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A Novel Feature Selection Method for Uncertain
Features: An Application to the Prediction of

Pro-/Anti-Longevity Genes
Pablo Nascimento da Silva, Alexandre Plastino, Fabio Fabris, and Alex A. Freitas

Abstract—Understanding the ageing process is a very challenging problem for biologists. To help in this task, there has been a growing
use of classification methods (from machine learning) to learn models that predict whether a gene influences the process of ageing or
promotes longevity. One type of predictive feature often used for learning such classification models is Protein-Protein Interaction (PPI)
features. One important property of PPI features is their uncertainty, i.e., a given feature (PPI annotation) is often associated with a
confidence score, which is usually ignored by conventional classification methods. Hence, we propose the Lazy Feature Selection for
Uncertain Features (LFSUF) method, which is tailored for coping with the uncertainty in PPI confidence scores. In addition, following the
lazy learning paradigm, LFSUF selects features for each instance to be classified, making the feature selection process more flexible.
We show that our LFSUF method achieves better predictive accuracy when compared to other feature selection methods that either do
not explicitly take PPI confidence scores into account or deal with uncertainty globally rather than using a per-instance approach. Also,
we interpret the results of the classification process using the features selected by LFSUF, showing that the number of selected features
is significantly reduced, assisting the interpretability of the results. The datasets used in the experiments and the program code of the
LFSUF method are freely available on the web at http://github.com/pablonsilva/FSforUncertainFeatureSpaces.
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1 INTRODUCTION

AGEING is a complex process characterized by a con-
tinuous decline in the function of an organism that

occurs with increasing age [12], ultimately leading to death.
Even for related species, the speed at which such func-
tional deterioration happens differs to some extent [11].
Although ageing research has advanced significantly in the
last decades, it is still unclear which biological mechanisms
contribute to the ageing process, even though genetic factors
clearly make a major contribution to it [33].

Experiments in model organisms have identified several
hundred genes that influence the ageing process (speeding
it up or slowing it down) [22]. The discovery of such
genes in model organisms may lead to the identification
of homologous genes in humans which could lead to
pharmacological interventions to treat ageing. Hence, it is
particularly interesting to automatically classify genes (or
proteins) in two different classes: pro-longevity and anti-
longevity genes. Pro-longevity genes are those genes whose
decreased expression reduces lifespan and/or those whose
over-expression extends lifespan [30], [31]. Conversely, anti-
longevity genes are those genes whose decreased expres-
sion extends lifespan and/or those whose over-expression
decreases it.

Gene Ontology (GO) terms [26] have been widely used
as predictive features for building models for the classifica-
tion of pro-/anti-longevity genes [1], [3], [6], [8], [24], [28],
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E-mail: {pablosilva@id.uff.br, plastino@ic.uff.br}

• F. Fabris and A.A. Freitas are with School of Computing, University of
Kent, UK. E-mail: {fabiofabris@gmail.com, a.a.freitas@kent.ac.uk}

[29], [30]. However, there are many other characteristics
of genes (or proteins) that could be useful to the problem
described in this work. So, in this work, we build predictive
models using not only GO term features, but also Protein-
Protein Interaction (PPI) features [23], a widely used charac-
teristic of proteins that could potentially help finding those
proteins linked with ageing [1], [7], [20]. In a PPI dataset,
each PPI indicates whether or not a protein (instance, or
object to be classified) interacts with another protein. As PPI
information is an important indicator of gene functions, the
use of PPI features may improve the classifier’s predictive
accuracy. Also, as no protein works in isolation, the analysis
of highly predictive PPI features could improve the inter-
pretability of the classification model, leading to a better
understanding of the ageing problem in general.

However, the use of PPI features for classification is
not straight-forward. First, the values of PPI features are
uncertain, i.e., such values are numeric scores representing
the likelihood of interaction of two proteins (e.g., protein-A
interacts with protein-B in 90% of the documented cases).
Second, among the vast number of possible protein interac-
tions, few interactions are realised, leading to a high feature
sparsity and dimensionality. Note that the addition of PPI
features brings a major challenge: the selection of the subset
of protein interactions that are most suitable to perform an
accurate prediction.

Given the previously described challenges of using PPI
features and the fact that the quality of the feature set used
to build a classification model has an enormous impact on
its predictive accuracy [15], [16], feature selection methods
can be used to cope with this problem. This type of method
aims at improving the predictive accuracy of the classifier
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by selecting a subset of relevant features. It is a challenging
problem since the number of candidate feature subsets
grows exponentially with the number of features, which
is usually a problem when dealing with bioinformatics
datasets. More precisely, the number of candidate feature
subsets is 2d − 1, where d is the number of features. There
are many different techniques for dealing with this problem.
The suitable technique or approach to be used is not easily
identifiable and should be selected according to the problem
at hand. For a comprehensive overview of feature selection
techniques in bioinformatics domains the reader might refer
to Wang et al. [32].

In this work, we propose a novel feature selection
method tailored to deal with uncertain features, and we
evaluate the proposal on uncertain features that represent
interactions between proteins. As an additional contribu-
tion, we evaluated the effectiveness of combining GO and
PPI features to predict a gene’s effect on an organism’s
longevity. We also interpret the results of our method,
showing that it can be a source of new biological insight.

This work is organised as follows. Section 2 reviews
background and related work. Section 3 presents our novel
feature selection method for uncertain features. Section 4
presents the results of experimental evaluations. Lastly,
conclusions are presented in Section 5.

2 METHODS

2.1 Classification on Uncertain Feature Spaces

A classification problem can be formally defined as follows.
Let X = {X1, X2, . . . , Xd} be the set of predictive features,
where d ≥ 1, and C = {C1, C2, . . . , Cq} be the finite
set of possible classes, where q ≥ 2. Given a training set
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each instance
i is associated with a class value yi ∈ C and a feature
vector xi = {(xi1, xi2, . . . , xid)}, where each xij represents
the value of the feature Xj in the instance i, the goal in the
classification task is to learn a classifier h(X) → y from D
that, given an unlabelled instance E = (x, ?), is capable of
predicting its class y.

In this work, the uncertain feature space is defined as
follows. Given an instance xi = {(xi1, xi2, . . . , xid)}, each
value xij , where 0 ≤ xij ≤ 1, represents a certainty score
defining how likely the i-th instance has a positive feature
value, which indicates that the protein represented by that
instance interacts with the protein associated with the j-
th feature. That is, if xi1 > xi2, this means that the i-
th instance is more likely to be positively associated with
the first feature than to the second feature. Note that this
certainty score is not necessarily a standard probability.

2.2 Feature Selection

Feature selection can be defined as finding a feature subset
F ⊆ X , such that the predictive model h(F ) has a higher
predictive accuracy than h(X). It usually involves the re-
moval of irrelevant or redundant features.

Feature selection methods, as a type of data pre-
processing method, can be categorized into wrapper and
filter methods [15], [16]. Wrapper methods measure the
relevance of a feature subset by assessing the predictive

accuracy of a classifier built using that subset. Hence, they
select features tailored to the target classification algorithm,
but they tend to be very time-consuming. By contrast, filter
methods evaluate the predictive power of features generally,
by using a relevance measure that is independent of the
target classification algorithm. Filter methods tend to be
much faster and more scalable than wrapper methods.

Feature selection and classification methods can also be
categorized as eager or lazy. Eager methods select a single
subset of features based on the training instances. Then, a
model trained with the selected features is used to predict
the class of any test instance. By contrast, lazy methods
select a feature subset tailored for each test instance [2],
[19], by observing the feature values in that test instance.
Hence, lazy learning methods use one classification model
for each testing instance, while eager methods build a single
classifier for all testing instances.

The feature selection method proposed in this work (in
Section 3) is a filter method that follows the lazy paradigm.

2.3 Related Work

Although uncertain features are present in many different
applications (such as sensor data, biology data, among oth-
ers), there are very few feature selection methods capable of
exploring uncertain features in the literature. For instance,
in [14], a feature selection method for graph classification is
introduced. It deals with graphs where the linkages of nodes
are fundamentally uncertain (i.e., each connection between
two nodes holds a likelihood of being a real connection).
The graph structure used in that work is broadly similar to
those found in PPI networks. Note, however, that we are not
interested in finding graph subsets, which is a significant
difference between their approach and the one reported
here.

Another feature selection method for uncertain data
was proposed by [5]. They introduced a modified mutual
information evaluation measure capable of dealing with un-
certain features in two steps. First, each feature is evaluated
by the modified mutual information measure. Second, a
threshold is used to select the x% of features with better
mutual information values to build the classifier. However,
the uncertain data employed is quite different from the one
described in this work, since each feature value is described
by a Gaussian distribution. Another significant difference is
the fact that the data used to build the classification model
is not initially uncertain. The Gaussian distribution is built
as follows. First, the real feature values are used as the mean
of the distribution, and a user-defined parameter is used as
the standard deviation of the distribution (this parameter is
equal for every instance/feature in the dataset). Note that
this approach is very different from the method described
in our work, where the uncertainty information is given
as an input. Also, apart from having a hard effort to tune
user-defined parameter, it has another significant drawback:
it cannot handle high-dimensional data since it relies on a
Kernel Density Estimation (KDE) to compute the mutual
information, which is notably a computationally expensive
method [5].
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2.4 Data Preparation

2.4.1 Gene Ontology (GO)
The Gene Ontology (GO) database [26] annotates genes us-
ing terms from a expert-defined ontology. These annotations
are from three different types: (i) Molecular Function (MF),
which describes the molecular activities of individual genes;
(ii) Cellular Component (CC), which contains information
about where the gene products are active; and (iii) Biological
Process (BP), containing the pathways and more general
processes to which that gene product’s activity contributes.

2.4.2 Protein-Protein Interections (PPI)
Protein-Protein Interactions (PPI) are defined as physical
contacts (or functional interactions) between proteins that
occur in a cell of a living organism [23]. There are many dif-
ferent databases describing interactions between proteins.
In this work, we use the STRING database [25], which con-
tains a collection of known and predicted protein-protein
interactions. These interactions can be either direct (physical
interaction) or indirect (functional interaction). The infor-
mation available in this database comes from the following
sources: computational prediction, lab experiments, knowl-
edge transfer between organisms, automated text mining
and from interactions observed in other databases. In the
STRING database, each PPI is associated with a score calcu-
lated from the information in the database which indicates
the confidence of certain interaction being actually present.
I.e., a high confidence score means that there is more sup-
port regarding a given interaction in the database.

2.4.3 Building Datasets
We generated 28 datasets of ageing-related genes, using a
similar methodology described in [24], [28], [30], concern-
ing the effect of genes on an organism’s longevity. These
datasets were created by integrating data from the Hu-
man Ageing Genomic Resources (HAGR) GenAge database
(version: Build 17) [17], the Gene Ontology (GO) database
(version: 2015-10-10) [26] and Protein-Protein Interactions
from the STRING database [25]. HAGR is a database of
ageing- and longevity-associated genes in model organisms
which provides ageing information for genes from four
model organisms: C. elegans (worm), D. melanogaster (fly),
M. musculus (mouse), and S. cerevisiae (yeast). As described
earlier, the GO database provides three types of GO terms
(features): biological process (BP), molecular function (MF)
and cellular component (CC). So, for each of the 4 model
organisms, we created 7 datasets, with 7 combinations of
GO types, denoted by BP, CC, MF, BP.CC, BP.MF, CC.MF
and BP.CC.MF. In each of these datasets, for each gene
(instance), we incorporated the PPI features according to the
data available in the STRING database.

Hence, each dataset contains instances (genes) from a
single model organism. Each instance is formed by a set
of binary features indicating whether or not the gene is
annotated with each GO term, a set of uncertain features
containing the score of each PPI and a binary class variable
indicating if the instance is either positive (“pro-longevity”
gene) or negative (“anti-longevity” gene) according to the
HAGR database. To reduce overfitting, GO terms and PPI
features with low support (annotating less than 3 genes)

were removed from the dataset. Also, genes with no positive
GO feature value were discarded. Thus, the number of
instances of a dataset for a given model organism may vary
across types of GO terms. Likewise, the number of GO terms
vary across model organisms.

Information about the 28 datasets (7 datasets for each
of 4 organisms) is shown in Table 1. The first column
shows the organism associated with each dataset. The other
columns show, respectively, the number of instances (#Inst),
the number of predictive features (#Feat), the number of
GO terms (#GO), the number of PPI features (#PPI) and the
proportion of instances from the positive (“pro-longevity”)
class (%P Class).

TABLE 1
Detailed information about the datasets used in the experiments.

Dataset #Inst #Feat #GO #PPI %P Class

C
.e

le
ga

ns

BP 657 12437 990 11447 34.4
CC 484 11162 177 10985 36.4
MF 504 11150 262 10888 37.7
BP.CC 664 12624 1167 11457 34.3
BP.MF 663 12731 1252 11479 34.2
CC.MF 566 11729 439 11290 36.2
BP.CC.MF 667 12909 1429 11480 34.3

D
.m

el
an

og
as

te
r

BP 132 7358 799 6559 72.0
CC 122 6548 88 6460 70.5
MF 126 6697 144 6553 70.6
BP.CC 133 7501 887 6614 71.4
BP.MF 133 7557 943 6614 71.4
CC.MF 130 6815 232 6583 70.7
BP.CC.MF 133 7645 1031 6614 71.4

M
.m

us
cu

lu
s

BP 109 11512 1331 10181 68.8
CC 107 10235 141 10094 68.2
MF 106 10322 239 10083 67.9
BP.CC 109 11653 1472 10181 68.8
BP.MF 109 11751 1570 10181 68.8
CC.MF 109 10561 380 10181 68.8
BP.CC.MF 109 11892 1711 10181 68.8

S.
ce

re
vi

si
ae

BP 331 6304 843 5461 13.3
CC 331 5605 144 5461 13.3
MF 331 5681 220 5461 13.3
BP.CC 331 6448 987 5461 13.3
BP.MF 331 6524 1063 5461 13.3
CC.MF 331 5825 364 5461 13.3
BP.CC.MF 331 6668 1207 5461 13.3

3 A NOVEL LAZY FEATURE SELECTION METHOD
FOR UNCERTAIN FEATURES

We propose a new feature selection filter method called
Lazy Feature Selection for Uncertain Features (LFSUF). The
intuition behind this method is as follows. In the handled
uncertain data, a feature value with high confidence (i.e., a
feature value around one) means that the positive feature
value has strong evidence of being actually present in an
instance. Conversely, a feature value with low confidence
(i.e., a feature value around zero) means that the feature
is probably not present. Hence, LFSUF aims to select the
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subset of features whose positive value has the highest
confidence (i.e., the highest likelihood of being present) in
each test instance (adopting the lazy learning paradigm).
Furthermore, the proposed method aims at selecting the
subset of features which best correlates with the target class.
In summary, the strategy aims at selecting, for each test
instance, a subset of features with high confidence that also
correlates well with the class.

LFSUF works as follows. In a preliminary step, the LF-
SUF evaluates the relevance ri, using the F-Statistics (FStat)
[32] of each feature Xi ∈ X . Then, we build a subset
of features F ∈ X containing all features with relevance
greater than the mean of all relevance values (r). In the
testing phase, given a test instance t and a threshold th,
LFSUF looks at every feature F in F , comparing the value
of Fi in t with the threshold th. When the feature value
is greater than the threshold, LFSUF sets this feature as
selected. At the end of the process, LFSUF removes every
feature not marked as selected, and the remaining features
are used in the lazy classification of the current test instance
t. The LFSUF algorithm is executed for each test instance.
However, note that the relevance array is computed only
once in the preliminary step, which is the most computa-
tionally expensive part of the algorithm, and then it is stored
in memory to be used whenever a new instance needs to be
classified.

Algorithm 1 describes LFSUF in detail. This algorithm
outputs a subset of features named SelectedFeatSubSet.
In the preliminary step (lines 1 to 6), the array Relevance
receives the relevance value of every feature Xi in X (lines
2 to 4). Then, in line 5, LFSUF calculates the mean of the
relevance values. After that, every feature whose relevance
value is greater than (or equal to) the mean relevance r is
assigned to the subset F .

The main phase of LFSUF works as follows (lines 7 to
24). First, LFSUF assigns the first feature in F to the variable
Fmax (line 8). Next, the Status array is initialised with the
“Removed” value for all features. Next, for each feature Fi

in F , in line 13 the function V alue(Fi, t) returns the value of
Fi in the test instance t, and the returned value is compared
with th. If the returned value is greater than th then this
feature will be used in the classification task and is marked
with the “Selected” tag (line 14). In line 16, we verify if the
value of Fi in t is the maximum value found so far. If this
is true then we update the pointer Fmax. In lines 20 to 22,
we verify if the highest feature value for a given instance is
less than the threshold th. If this is true then no feature was
selected, and in this special case we mark the feature with
the highest value as “Selected”. Finally, the feature subset
SelectedFeatSubSet receives all features whose Status is
“Selected” and this subset is returned by the algorithm (lines
23 and 24). Then, a lazy classifier is executed for the test
instance t using only the selected features. Note that, if
no feature has a value greater than the threshold th, the
algorithm sets to ”Selected” the feature with the highest
value, so there is always at least one feature being used in
the classification task.

The LFSUF method presents some desirable character-
istics: (i) it selects only feature values with high chance of
being true (assuming that the threshold value is relatively
high), which are clearly more informative than features with

Algorithm 1 Lazy Feature Selection for Uncertain Features
(LFSUF)
Input : t (test instance) and a threshold th
Output: a subset of features SelectedFeatSubSet

1: # Begin of the preliminary step
2: for each feature Xi in X do
3: Relevance[Xi]← FStat(Xi)
4: end for
5: r ← mean(Relevance)
6: F ← {all Xi whose Relevance[Xi] ≥ r}

7: # Begin of the testing step
8: Fmax ← F1

9: for each feature Fi in t do
10: Status[Fi]← “Removed”
11: end for
12: for each feature Fi in F do
13: if V alue(Fi, t) > th then
14: Status[Fi]← “Selected”
15: end if
16: if V alue(Fi, t) > V alue(Fmax, t) then
17: Fmax ← Fi

18: end if
19: end for
20: if V alue(Fmax, t) ≤ th then
21: Status[Fmax]← “Selected”
22: end if
23: SelectedFeatSubSet ← features with Status set to

“Selected”
24: return SelectedFeatSubSet

low confidence; (ii) since the number of features values with
low confidence is large, it tends to select fewer features than
the other methods used in our experiments (as shown later).

4 RESULTS

In this Section, we present and analyse the experimental
results in terms of predictive accuracy, testing: (i) what is the
effect of combining GO and PPI features in the predictive
accuracy of two classifiers for predicting longevity-related
genes, and (ii) how effective is our feature selection method
(LFSUF) in dealing with uncertain features.

4.1 Experimental Methodology
To select the best classification algorithm for this problem,
we compared three traditional classifiers (1-NN with Eu-
clidean distance, Naı̈ve Bayes, and Random Forest) and
two classifiers tailored for uncertain data: 1-NN using a
distance measure capable of dealing with uncertain values
called Probabilistic Jaccard [18] and a Decision Tree tailored
for uncertain data (DTU) [21]. This comparison is pro-
vided as a supplementary material. Then, after this initial
evaluation, for all experiments in this work, we employed
the traditional Naı̈ve Bayes (NB) and the 1-NN using the
Probabilistic Jaccard distance (1-NN hereafter), since they
achieved the best predictive results. It is worth noting that
both NB and 1-NN with Euclidean distance were previously
used to the prediction of longevity genes [27], [28], [29], [30].
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The predictive accuracy was estimated by 10-fold cross-
validation. Since most datasets have imbalanced class dis-
tributions (see Table 1), we evaluated the methods’ pre-
dictive accuracy by using the Geometric Mean (GM) of
sensitivity and specificity, which is defined as: GM =√
Sensitivity ∗ Specificity. A classifier that assigns the

instances to each class with probability 0.5 would have a
GM of about 50%.

To determine whether the differences in GM are statis-
tically significant, we ran the non-parametric, rank-based
Friedman test and the Holm post-hoc test [10], as recom-
mended by [4]. First, the Friedman test was run with the
null hypothesis that the average ranks (based on GM values)
of all methods are the same. The alternative hypothesis
is that there is a difference between the average ranks of
all methods as a whole, without identifying which pairs
of methods have significantly different results. If the null
hypothesis is rejected, we run the Holm post-hoc test (which
corrects for multiple hypothesis testing) to compare the
results of the best method overall against each of the other
methods. Both the Friedman and Holm test were used at the
0.05 significance level.

4.2 The Effect of Combining GO and PPI Features in
the Predictive Accuracy of Two Classifiers

The effect of combining GO and PPI features for predicting
ageing-related classes is still unclear in the literature. To
answer this question, we evaluated the 28 datasets con-
taining GO and PPI features, described earlier. We created
two versions of each dataset. The first version contains GO
features only, and the second version contains both GO and
PPI features. It is worth mentioning that the Probabilistic
Jaccard distance used in the 1-NN classifier behaves like a
traditional Jaccard distance when features are not uncertain
(such as the GO feature set).

Table 2 presents the results of the computational exper-
iment. The numerical columns show the GM results for
Naı̈ve Bayes and 1-NN, when applied to GO and GO.PPI
feature sets. Each row presents the GM results for a given
dataset. The last but one row presents the average rank
(Avg. Rank) for each feature type (GO and GO.PPI), for each
classifier (Naı̈ve Bayes and 1-NN). This was calculated by
first assigning the rank 1 (or 2) to the best (or worst) feature
set type for each of the 28 datasets, and then averaging each
feature set type’s rank across the 28 datasets. The last row
shows the number of wins (i.e., the number of times that
a feature set type had the highest GM), for each classifier.
In the row right below the table, the symbol � denotes
a statistically significant difference between methods, e.g.,
{a} � {b, c}means that a is significantly better than b and c.

The results show that, for 1-NN, the feature set using
GO and PPI has the best performance overall. It has the
best average rank (1.21) and the highest number of wins (22
out of 28 datasets). This result is statisitically significantly
better than the one using GO features only, according to the
Holm test (p-value = 0.002). On the other hand, for Naı̈ve
Bayes, using only GO features leads to the best Avg. Rank,
with the highest GM in 18 out of 28 datasets, but there is no
significant difference between the results for using only GO
features vs. GO and PPI features (p-value = 0.138).

TABLE 2
Geometric mean of sensitivity and specificity (%) obtained by Naı̈ve

Bayes and 1-NN on GO and GO.PPI feature sets with no feature
selection.

Naı̈ve Bayes 1-NN

Datasets GO GO.PPI GO GO.PPI

C
.e

le
ga

ns

BP 61.95 69.30 56.43 64.56
CC 65.71 66.84 60.43 63.50
MF 57.56 69.43 54.00 66.96
BP.CC 61.87 70.67 61.42 66.58
BP.MF 61.89 71.58 58.48 65.44
CC.MF 64.22 68.58 60.44 62.86
BP.CC.MF 62.38 69.44 58.60 66.72

D
.m

el
an

og
as

te
r

BP 59.37 59.41 66.12 62.70
CC 66.69 58.77 72.39 69.16
MF 57.98 57.80 55.68 59.42
BP.CC 57.65 55.98 63.56 67.91
BP.MF 57.25 55.98 65.40 66.48
CC.MF 65.78 59.11 59.71 66.15
BP.CC.MF 59.36 55.98 64.47 65.63

M
.m

us
cu

lu
s

BP 59.06 59.53 68.35 64.78
CC 64.07 58.97 53.40 65.66
MF 63.45 59.45 63.41 70.39
BP.CC 67.41 57.05 67.36 62.12
BP.MF 64.88 57.05 69.54 66.94
CC.MF 61.62 57.46 61.15 74.14
BP.CC.MF 70.24 57.46 69.00 63.21

S.
ce

re
vi

si
ae

BP 61.51 52.38 57.89 62.65
CC 57.60 50.32 53.94 63.24
MF 34.23 50.32 45.58 60.28
BP.CC 63.08 52.48 62.66 67.05
BP.MF 62.13 52.38 55.04 62.54
CC.MF 59.87 50.32 47.30 61.57
BP.CC.MF 62.82 52.48 57.45 64.15

Avg Rank 1.36 1.64 1.79 1.21
#Wins 18 10 6 22

1-NN: {GO.PPI} � {GO}

The two best overall results in Table 2 are NB with GO
features and 1-NN with GO and PPI features. When directly
compared, the 1-NN combining both types of features out-
performed the NB with only GO features in 24 out of 28
datasets.

In summary, combining GO and PPI features improve
predictive accuracy by comparison with using only GO
features in most cases when using the 1-NN classifier, but
the opposite effect was observed with the Naı̈ve Bayes (NB)
classifier – i.e., it performs better when trained using only
the subset of GO features. NB is known to have a poor pre-
dictive accuracy when applied to highly correlated features,
which is more likely to happen on high dimensional feature
spaces [15]. So, this weak result for NB can be explained by
the very large number of PPI features, which is about 10
times the number of GO features.

In the next section, we add a pre-processing step to our
predictive workflow by using a feature selection method
for uncertain features with the objective of improving the
predictive accuracy of NB and 1-NN.
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4.3 Comparison of Feature Selection Methods for Un-
certain Features Using GO and PPI Features

To assess the effect of our proposed feature selection method
on uncertain features, we run an experiment comparing
our LFSUF method against two traditional feature selection
methods from different paradigms and a baseline that does
not perform any feature selection, all implemented within
the Weka tool [9]. The first traditional feature selection
method is a wrapper method with best first search (BF)
available in the tool. BF was executed with default parame-
ters and the GM measure as the optimisation function. The
second method is a filter approach using the F-statistics. It
computes the FStat for each feature and selects the thfstat%
features with the highest values. Since FStat is very sensi-
tive to the thfstat parameter, we select the best value of
this threshold for each dataset by running an internal 3-
fold cross-validation on the training set with thfstat being
selected from 1, 5, 10, 25 and 50.

We also also analysed the results of this thfstat-tuning
procedure in order to find out which thfstat value was
selected most often for each organism. Note that we run an
external 10-fold cross-validation to validate the algorithms,
and each organism is associated with 7 datasets, resulting in
70 (10×7) selections of the thfstat value (each selection per-
formed by an internal cross-validation on the training set).
After the experimental evaluation, the most selected thfstat

for C.elegans and M.musculus datasets was 10 (selected in
86% and 83% of all 70 cases, respectively), while 25 was
the most selected thfstat for D.melanogaster and S.cerevisae
(selected in 92% and 78% of the cases, respectively).

The LFSUF method uses a threshold (th) that regulates
the level of confidence that features need to have in order
to be used by the classification algorithm. Similarly to the
FStat, we calibrate the parameter th of LFSUF by running an
internal 3-fold cross-validation, with th being selected from
.150, .400, .700 and .900. Those threshold values are the
confidence levels suggested in the STRING database [25].
After the experimental evaluation, the most selected th for
C.elegans datasets was 0.400 (selected in 78% of all 70 cases),
whereas 0.900 was the most selected th for D.melanogaster
M.musculus and S.cerevisae datasets (selected, respectively, in
90%, 92% and 78% of all 70 cases).

Tables 3 and 4 show the result of our experiment
for Naı̈ve Bayes and 1-NN respectively using the GO.PPI
dataset. These tables show first the GM results when ap-
plying no feature selection (column ‘No FS’, with the same
values as column GO.PPI in Table 2), and then the results
for the BF, FStat and LFSUF methods.

These tables show that LFSUF achieved the best predic-
tive accuracy-based average rank (across datasets) for both
NB and 1-NN. For NB, LFSUF achieved the highest number
of wins in 21 out of 28 datasets, and also the best average
rank which was significantly better than the average rank
of FStat, No FS and BF (Holm p-values of 0.022, 0.001 and
0.001, respectively, and Friedman p-value of 0.001). For 1-
NN, LFSUF also obtained the best average rank and the
highest number of wins, outperforming the other methods
in 24 out of 28 datasets, with statistically significantly better
average ranks than No FS, FStat and BF (Holm p-values of
0.034, 0.001 and 0.001, respectively, and Friedman p-value

TABLE 3
Geometric mean of sensitivity and specificity (%) obtained by NB with

LFSUF and traditional feature selection methods using the GO.PPI
datasets

Datasets No FS BF FStat LFSUF

C
.e

le
ga

ns

BP 69.30 59.15 68.99 69.20
CC 66.84 64.51 65.52 71.09
MF 69.43 62.37 67.45 70.40
BP.CC 70.67 62.50 68.27 70.21
BP.MF 71.58 62.51 67.81 70.04
CC.MF 68.58 62.70 63.02 72.17
BP.CC.MF 69.44 61.10 65.40 70.68

D
.m

el
an

og
as

te
r BP 59.41 52.07 69.93 59.81

CC 58.77 57.41 68.44 69.90
MF 57.80 53.96 60.49 62.66
BP.CC 55.98 59.16 60.03 64.77
BP.MF 55.98 50.99 61.52 64.35
CC.MF 59.11 47.86 70.28 68.90
BP.CC.MF 55.98 63.15 64.91 65.57

M
.m

us
cu

lu
s

BP 59.53 53.35 69.48 71.18
CC 58.97 60.18 63.78 69.07
MF 59.45 57.63 66.01 70.27
BP.CC 57.05 53.35 66.82 72.57
BP.MF 57.05 52.53 74.55 73.80
CC.MF 57.46 52.02 73.03 71.13
BP.CC.MF 57.46 54.77 71.58 72.00

S.
ce

re
vi

si
ae

BP 52.38 59.97 66.70 74.57
CC 50.32 61.26 60.37 73.52
MF 50.32 57.37 62.04 71.31
BP.CC 52.48 60.11 68.59 74.22
BP.MF 52.38 57.22 66.83 73.53
CC.MF 50.32 56.83 56.09 73.01
BP.CC.MF 52.48 54.35 67.20 73.88

Avg Rank 3.00 3.57 2.18 1.25
#Wins 3 0 4 21
{LFSUF} � {FStat, No FS and BF}

of 0.001). It is also worth saying that for both NB and
1-NN, LFSUF is always the best method for, respectively,
S.cerevisiae and C.elegans datasets.

Note that LFSUF was the winner on the majority of the
scenarios. However, in some scenarios of our experiments,
the LFSUF’s performance is not the best. We believe that
there may be important features that are discarded by
LFSUF since their F-statistics values are lower than the
average F-statistics value. This may be the reason for the
reduced performance of the classification in some scenarios
and may be further explored in the future by changing the
mechanism of eliminating features in the preliminary step.

Note also that the best overall results in Tables 3 and 4
were obtained by LFSUF for NB and 1-NN, respectively.
When these two results are compared, LFSUF with NB
outperforms LFSUF with 1-NN in 18 out of 28 datasets.
This result confirms that using PPI features along with GO
features is helpful, since NB with LFSUF using GO and PPI
features outperformed NB without feature selection using
GO features only.

These results are particularly interesting since, for both
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TABLE 4
Geometric mean of sensitivity and specificity (%) obtained by 1-NN

with LFSUF and traditional feature selection methods using the GO.PPI
dataset.

Datasets No FS BF FStat LFSUF

C
.e

le
ga

ns

BP 64.56 65.45 62.03 67.12
CC 63.50 62.27 63.80 68.31
MF 66.96 62.53 58.86 69.13
BP.CC 66.58 67.66 60.61 67.93
BP.MF 65.44 64.76 61.36 68.62
CC.MF 62.86 63.60 60.19 68.94
BP.CC.MF 66.72 64.15 60.06 68.59

D
.m

el
an

og
as

te
r

BP 62.70 56.75 60.50 63.69
CC 69.16 67.47 65.31 76.29
MF 59.42 53.75 55.27 64.23
BP.CC 67.91 67.68 67.35 62.11
BP.MF 66.48 50.89 65.50 68.74
CC.MF 66.15 64.64 65.46 66.42
BP.CC.MF 65.63 65.78 68.83 70.95

M
.m

us
cu

lu
s

BP 64.78 56.87 71.84 72.80
CC 65.66 58.48 65.87 68.06
MF 70.39 58.19 68.90 75.04
BP.CC 62.12 55.89 66.11 70.54
BP.MF 66.94 56.87 78.56 74.24
CC.MF 74.14 62.13 71.33 77.10
BP.CC.MF 63.21 60.00 73.11 72.84

S.
ce

re
vi

si
ae

BP 62.65 53.86 25.42 73.67
CC 63.24 54.24 42.44 62.27
MF 60.28 55.82 34.03 67.72
BP.CC 67.05 57.81 33.54 70.15
BP.MF 62.54 54.92 29.72 69.94
CC.MF 61.57 55.84 40.14 62.89
BP.CC.MF 64.15 58.51 39.99 71.23

Avg Rank 2.32 3.29 3.18 1.21
#Wins 2 0 2 24
{LFSUF} � {FStat, No FS and BF}

classification algorithms, the predictive accuracy increases
with the use of our feature selection method for uncertain
features, showing that combining GO and PPI features and
using our method clearly increases predictive accuracy.

4.4 Comparison of Feature Selection Methods for Un-
certain Features using PPI Features

In the experiments reported in the previous section, all
datasets contain features from GO (certain features) and
PPI (uncertain features). However, it is also interesting to
measure the predictive accuracy of the feature selection
methods using only uncertain PPI features. For this task, we
use four datasets (one for each model organism) with PPI
features only, i.e., without any GO features. Like in the last
section, we compare our feature selection method LFSUF
against the feature selection methods BF and FStat, as well
as against the baseline No FS.

Table 5 shows the results for NB. LFSUF achieved a
perfect average rank of 1 (winning in all 4 datasets), being
statistically significantly better than No FS, BF and FStat

TABLE 5
GM of sensitivity and specificity (%) obtained by NB with LFSUF and

traditional feature selection methods, using only uncertain (PPI)
features.

Dataset No FS BF FStat LFSUF

C.elegans 69.21 60.59 59.81 70.32
D.melanogaster 55.97 56.20 59.22 63.61
M.musculus 55.11 58.48 67.01 72.07
S.cerevisiae 50.22 62.48 30.09 73.15

Rank 3.25 2.75 3.00 1.00
#Wins 0 0 0 4

{LFSUF} � {BF, FStat, No FS}

TABLE 6
GM of sensitivity and specificity (%) obtained by 1-NN with LFSUF and

traditional feature selection methods, using only uncertain (PPI)
features.

Dataset No FS BF FStat LFSUF

C.elegans 65.18 54.92 60.00 68.74
D.melanogaster 64.04 49.95 53.31 57.95
M.musculus 65.25 62.99 68.47 72.03
S.cerevisiae 60.65 66.75 42.59 67.98

Rank 2.25 3.50 3.00 1.25
#Wins 1 0 0 3

{LFSUF} � {No FS, FStat, BF}

methods (Holm p-values of 0.003, 0.019 and 0.007, respec-
tively, and Friedman p-value of 0.003).

Table 6 shows the results for 1-NN. Again, LFSUF ob-
tained the best average rank and the highest number of
wins, being statistically significantly better than No FS, BF,
and FStat methods (Holm p-values of 0.048, 0.003 and 0.019,
respectively, and Friedman p-value of 0.002). The results
show that LFSUF performed better than all other methods
for all but one model organism. The exception was the
D. melanogaster dataset, where 1-NN had higher predictive
accuracy when no feature selection was used.

4.5 Evaluating the Feature Space Compression

Apart from the predictive accuracy of a classifier, another
important result to be evaluated is the number of features
selected for classifying each instance. LFSUF benefited from
its flexibility as lazy feature selection method and selected
a very small number of features customized for each test
instance. By contrast, BF and FStat select substantially larger
subsets of features (which are used for classifying all in-
stances). On average across all datasets, LFSUF selected only
0.96% (for NB) and 2.68% (for 1-NN) of all PPI features per
instance. BF selected 5.01% (for NB) and 3.29% (for 1-NN)
of all PPI features. The worst result was obtained by FStat,
which selected 19.00% (for NB) and 18.00% (for 1-NN) of
all PPI features. Recall that GO features do not undergo
selection, i.e., all GO features are used for classifying every
test instance.

Hence, LFSUF achieved overall the best predictive ac-
curacy with the lowest number of features for both the 1-
NN and the NB classifiers. This seems due to the removal
of a large number of features with low predictive power.
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TABLE 7
Top-7 PPI features selected by LFSUF for each model

organism (dataset), sorted by selection frequency.

Protein #Sel %Sel.

C
.e

le
ga

ns

rab-14 219 32.82
hsd-3 133 19.94
Y71H2B.5 123 18.44
pod-2 120 17.99
ctl-2 114 17.09
F52C6.2 112 16.79
F11D5.7 111 16.64

M
.m

us
cu

lu
s

Ripk4 25 22.94
Lhx9 18 16.51
Polr2k 16 14.68
Pten 13 11.93
Rad51c 13 11.93
Rarg 12 11.01
Tkt 11 10.09

D
.m

el
an

og
as

te
r

eIF4E-3 33 24.81
ari-1 28 21.05
eIF4E-4 27 20.30
PGRP-SB1 21 15.78
not 21 15.78
CG4452 20 15.04
AnxB11 18 13.53

S.
ce

re
vi

si
ae

RPS7B 129 38.97
NOC4 37 11.18
PUS2 36 10.88
SPO20 35 10.57
UTP6 35 10.57
UTP25 35 10.57
PET127 34 10.27

In the context of the LFSUF method, features with low
predictive power are those whose feature value scores are
low, representing low-confidence protein interactions.

4.6 Analysis of the Most Frequent Selected Features
We have ranked all PPI features for each model organism
in decreasing order of selection frequency by the LFSUF
method. For this ranking we used the datasets containing
only PPI features (i.e., no GO features) and the results of NB
classifier, since it achieved the best results overall. Due to
space constraints, the full ranking is available online1.The
top-7 features for each of the 4 datasets (one per organism)
of PPI features are shown in Table 7. In this table, the first
column shows the model organism. This column is followed
by the protein name associated with the PPI feature, the
number of instances (#Sel.) and the percentage of instances
for which the feature was selected (%Sel).

Some of the most selected features have known relation
with ageing, as can be verified in the HAGR database, which
contains annotated pro-/anti-longevity genes and was used
to build the datasets used in this work. In other words,
these features’ proteins are also represented as instances
in our datasets. Based on that, we verify that some of the

1. http://github.com/pablonsilva/FSforUncertainFeatureSpaces

top selected features represent interaction with known pro-
longevity proteins – for example: protein F52C6.2 from C.
elegans, which is ranked as the 6th most selected feature
for that organism, and Pten, which is ranked 4th for the
M.musculus organism. Also, for S. cerevisiae, the protein
PET127 is a known anti-longevity protein, and its ranked as
the 7th most selected feature for that organism.

5 CONCLUSIONS

In this paper, we tackled the problem of feature selection
in datasets containing Protein-Protein Interaction (PPI) fea-
tures with uncertain values, i.e., feature values represented
by a confidence score – where the higher the score, the
higher the chance of the current instance (protein) actually
interacting with the protein associated with the PPI feature.
In this context, we proposed the Lazy Feature Selection for
Uncertain Features (LFSUF) method, based on the hypothe-
sis that, for a given instance, a feature with high confidence
score has better class-discrimination power, since it has a
strong evidence of being present in the current instance.

The proposed LFSUF method obtained overall the best
predictive accuracy in the classification of pro-longevity
vs. anti-longevity genes from four model organisms, when
using two different classifiers (Naive Bayes and 1-NN with
a probabilistic Jaccard distance measure) and two differ-
ent types of feature sets – first, using both (certain) Gene
Ontology (GO) and uncertain PPI features; and second,
using only uncertain PPI features. Also, note that LFSUF
achieved better predictive accuracy using smaller selected
feature sets per instance on average, when compared against
other feature selection methods. This is desirable, since it
improves the interpretability potential of the predictions
made by the model. In summary, our results indicate that
the application of lazy feature selection on datasets with
uncertain features is an effective approach, leading to higher
predictive accuracy and better interpretability potential.

Future work could include the proposal of novel feature
selection strategies for other types of uncertain features.
And also exploiting other feature selection paradigms, such
as the wrapper approach.
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