, and AA.
There is a statistical difference when comparing the Sel. R. with Prosite Motifs,
5z and 15z.

5.1.2 Results for the Multiple-Motif datasets

Recall that apart from the single-motif datasets, we have also created two
multiple-motif datasets in order to evaluate the performance of each particular
type of motif against the others as well as against the alignment-independent
features and the Sel. R. approach. Table 4 presents the predictive accuracy
(measured by hierarchical precision, recall and f-measure values) by each rep-
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Sel.R. (1.0625)

Prosite motif (3.875)
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5z (5.5)

56
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Figure 6: Analysis of Relative protein representation importance on the Prosite-
motif based datasets.

3 2 1

Sel.R. (1.5)
Interpro motif (2.75)

4

5z (8.0)

56

15z (6.5)

AA (5.5)
LD (4.6)

78

Prosite motif (6.0)
Pfam motif (6.25)

Prints motif (3.5)

Figure 7: Analysis of relative protein representation importance on the multiple-
motif datasets.

resentation on the multiple-motif datasets. The average ranking of the protein
representations (computed by the Friedman statistical test, considering the hier-
archical f-measure values) is: Sel. R. (1.5), Interpro motifs (2.75), Prints motifs
(3.5), LD (4.625), AA (5.5), Prosite motifs (6.0), Pfam motifs (6.625), 15z (6.5),
5z (8.0). Again, this ranking provides an overall order of the effectiveness of each
protein representation across all datasets and classification algorithms without
going into the merits of individual wins/loses. Figure 7 shows the graphical
result of the Shaffer static post-doc test. The analysis of the results in Figure
7 shows that there is no statistical difference, when comparing the Sel. R., In-
tepro motifs, Prints motifs, LD, and AA. There is a statistical difference when
comparing the Sel. R. with Pfam and Prosite Motifs, 5z and 15z.

5.1.3 Discussion of Results for Different Protein Representations

The overall analysis of the results shows some interesting points. First, although
not statistically significantly different from some representations, the Sel. R. has
ranked 1st in all experiments, meaning that it is an interesting approach to deal
with the problem of hierarchical protein function prediction.

Second, the result that 15z is better than 5z (although not statistically sig-
nificant) corroborates with the experiments of [11, 38] where the authors came
to the same conclusion. Note, however, that in their experiments they used
only one GPCR dataset, while in this study we have employed 4 GPRC and 4
Enzyme datasets. Our work therefore, validates their initial proposal in a larger
number of datasets. According to [37], the z-values representation provides a
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numerical description of the proteins’ physiochemical properties that potentially
results in a higher predictive accuracy than the use of amino acid sequence com-
position. However, in our experiments we have empirically verified that this is
not the case, since the AA features are always ranked above both 5z and 15z
features (although this difference is not statistically significant).

Third, the best performing alignment-independent feature is the LD. Its
results are better than all the other alignment-independent features (although
only statistically significantly different from 5z on some motif-based datasets).

Fourth, the use of the alignment-dependent features (motifs) on the single-
motif datasets have ranked 2nd for Intepro motifs, 3rd for Pfam and Prints
motifs and 4th for the Prosite motifs. On the multiple-motif datasets the
alignment-dependent features (motifs) have ranked 2nd (Intepro), 3rd (Prints),
6th (Prosite) and 7th (Pfam). Considering the rankings it is clear that the use of
Interpro motifs lead to higher predictive accuracies than the use of other types
of motifs. This is an expected result, since (as previously discussed) Interpro is
a joint effort from curators of all its members databases which includes Prosite,
Prints and Pfam among others.

Note that the Sel. R. was the best protein representation on both experi-
ments (single-motif datasets and multiple-motif datasets). Hence, it is interest-
ing to analyse which features were selected the most by the selective represen-
tation approach at each level of the class hierarchy. Tables 5 and 6 present the
percentage of how many times a particular protein representation was selected
in each dataset at each level of the class hierarchy for the datasets with 5 and 8
representations, respectively, corresponding to single-motif and multiple-motif
datasets, respectively.

The analysis of Table 5 shows that for the single-motif datasets, the motif
features are highly predictive for the classes at the first level of the class hierarchy
being selected on average in 90.6% of the time. In fact, the only dataset where
other type of protein representation is selected at this level is the GPCR-Prosite
dataset, where the LD representation is selected 75% of the time. For the other
three class levels, it seems that the motifs are often selected for the EC datasets,
while a combination of alignment-independent features are selected for GPCRs.
An explanation for this was presented in [13] were the authors claim that there
are several instances where the application of alignment-free techniques have
been proven to be more effective than alignment-based techniques. And the
GPCRs are an example of this, because they have a great structural and/or
functional homology but a low degree of sequence similarity.

For the multiple-motif datasets presented in Table 6 the same conclusions
can be drawn. That is, the motif features are highly discriminative at the 1st
level of the class hierarchy, specially the Interpro motifs. There is a significant
difference in the number of times that motif-based and alignment-independent
features are selected for the Enzyme and GPCRs datasets. These results confirm
that the Sel. R. approach effectively determines which protein representation
is the best to be used with each classifier across different levels in the class
hierarchy structure.
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Table 5: Percentage of times each representation is selected by the Sel. R.
method per class level per dataset for 5 protein representations

Rep. Dataset Class Level
1 2 3 4

5z

EC-Interpro 0 0 8 22
EC-Pfam 0 0 8 21
EC-Prints 0 0 7 14
EC-Prosite 0 0 4 13
GPCR-Interpro 0 7 10 7
GPCR-Pfam 0 8 10 8
GPCR-Prints 0 8 11 8
GPCR-Prosite 0 17 11 8
Average 0 5.625 10.875 14.375

15z

EC-Interpro 0 4 6 11
EC-Pfam 0 0 5 11
EC-Prints 0 0 9 17
EC-Prosite 0 0 5 9
GPCR-Interpro 0 8 15 17
GPCR-Pfam 0 11 16 19
GPCR-Prints 0 17 13 15
GPCR-Prosite 0 5 18 16
Average 0 5.625 10.875 14.375

AA

EC-Interpro 0 3 12 14
EC-Pfam 0 2 11 19
EC-Prints 0 0 14 19
EC-Prosite 0 0 10 18
GPCR-Interpro 0 32 15 29
GPCR-Pfam 0 31 20 30
GPCR-Prints 0 29 18 33
GPCR-Prosite 0 23 22 32
Average 0 15 15.25 24.25

LD

EC-Interpro 0 1 7 7
EC-Pfam 0 6 12 8
EC-Prints 0 12 14 16
EC-Prosite 0 1 8 13
GPCR-Interpro 0 17 44 36
GPCR-Pfam 0 28 54 41
GPCR-Prints 0 22 40 31
GPCR-Prosite 75 43 48 42
Average 9.375 16.25 28.375 24.25

Motifs

EC-Interpro 100 92 67 46
EC-Pfam 100 92 64 41
EC-Prints 100 88 56 34
EC-Prosite 100 99 73 47
GPCR-Interpro 100 36 16 11
GPCR-Pfam 100 22 0 2
GPCR-Prints 100 24 18 13
GPCR-Prosite 25 12 1 2
Average 90.625 58.125 36.875 24.5
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Table 6: Percentage of times each representation is selected by the Sel. R.
method per class level per dataset for 8 protein representations

Rep. Dataset Class Level
1st 2nd 3rd 4th

5z
Multiple-motif EC 0 0 5 23
Multiple-motif GPCR 0 15 11 9
Average 0 7.5 8 16

15z
Multiple-motif EC 0 7 5 4
Multiple-motif GPCR 0 7 13 14
Average 0 7 9 9

AA
Multiple-motif EC 0 5 11 33
Multiple-motif GPCR 0 17 14 31
Average 0 11 12.5 32

LD
Multiple-motif EC 0 5 8 12
Multiple-motif GPCR 0 28 32 28
Average 0 16.5 20 20

Interpro
Multiple-motif EC 95 37 49 23
Multiple-motif GPCR 73 26 22 15
Average 84 31.5 35.5 19

Pfam
Multiple-motif EC 0 12 2 0
Multiple-motif GPCR 25 7 0 0
Average 12.5 9.5 1 0

Prints
Multiple-motif EC 0 13 18 1
Multiple-motif GPCR 2 0 8 3
Average 1 6.5 13 2

Prosite
Multiple-motif EC 5 21 2 4
Multiple-motif GPCR 0 0 0 0
Average 2.5 10.5 1 2
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5.2 Impact of the different classifiers

It is a well-known fact in machine learning that there is “no free-lunch”, i.e. a
classifier which is the best for all applications do not exist. Recall that in this
work we are employing the selective classifier approach with three classification
algorithms: k-NN, SVM and NB. To measure the performance of the classifiers
we consider their average ranking over all datasets and over all representa-
tions (computed by the Friedman statistical test, considering the hierarchical
f-measure values). The resulting ranking is: Sel. C. (1.5454), Knn (1.560606),
SVM (3.3181), NB (3.5757).

Again we employ the Shaffer static post-hoc test and the graphical represen-
tation of the result of the test is shown in Figure 8. The analysis of the results
in Figure 8 shows that the Sel. C. and Knn are both (statistically significant)
better than SVM and NB, but there is no statistically significant difference be-
tween the results of Sel. C. and KNN. Also, there is no statistically significant
difference between the results of SVM and NB.

Considering we are using the Sel. C. approach and it gives results just
slightly better than the Knn classifier, a question that naturally arises is if in
the internal classifier selection procedure of the Sel. C. method the Knn classifier
is almost always chosen. Table 7 presents the relative classifier importance for
each dataset, i.e. the number of times a particular classifier is selected at each
class level. The analysis of Table 7 reveals that at the first level the Knn
classifier is selected in about 90% o the experiments. This result corroborates
with the experiments reported in [38] where for one GPCR dataset the Knn
classifier was always selected at the first class level. For the other class levels it
seems that, although the Sel. C. approach actually selects different classifiers,
this does not impact significantly on the results. Other studies on hierarchical
protein function prediction that employed the Sel. C. approach achieved similar
conclusions [37, 24], i.e. the Sel. C. is better than most classifiers but is not
statistically significantly different from a Knn classifier, even though the former
employs several classifiers, which has the disadvantage of considerably increasing
the training time of the hierarchical classification system. Therefore, it seems
that the use of the Sel. C. approach does not bring the same benefits as the Sel.
R. approach.

3 2 1

Sel.C. (1.5)

SVM(3.3)

4

NB (3.6)

KNN(1.6)

Figure 8: Analysis of relative classifier importance over all datasets.

Moreover, the negative impact of using a bad representation even with a
good classifier (e.g. 5z with Knn on EC-Intepro has an hierarchical f-measure
of 42.36%) seems to be greater than the impact of using a bad classifier with
a good representation (e.g. Motif with NB on EC-Interpro has an hierarchical
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Table 7: Percentage of times each classifier is selected by the Sel. C. method
per class level per dataset
Classifier Dataset Class Level

1 2 3 4

SVM

EC-Interpro 20 35 41 59
EC-Pfam 20 36 41 59
EC-Prints 0 30 39 47
EC-Prosite 8 23 37 50
GPCR-Interpro 0 51 50 56
GPCR-Pfam 18 49 42 44
GPCR-Prints 0 49 47 60
GPCR-Prosite 0 44 43 44
Multiple-motif EC 12 57 52 66
Multiple-motif GPCR 14 36 36 47
Average 9.2 41 42.8 53.2

KNN

EC-Interpro 80 65 49 20
EC-Pfam 80 64 50 15
EC-Prints 100 70 44 27
EC-Prosite 92 77 61 23
GPCR-Interpro 100 36 42 30
GPCR-Pfam 82 40 48 38
GPCR-Prints 100 40 44 28
GPCR-Prosite 100 46 45 39
Multiple-motif EC 88 26 37 15
Multiple-motif GPCR 86 55 56 43
Average 90.8 51.9 47.6 27.8

NB

EC-Interpro 0 0 10 21
EC-Pfam 0 0 9 26
EC-Prints 0 0 17 26
EC-Prosite 0 0 2 27
GPCR-Interpro 0 13 8 14
GPCR-Pfam 0 11 10 18
GPCR-Prints 0 11 9 12
GPCR-Prosite 0 10 12 17
Multiple-motif EC 0 17 11 19
Multiple-motif GPCR 0 9 8 10
Average 0 7.1 9.6 19

f-measure of 77.01%). Interestingly, most papers in protein function prediction
are more concerned with trying different classification algorithms than different
features and their impact on predictive accuracy.
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6 Conclusions

In this work we presented an empirical study analyzing the impact of different
protein representations and different types of classification algorithms for the
task of hierarchical protein function prediction. We have employed 8 types of
protein representation, 4 of which are alignment-independent representations
computed from the protein sequence: 5 z-values (5z), 15z-values (15z), Amino
Acid Composition (AA) and Local Descriptors (LD); and 4 alignment-dependent
protein signatures (motifs) from the biological databases Interpro, Pfam, Prints
and Prosite. To perform the classification we have used 3 classifiers: k-NN,
SVM and Naive Bayes and 3 selective approaches: one fixing the classifier for
all nodes in the class hierarchy and selecting the best representation at each
class node, one fixing the representation and selecting the best classifier at each
class node, and one that selects the best match of representation and classifier
at each node of the class hierarchy.

We have carried out the experiments on 10 datasets, being 5 datasets with
G-Protein Coupled Receptors (GPCR) proteins and 5 with Enzymes. Our ex-
perimental results show that in general, regardless of the type of protein: 15
z-values are better than 5 z-values; AA is a very good descriptor with k-NN
since it is simple and provides better results than z-values; LD is the best
alignment-independent representation that can be computed directly from the
protein sequence.

Considering the results specifically for GPCRs, the LD provides very good re-
sults (except for the GPCR-Interpro, in which its results are similar to the results
of the motif representation) considering they can be computed directly from the
sequence. Concerning the results specific to the EC datasets the motif represen-
tation performs better than the alignment independent features computed from
the sequence. The fact that these better results of alignment-independent fea-
tures was observed for GPCRs but not for enzymes is possibly explained by the
fact that GPCRs have a great structural and/or functional homology but a low
degree of sequence similarity, which does not seem to be the case for enzymes.

Therefore, our recommendation (based on our experimental results) is that
when using alignment-independent features derived from the sequence, we sug-
gest the use of Local Descriptors. When motif features are available, we recom-
mend the use of the Interpro entries as they provide in general better results
than the other types of motifs for GPCRs and all motif features are roughly
equally effective for Enzyme classification.

Future research would include performing experiments with other types of
protein representations, more classifiers and with other types of proteins. An-
other direction for future research is to perform more controlled experiments to
see if the number of features has a significant influence on the effectiveness of
a particular type of feature: e.g. the z-values representation has a very small
number of features, what if z-values were computed for the same 10 regions as
the LD approach (considerably increasing the number of z-value features)?
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