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Abstract—Hierarchical Multi-label Classification (HMC) is
a challenging real-world problem that naturally emerges in
several areas. This work proposes two new algorithms using a
Probabilistic Graphical Model based on Dependency Networks
(DN) to solve the HMC problem of classifying gene functions into
pre-established class hierarchies. DNs are especially attractive for
their capability of using traditional, “out-of-the-shelf”, classifica-
tion algorithms to model the relationship among classes and for
their ability to cope with cyclic dependencies, resulting in greater
flexibility with respect to Bayesian Networks. We tested our two
algorithms: the first is a stand-alone Hierarchical Dependency
Network (HDN) algorithm, and the second is a hybrid between
the HDN and the Predictive Clustering Tree (PCT) algorithm,
a well-known classifier for HMC. Based on our experiments,
the hybrid classifier, using SVMs as base classifiers, obtained
higher predictive accuracy than both the standard PCT algorithm
and the HDN algorithm, considering 22 bioinformatics datasets
and two out of three predictive accuracy measures specific for
hierarchical classification (AU(PRC) and AUPRCw).

I. INTRODUCTION

This work focuses on the Hierarchical Multi-label Classifi-
cation (HMC) problem, a type of supervised learning task that
naturally emerges in several real-world problems. The HMC
problem consists of learning a classification model given a
pre-defined class taxonomy [16] and instances annotated with
classes from that taxonomy [4]. There are notoriously success-
ful applications of this technique: in document classification,
where it is intuitive to annotate instances in topics that are
organized hierarchically; in image classification, where classes
are commonly organized into trees; and in bioinformatics, the
focus of this work, where functions of genes and proteins are
commonly organized into Directed Acyclic Graphs (DAGs) or
trees.

Although using traditional (flat) classifiers for hierarchical
classification is possible, the literature in the area consistently
shows that algorithms specifically designed for HMC outper-
form the naive approach of treating the problem as a flat
multi-label classification problem [16], justifying the effort of
developing new algorithms for hierarchical classification.

In this work we shall adopt the definition of class taxonomy
of [16], which is in turn based on the definition of [20]:

A class taxonomy is a relationship defined over a partially
ordered set (C,≺) where C enumerates all classes under con-
sideration and ≺ represents the “Is-A” relationship. Intuitively,
the relationship must be rooted, asymmetric, anti-reflexive and
transitive, formally defined as:

Rooted condition: ∃ root ∈ C | ∀ ci ∈ C, (ci 6= root) →
(ci ≺ root),
Asymmetric condition: ∀ ci, cj ∈ C, (ci ≺ cj)→ (cj ⊀ ci),
Ant-reflexive condition: ∀ ci ∈ C, (ci ⊀ ci),
Transitive condition: ∀ ci, cj , ck ∈ C, (ci ≺ cj), (cj ≺ ck) →
(ci ≺ ck).

Note that there are some class hierarchies that are not
described as “Is-A” relationships but satisfy the previous
definition, therefore they are still on the scope of this work.
The “Part-Of” relationship of the Gene Ontology (GO) [11] is
an example of such relationship.

Generally speaking, the previously defined class hierarchy
may be represented graphically as a Directed Acyclic Graph
(DAG), although trees are sufficient in some domains. Whether
the class hierarchy is a tree or a DAG affects the difficulty of
the HMC problem, tree-structured hierarchies are usually more
easily tractable by algorithms than DAG-structured hierarchies.

There are two other variants of the HMC problem that
affect its difficulty: the first is whether an instance may be
assigned class labels from the root only up to a non-leaf
node (Non-Mandatory Leaf Node Prediction). This possibil-
ity increases the difficulty of the classification task because
the classification model must support the possibility of not
classifying an instance further down in its class hierarchy.

The second variant is whether or not an instance may
have multiple classes in different paths of the class hierarchy
(Multiple Paths of Labels). This variation also increases the
difficulty of the classification task.

In this work we deal with the most complex type of
hierarchical classification problem, namely, DAG-structured
class hierarchies, Non-Mandatory Leaf Prediction and Multiple
Paths of Labels.

Turning to bioinformatics, nowadays, in the post-genomic
era, the cost of extracting genomic and proteomic data from or-
ganisms has decreased many-fold, to the extent that researchers
now have free access to vast public collections of biological
data. Generally speaking, these datasets comprise the sequence
information (amino-acids, base-pairs, and other secondary
information extracted from gene or protein sequences) and
possibly a classification of the biological processes that gene
or protein is involved in a curated hierarchical ontology. An
example of such ontology is the Gene Ontology [11] and
an example of a protein database is the Universal Protein
Resource [12].

To make full use of this ever-increasing flow of complex



information to help us understand several biological processes,
data mining techniques are required more than ever to assist
biologists. Inferences made by data-mining algorithms can be
used as a starting point to select the most promising “wet-
lab” experiments to be performed, which are much more time-
consuming and expensive than their computational counter-
parts.

In this work, we propose two new algorithms, a stand-
alone Hierarchical Dependency Network algorithm (HDN) and
a hybrid Hierarchical Dependency Network / Predictive Clus-
tering Tree (HDN-PCT) algorithm to classify gene functions
using class labels organized hierarchically. We evaluate our
new algorithms in 22 hierarchical classification datasets to test
whether it has better predictive performance than the stand-
alone PCT algorithm.

This work is organized as follows: in Section II we present
related works related to DNs and hierarchical classification.
In Section III we introduce our first contribution: the HDN
classifier, followed in Section IV by the second contribution,
the hybrid HDN-PCT algorithm. In Section V we show the
results of our experimental evaluation. Lastly, in Section VI
we conclude our work.

II. BACKGROUND AND RELATED WORK ON
DEPENDENCY NETWORKS (DNS)

DNs are a relatively under-explored type of Probabilistic
Graphical Model (PGM) compared to other PGMs. DNs were
first described in [9]. Like in Bayesian Networks (BN), each
node in a DN must encode a probability distribution function
conditioned on the values of its parents. In BNs, these prob-
ability distributions are usually encoded by simple probability
tables inferred from the training data.

DNs differ from BNs by allowing more generic probability
distribution functions and cycles in the graphical representa-
tion. However, consistent inference in DNs has prohibitive
running time [9]. In fact, consistent DNs are equivalent to
another type of PGM, namely, Markov Networks, sharing
the same time complexity for inference (inference in consis-
tent DNs and Markov Networks are both NP-complete). To
overcome this computational limitation, Heckerman et al. [9]
proposed the use of general Dependency Networks (which we
call simply DNs from now on). These networks are bounded
approximations for consistent DNs that have efficient structure
learning (by using feature selection techniques) and inference
algorithms (by using Gibbs sampling).

DNs were used in several non-traditional classification
problems: Toutanova and Klein [18] used DNs for Part-of-
Speech tagging. The authors claimed that the DN’s ability
of representing cyclic dependencies contributed to the good
performance of their algorithm in relation to the state of the
art. The work of Tian et al. [17] explored DNs in the field of
link-based classification of documents, which can be defined as
the propagation of belief among linked objects, reporting that
the use of DNs increased the predictive performance of their
algorithm compared to a baseline approach. Neville and Jensen
[13] have used DNs in the task of collective classification,
which may be defined as the collective prediction of correlated
instances into a set of classes, and reported gains in predictive
performance.

Regarding more traditional classification problems, Gámez
et al. [5] have used a DN in the task of multi-class classifi-
cation. The authors used a DN with a Naive Bayes classifier
to learn the conditional class probabilities and a χ2 statistical
test to estimate the Markov blanket of each variable xi (the
smallest set of random variables that make xi independent
from other variables) of each node. In a subsequent work
[6], the authors enhanced their approach by using a special-
ized DN to predict each class; additionally they proposed a
mechanism to improve the time-complexity and confidence
on the determination of the Markov blanket of each class
label. It is important to note that although Gamez et al. use
DNs for classification, they do not use Gibbs sampling for
inference; this is not necessary since they are in the (flat)
multi-class, single-label scenario and do not need to consider
relations between multiple classes occurring at the same time.
The authors also reported that the flexibility of DNs was
responsible for improving the performance of their algorithm
in relation to baseline approaches.

More recently, Guo and Gu [8] proposed a method for flat
multi-label classification using DNs, in their case Gibbs sam-
pling was necessary to model the relations between predictive
labels. The authors reported superior performance compared
to several baseline multi-label classifiers.

As far as we know there is no work exploring DNs in the
Hierarchical Multi-label Classification setting, like proposed
in this paper.

III. THE NEW HIERARCHICAL DEPENDENCY NETWORK
METHOD (HDN)

A DN is a type of Probabilistic Graphical Model that has
not been receiving as much attention in the data-mining field
as other types of PGMs such as BNs (and its variants) and
Markov networks. As discussed in Section II, there are some
works exploring the use of DNs in binary and flat multi-label
classification [6, 8]; however, as far as we know, there are no
attempts of using DNs in hierarchical classification.

Like in BNs, variables in DNs are represented as nodes in
a graph. However, DNs differ from BNs by the fact that, in a
DN, edges exist between nodes if and only if they are in each
other’s Markov blankets, and the graph may contain cycles.
The Markov blanket of a random variable yk is the smallest
set containing the variables that make yk independent from all
other variables. In other words, given a node in a DN, if we
know the actual values of the nodes in its Markov blanket, our
beliefs about that node will not change if we know the value
of some other node outside the Markov blanket.

In BNs, the Markov blanket of a node is the set containing
its children, parents and parents of the children, that is, the
Markov blanket of a node is not explicitly represented by the
graphical structure [9]. Instead, edges represent (potentially)
causal relationships between variables. For this reason, some
relationships are not explicitly represented in the graph struc-
ture of BNs; therefore people must be trained to interpret the
graphical representation correctly [9]. Figure 1 exemplifies the
representation of the same relationships in a BN and in a DN.
An untrained person would look at the BN in the left and
wonder why there is no edge from “Maximum Speed” to “Tire
Condition”, since knowing the speed of the car clearly affects



our beliefs about the condition of the tires. This confusion
is avoided in DNs by explicitly representing the relationships
between nodes that are directly correlated.

DNs for classification can be thought of as a collection of
probability functions specialized in predicting whether or not
an instance belongs to a class given its predictive attributes
and the predictions of the classes in its Markov blanket.
More formally, given the set of binary random variables
c = {c1, . . . , cn} representing the classes, and the vector
x ∈ Rm, representing the predictive features, a DN is a
directed graph G = (V,E), with a probability distribution
P (ci|pai,x) associated with each node vi ∈ V , where pai
is the set of parents of vi, representing the Markov blanket of
ci; and E is the set of directed edges.

In the hierarchical classification task, each node in a DN
encodes probabilities functions in the form P (ci|x, c−i), where
ci is a class in the class hierarchy, x is the predictive feature
vector and c−i is the set of predictions of the classes in
the Markov blanket of ci. DNs are specially attractive for
hierarchical classification for two reasons. First, traditional
flat classifiers can be trained independently to determine both
the structure of the network (by using feature selection or a
classifier that selects a subset of features) and the estimation of
P (ci|x, c−i) for each class ci, we call those classifiers “base
classifiers”. Second, if we relax the requirements for exact
inference, there is a simple, yet effective, algorithm, Gibbs
sampling, that is capable of producing approximate inference
in reasonable running times. This is particularly important
for Hierarchical Classification because of the large number
(thousands) of classes in real-world problems, such as gene
function prediction.

We assume that the set of classes containing the siblings
and the parents of the children of the class ci in the class hier-
archy is a good candidate for c−i, part of the Markov blanket
of ci, because they encode important relationships about the
classes that are not deterministic. Initial experimentation also
included the classification of the parents and the children of
the class ci as part of the Markov blanket of ci, however, it
was observed that the classifiers did not cope well with such
deterministic parent-child relationships, defined by the “Is-A”
class hierarchy. That is, if an instance is labeled with any of
the child classes of ci, by definition of the “Is-A” hierarchy
(see Introduction), the instance must be labeled with class ci
as well. Similarly, if the instance is not labeled with any of
the parent classes of ci, by definition, it cannot have the class
label ci. It turned out that these deterministic features misled
the classifiers, biasing them to over-fit their predictions to these
deterministic features.

This kind of over-fitting occurred because, although deter-
ministic parent-child relationships are very useful for achieving
a good classification accuracy in the training set (where both
the parent class(es) and the child class(es) of a given current
class ci are known); such parent-child relationships are less
useful in the test set, where the parent class(es) and child
class(es) of ci are unknown and have to be estimated by Gibbs
samping (described later).

The use of the siblings and parents of the children of class
ci as extended features exploits background knowledge (struc-
ture of the class hierarchy) defined by expert biologists and

avoids the computationally expensive search for the Markov
blanket of each node. However, note that the conditional
probability P (ci|x, c−i) assumes that every class in c−i and
every predictive feature in x is in the Markov blanket of ci.
However, there may be noisy predictive features or classes in
c−i that are not good predictors for ci. This may misguide
a classifier for ci and clutter the PGM. For this reason, we
reduce the size of the Markov blanket of ci by applying a
feature selection filter on x and c−i (treating them as a single,
extended predictive vector), generating a new filtered extended
predictive feature vector x+. This is detailed next.

1) Training Phase: The training phase of our HDN is very
similar to the training phase of binary classifiers, with the
exception that we extend the predictive feature vector x of
each instance to contain the class labels of the current class
node’s candidate Markov blanket. That is, for each class label
ci, we first use a simple feature selection method to produce
the filtered extended predictive feature vector x+, as described
earlier. More precisely, we use a statistical F-test [10] to select
relevant features for each class ci. We select the top n feats
features in the ranking of features produced by the F-test,
where n feats is a parameter of the F-test feature selection
method. Next, we train a binary classifier Fi with the feature
vector x+, which contain both selected features and selected
actual class labels of the nodes in the Markov blanket of class
ci, considering the given class taxonomy. We expect that the
classifiers use the extended information to learn dependencies
between class labels and predictive features. We could use
a different set of classes in our Markov blanket, e.g., using
a statistical test to find a relationship between classes that
is not explicitly encoded in the class hierarchy. We leave
this possibility open for future work. In this work we have
experimented with classification models capable of outputting
probabilistic classification for all class labels of the instances,
namely, Gaussian Naive Bayes (GBN), Naive Bayes (NB),
SVM (with RBF kernel) and C4.5 decision tree. We have
tried both NB and GNB classifiers because the NB classifier
requires a discretization of the data set (as the majority of
features are continuous) that may affect the predictive results,
and GBN avoids the need for such discretization. Hence, it is
worth trying both these versions of Naive Bayes.

When training the classifier for each class node ci, we use
as positive classes all instances that have the class label ci
in their classification paths (all paths in the class taxonomy
graph from the root node to the most specific classifications
of the instances) and as negative classes all the other instances.
Furthermore, we only train a classification algorithm for a
particular class node if there are at least min inst instances
in the least represented class (i.e., positive or negative class),
in order to mitigate the problem of overfitting. If a classifier
is not trained for a class node, we output the a-priori class
probability distribution for that class node, regardless of the
filtered extended predictive feature vector x+.

2) Gibbs Sampling for Approximate Inference: Once we
trained our binary classifiers to estimate the probabilities
P (ci|x, c−i), – which are estimated by using the filtered
extended feature vector x+, i.e. computing P (ci|x+) – we
already have a fully-parameterized HDN where each class node
has edges connecting it to selected features and selected predic-
tive classes. The next step is to use our HDN algorithm to pre-
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Fig. 1. Representing the same probabilistic relations with BNs (left) and DNs (right)

dict a class vector c given the predictive features x+. In other
words, we wish to calculate the maximum a-posteriori (MAP)
for our predictive feature vector: c∗ = argmaxc P (c|x+).

Because solving this problem exactly is NP-hard [8], we
use the Gibbs sampling algorithm adapted to our problem
(presented in Algorithm 1) to do inference in our DN. The
Gibbs sampling algorithm [7] is a Metropolis-Hastings algo-
rithm that is both very suitable for inference in DNs and has
a simple and efficient implementation [8]. After some burn-in
iterations, this algorithm converges to a stationary distribution
that approximates the underlying probability distribution.

Algorithm 1 Hierarchical classification with Gibbs sampling
algorithm.

1: procedure MODIFIED GIBBS SAMPLING(Instance x,
Number of total iterations it, Number of burn-in iterations
burn)

2: Initialize class label vector of x randomly using the
a-priori class distribution.

3: for k ∈ {1..it} do
4: for all ci ∈ the Class Taxonomy do
5: c−i ← ExtendedFeatures(ci)
6: x+ ← ApplyFeatSeli(x, c−i)
7: P (ci|c−i,x)← Fi(x

+)
8: u← Random value draw from a uniform

distribution in [0, 1].
9: if u < P (ci|c−i,x) then ci ← 1 else ci ← 0

end if
10: if it > burn then
11: P (ci|x)← P (ci|x)×(it−1)+P (ci|c−i,x)

it
12: end if
13: end for
14: end for
15: return the marginal probabilities P (ci|x)
16: end procedure

The algorithm begins by randomly initializing the class
vector of the instance whose classes will be predicted (line
2). Next, the algorithm visits the nodes of the graph structure
using some ordering (line 4). We have explored three ordering
possibilities: bottom-up (BU) (start by visiting the leaves of the
hierarchy, recursing to its parents, in a breadth-first manner),
top-down (TD) (start by visiting the root node and recursing
to its children in a breadth-first manner) and random order.

In line 5, the function ExtendedFeatures(ci) returns the
class labels that are candidate to be in the Markov blanket
of ci (i.e., the siblings of ci and the parents of the chil-
dren of ci in the class hierarchy). In line 6, the function
ApplyFeatSeli(x, c−i) filters the predictive features and candi-

date class labels using the previously mentioned statistical F-
test for the i-th class, returning the filtered extended vector x+.
Next, the algorithm retrieves the probabilistic classification of
the current node ci given the current class labels of its Markov
blanket and its predictive feature vector (line 7). Finally, the
algorithm employs a stochastic rule to update the current
classification of the input instance (line 9). There are many
ways to estimate the MAP of the predictive classes; we have
used the typical way of computing the marginal probability for
each class variable and making the final prediction [8].

Our Gibbs sampling algorithm was slightly modified to
return the mean probabilities associated with each class (line
11). The more common approach would be to return the most
common label for each class [15] (in our case the positive or
negative label). We employ an iterative approach to calculate
the mean probabilities after the burn-in phase, so there is no
need to store all class-wise probabilities estimations.

As we will compare our methods to a probabilistic classifier
(the Clus-HMC classifier), we modified the Gibbs algorithm
in order to obtain a probabilistic decision for each class at the
end of the sampling procedure.

We call the previously described training procedure and
inference algorithm as the Hierarchical Dependency Network
(HDN) algorithm.

IV. THE HYBRID HDN-PCT ALGORITHM

Besides investigating the HDN algorithm by itself, we also
exploit the power of the PCT framework. An algorithm in this
framework builds a decision tree by finding a predictive feature
that splits the set of instances in two clusters, maximizing the
similarity of classes within each cluster and the dissimilarity
of the classes across the two clusters. In order for the split
to be accepted, the class distribution of the instances across
the two clusters must be statistically different according to the
F-test. The algorithm recurses in each cluster that it forms and
eventually stops if it finds no statistically significant split or
the size of a cluster falls bellow a pre-established threshold.

In the prediction phase, to classify an instance x, a PCT
algorithm first identifies the cluster associated with that in-
stance and then assigns, to instance x, classes whose value in
the mean probability vector of that cluster is greater than a
probability threshold. The threshold is varied when computing
a Precision-Recall curve, as explained later.

We shall use the most well-known implementation of PCTs
for hierarchical classification, the Clus-HMC algorithm [19].
The Clus-HMC obtained good predictive accuracy in relation
to other PCT algorithms.



We apply our HDN algorithm in each cluster produced by
the Clus-HMC algorithm (that we shall call simply PCT from
now on), and we name the combination of both algorithms
as the HDN-PCT algorithm. This combination introduces
another parameter, min inst HDN , the minimum number
of instances required in each cluster to train our dependency
network. If the number of instances in a cluster is below that
minimum, the classification of instances associated with that
cluster is performed by the PCT algorithm.

In addition to the min inst HDN parameter, we adopt
the following strategy when using our HDN-PCT algorithm:
after the training phase we analyse which classifiers had better
overall classification accuracy on the validation set (which
is different from the test set used to evaluate the classifier’s
predictive accuracy) in comparison with clusters formed by
the baseline PCT algorithm. If the classification accuracy of
the HDN for a PCT cluster is higher than the classification
accuracy of PCT for that cluster, we analyse each class ci in
that cluster and calculate the mean loss Li, defined as:

Li ≡
∑

j ((1i,j)− pi,j)2

ni
, (1)

where 1i,j is an indicator function defined as:

1i,j ≡
{
1 if instance j has ci as a true class,
0 otherwise.

(2)

pij is the estimated probability of the j-th instance belonging
to the i-th class and ni is the number of instances of the i-th
class.

Considering this loss function, the predictions of the HDN-
PCT algorithm and the PCT algorithm in the validation set are
compared to the real classification. Then, we discard the binary
classifiers with greater loss than the loss achieved by the stand-
alone PCT algorithm for a particular class and use the output
of the PCT classifier instead for predicting that class.

Notice that it is not possible to calculate ranking-based
quality measures for the individual classifiers (for instance
ROCAUC or PRAUC) in a given cluster formed by the PCT
algorithm, because the probabilities assigned to all instances
are always the same, which yields an arbitrary instance ranking
in respect to the probability of an instance belonging to a given
class. This justifies the use of the loss function defined by
Equation (1).

V. EXPERIMENTAL EVALUATION

A. Datasets

To measure the predictive accuracy of the HDN and
the HDN-PCT algorithms, we used 22 of the 24 datasets
made available by [19]. We discarded the datasets pheno GO
and pheno FUN, since they contain many (more than 50%)
missing values, and adding them would require a non-trivial
adaptation of the base classification algorithms that we used for
the HDN, specially the SVM classifier. The datasets are pre-
divided by their creators into training, validation and testing
sets; we maintain the same division in our work. We did not
employ the more tradition cross-validation procedure because
of the relatively large number of instances and to maintain the
consistence with the works that use the same datasets.

TABLE I. NUMBER OF INSTANCES, PREDICTIVE FEATURES AND
CLASSES IN THE DATASETS USED IN THIS WORK.

Predictive
Features

Number of
Instances

Number of
Features

Number of
Funcat
Classes

Number of
GO classes

seq 3932 478 476 3704
cellcycle 3766 77 476 3695
church 3764 27 476 3696
derisi 3733 63 476 3691
eisen 2425 79 447 3176
gasch1 3773 173 476 3698
gasch2 3788 52 476 3698
spo 3711 80 476 3691
expr 3788 551 476 3698
struc 3851 19628 476 3703
hom 3867 47034 476 3695

These datasets contain features extracted from the genes
of the widely used model organism Saccharomyces cerevisiae
(yeast). The first part of the name of the dataset indicates the
type of predictive feature used. There are two types of features:
1) statistics extracted from the amino acid sequences (seq
features) and 2) several types of microarray expression data
(all the other features). The second part of the name indicates
the type of class hierarchy used: “FUN” for the tree-structured
hierarchy in the FunCat scheme [14] and “GO” for the DAG-
structured Gene Ontology [11]. Table I presents statistics of
the used datasets.

B. Predictive Accuracy Estimation

As a baseline algorithm, we use the Clus-HMC version of
the Predictive Clustering Tree (PCT) method for hierarchical
classification, discussed earlier. Our algorithms (HDN and
HDN-PCT) and the baseline output the probabilities of an in-
stance belonging to each class, instead of a crisp classification.
Hence, to estimate the predictive performance, we transform
the class probabilities into crisp classifications by predicting
classes whose probability is greater than a certain threshold -
that is, a given class is assigned to the current test instance if
and only if the output probability for that class is greater than
the used threshold.

In order to avoid the subjective choice of a threshold, in
binary classification, it is common to calculate the Area Under
the Precision Recall Curve (AUPRC). In the case of highly
skewed class distributions (as is typically the case of hierar-
chical classification problems), the AUPRC is more appropriate
than the more popular Area Under the Receiver Operating
Characteristic Curve (AUROC) because the AUROC measure
over-rewards classifying negative instances as negative [2], not
recognizing that correctly classifying a rare positive instance
in the highly negatively-skewed scenario should be more
important than correctly classifying the more common negative
instances.

Precision (P) and Recall (R) are common mea-
sures used in binary classification problems, defined as:
P ≡ TP

TP+FP , and R ≡ TP
TP+FN .

Where TP (True Positives) is the number of correctly
positively classified instances, FP (False Positives) is the
number of instances classified as positive that are not positive,
FN (False Negatives) is the number of positive instances
that were not classified as positive and “≡” means “equal by
definition”.



These two measures represent conflicting optimizing goals.
E.g., one can obtain a high precision (but a low recall)
by classifying as positive only instances that have a high
probability of belonging to the positive class; conversely, one
can obtain a high recall (and a low precision) by classifying
all instances as positive.

Given a binary classifier with probabilistic outputs, it is
possible to construct a PR curve (a plot of the classifier’s
precision as a function of its recall) by thresholding the output
(class probability) of the classifier using values in the interval
[0, 1]. Each threshold is associated with a value of precision
and recall, corresponding to a point in the PR space. To obtain
a single performance measure from the curve, we calculate its
area using a trapezoidal approximation [1]. A classifier that
perfectly ranks all negative instances before the positive ones
– where the ranking is by increasing order of probability of
being positive – would have a AUPRC of 1.0.

There is no obvious way to adapt this measure to the
hierarchical classification scenario, therefore we follow the
suggestions of [19] and use three alternatives: the Area Under
the Average Precision-Recall Curve (AU(PRC)), the average
Area Under the Precision Recall Curve (AUPRC) and the
weighted Average Area Under the Precision Recall Curve
(AUPRCw).

To calculate the AU(PRC), we use the hierarchical ver-
sions of precision and recall for a fixed threshold, defined as:

hP ≡
∑

j |Pj∩Tj |∑
j |Pj | and hR ≡

∑
j |Pj∩Tj |∑

j |Tj | .

Where Pj is the set of predicted classes of the j-th instance
and Tj is the set of true classes of the j-th instance.

To calculate the AUPRC measure we simply average
all the class-wise AUPRC performances. Similarly, to cal-
culate the AUPRCw, we calculate the AUPRC of each
class independently and combine the individual performance
measures by calculating an average over all classes weighted
by the number of instances that belongs to each class, that
is, AUPRCw ≡

∑
i AUPRCi×Si∑

i Si
; where Si is the number of

instances in the i-th class.

C. Training Procedure

The training procedure of the HDN algorithm consists in
inducing a classifier for each node of the class hierarchy that
has more than min inst instances in the least represented
class (positive or negative). For our experiments, min inst
was fixed in the value 30 for all datasets and evaluation
measures. The selected ordering for visiting classes was the
“random” order. The number of Gibbs sampling iterations, it,
was set to 40. We perform feature selection for each induced
classifier by using the 30 highest scored features, according to
a F-Test. Finally, we experimented using the Support Vector
Machine (SVM), C4.5, Gaussian Naive Bayes and Naive Bayes
classifiers, and decided to use the SVM classifier, because it
obtained higher classification accuracy. These parameters were
determined by exploratory experimentation, observing the clas-
sification accuracy in the validation set (without accessing the
test set).

Considering the HDN-PCT classifier, in addition to the
previously mentioned parameters, the algorithm requires that

TABLE II. CHOSEN PARAMETER VALUES (2ND COLUMN), SET OF
EXPLORED PARAMETER VALUES (3RD COLUMN). TD AND BU MEAN,

RESPECTIVELY, TOP-DOWN AND BOTTOM-UP

Minimum number of instances in the least repre-
sented class to train a classifier (min inst)

30 10, 20, 30, 50, 70,
80

Order to visit class nodes random random, TD, BU
Gibbs Sampling Iterations (it) 40 40, 50, 60, 70, 80,

90
Number of Selected Features (n feats) 30 5, 15, 25, 30, 35,

45, 55, 65, 75
Base Classifier SVM SVM, C4.5,

GNB, NB
Minimum number of instances in a PCT cluster to
train the HDN (min inst HDN )

30 10, 20, 30, 50, 80

we first construct a PCT that will be used as our default
classifier. The PCT divides the dataset into clusters that will
be further analysed by the Hierarchical Dependency Network
method in our HDN-PCT algorithm.

The PCT algorithm requires the determination of the pa-
rameter s, that regulates how significant a split must be in
order to be accepted by the F-test. Following [19], we have
used the best s value that they reported (on the validation set)
for each dataset and evaluation measure. We train the final
PCT for each dataset and each AUPRC evaluation measure
by joining the training and validation sets. We use each of the
resulting models as both our baseline hierarchical classification
model and the default model for the HDN-PCT algorithm.

The hybrid HDN-PCT classifier requires one additional
parameter in relation to the HDN classifier: the parameter
min inst HDN , which is minimum number of instances
necessary in a cluster in order for a HDN to be trained.
Similarly to the min inst parameter of the HDN classifier,
this value was set to 30 across all datasets and evaluation
measures.

The range of values that we considered in our exploratory
experimentation and the chosen value for each parameter,
which was the parameter value leading to highest accuracy
on the validation set (without accessing the test set) is given
in Table II. These parameter values were used for both HDN
and the hybrid HDN-PCT.

D. Results

In Table III we present the predictive performances of the
algorithms in the testing set considering the three AUPRC
measures. Underlined numbers represent the largest (and best)
value of a given a measure.

To compare the performance of the proposed algorithms
against the baseline PCT algorithm, we use the Wilcoxon
Signed-Rank statistical test with the Holm’s step down pro-
cedure [3], to correct for multiple comparisons.

Considering the measure AU(PRC), the HDN-PCT clas-
sifier is statistically significantly better in relation to the PCT
baseline (p = 0.011), no significant difference was detect
among the HDN-PCT algorithm and the HDN, nor among the
HDN algorithm and the baseline PCT.

Concerning the measure AUPRCw, we conclude that
the HDN-PCT algorithm is statistically better than the PCT
algorithm (p = 0.024). No other significant difference was



TABLE III. TESTING PHASE RESULTS. UNDERLINED NUMBERS REPRESENT THE LARGEST VALUES FOR A GIVEN MEASURE.

AU(PRC) AUPRCw AUPRC
Dataset PCT HDN-PCT HDN PCT HDN-PCT HDN PCT HDN-PCT HDN

seq GO 0.47611 0.47828 0.45157 0.35456 0.35459 0.36335 0.02331 0.02331 0.02312
cellcycle GO 0.44426 0.44445 0.42362 0.32008 0.32079 0.33223 0.01681 0.01685 0.01800
church GO 0.44343 0.44321 0.41092 0.30945 0.30955 0.29989 0.01514 0.01515 0.01411
derisi GO 0.44890 0.44836 0.41325 0.31541 0.31389 0.30500 0.01649 0.01648 0.01506
eisen GO 0.46124 0.45986 0.45411 0.34562 0.34587 0.36056 0.02610 0.02609 0.02376
gasch1 GO 0.45404 0.45493 0.43925 0.33811 0.34162 0.34784 0.02134 0.02133 0.02016
gasch2 GO 0.45105 0.45010 0.42770 0.33021 0.33030 0.33807 0.01821 0.01823 0.01847
spo GO 0.44972 0.44856 0.41296 0.31779 0.31788 0.31266 0.01857 0.01858 0.01586
expr GO 0.44963 0.45017 0.43961 0.33707 0.33984 0.34805 0.01948 0.01949 0.02016
struc GO 0.45294 0.46285 0.40959 0.32088 0.32082 0.30795 0.01996 0.01996 0.01488
hom GO 0.48655 0.48653 0.43445 0.36659 0.36638 0.33579 0.03267 0.03266 0.02063

seq FUN 0.21498 0.23060 0.25613 0.16853 0.16853 0.20543 0.04180 0.04180 0.04678
cellcycle FUN 0.17402 0.18057 0.21427 0.13628 0.14013 0.17475 0.02924 0.02957 0.03816
church FUN 0.17309 0.17088 0.16877 0.11832 0.12275 0.12748 0.02394 0.02460 0.02570
derisi FUN 0.18019 0.18585 0.18169 0.13167 0.13191 0.13908 0.02874 0.02873 0.02923
eisen FUN 0.20113 0.20879 0.25067 0.14971 0.15109 0.19911 0.03704 0.03718 0.04747
gasch1 FUN 0.20615 0.22667 0.23661 0.16359 0.16386 0.19359 0.03752 0.03756 0.04435
gasch2 FUN 0.19256 0.19607 0.22100 0.14129 0.14130 0.17515 0.02947 0.02948 0.03976
spo FUN 0.19043 0.19723 0.19010 0.14680 0.14942 0.15171 0.03110 0.03141 0.03117
expr FUN 0.20891 0.22479 0.23556 0.16011 0.16079 0.19751 0.03681 0.03693 0.04525
struc FUN 0.18430 0.19350 0.18025 0.15500 0.15491 0.13783 0.03106 0.03106 0.02713
hom FUN 0.25841 0.25890 0.20708 0.22165 0.22183 0.17484 0.05930 0.05930 0.03826

detected according ot this measure, nor according to the
AU(PRC) measure.

VI. CONCLUSION AND FUTURE WORK

We proposed a new and effective method for combining
the power of the PCT decision tree algorithm, which has
been shown to be an algorithm with good predictive per-
formance that produces interpretable models for hierarchical
classification of gene functions, with the flexibility of the
HDN classifier, which uses “out-of-the-shelf” classification
algorithms to refine the classifications made by the PCT
algorithm, improving the overall predictive performance.

We concluded from the experiments that the proposed
hybrid HDN-PCT algorithm obtained statistically significantly
higher predictive accuracies (p-value < 0.025) than the base-
line PCT algorithm according to two out of three measures,
namely AU(PRC) and AUPRCw; and there was no signifi-
cant difference according to the third measure. Such predictive
performance improvement is relevant to the area of hierarchical
classification of gene functions, since there is a large number
of genes, from many organisms, whose functions are still
unknown.

As future work we plan to use a more sophisticated feature
selection algorithm to select the Markov blanket of each
class node. Also, to minimize over-fitting, we will investigate
features selection techniques for the base classifiers, specially
wrapper techniques that should select a more effective set of
features to reduce the over-fitting problem. Another possibility
is to use other algorithms as base classifiers and even use a
mixture of classifiers in the same dependency network.

Another important future aspects of this research are to
investigate the best way to visualize the generated classi-
fication models, choose base classifiers that allow for easy
interpretability, maintaining good predictive performance and
evaluate the run-time of different types of base algorithms and
contrast them with the PCT algorithm.
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