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Abstract—The genetic mechanisms of ageing are mysterious
and sophisticated issues that attract biologists’ attention. With
the help of data mining techniques, some findings relevant
to the ageing problem can be revealed. This paper studies
the performance of Bayesian network augmented naive Bayes
classifier, naive Bayes classifier and proposed feature selection
methods for naive Bayes on predicting a C. elegans gene’s
effect on the organism’s longevity. The results show that due
to the hierarchical structure of predictor attribute values (Gene
Ontology terms), the Bayesian network augmented naive Bayes
classifier performs better than the naive Bayes classifier, and
the proposed feature selection methods for naive Bayes can
effectively optimize the predictive performance of naive Bayes.
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I. INTRODUCTION

The genetic mechanisms of ageing are mysterious and so-
phisticated issues that attract biologists’ attention on finding
the essence of longevity. Although some researches have
revealed possible factors relevant to ageing, it is still a
puzzle. Caloric restriction has been found to be an approach
to extend the longevity of many species [1], probably due
to the reduction of metabolic rate, which might be related
with the decrease of toxic reactive oxygen species [2].
In addition, environmental factors, such as temperature,
oxidative stress, etc., are also related with longevity [3].
Furthermore, mutations in some DNA repair genes lead to
accelerated ageing [4]. Given the uncertainty about which
types of genes mostly influence the ageing process, the
study of ageing should take into account the comprehensive
analysis of many types of genes in the genome of organisms.

Data mining (or machine learning) methods have been

recently applied to the analysis of ageing-related genes. We
focus on the classification task of data mining, where the
algorithm builds, from the training dataset, a classification
model that predicts the classes of genes in the testing dataset
(unseen during training).

There are few works on classification methods for pre-
dicting ageing-related gene functions, as follows. Freitas et
al. [4] proposed a method to classify ageing-related DNA
repair genes by using two datasets. One dataset mainly
contains Gene Ontology (GO) terms and protein-protein
interaction information as predictor attributes features, and
the other one merely contains gene expression data as pre-
dictor attributes. Note that, in their research, the hierarchical
structure of the GO including generalization/specialization
relationships between GO terms was not taken into account
by the classifiers. Li et al. [5] also proposed an approach
to predict ageing-associated genes based on features of a
functional network that was built using information about
gene sequence, genetic interactions, physical interactions,
etc. In addition, Huang et al. [6] used features derived from
a deletion network that was built by merging the information
about the deletion effect of genes on longevity and a network
derived from STRING database, which was a protein-protein
interaction network built to predict whether the deletion of
one gene will increase or decrease the lifespan of yeast.

From the perspective of biological data, GO has been
considered as an important cornerstone of protein and gene
function prediction research because of its contribution to
the unification of biological knowledge [7]. There are several
works that predict GO term annotations for proteins based
on GO term annotations of neighbouring proteins in protein-
protein networks, e.g., [8], [9]; or perform hierarchical



predictions of GO terms, e.g., [10]. Note, however, in such
works, GO terms have the role of functional classes to be
predicted, rather than having the role of predictor attributes
as in our work. The relationship between GO terms is a type
of generalization/specialization that is associated with some
redundancy in the data, from a classification algorithm’s
perspective. Therefore, it can be speculated that simply
and completely ignoring that information will lead to low
predictive accuracy.

For example, the naive Bayes (NB) classifier is built on
the assumption that its attributes (GO terms in our case) are
independent from each other, given the class. However, the
redundancy associated with the generalization/specialization
relationships between GO terms violates that assumption.
Therefore, it is possible that another type of Bayesian clas-
sifier which takes into account the hierarchical relationships
between GO terms would produce better results.

This work aims to investigate the usefulness of hierarchi-
cal relationships between GO terms on improving the pre-
dictive performance of Bayesian classifiers, in the context of
ageing-related gene classification. We focus on genes from
C. elegans, a major model organism for ageing research; and
we predict the effect of a gene on the organism’s longevity,
using GO terms as predictor attributes.

We evaluated two well-known types of Bayesian classi-
fiers, Bayesian Network Augmented Naive Bayes (BAN) and
Naive Bayes (NB). We propose a new approach to define
the network structure (or topology) of a BAN, naturally
exploiting the GO’s hierarchical relationships, and propose
new feature selection methods based on NB.

The remainder of this paper is structured as follows. In
section II, background on NB, BAN and feature selection
methods is reviewed. Section III describes the classification
methods proposed in this work. Section IV presents the
experiments’ results, followed by discussion in Section V.
Finally, a conclusion is presented in Section VI.

II. BACKGROUND

A. Naive Bayes and Bayesian Network Augmented Naive
Bayes

Naive Bayes (NB) and Bayesian Network Augmented
Naive Bayes (BAN) are popular classifiers because of their
powerful predictive ability and interpretability of their graph-
ical models. The NB classifier uses the inference formula

shown in Equation (1):

P (y|x1, x2, ..., xn)∝ P (y)
n∏

i=1

P (xi|y) (1)

where n is the number of attributes and the probability
of a class attribute value y given all attribute values of
an instance is estimated by calculating the product of the
individual probability of each attribute value xi given y
times the prior probability of y. However, NB has the
limitation of assuming that all the attributes are independent
from each other, given the class. In this work, this is a
serious limitation, since the attributes are GO terms, and
there are strong dependencies between many GO terms, due
to hierarchical (generalization/specialization) relationships
between GO terms.

On the contrary, BAN does not have that limitation. It rep-
resents the dependencies between attributes by a Bayesian
network, where nodes are attributes (GO terms, in our
case) and edges represent attribute dependencies [11]. The
inference formula is shown in Equation (2):

P (y|x1, x2, ..., xn)∝ P (y)
n∏

i=1

P (xi|Pa(xi), y) (2)

where the probability of a class attribute value y given all
attribute values of an instance is estimated by calculating
the product of the individual probability of each attribute
value xi given its parent attribute(s) value(s) Pa(xi) and class
attribute value y times the probability of y.

B. Feature Selection

Feature selection plays an important role in data mining,
since it is often adopted for improving the predictive per-
formance of a classifier based on certain criteria. Feature
selection methods can be categorized into two groups, wrap-
per and filter approaches. The wrapper approach for feature
selection directly measures the relevance of a subset of
predictor attributes by evaluating the predictive performance
of a classifier built using that attribute subset [12]. In
contrast, the filter approach indirectly measures the relevance
of predictor attributes by using information gain, distance,
dependence, consistency or other criteria [12]. Comparing
with the wrapper approach, the filter approach has the
advantages of low time complexity and better scalability to
datasets with large number of attributes, such as the datasets
used in this work, which have from 361 to 586 predictor
attributes. Therefore, in this work, we use the filter approach
for optimizing the predictive performance of NB.



III. PROPOSED METHODS

A. GO-hierarchy-aware BAN

In the data mining literature, the structure (topology) of
BANs are usually learned from the data. In this work, we
propose instead using the hierarchical relationships between
GO terms as the structure of a BAN. This not only avoids
the need for a computationally expensive procedure for
learning the BAN’s structure, but also has the advantage of
directly employing the naturally expert-defined hierarchical
information of the GO for Bayesian inference. Hence, the
proposed classifier can be named as GO-hierarchy-aware
BAN classifier. Figure 1 shows the topology of BAN, where
each GO term is connected with its parent GO term(s)
and class attribute (e.g., GO:0006810 and GO:0044699 are
parent GO terms of GO:0044765). In this figure, the solid
edges represent dependencies between GO terms (defined
by hierarchical relationships specified in the GO documen-
tation), whist the dashed edges represent the fact that each
predictor attribute (GO term) depends on the class attribute,
as usual in a BAN.

GO:0008150

GO:0051234

GO:0006810

GO:0044699

GO:0044765

GO:0045056

Class

Figure 1. Topology of BAN Classifier Based on Gene Ontology Data

B. New Feature Selection Approaches for Naive Bayes

In order to remove redundant attributes from the dataset,
we exploit hierarchical relationships between GO terms. We
propose a feature selection method based on two ideas:
selecting attributes which are individually good predictors
of the class, and removing redundant attributes.

1) Attribute Predictive Power Measure: Intuitively,
the predictive performance of naive Bayes is sensitive

to the predictive power of individual predictor attributes.
Therefore, as a part of our feature selection method, we
propose the use of Equation (3) to measure the predictive
power of an attribute (GO term).

Relevance(GO) = (P (Class = Pro | GO = Y es)− P (Class = Pro | GO = No))2

+(P (Class = Anti | GO = Y es)− P (Class = Anti | GO = No))2

(3)
A general form of Equation (3) was originally used in
[13], in the context of an instance-based learning (nearest
neighbour) algorithm, but the original formula was adapted
to our context of feature selection for naive Bayes. Our
feature selection method uses Equation (3) to calculate the
relevance of each GO term as a function of the difference
in the conditional probabilities of each class given different
values (yes or no) of a GO term indicating whether or not a
C. elegans gene is annotated with that GO term. In addition,
in Equation (3), the calculation of each probability uses
Laplace correction with the purpose of avoiding extreme
probability values (like 0) associated with very few instances
[14]. The formula of Laplace correction is shown as follow:

P (y | xi) =
C(y|xi)+1
C(xi)+Z (4)

where C(y | xi) denotes the number of training instances
belonging to class y given attribute value xi, C(xi) denotes
the number of training instances having attribute value xi
and Z denotes the number of values for the class attribute.

2) Hierarchy-based Redundant Attributes Removal: With
the help of hierarchical relationships among GO terms in
the dataset, we use Equation (3) to get rid of redundant
attributes. The basic principle is that in each path of the
DAG built according to GO term relationships, if the value
of one GO term attribute GOi for an instance equals to “0”,
then the values of all descendant GO terms of GOi in the
instance should equal to “0”. This is because, if a descendant
GO term of GOi has the value “1” in an instance, then, due
to the “is_a” relationship between GO terms, GOi would
necessarily have the value “1” too, which would be a logical
contradiction with the fact that GOi has value “0”. That is,
if GOi has the value “0”, this implies that its descendant GO
terms have value “0” (in the same instance), characterizing
a redundancy of these descendants. In addition, if the value
for one GO term GOi in an instance equals to “1”, then
the values of all ancestor GO terms of GOi in the instance



should equal to “1”. Due to the “is_a” relationships, so that
the ancestors of GOi represent redundant information.

Based on these principles, we adopt a “lazy” learning
method where we build a classifier for each testing instance
in turn, rather than building a single classifier for all testing
instances. The main advantage of this “lazy” learning ap-
proach is that we can select a set of attributes (GO terms)
optimized for predicting the class of each testing instance.
It is expected that most of redundant attributes in the GO’s
DAG can be removed from the set of predictor attributes.
After that removal process, the remaining predictor attributes
are ranked in descending order of their relevance value
measured by Equation (3). Then naive Bayes merely adopts
the top-k ranked attributes for classification, where k is a
user-specified parameter.

As shown in the Pseudocode of Algorithm 1, we firstly
create the DAG composed by all GO terms (see Section IV-
A), then compute the relevance for every GO term. We use a
“lazy” learning method for classifying every testing instance
in turn. For each GO term GOi in the current instance being
classified, we select the processing direction according to the
value of GOi in that instance. For example, we compare the
relevance of all ancestor GO terms for a GO term GOi with
value “1”. If the relevance value of an individual ancestor
GO term is equal or lower than the relevance of GOi, then
that ancestor GO term will be removed from the set of
predictor attributes. Analogously, in case of “0” being the
value of GO term GOi, descendant GO terms with a value
of “0” and with a relevance value equal or lower than the
relevance value of GOi will be removed from the set of
predictor attributes. After processing all GO terms in an
instance, NB will merely adopt the remaining attributes in
the set of predictor attributes.

Concerning the notation used in Algorithm 1,
Dataset<Train1> and Dataset<Test> denote the
original training dataset and testing dataset, and they
consist of all GO terms used as predictor attributes;
Ancestor<GOi> denotes the set of ancestors for the ith GO
term; Descendant<GOi> denotes the set of descendants
for the ith GO term; Status<GOi> means the selection
status of the ith GO term; Relevance<GOi> denotes the
value of relevance for the ith GO term; k means the number
of attributes selected to be used as input for naive Bayes;
Instance<n> means one instance in Dataset<Test>;
V alue<GOi> denotes the value of GOi in that instance;

Algorithm 1 Hierarchy Based Redundant Attribute Removal
Naive Bayes Classifier

Initialize DAG with all GO terms in Dataset;
Initialize Dataset<Train1>;
Initialize Dataset<Test>;
for each GOi in DAG do

Initialize Ancestor<GOi> in DAG;
Initialize Descendant<GOi> in DAG;
Initialize Status<GOi> ← “Select”;
Calculate Relevance<GOi> in Dataset<Train1>;

end for
Initialize k;
for each Instance<n> ∈ Dataset<Test> do

for each GOi ∈ DAG do
if V alue<GOi> ∈ Instance<n> = 1 then

for each Aij ∈ Ancestor<GOi> do
if Relevance<Aij> ≤ Relevance<GOi> then

Status<Aij> ← “Remove”;
end if

end for
else

for each Dij ∈ Descendant<GOi> do
if Relevance<Dij> ≤ Relevance<GOi> then

Status<Dij> ← “Remove”;
end if

end for
end if

end for
Create Set<Select1> with GOi : Status<GOi> =

“Select”;
Create Set<Select2> ← Top-Rank(Set<Select1>, k);
Create Instance<s> with GOi ∈ Set<Select2>;
Create Dataset<Train2> with GOi ∈ Set<Select2>;
Classify NaiveBayes(Dataset<Train2>, Instance<s>);
Re-assign each GOi : Status<GOi> ← “Select”;

end for

Aij denotes the jth ancestor GO term for the ith GO
term; Dij denotes the jth descendant GO term for the ith

GO term; Set<Select1> denotes a set of GO terms whose
individual status is “Select” and Set<Select2> denotes the
set of top-k GO terms according to the relevance-based
ranking; Instance<s> means the instance that only
consists of GO terms in Set<Select2> from Instance<n>;
and Dataset<Train2> means the training dataset that
is only composed by GO terms in Set<Select2> from
Dataset<Train1>.



IV. COMPUTATIONAL EXPERIMENTS

A. Dataset Creation

According to the consideration of reliability of the dataset
to be created, the model organism has been chosen as
Caenorhabditis elegans, which has more completely an-
notated information about longevity than other types of
model organisms in the Human Ageing Genomic Resources
(HAGR) database (data-version: Build 16) [15]. The HAGR
database provides data about genes and their effects on
the organisms’ longevity (i.e., pro- or anti- longevity). We
also used the Gene Ontology (GO) database (data-version:
2013-01-25), which provides well structured and controlled-
vocabulary description of gene functions [7]. The newly
created dataset is composed by a set of GO terms associated
with each C. elegans gene and its effect on the organism’s
longevity (the class attribute). In addition, it contains infor-
mation about the hierarchical structure between GO terms,
where a GO term can have parent (more general) terms or
child (more specific) terms. This hierarchical relationship
among GO terms (used as predictor attributes) can be
exploited by a classification algorithm.

We firstly match the EntrezID number of each C. elegans
gene in the HAGR database with the same EntrezID number
in the NCBI gene database (data-version: 2012-12-13) [16],
which contains the corresponding list of GO terms for each
gene. Then the GO terms for matched genes are mapped to
data from the GO database, where each GO term has been
assigned into one out of three categories of namespaces: bi-
ological process, molecular function and cellular component
[7]. The biological process GO terms are considered more
interpretable in the context of this research, since they refer
to biological processes that can be more naturally interpreted
as affecting an organism’s longevity. Therefore, only the GO
terms of the biological process namespace were adopted to
build the new dataset.

After retrieving all the biological process GO terms for
the C. elegans genes, each gene can be described as a set
of binary attributes, where each attribute indicates whether
or not a given GO term is annotated for a gene. To take
into account the hierarchical structure of GO terms, the
ancestors for each child GO term are retrieved by following
the relationship “is_a” in the GO database. Then each gene
is added to the dataset with the information about the gene’s
effect on longevity (value of the class attribute). Note that the

annotations for some genes in the HAGR database contain
missing values of longevity, so they were not adopted.

Finally, the structure of the newly created dataset is
represented as shown in Figure 2, where the attribute value
“1” means the occurrence of a GO term with respect to the
corresponding gene. In the column for the class attribute,
the values of “Pro” and “Anti” mean pro-longevity and anti-
longevity. There are 1507 GO term attributes, plus 1 Class
attribute, and 554 gene instances. In addition, the GO term
GO:0008150 (“biological process”) was removed, since it
is the ancestor for all biological process GO terms and not
meaningful for classification.

NCBI Gene
Database

HAGR
Database

Gene
Ontology+ +

Gene\GO GO_1 GO_2 GO_3 GO_4 ... GO_n Class
Gene_1 1 0 0 1 ... 0 Pro
Gene_2 0 1 0 0 ... 1 Anti
Gene_3 0 0 0 1 ... 1 Pro

... ... ... ... ... ... ... ...
Gene_n 1 0 1 0 ... 0 Pro

Figure 2. Structure of the Created Dataset

Some GO terms that have few occurrences in the dataset
will affect the performance of classifiers, because proba-
bilities calculated from very few instances are not reliable.
In particular, the number of GO terms which have only 1
associated gene is 560. In terms of predictive data mining,
these GO terms have no generalization ability, and a model
that includes these GO terms would be confronted with the
overfitting problem and reduction on predictive accuracy.
Therefore, it is necessary to investigate what is the most ap-
propriate threshold for the minimum number of occurrences
of a GO term, with the purpose of avoiding unreliable prob-
ability calculations and mitigating the overfitting problem.

Table 1 shows the number of GO terms remaining in the
dataset after adopting different thresholds on the minimum
number of occurrences for a GO term, for filtering the
dataset. We experimented with thresholds ranging from 4
to 10. The larger the threshold value, the more reliable
the probability calculations (used by classifiers) are, but
the smaller the number of GO terms available as predictor
attributes, possibly leading to a loss of some GO terms with
good predictive power for larger thresholds.

Note that, after filtering the dataset by each threshold,



duplicated instances tend to appear [4]. Therefore, dupli-
cated instances are detected and then removed for avoiding
interference on the computation of predictive accuracy (i.e.,
to avoid that an instance occurs in both the training and
testing datasets).

Table I
EFFECT OF DIFFERENT THRESHOLDS FOR THE MINIMUM NUMBER OF

GENES HAVING A GO TERM ON THE NUMBER OF GO TERMS LEFT IN

THE DATASET

Threshold (user-defined parameter) Number of GO terms left in dataset
for filtering GO terms (remove GO term’s frequency < threshold)

4 586
5 515
6 465
7 426
8 392
9 373

10 361

B. Evaluation Methodology

The experiments evaluate the predictive performance of 5
types of classification methods, as follows. The first method
is the BAN classifier using the GO hierarchical relationships
as the structure of the BAN’s network. The second method is
Hierarchy Based Redundant Attribute Removal Naive Bayes
Classifier (HNB). Recall that HNB consists of two phases.
First, it executes Algorithm 1 to remove redundant attributes.
Second, it selects the top-k remaining attributes based on
relevance. The third method is Relevance-based Naive Bayes
(RNB), which means naive Bayes merely selects the top-
k ranked attributes in descending order of their individual
predictive power measured by their relevance (Equation 3).
The fourth method is named HNB−s, which can be seen
as the first phase of HNB. It follows the same approach
as HNB, but adopts all remaining attributes after removing
redundant attributes (executing Algorithm 1), rather than
selecting just the top-k ranked ones. Finally, we included
in our experiments NB, as a baseline for measuring the
improvement on the predictive performance of our three
proposed feature selection methods.

In terms of the k value used to define how many top-
quality attributes were selected, we did experiments with the
values of 30, 40 and 50, combining them with varying the
threshold of minimum number of GO term occurrences rang-
ing from 4 to 10. Hence, our experiments used in total 21
versions of the dataset (3 k values multiplied by 7 threshold

values). We report the results with two measures of predic-
tive performance, i.e., accuracy and sensitivity×specificity.
Accuracy denotes the proportion of correctly classified in-
stances in the testing dataset. Sensitivity denotes the pro-
portion of correctly classified positive (pro-longevity) genes
in the testing dataset, and specificity denotes the proportion
of correctly classified negative (anti-longevity) genes in the
testing dataset [17]. In all experiments, predictive perfor-
mance was evaluated by ten-fold cross validation [18].

C. Experiment Results

Table II shows the predictive performance of the algo-
rithms on the 21 dataset versions from the perspective of
accuracy (Acc.) and sensitivity×specificity (S.×S.). In the
table, “Thr.” stands for threshold on minimum number of
genes annotated with a GO term and “K” denotes the number
of top-ranked GO terms that will be selected as the predictor
attributes for the feature selection methods. In each row of
the table, the best Acc. and S.×S. are shown in boldface. In
addition, the best Acc. and S.×S. results (in each row) out
of the three feature selection methods are shown in italic.

For each of the 21 dataset versions, we performed statis-
tical tests of significance (i.e., two-tailed Wilcoxon signed-
rank test, at the significance level of 5%) [19] to compare
the predictive performance of BAN against the performance
of NB, and to compare the predictive performance of the
best feature selection method against the performance of
NB. The values in underline denote that the corresponding
classifier significantly outperforms NB. BAN significantly
outperforms NB 13 (out of 21) times, in terms of accu-
racy, and 8 times in terms of sensitivity×specificity. There
is no dataset version where NB significantly outperforms
BAN. HNB is overall the best feature selection method,
since it significantly outperforms NB 11 times, in terms of
accuracy, and 4 times in terms of sensitivity×specificity.
There is no dataset version where NB significantly out-
performs HNB. RNB is the second best feature selection
method, significantly outperforming NB 5 times in terms of
accuracy. HNB−s performs worst comparing with the two
other feature selection methods, since it never significantly
outperforms NB.

In addition, HNB obtained the highest value of predictive
accuracy (68.1%) and sensitivity×specificity (41.8%) around
the whole experiment, with a sensitivity of 57.5% and a
specificity of 72.6%. These are substantial increases against



the baseline values (38.8% and 61.2%) that equal to the
relative frequency of instances belonging to the class pro-
or anti-longevity, respectively.

Table II
PREDICTIVE PERFORMANCE (%) RESULTS

IN 21 DIFFERENT DATASET VERSIONS

Aliases BAN NB RNB HNB−s HNB
Thr. K Acc. S.×S. Acc. S.×S. Acc. S.×S. Acc. S.×S. Acc. S.×S.

T4
30 66.8 39.9 60.0 32.2 66.4 26.7 63.4 33.9 63.6 33.6
40 67.0 40.7 62.5 35.8 63.8 26.1 66.0 37.7 66.4 35.5
50 65.5 39.3 62.1 35.4 64.2 31.7 63.4 35.2 68.1 37.4

T5
30 66.4 39.5 60.8 33.3 63.0 27.5 63.6 35.3 63.0 34.1
40 65.1 38.4 61.7 34.7 64.9 35.3 64.5 36.2 65.5 35.8
50 67.7 41.2 62.5 35.9 64.9 34.5 64.2 36.5 65.3 36.7

T6
30 65.3 38.3 62.1 35.6 62.7 33.4 63.2 36.1 63.4 35.6
40 64.2 36.9 58.0 31.3 62.5 32.8 60.8 32.3 63.6 34.6
50 64.2 37.6 59.3 32.1 63.0 34.5 63.4 35.8 64.2 37.4

T7
30 66.3 40.0 59.9 33.0 62.2 32.1 62.9 34.5 63.9 34.6
40 63.5 35.5 58.8 31.4 64.8 37.7 62.7 35.2 64.4 39.0
50 64.8 36.3 59.2 31.1 63.3 30.8 62.0 35.1 66.1 35.4

T8
30 65.2 37.6 60.1 33.7 63.5 35.3 62.7 36.1 66.3 39.9
40 63.3 35.6 58.8 31.6 63.5 35.5 60.7 32.2 63.1 36.4
50 65.9 38.8 60.7 33.9 61.4 36.7 62.0 34.5 66.3 37.5

T9
30 65.7 38.9 59.4 33.0 62.4 37.9 59.7 32.2 63.5 36.4
40 65.2 38.5 59.4 32.9 62.2 37.3 60.9 35.0 66.7 41.8
50 65.9 38.8 59.7 32.2 65.5 39.7 60.3 32.1 64.4 36.4

T10
30 64.4 36.6 60.1 33.2 61.8 35.7 61.2 33.6 66.7 41.1
40 64.6 37.1 58.4 31.6 65.5 40.7 59.4 32.5 63.9 36.3
50 65.9 39.1 59.2 32.5 62.9 37.0 58.2 30.3 65.0 36.6

V. DISCUSSION

The experiment results reveal that the hierarchical re-
lationships between GO terms are valuable for improving
the classification of C. elegans genes’ effects into pro- or
anti-longevity, because BAN, which incorporates hierarchi-
cal GO term relationships, significantly outperforms NB
in the majority of cases. In addition, HNB, which adopts
hierarchical GO term relationships for feature selection, has
also successfully improved the predictive performance of
NB. The reasons can be explained by further analysis of
the three feature selection methods. To begin with, HNB−s,
which removes redundant attributes but does not select the
top-k attributes, performs worse than the other two feature
selection methods because the remaining non-redundant at-
tributes do not guarantee a high predictive accuracy. Some of
the remaining attributes might still have relatively low pre-
dictive power. Hence, selecting the top-k ranked GO terms
after processing by HNB−s (i.e., executing the full two-
phase HNB method) should improve the predictive accuracy.

Indeed, HNB obtained higher accuracy than HNB−s in 20
out of 21 dataset versions, and higher sensitivity×specificity
values in 16 dataset versions.

Moreover, the reason why HNB outperforms RNB is
that the former removes redundant attributes and selects at-
tributes that have relatively higher predictive power, whereas
the latter merely selects a set of relatively higher predictive
power attributes that might be redundant. Those results show
that the first phase of HNB, where redundant attributes are
removed based on GO hierarchical relationships, improves
predictive performance in general.

To compare BAN and HNB, we conducted the Wilcoxon
signed-rank statistical tests [19]. The results show that
there is no significant difference between their predictive
performances. Hence, this shows that with the help of a
feature selection method based on hierarchical GO term
relationships, NB can be improved to the same level of
predictive performance as BAN.

In addition, the relevance measure (Equation 3) allows us
to rank the GO terms in decreasing order of their individual
predictive power. For instance, in the dataset version with
minimum GO term occurrence threshold of 4 (which is the
dataset version with the largest number of GO terms in our
experiments), the most relevant GO term was GO:0009314
(“response to radiation”), reinforcing the association be-
tween radiation and ageing suggested decades ago in the
literature [20]; and the GO term GO:0031667 (“response to
nutrient level”) was joint second in the ranking, reinforcing
the association between nutrient levels and ageing mentioned
in Section I. Note that here we discussed the relevance-
based ranking of GO terms in general, rather than using
the results of HNB, which combines the relevance measure
with GO hierarchy-based attribute removal. This is because,
as discussed earlier, HNB performs “lazy” feature selection,
where different subsets of attributes (GO terms) are removed
for classifying different testing instances (genes). In contrast,
although the relevance measure does not cope with redun-
dancy among GO terms, it provides a simple approach to
rank individual GO terms across the entire dataset, taking
into account all C. elegans genes.

VI. CONCLUSIONS

This work reveals that the hierarchical relationships be-
tween GO terms are helpful for detecting redundant predictor
attribute values, and the naive Bayes classifier’s predictive



performance at classifying C. elegans genes into pro- or anti-
longevity genes can be effectively improved by removing
redundant attribute values based on the GO hierarchy. Also,
with the help of hierarchical GO term relationships, BAN
performs well in the above classification task and is shown
to perform statistically as effectively as HNB. In addition,
both the proposed BAN and HNB classifiers obtained signif-
icantly better results than the baseline naive Bayes classifier,
as confirmed by statistical tests of significance.

As future work, we will focus on other approaches for
removing redundant attributes and representing dependen-
cies between attributes using the hierarchical structure of
the Gene Ontology.
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