
Handling Continuous Attributes in Ant Colony

Classification Algorithms

Fernando E. B. Otero, Alex A. Freitas, and Colin G. Johnson

Abstract— Most real-world classification problems involve
continuous (real-valued) attributes, as well as, nominal (dis-
crete) attributes. The majority of Ant Colony Optimisation
(ACO) classification algorithms have the limitation of only being
able to cope with nominal attributes directly. Extending the
approach for coping with continuous attributes presented by
cAnt-Miner (Ant-Miner coping with continuous attributes), in
this paper we propose two new methods for handling continuous
attributes in ACO classification algorithms. The first method
allows a more flexible representation of continuous attributes’
intervals. The second method explores the problem of attribute
interaction, which originates from the way that continuous
attributes are handled in cAnt-Miner, in order to implement
an improved pheromone updating method. Empirical evaluation
on eight publicly available data sets shows that the proposed
methods facilitate the discovery of more accurate classification
models.

I. INTRODUCTION

THE classification task in data mining aims at predicting

the value of a given goal attribute for an example, based

on the values of a set of predictor attributes for that example

[1]. Since real-world classification problems are generally

described by nominal (discrete) and continuous (real-valued)

attributes, classification algorithms are required to be able to

cope with both nominal and continuous attributes in order

to build a classification model. However, most Ant Colony

Optimisation (ACO) [2] classification algorithms have the

limitation of being able to cope with only nominal attributes.

Continuous attributes, if present, need to be transformed

into nominal attributes, by creating discrete intervals in a

preprocessing step. There are potentially two drawbacks by

not coping with continuous attributes directly. Firstly, there is

a need for a discretisation procedure in a preprocessing step.

Secondly, less information is available to the classification

algorithm, since the discretisation procedure creates a fixed

number of discrete intervals for each continuous attribute.

In this paper, we focus on extending the ideas of cAnt-

Miner [3] in coping with continuous attributes. cAnt-Miner

pioneered in coping with both types (nominal and contin-

uous) attributes directly, taking full advantage of all con-

tinuous attributes’ information and not requiring a discreti-

sation procedure in a preprocessing step. We propose two

new methods for handling continuous attributes in ACO

classification algorithms. The first method gives the ability

to use continuous attributes intervals with lower and upper

bound values (i.e. vlower ≤ attribute < vupper). The second

The authors are with the Computing Laboratory, University of
Kent, Canterbury, Kent, United Kingdom (email: {febo2, A.A.Freitas,
C.G.Johnson}@kent.ac.uk).

method explores the attribute interaction introduced by the

way that continuous attributes are handled internally, which is

not taken into account by cAnt-Miner. We present empirical

evaluation results for validating the proposed methods.

The remainder of this paper is organised as follows.

Section II presents a brief overview of Ant-Miner [4], the

first ACO classification algorithm, and cAnt-Miner. Section

III discusses the proposed two new methods for handling

continuous attributes. The empirical evaluation results are

presented in Section IV. Finally, Section V draws the con-

clusions of the paper and present future research directions.

II. BACKGROUND

Ant Colony Optimisation (ACO) systems simulate the

behaviour of real ants using a colony of artificial ants,

which cooperate in finding good solutions to optimization

problems. Each artificial ant, representing a simple agent

in the system, builds candidate solutions to the problem at

hand and communicates indirectly with other artificial ants

by means of pheromone levels. At the same time that ants

perform a global search for new solutions, the search is

guided to better regions of the search space based on the

quality of solutions found so far. The system converges to

good solutions as a result of the collaborative interaction

among the ants. The interactive process of building candidate

solutions and updating pheromone values allows an ACO

algorithm to converge to optimal or near-optimal solutions.

In the context of discovering classification rules in data

mining, ACO algorithms have been successfully applied to

several different classification problems [5]. In this section,

we present an overview of Ant-Miner, the first implemen-

tation of an ACO algorithm for the classification task of

data mining [4], and cAnt-Miner [3], the first (to the best of

our knowledge) ACO classification algorithm able to cope

with continuous attributes without requiring a discretisation

procedure in a preprocessing step.

A. Ant-Miner Overview

Ant-Miner aims at extracting IF-THEN classification rules

of the form IF (term1) AND (term2) AND ... AND (termn)
THEN (class) from data. Each term in the rule is a triple

(attribute, operator, value), where operator represents a

relational operator and value represents a value of the domain

of attribute (e.g. sex = male). The IF part corresponds to

the rule’s antecedent and the THEN part corresponds to the

rule’s consequent, which represents the class to be predicted

by the rule. An example that satisfies the rule’s antecedent

will be assigned the class predicted by the rule. As Ant-

Miner only works with nominal (categorical or discrete)

attributes, the only valid relational operator is “=” (equality

operator). Continuous attributes need to be discretised in a

preprocessing step.

A high level pseudo-code of Ant-Miner is presented in

Algorithm 1 [4]. In summary, Ant-Miner works as follows.

It starts with an empty rule list and iteratively (while loop)

adds one rule at a time to that list while the number of

uncovered training examples is greater than a user-specified

maximum value. In order to construct rules, ants start with

an empty rule (no terms in its antecedent) and add one term

at a time to their rule antecedent (repeat-until loop). Terms

are probabilistically chosen to be added to current partial

rules based on the values of the amount of pheromone (τ)

and a problem-dependent heuristic information (η) associated

with terms (vertices in the construction graph). A pheromone

value and a heuristic value are associated with each possible

term – i.e. each possible triple (attribute, operator, value).

As usual in ACO, heuristic values are fixed (based on an

information theoretical measure of the predictive power of

the term), while pheromone values are iteratively updated

based on the quality of the rules built by ants. Ants keep

adding a term to their partial rule until any term added

to their rule’s antecedent would make their rule cover less

training examples than a user-specified threshold (in order to

avoid too specific and unreliable rules), or all attributes have

already been used. The latter rule construction stopping cri-

terion is necessary because an attribute can only occur once

in the antecedent of a rule, in order to avoid inconsistencies

such as <sex = male AND sex = female>. Once the

rule construction process has finished, the rule constructed

by an ant is pruned to remove irrelevant terms from the rule

antecedent. Then, the consequent of a rule is chosen to be the

class value most frequent among the set of training examples

covered by the rule in question. Finally, pheromone trails are

updated using the best rule, based on a quality measure Q,

created by ants. The process of constructing a rule is repeated

until a user-specified number of iterations has been reached,

or the best rule of the current iteration is exactly the same as

the best rule constructed by a predefined number of previous

iterations, which works as a rule convergence test. The best

rule found along this iterative process is added to the rule

list and the covered training examples (training examples that

satisfy the antecedent of the best rule) are removed from the

training set.

B. cAnt-Miner Overview

In order to overcome Ant-Miner’s limitation of only cop-

ing with nominal attributes, Otero et al. [3] have proposed

an Ant-Miner extension — named cAnt-Miner (Ant-Miner

coping with continuous attributes) — which can dynamically

create thresholds on continuous attributes’ domain values

during the rule construction process. Since cAnt-Miner has

the ability of coping with continuous attributes “on-the-

fly”, continuous attributes do not need to be discretised in

Algorithm 1: High level pseudo-code of Ant-Miner.

begin Ant-Miner
tr set← all training examples;

rule list← ∅;
while |tr set| > MaxUncoveredExamples do

τ ← initializes pheromones;

rulebest ← ∅;
repeat

CreateRules();
ComputeConsequents();
PruneRules();
currentbest ← BestRule();
UpdatePheromones(τ, currentbest);
if Q(currentbest) > Q(rulebest) then

rulebest ← currentbest;

end

i← i + 1;
until i ≥MaxIterations OR Convergence() ;

rule list← rule list + rulebest;

tr set← tr set \ CoveredExamples(rulebest);
end

end

a preprocessing step. cAnt-Miner extended Ant-Miner in

several ways, as follows.

Firstly, cAnt-Miner includes vertices to represent continu-

ous attributes in the construction graph. For each nominal

attribute xi and value vij (where xi is the i-th nominal

attribute and vij is the j-th value belonging to the domain of

xi), a vertex (xi = vij) is added to the construction graph,

as in Ant-Miner. Furthermore, for each continuous attribute

yi, a vertex (yi) is added to the construction graph, unlike

in Ant-Miner. Note that continuous attributes vertices do not

represent a valid term, since they do not have a relational

operator and value associated in the construction graph, in

contrast to nominal attributes. The relational operator and

a threshold value will be determined when an ant selects a

continuous attribute vertex as the next term to be added to

the rule (an example of continuous attribute term is: ‘age

> 21’). This makes the choice of a relational operator and

value tailored to the current candidate rule being constructed,

rather than chosen in a static preprocessing step.

Secondly, in order to compute the heuristic information

for continuous attributes, cAnt-Miner incorporates a dynamic

entropy-based discretisation procedure. In Ant-Miner, the

heuristic value of each nominal vertex (xi = vij) involves a

measure of entropy associated with the partition of examples

which have the specific vij value for the attribute xi. The

entropy measure, which is derived from information theory

and is often used in data mining, quantifies the impurity of a

collection of examples. Since continuous attribute vertices

(yi) do not represent a partition of examples as nominal

attribute vertices, a threshold value v need to be selected

in order to dynamically partition the set of examples into

two intervals: yi < v and yi ≥ v. The best threshold value

v is the value v that minimizes the entropy of the partition,

computed as

entropy(yi, v) =
|Syi<v|

|S|
· entropy(Syi<v)+

|Syi≥v|

|S|
· entropy(Syi≥v) ,

(1)

where |Syi<v| is the total number of examples in the partition

yi < v (partition of training examples where the attribute yi

has a value less than v), |Syi≥v| is the total number of ex-

amples in the partition yi ≥ v (partition of training examples

where the attribute yi has a value greater or equal to v) and

|S| is the total number of training examples. The values of

entropy(Syi<v) and entropy(Syi≥v) are computed as

entropy(T) =

k∑

c=1

−p(c |T) · log2 p(c |T) , (2)

where p(c |T) is the proportion of examples in T that have

class c and k is the number of classes. After selection of the

best threshold value v using Equation (1), the measure of

entropy used to calculate the heuristic value of the continuous

attribute vertex (yi) corresponds to the minimum entropy

value between the two generated intervals (yi < v) and

(yi ≥ v), according to Equation (2).

Thirdly, when a continuous attribute vertex (yi) is selected

by an ant to be added to its current partial rule, a relational

operator and a value is computed using a similar procedure

as for the heuristic information. The best threshold value

v is selected using Equation (1), subject to the restriction

of considering only examples covered by the current partial

rule in the evaluation of threshold values. Then, the relational

operator (‘<’ or ‘≥’) associated with the interval with the

lowest entropy value is selected and a term in the form (yi,

operator, v) added to the ant’s current partial rule (e.g. age

< 18).

Fourthly, the pheromone updating procedure has been

extended to cope with continuous attribute vertices. In the

case of continuous attributes, pheromone values are associ-

ated with continuous attribute vertices not considering the

operator and threshold value, that is, there is a single entry

in the pheromone matrix for each continuous attribute, in

contrast to multiple entry for nominal attributes — nominal

attributes have an entry for every (xi, vij) pair.

III. NEW METHODS FOR HANDLING CONTINUOUS

ATTRIBUTES IN ANT COLONY CLASSIFICATION

ALGORITHMS

Extending on the ideas of cAnt-Miner, this paper presents

two new methods for handling continuous attributes in Ant

Colony Optimisation (ACO) classification algorithms. The

first method enables the creation of intervals with both lower

and upper bound values for continuous attributes, in the

form of vlower ≤ attribute < vupper , by incorporating a

new dynamic discretisation procedure based on the Minimum

Description Length (MDL) principle [6] in the rule construc-

tion process. The second method explores the fact that the

discretisation of continuous attributes occurs when an ant

selects a continuous attribute vertex to be added to its current

partial rule. Since only examples covered by the current

partial rule are considered for the threshold calculation, the

previously selected vertices play an important role in the

creation of discrete intervals. The order dependency between

vertices in a rule characterizes an attribute interaction, which

is not taken into account by cAnt-Miner.

A. MDL-based Discretisation

Fayyad and Irani [6] presented an MDL-based approach

where multiple discrete intervals can be extracted by apply-

ing a binary discretisation procedure recursively, selecting the

best threshold value at each iteration, and using the minimal

description length principle as a stopping criterion to deter-

mine whether more threshold values should be introduced.

The motivation for multiple interval discretisation lay in the

fact that the ‘interesting’ value range may be an internal

interval (e.g. 18 ≤ age < 21), which can not be easily

generated by a binary-interval-at-a-time discretisation pro-

cedure. The MDL-based approach generally leads to coarse

intervals in cases where the examples are homogeneously

distributed (distributed in a few different class values) and to

fine intervals in cases of more uniform distributions.

Following Fayyad and Irani, we have incorporated a MDL-

based decision criterion to decide whether or not to split

a given interval further in cAnt-Miner. The basic idea is

to apply cAnt-Miner’s entropy-based discretisation method

recursively, relying on the MDL criterion to accept or reject

a threshold value. In this way, instead of generating only

intervals in the form yi < v and yi ≥ v, internal intervals

in the form vlower ≤ yi < vupper can be created (where v,

vlower and vupper are values in the domain of the continuous

attribute yi).

The MDL-based discretisation method is divided in two

steps, as follows. In the first step, the best threshold value

v for a continuous attribute vertex (yi) is selected as in the

original cAnt-Miner — Equation (1). In the second step, the

MDL decision criterion for accepting or rejecting a threshold

value v is computed as

Gain(yi, v; S) >
log2(|S| − 1)

|S|
+

∆(yi, v; S)

|S|
, (3)

Gain(yi, v; S) = entropy(S)

−
|Syi<v|

|S|
· entropy(Syi<v)

−
|Syi≥v|

|S|
· entropy(Syi≥v) ,

(4)

∆(yi, v; S) = log2(3
k − 2)− [k · entropy(S)

− kyi<v · entropy(Syi<v)

− kyi≥v · entropy(Syi≥v)] ,

(5)

where k, kyi<v and kyi≥v are the number of different class

values in S, Syi<v and Syi≥v, respectively. If the MDL

criterion defined in Equation (3) is satisfied, the threshold

value v for the continuous attribute yi is accepted; otherwise

it is rejected. Note that the entropy measures of S, Syi<v

and Syi≥v required to evaluate the threshold value v against

the MDL criterion are already computed by the first step

(threshold selection). Therefore, there is no increase in com-

putational time to compute the MDL criterion. Finally, if the

threshold value v is accepted, the discretisation procedure is

repeated individually for the partitions Syi<v and Syi≥v .

At the end of the MDL discretisation procedure, we can

have potentially multiple threshold values. In order to select

the best threshold value(s), the list of threshold values is

sorted and the entropy value for each discrete interval is

calculated. Then, the interval with the lowest entropy value

is selected (based on the fact that lower entropy values

represent more “pure” partitions where most of the examples

belong to a single class). If an internal interval is selected

(an interval between two threshold values), a term in the

form vj ≤ yi < vj+1 is generated; otherwise, a term in the

form yi < vj or yi ≥ vj is generated (where j is the j-th

threshold value selected). Fig. 1 illustrates the intervals that

could have been created by selecting two threshold values

for a continuous attribute age.

18 ≤ age < 21 age ≥ 21age < 18

18 21

Fig. 1. Illustration of discrete intervals that that could have been created
by selecting two threshold values for a continuous attribute age. At the end
of the MDL discretisation procedure, the interval associated with the lowest
entropy value is selected.

B. Encoding Attribute Interaction as Pheromone Levels:

Associating Pheromones with Edges

In the original version of Ant-Miner, pheromone values

are associated with vertices in the construction graph, where

each vertex represents a term xi = vij (e.g. sex = male).

Hence, both ants with rule antecedents <sex = male AND

smoke = no> and <smoke = no AND sex = male> will

deposit the same amount of pheromone on vertices ‘sex =
male’ and ‘smoke = no’.

cAnt-Miner employs the same pheromone update proce-

dure, even though the order of attributes (vertices) could

affect the threshold values of continuous attributes. Note that

this attribute interaction dependency is not observed in the

original Ant-Miner, since it only supports nominal attribute

vertices which are represented by <attribute = value>

pairs and their order is irrelevant. For instance, a partial

rule with a term <sex = male> followed by a term

<smoke = no> has no difference is comparison with a

partial rule with a term <smoke = no> followed by a term

<sex = male>. On the other hand, a partial rule with a

term <smoke = no> followed by a term representing the

continuous attribute age is different in comparison with a

partial rule with a term representing a continuous attribute

age followed by a term <smoke = no>. In the first case,

only examples covered by the partial rule <smoke = no>

are used to compute a threshold value for the continuous

attribute age (e.g. age < 10). In the latter case, all examples

of the training set are used to compute a threshold value

for the continuous attribute age (e.g. age ≥ 25) since the

continuous attribute age is the first attribute to be added to the

rule. Although the discretisation procedure is deterministic,

there is no guarantee that the same values will be chosen

since the examples used to compute the threshold values

are different. This might affect the way that ants explore

the construction graph, since the pheromone levels do not

accurately reflect paths explored by previous ants.

A straightforward implementation to preserve the order

is to associate pheromone on the edges instead of vertices.

For instance, when updating pheromones levels for a rule

<smoke = no AND age < 10>, instead of depositing

the pheromone on the vertices ‘sex = male’ and ‘age’,

the pheromone is deposited on the edge that connects the

vertex ‘sex = male’ to the vertex ‘age’. Consequently,

when updating pheromone levels for a rule <age ≥ 25 AND

smoke = no>, the pheromone is deposited on the edge

that connects the vertex ‘age’ to the vertex ‘smoke = no’.

Note that even though the construction graph is conceptually

defined as a fully connected (bidirectional edges) graph, in

practice there is one edge for each direction between each

pair of vertices. To be able to associate pheromone levels to

the first vertex of a rule, a dummy vertex ‘start’ is added and

unidirectionally connected to all vertices in the construction

graph. This vertex represents the starting point for creating

trails and its purpose is to associate pheromone values on

the edge of the first attribute vertex of an ant’s trail.

In order to calculate the probability of selecting a vertex

to be added to the current partial rule, the pheromone value

associated with the edge between the last vertex of the

rule (or the dummy ‘start’ vertex when the rule is empty)

and the candidate vertex is used in combination with the

heuristic value associated with the candidate vertex in the

same manner as in Ant-Miner and cAnt-Miner. The main

advantage of this method can be seen when dealing with

continuous attributes. Since the dynamic discretisation pro-

cedure of continuous attributes is deterministic and based on

the current covered examples, as discussed previously, using

pheromone levels to represent the order in which ants select

vertices to compose candidate rules indirectly preserves the

threshold values of continuous attributes.

The idea of associating pheromone values with the edges

of the construction graph have been previously explored in

AntMiner+ by Martens et al. [7], although it was used in a

very different context. The construction graph in AntMiner+

is defined as a direct acyclic graph (DAG). Therefore, the

attribute order is explicitly determined by the construction

graph DAG-structure, rather than by pheromone levels on

the edges between vertices as proposed in this work, which

has the undesirable bias of restricting ants to create trails

following a specific order of attributes.

As discussed in subsection II-A, after an ant completes

the rule’s construction process, the created rule undergoes a

pruning procedure which aims at removing irrelevant terms

that might have been included in the rule. The original

pruning procedure employed by Ant-Miner and cAnt-Miner

consists of removing one term at a time while this procedure

improves the quality of the rule. Therefore, at each iteration

of the pruning procedure, n (where n is the number of terms

in the current rule) candidate rules with n − 1 terms are

evaluated and the rule with highest quality is selected for

further pruning. This procedure is repeated until no term

can be removed which improves the current rule quality

or the current rule has only one term left. Clearly, the

original pruning procedure does not take into account the

order in which terms appear in a rule. For instance, a rule

<sex = male AND age ≥ 25 AND smoke = yes> can

be pruned to <age ≥ 25 AND smoke = yes>, which will

update the pheromone levels considering ‘age’ as the first

vertex of the rule followed by the vertex ‘smoke = yes’.

This is not consistent with how the threshold of the attribute

age was calculated and there is no guarantee that, if an ant

selects the vertex ‘age’ as the first term of its rule, it will

have the same threshold value (‘25’ in this case).

To avoid such inconsistencies, we proposed a new pruning

procedure (dubbed ‘threshold-aware’ pruning) sensible to the

order of attributes (vertices). Since the order of terms in a

rule is consistent with continuous attributes threshold values,

a simple implementation of a threshold-aware pruning is to

remove the last term that was added to the rule in order

to simplify the rule. The removal process is repeated until

the rule quality decreases when the last term is removed or

the rule has only one term left. Note that, in this procedure,

the continuous attribute threshold values do not have to be

re-calculated, since terms are removed in the reverse order

that they were added to the rule. Also, only one candidate

rule has to be evaluated at each iteration of the pruning

procedure, resulting in a more efficient pruning procedure

when compared to the original one employed by Ant-Miner

and cAnt-Miner.

IV. COMPUTATIONAL RESULTS

The proposed cAnt-Miner extensions were evaluated us-

ing eight publicly available data sets from the UCI Irvine

machine learning repository [8]. We selected data sets that

contain at least one continuous attribute, since our goal is

to evaluate the different proposed variations of cAnt-Miner,

using the original Ant-Miner as a baseline method. We also

include the results for J48 (Weka [9] implementation of

the well-known C4.5 decision tree algorithm [10]) using

the same data sets. We evaluated the proposed cAnt-Miner

extensions individually, and also the combination of both,

generating three variations of cAnt-Miner. Table I summa-

rizes the different classifiers used in our experiments.

TABLE I

SUMMARY OF THE CLASSIFIER METHODS USED IN OUR EXPERIMENTS.

Classifier Description

Ant-Miner original Ant-Miner version

cAnt-Miner original cAnt-Miner version

cAnt-Miner-MDL MDL-based cAnt-Miner

cAnt-Miner2 cAnt-Miner using pheromones on the edges

cAnt-Miner2-MDL MDL-based cAnt-Miner2

J48 Weka’s C4.5 implementation

TABLE II

SUMMARY OF THE DATA SETS USED IN OUR EXPERIMENTS.

Data set Attributes Classes Size
Nominal Continuous Original Discrete

wdbc 0 30 2 569 366

crx 9 6 2 690 639

hepatitis 13 6 2 155 116

glass 0 9 7 213 119

ionosphere 0 34 2 350 292

wine 0 13 3 178 126

australian 8 6 2 690 637

heart 6 7 2 270 232

The experiments were conducted using a 10-fold cross-

validation procedure [9]. For stochastic classifiers, i.e. Ant-

Miner and cAnt-Miner variations, we run the classifier 10

times — using a different random seed to initialise the search

each time — for each cross-validation fold. In the case of

the deterministic J48 classifier, it is run just once for each

cross-validation fold. Since the original version of Ant-Miner

does not cope with continuous attributes directly, the data

sets were discretised in a preprocessing step. For each cross-

validation fold, we separately discretised (using the C4.5-

Disc discretisation method [11]) the training set and the

created discrete intervals were used to discretise the test set.

This separation is necessary because, if we had discretised

the entire dataset before creating the cross-validation folds,

the discretisation method would had access to the test data.

This would have compromised the reliability of the experi-

ments. Moreover, we also removed the duplicated examples

(examples with the same values for all attributes) from the

resulting discrete dataset to avoid the possibility that a test set

contains an example that is the same as a training example.

Table II presents the summary of the data sets used in

our experiments. In Table II, the first column gives the data

set name, the second and third columns give the number

of nominal and continuous attributes respectively, the fourth

column gives the number of classes, the fifth column gives

the number of examples in the original data set and the sixth

column gives the number of examples in the discrete data set

(after the removal of duplicated examples). Recall that only

the original Ant-Miner used the discrete data sets.

Table III shows the predictive accuracy achieved by each

TABLE III

PREDICTIVE ACCURACY (mean ± standard deviation) AFTER THE 10-FOLD CROSS-VALIDATION PROCEDURE.

Data set Ant-Miner cAnt-Miner cAnt-Miner-MDL cAnt-Miner2 cAnt-Miner2-MDL J48

wdbc 90.39 ± 1.42 93.88 ± 0.70 93.30 ± 0.90 93.94 ± 0.62 93.64 ± 0.65 92.63 ± 1.04

crx 83.21 ± 0.91 85.12 ± 0.92 85.11 ± 0.96 85.79 ± 0.97 85.90 ± 0.91 85.29 ± 0.89

hepatitis 70.17 ± 4.76 84.92 ± 4.23 84.74 ± 3.86 84.74 ± 3.38 82.53 ± 3.66 82.15 ± 4.27

glass 48.08 ± 2.22 64.60 ± 2.31 62.85 ± 1.95 66.72 ± 1.88 66.81 ± 2.07 62.49 ± 4.45

ionosphere 88.45 ± 1.79 86.60 ± 1.10 87.17 ± 1.32 86.14 ± 1.31 87.60 ± 1.23 88.57 ± 1.65

wine 83.23 ± 2.06 89.25 ± 1.16 88.73 ± 1.28 92.27 ± 1.10 89.50 ± 1.43 93.30 ± 1.61

australian 83.41 ± 1.09 84.87 ± 1.02 84.51 ± 1.04 84.48 ± 1.12 84.45 ± 1.30 85.07 ± 1.06

heart 74.77 ± 3.16 74.67 ± 2.26 75.67 ± 1.75 76.89 ± 1.92 77.37 ± 2.18 78.15 ± 2.67

classifier on the data sets used in our experiments. Each

entry in the table corresponds to the average value of accu-

racy obtained using the 10-fold cross-validation procedure,

followed by the standard deviation. In addition, an entry is

shown in bold if, for the corresponding data set, the accuracy

obtained by the corresponding classifier was significantly

greater than the accuracy achieved by Ant-Miner for that

data set — according to a two-tailed Student’s t-test with

95% confidence.

The results on Table III show that all variations of cAnt-

Miner are able to obtain significant improvements over Ant-

Miner (the baseline classifier in our experiments) in at least

three out of eight data sets, namely hepatitis, glass and

wine. The use of the MDL-based discretisation isolated was

not effective in the wdbc data set, where cAnt-Miner-MDL

obtained a higher accuracy value that was not statistically

significant over Ant-Miner. The remaining three variations

of cAnt-Miner obtained significant improvements over Ant-

Miner in the wdbc data set. Furthermore, the combination

of both proposed extensions enabled cAnt-Miner2-MDL to

obtain significant improvements over Ant-Miner in the crx

data set. On the other hand, J48 significantly outperformed

Ant-Miner only in two data sets, namely glass and wine.

The results obtained in the experiments can be summa-

rizes as follows. Overall, cAnt-Miner2-MDL is the most

accurate classifier method compared to the baseline Ant-

Miner classifier. In five of eight data sets, cAnt-Miner2-

MDL significantly outperformed Ant-Miner. In the remaining

three data sets, there were no significant differences between

cAnt-Miner2-MDL and Ant-Miner. Although there are no

significant differences between cAnt-Miner variations and

J48, it should be noted that J48 was able to significantly

outperform the baseline Ant-Miner only in two out of eight

data sets.

V. CONCLUSIONS

In this paper, we have presented two new methods con-

cerning the handling of continuous attributes in ACO classi-

fication algorithms. Following the ideas of cAnt-Miner (Ant-

Miner coping with continuous attributes), a new discretisa-

tion procedure based on the MDL principle was incorporated

in the rule construction process, allowing the creation of

discrete intervals using lower and upper bound values (i.e.

vlower ≤ attribute < vupper). Furthermore, it was proposed

to deposit the pheromone on edges instead of vertices of the

construction graph in order to deal with attribute interaction

introduced by the way that the rule construction process

copes with continuous attributes in cAnt-Miner.

We have performed experiments comparing the perfor-

mance of Ant-Miner, cAnt-Miner, three variations of cAnt-

Miner which incorporate the proposed methods, and J48

(Weka’s C4.5 implementation). Using Ant-Miner as a base-

line classifier, all cAnt-Miner variations (including the orig-

inal cAnt-Miner) significantly outperformed Ant-Miner in at

least three out of eight data sets. The incorporation of both

proposed methods into cAnt-Miner, dubbed cAnt-Miner2-

MDL, significantly outperformed Ant-Miner in five out of

eight data sets. There were no significant differences between

cAnt-Miner variations and J48. On the other hand, J48

significantly outperformed Ant-Miner only in two data sets.

As future research direction, it would be interesting to

investigate the performance of different discretisation meth-

ods in the rule construction process. Also, since depositing

pheromone on the edges leads to a modified pruning proce-

dure, evaluating other kinds of pheromone updating strategies

is also a direction worth further exploration.

ACKNOWLEDGEMENTS

The authors acknowledge the financial support from an Eu-

ropean Union’s INTERREG project (Ref. No. 162/025/361).

Fernando Otero also acknowledges further financial support

from the Computing Laboratory, University of Kent.

REFERENCES

[1] U. Fayyad, G. Piatetsky-Shapiro, and P. Smith, “From data mining
to knowledge discovery: an overview,” in Advances in Knowledge

Discovery & Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smith,
and R. Uthurusamy, Eds. MIT Press, 1996, pp. 1–34.

[2] M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, 2004.
[3] F. Otero, A. Freitas, and C.G.Johnson, “cAnt-Miner: an ant colony

classification algorithm to cope with continuous attributes,” in Ant

Colony Optimization and Swarm Intelligence (Proc. ANTS 2008),

LNCS 5217. Springer, 2008, pp. 48–59.

[4] R. Parpinelli, H. Lopes, and A. Freitas, “Data mining with an ant
colony optimization algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 4, pp. 321–332, 2002.

[5] A. Freitas, R. Parpinelli, and H. Lopes, “Ant colony algorithms for
data classification,” To apper in Encyclopedia of Info. Sci. & Tech.
2nd Ed, 2008.

[6] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-
valued attributes for classification learning,” in Thirteenth International

Joint Conference on Artifical Inteligence. Morgan Kaufmann, 1993,
pp. 1022–1027.

[7] D. Martens, M. D. Backer, R. Haesen, J. Vanthienen, M. Snoeck,
and B. Baesens, “Classification with ant colony optimization,” IEEE

Transactions on Evolutionary Computation, vol. 11, no. 5, pp. 651–
665, 2007.

[8] A. Asuncion and D. Newman, “UCI Machine Learning Repository,”
http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[9] H. Witten and E. Frank, Data Mining: Practical Machine Learning

Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.
[10] J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kauf-

mann, 1993.
[11] R. Kohavi and M. Sahami, “Error-based and entropy-based discretiza-

tion of continuous features,” in Proceedings of the 2nd International

Conference Knowledge Discovery and Data Mining. AAAI Press,
1996, pp. 114–119.

