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Abstract

Thiswork aims at discovering classficaion rules for diagnosing certain pathologies. These rules
are cagable of discriminating among 12 dfferent pathologies, whose main symptom is chest
pain. In order to discover these rules we have used genetic programming as well as me
concepts of data mining, with emphasis on the discovery of comprehensible knowledge. The
fitnessfunction used combines a measure of rule cmprehensibility with two usual indicators in
medicd domain: sensitivity and spedficity. Results regarding the predictive acaracy of the
discovered rule set as a whole and the predictive acairacy of individual rules are presented and
compared to other approades.

INTRODUCTION

To classfy and diagnose some pathology, one must verify which predicting attributes are most
asociated with that disease. In this work there ae 165 pedicting attributes and 12 dfferent
diseases (clases) whose main charaderistic is the diest pain. The predicting attributes refer not
only to the dharaderistics of the dhest pain reported by the patient, but also to other symptoms,
signals observed by the physician, details of clinicd history and results of laboratory tests. The
diseases are: stable angina, unstable angina, aaute myocadial infarction, aortic dissedion,
cadiac tamponade, pumonary embolism, pneumothorax, aaute pericarditis, peptic ulcer,
esophaged pain, musculoskeletal disorders, psychogenic dhest pain. The goal isto predict which
of those diseases a patient has, given the values of the 165 predicting attributes for the patient.
Chest pain is a symptom related to several diseases of cardiovascular, pulmonary,
esophaged, psychogenic and other origins. According to the World Hedth Organizaion, only
cadiovascular diseases represent about 25 % of deah rates in the whole world, espeaally in
developed countries. A fast and effedive evaluation of chest pain, espeaaly in the eamergency
room, is a aitic problem daily faced by clinicians. The main problem is a prompt discrimination
among dseases that could involve life threaening from other less grious pathologies. Clinicians
have to diagnose running against time, sometimes under presaure and using little available
information. Under this stuation, an acairate diagnosis may be fairly difficult. Furthermore, the
clinician has to consider fadors like: large variability of symptoms and signals, large number of
possble diagnostics, little correlation between pain location and its origin, etc. To cope with this
diagnostic problem, a number of intelli gent systems based on different paradigms were proposed
- see for instance [1,14,16]. Most of these goproadhes were mncerned with diagnosis, but not



with comprehensibility of the knowledge that has led to it. Notwithstanding, the availability of a
clinicd database of chest pain patients has permitted the development of the arrent work,
whose am is to discover high-level, comprehensible knowledge aout the diagnosis of chest
pain. Therefore, our work follows the spirit of the relatively recent area of data mining and
knowledge discovery, where the goal is to discover knowledge that not only has a high
predictive acaracy but also is comprehensible to users [5,7]. Therefore, the user can understand
the system’'s results and combine them with his/her knowledge to make a well-informed
deasion, rather than Windly trusting the incomprehensible output of a “bladk box” system.

This work addresses the @ove dassficaion problem in the context of data mining. In
this context the discovered knowledge is often expressed as IF-THEN prediction (classfication)
rules. The IF part of the rule mntains a logicd combination of conditions on the values of
predicting attributes, whereas the THEN part contains the predicted pathology (clasg for a
patient whose dinicd attributes stisfy the IF part of the rule.

The use of genetic programming (GP) for discovering comprehensible dassfication
rules, in the spirit of data mining, is a relatively underexplored area We believe this is a
promising approad, due to the dfedivenessof GP in seaching very large spaces [12,13] and
its ability to perform an open-ended, autonomous sach for logicd combinations of predicting
attribute values.

This paper is organized as follows:. the next two sedions am to give some badkground
to the reader about fundamentals of data mining techniques and the genetic programming
paradigm. Next, the proposed system for knowledge discovery using genetic programming is
presented in detail. Further, computational results are shown using the system with a medicd
data base of patients with chest pain. Findly, in the last sedion results are discussed and
conclusions presented.

AN OVERVIEW OF DATA MINING

In esence the goal of data mining is to discover knowledge from red-world data sets. While
there is no universally accepted definition of knowledge, we can mention some properties that
the discovered knowledge should have, as follows.

First, the discovered knowledge should be acarate. This refers to the aility of the
discovered knowledge in acarately predicting the values of some atribute(s) - or fedure(s) -
for data that was not seen during the run of the data mining algorithm. This is also cdled the
generdizaion performance of the discovered knowledge. Several ways of measuring
generalizaion performance ae discused in[9].

Sewond, the discovered knowledge should be comprehensible to the user. The motivation
for thisis to give the user a solid basis for making better dedsions. We ae asuming here that
data mining is being used as a dedsion-support system, but the ad¢ual dedsion will eventualy be
made by a human user. This assumption seems to be gpropriate for medicad domains where
lives are & stake. Note that knowledge comprehensibility is a very subjedive wncept, unlike
predictive acarracy, which can be more ealy measured in an objedive way. Frequently, the
comprehensibility of the discovered knowledge is as®ociated with its gntadicd smplicity.
Some relevant discussons about knowledge amprehensibility and smplicity can be found in [4,
19].



Third, the discovered knowledge should be somehow interesting and useful.
Interestingness and usefulness are probably <ill more difficult to be measured than
comprehensibility. This is currently an adive reseach areg and some measures of knowledge
interestingnesshave been recantly proposed [6, 17]. In this paper we will evaluate the quality of
the discovered knowledge with resped to both predictive acaracy and comprehensibility, but
not interestingness

There ae several data mining tasks, such as clasgfication, clustering, dependence
modeling, asciation, summarization, etc. A review of all these tasks is beyond the scope of this
paper. The realer interested in an overview of several data mining tasks is referred to [5,7].
Here we just describe the dassficaion task [9], which is the most studied in the literature and is
also the focus of this paper.

In this task ead data instance (sometimes cdled a cae, or yet an example) belongs to a
class among a predefined set of classes. The dassof an instanceis given by the value of a user-
spedfied godl attribute. Instances consist of a set of predicting attributes (feaures) and a goal
attribute. This latter is a cdegoricd (or nominal, or yet discrete) attribute, i.e., it can take on a
value out of asmall set of discrete values.

In the dassficaion task the am is to discover some kind of relationship between the
predicting attributes and the goal, so that the discovered knowledge can be used to predict the
class(goal-attribute value) of a new, unknown-classinstance

There ae severa paradigms of data mining algorithms, including rule induction,
instance-based leaning (or neaest neighbors), neural networks, evolutionary algorithms and
many other paradigms. In this paper the focus is the paradigm of evolutionary algorithms,
particularly genetic programming. It should be noted we cawnot clam that one of the @ove
paradigms is superior to the others with resped to predictive acaragy. Each of these paradigms
contains many different algorithms, and the predictive acaracy associated with an agorithm
depends very much on the data being mined. This fad has been shown both empiricdly and
theoreticdly [4].

EVOLUTIONARY ALGORITHMS

Genetic Algorithms (GAs), and Genetic Programming (GP), belong to a dassof optimization
tedniques broadly cdled evolutionary algorithms. GAs were invented by John Holland in the
late 19605, and in his pioneaing monograph [10] he established the main theoreticd grounding
for GAs. Evolutionary algorithms are inspired by the evolution of living organisms and by the
Darwinian principle of natura seledion, where the fittest individuals have abetter chance to
survive. Good textbooks about theoreticd and pradicd applications of GAs can ke found in
[8,11] and about GPin[2,12,13].

In GAs, there is a mapping between the genotype (interna representation of the
parameters of the problem) and the phenotype (what the parameters redly mean for the
problem). Usually, the parameters of the problem are encoded in the genotype & a fixed-size
string of bits (or, sometimes, a string of integers). This representation is slitable for a large
range of problems, but is very limiting when the nature of the problem requires variable-length
or even more sophisticated structures as the shape of the solution.



The representation of an individual is the main difference between GAs and GP. In GP,
individuals are represented with variable-length herarchicd structures cdled “programs’,
usualy in the form of atree In GP, the shape, size and structural complexity of the solution are
not limited a priori. This charaderistic is an advantage and a drawbadk at the same time. It is an
advantage over GAs becaise complex structures can be represented. These structures are
cgpable of performing not only mathematicd and logicd operations, but also iteration, reaursion
and conditiona branching. On the other hand, the representation induces an infinite seach
gpace which requires, besides computational power, more intelligent and adaptive techniques.
Despite this problem, GP has been succesqully used for a large range of problems, mainly in the
engineaing and computer science aeas.

A brief overview of genetic programming

In GP, the basic ideais the erolution of a population of "programs’, i.e., candidate solutions to
the spedfic problem in hand. A program (an individual of the population) is usually represented
as a tree where the internal nodes are functions (operators) and the led nodes are terminal
symbols. More complex representations, like graphs, are unusual since they require spedalized
genetic operators. Both the function set and the terminal set must contain symbols appropriate
for the target problem. The function set can contain arithmetic operators, logic operators,
mathematica functions, etc; whereas the terminal set can contain the variables (attributes) of the
problem.

Ead individua of the population is evaluated with resped to its ability to solve the
target problem. This evaluation is performed by a fitness function, which is problem-dependent.
In general, fitnessis computed by means of a well-defined mathematicd function (or even a
complex procedure) that assgns a scdar value to it. In most cases, fitnessis evaluated over a set
of different representative situations (cdled fitnesscases), sampled from the problem space

Individuals undergo the adion of genetic operators such as reproduction and crossover.
These operators are very briefly described as follows - a more detailed analysis about these and
other genetic operators can be found in [12].

The reproduction operator seleds one individual of the aurrent population in proportion
to its fitness value, so that the fitter an individual is the higher the probability that it will take
part in the next generation of individuals. After seledion, the individua is copied into the new
generation. Reproduction refleds the principle of natural selecion and survival of the fittest.

The aossover operator replaces a randomly seleded subtree of an individual with a
randomly chosen subtreefrom another individual. The goplicaion of crossover is independent of
the treetopology sinceit has to med the dosure property of GP. This property states that any
function has to accept as operand any possble combination of terminals and functions. Figure 1
illustrates the gplicaion of the dosover operator to a wuple of parents. The aosover point
was chosen at random for both parents. Trandating the trees into logicd expressons, one can
redizethe exad results, asfollows:

e Parent 1. (not A) or (B andC)

* Parent 2. (D or (nat E)) or ((not F) and(nat G))

* Offspring 1 ((not F) and(not G)) or (B andC)

» Offspring 2 (D or (nat E)) or (not A)



parent 1 parent 2

offspring 1 offspring 2
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Figure 1. Crossover operator in adion. Above: original parents and crossover points.
Below: off spring after crossover.



Once genetic operators have been applied to the population acwrding to given probabilities, a
new generation of individuals is creaed. These newly creaed individuals are evaluated by the
fitnessfunction. The whole processis iteratively repeaed, for a fixed number of generations or
until other termination criterion is met. The result of genetic programming (the best solution
found) is usually the fittest individual produced along al the generations.

A GP runis controlled by several parameters, some numericd and some qualitative [12].
However, this is implementation-dependent, i.e., not al GP systems have to follow the same
diredives, spedally those parameters concerning the genetic operators. If spedal genetic
operators are defined, spedfic parameters have to be set to control their use throughout the run.

Summarizing, the use of GP to solve red-world problems encompasss the previous
definition of the following:

» thestructura components of the solution, i.e., the set of functions and terminals;
» the generation of theinitial population of solutions;

» the genetic operators used to modify stochasticdly a given solution;

» the measure of goodnessof a given solution (fitnessfunction);

» the aiteriafor terminating the evolutionary processand for designating the result;
» the mgor and minor parameters that control the GP.

THE PROPOSED GENETIC PROGRAMMING SYSTEM
Function and terminal sets

The terminal set consists of the previoudly cited 165binary attributes used in the diagnosis of
chest pain. The function set consists of threelogic functions, namely AND, OR and NOT. These
functions were dosen due to our desire for discovering high-level, comprehensible rules, as
mentioned before. Therefore, an individual (program) consists of a wmbination of the dove
threelogic operators applied to some predicting attributes. Each individual encodes the IF part
of arule, but not the THEN part (the predicted clasg. The reason for this is the fad that in a
given run of the GP all individuals represent rules predicting the same dass as follows.

Ead run of our GP solves a two-class classficaion problem, where the god is to
predict whether or not the patient has a given disease. Therefore, to generate dassficaion rules
for the 12 classes, we nedl to run the GP 12 times. In the first run the GP would seach for rules
predicting class 1; in the seaond, for class 2, and so on. When the GP is saching for rules
predicting a given class all other classes are dfedively merged into a large dass which can be
conceptually thought of as meaning that the patient does not have the disease predicted by the
rule. Sincethe THEN part of the rule does not neal to be encoded into the individual, from now
on we will refer to ead individual as arule, for the sake of brevity and simplicity.

GP control parameters
In al the eperiments reported in this paper the initia population was randomly

generated by the well-known ramped half-and-half method, which creaes an equal number of
trees for treedepth values varying from 2 to the maximum depth D; =10. During the run, the



maximum treedepth (Dc) was st to 17. The aiterion for terminating the run was the maximum
number of generations, G = 50 (not including the first, randomly generated population). The
best individual ever found (seethe next subsedion) in the run was designated as the result. The
population size (M) was st to 500 individuals, the probability of crosover (p.) and
reproduction (pr) were respedively set to 0.9 and 0.1 and the seledion method used for both
parents was fithess proportionate. All the parameters used were set to the standard values
proposed by Koza[12], who has found that they are suitable for most applications.

Fitness function

The fitness function evaluates the quality of ead rule (individual). In this work, the fitness
function was based on that proposed by [15]. Before the fitness function is defined, it is
necessry to recdl afew basic concepts on classficaion-rule evaluation. When using a rule for
classfying a given patient case, depending on the dasspredicted by arule and on the true dass
of the patient, four types of results can be observed for the prediction, as follows:
* true positive (tp) - the rule predicts that the patient has a given disease and the patient
does have that diseese;
» false positive (fp) - the rule predicts that the patient has a given disease but the patient
does not have it;
* true negative (tn) - the rule predicts that the patient does not have agiven disease, and
indeal the patient does not haveit;
» false negative (fn) - the rule predicts that the patient does not have agiven disease but
the patient does have it.
The fitnessfunction used in this work combines two indicaors that are cmmonplacein
the medicd domain, namely the sensitivity (Se) and the spedficity (Sp, defined as follows:
S=tp/(tp+ fn) D
Sp=tn/(tn+ fp) 2
In fad, GP does not produce necessarily smple solutions. Considering that the
comprehensibility of a rule is inversely proportiona to its s$ze, something has to be done to
enforce GP to produce rules as sort as possble. Therefore, we define ameasure of smplicity
(Sy) of arule, givenin equation 3:

Sy = (maxnodes — 0.5 numnodes— 0.5) / (maxnodes— 1) (©))
where numnodesis the airrent number of nodes (functions and terminals) of an individual (tree),
and maxnodesis the maximum allowed size of a tree (that was st to 65). Equation 3 produces
its maximum value of 1.0 when a rule is 9 smple that it contains just one term. The equation
value deaeases until its minimum value of 0.5, which is produced when the number of nodes
eguals the maximum allowed. The reason to set the lower bound to 0.5 isto pendlize large-sized
individuals without forcing them to disappea. This is gedaly important in the former
generations of arun when most individuals will have very low predictive acarracy, but can cary
good genetic material cgpable of further improvement by means of the genetic operators.

Findly, the fitnessfunction used by our GP is defined as the product of the indicators of
predictive acaracy and smplicity:
fitness= Se. Sp. & 4



Therefore, the goa of our GP is to maximize both the Se and the Sg and minimize the
rule size smultaneoudly. This is an important point, since it would be relatively trivial to
maximize the value of one of these indicaors at the expense of significantly reducing the values
of the others. Furthermore, the aove fitness function has the alvantages of being smple and
returning a meaningful, normalized value in the range [0..1]. For further analysis of the
motivation for maximizing the product Se.Sp regardlessof rule simplicity and independently of
any evolutionary algorithm, see[9].

COMPUTATIONAL RESULTS

The experiments reported here were done using a modified version of the Lil-GP system, version
1.02[20] and the data set was the same & used in [14]. The data set consists of 138 examples
(patients) and 165attributes. As usual in the dasgfication literature, the data set was randomly
partitioned into two sets, a training set (90 examples) and a test set (48 examples). The
experiments were done with a dingle training/test set partition, rather than doing cross
validation, to make our results comparable to the ones reported in [14]. Therefore, we have used
the same training/test set partition as the one used in the aove reference

Note that, in principle, this can be @nsidered a difficult classficaion problem. The
reason is that the problem has a very high dimensionality. The problem can be mapped to a 165
dimensiona problem, corresponding to the 165 attributes, but unfortunately there ae only 90
training examples. This snall “density” of the data — i.e., the smal value of the ratio of the
number of examples over the number of attributes — increases the probability that the discovered
set of rules be unduly overfitted to the data. Idedly, the number of examples sould be much
larger then the number of attributes[9].

For ead of the 12 classes, the GP was run ten times, as mentioned before, and the best
individual (rule) was the one with the best performance on the training set. For eat classwe
seleded the best rule out of the ten rules found in the ten GP experiments.

Therefore, the final result of our experiments is a set of 12 rules, one for ead class We
analyzed the quality of these discovered rules in threeways, namely by evaluating the predictive
acaragy of the rule set as a whole, the predictive acaracy of individual rules and the
comprehensibility of the rules. These analyses are discussd in the next three subsedions,
respedively.

We have further compared the predictive acaragy of the rule set discovered by our GP
system with the predictive acaracy of the rule set discovered by C5.0, a state-of-the-art rule
induction algorithm [19]. The result of this comparison is reported in the next subsedion.

Predictive accuracy of therule set asa whole

Among the several different criteria that can be used to evaluate the predictive acaracy of a
discovered rule set, we have used the well-known acaracy rate, which, despite its defeds [9],
seans to be still the most used in the dassficaion literature. The acaracy rate is smply the
ratio of the number of correaly-classfied test examples over the total number of test examples.



Our GP adhieved an acairacy rate of 87.5 % -i.e., the discovered rule set corredly classfied
42 out of 48 examples.

We have dso applied a rule induction algorithm, C5.0, to the same training / test set
partition used in the experiments with our GP system. The dgorithm C5.0 (with its default
parameters) generated a dedsion treethat is equivalent to 17 rules, which achieved an acaracy
rate of 79.2 % -i.e., it corredly classfied 38out of 48 examples.

Predictive accuracy of individual rules

Although reporting the predictive acaracgy of the rule set as a whole is commonplacein the
literature, in pradice the user will analyze or consider one rule & a time. Therefore, it makes
sense to report the acaracy rate of ead individual rule. Recdl that this is feasible, in our case,
becaise our system discovered only 12 rules (one for ead clasg. Such an analysis of the
predictive acaracgy of individual rules is lessfeasible in cases where the data mining algorithm
discoverstoo many rules.

Table 1: Predictive acaracy and simplicity of individual rules.

class# Sengitivity (Se) | Spedficity (Sp | Se. Sp | Smplicity (Sy)
1 0.75 0.97 0,73 0,96
2 1.00 0.93 0.93 0.98
3 1.00 0.97 0.97 098
4 1.00 0.97 0.97 100
5 0.75 0.97 0.73 098
6 0.80 1.00 0.80 100
7 1.00 1.00 1.00 100
8 0.50 0.95 0.47 096
9 1.00 0.95 0.95 098
10 1.00 0.90 0.90 097
11 1.00 1.00 1.00 096
12 0.60 1.00 060 0.96

average 0.86 0.96 0.83 0.97

Table 1 reports the figures concerning the predictive accracy of ead of the 12
discovered rules. Eadch row of this table refers to the best rule found in the ten GP runs
performed for the mrresponding classnumber. All the figures reported in this table refer to the
performance of the discovered rules on the test set. Classnumbers refer to those diseases listed
in the Introduction sedion, in the order they appea.

Overall, the discovered rules have both high sensibility (Se) and high spedficity (Sp),
which leals to a high value of the product Se.Sp In particular, seven rules (those predicting
clases 2, 3,4, 7,9, 10, 11) have both Se and Sp(as well as their product) greaer than or equal
to 0.90. However, some rules are not so good. For instance the rule predicting class 8, despite
its high value of Sp is lesslikely to be mnsidered as truly reliable by the user, due to its very



low Se. This is consstent with the results reported by [14], since dass 8 is indeed the most
difficult one to predict.

Ascan be seeninthe last row of Table 1, the average value of the product Se.Spis 0.83.
This value is dightly smaller than the average value of 0.85 reported in [14] for the same data
set, but usng another kind of clasgsficaion agorithm. However, our GP system found
comprehensible rules, whereas the dgorithm used in [14] works as a bladk box.

Comprehensibility of the discovered rules

As mentioned in the Introduction, in this work we ae interested not only in the predictive
acarragy of the discovered rules, but aso in the comprehensibility of the rules - in the spirit of
data mining.

Rule comprehensibility is sgnificantly more difficult to measure in an objedive way, in
comparison with predictive acaragy. There is a cnsiderable subjedive aped in the former. In
most of the literature, however, rule comprehensbility is asciated with syntadica complexity.
Usually, the smaller the number of rules and the shorter (the smaller the number of conditions
of) the rules the better. In this paper we dso follow this principle for evaluating the
comprehensibili ty of the discovered rules.

Concerning the number of discovered rules, our GP system (by design) provides the best
possble result, that is exadly one rule for eat class This minimization of the number of
discovered rules saves the potentialy preaous time of the human user, who is required to
analyze only the very best rule found for ead class In contrast, some rule induction algorithms
may overload the user with a large number of discovered rules, which can herdly be mnsidered
“comprehensible” knowledge [3]. Turning to the number of conditions in ead rule, the last
column of Table 1 shows the value of Sy, the smplicity term used in our fitness function. As
shown in the table, al the 12 rules have ahigh value of this measure. As a striking evidence of
the smplicity of the rules, they are shown in Appendix A.

CONCLUSIONSAND FUTURE WORK

Despite the small number of examples available in our application domain (taking into acount
the large number of attributes), the results of our experiments can be considered very promising.
The discovered rules had a good performance oncerning predictive acaracy, considering both
the rule set as a whole axd ead individual rule. Furthermore, what is more important from a
data mining viewpoint, the system discovered some mmprehensible rules, as discussd above. It
is interesting to note that the system achieved very consistent results by working from "tabula
rasa’, without any badkground knowledge, and with a small number of examples.

We should emphasize that our system is gill in an experimental, reseach stage.
Therefore, the results presented here should not be used alone for red-world diagnoses without
consulting a physician.

Future reseach would be to perform a caeful seledion of attributes in a preprocessng
step, so as to reduce the number of attributes (and the aorresponding seach spaceg given to the
GP. Attribute seledion is a very adive reseach areain data mining.



Given the results obtained so far, GP has demonstrated to be redly useful as a data
mining toal, but future work should include dso the gplicaion of the GP system proposed here
to other data sets, to further validate the results reported in this paper.
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Appendix A

Disclaimer: The dassfication rules listed here should not be used in clinicd diagnosis without
consulting a physician. They were obtained from a spedfic case base, and generalizations
to other patients may not be valid.

Rule 1: IF starting fador is emotion AND (the pain lasts no more than secnds OR (the pain
begins gradually AND the pain irradiates towards the upper left limb)) THEN disease is
stable angina.

Rule 2: |F pain lasts more than 30 minutes AND patient usually takes nitrates THEN disease is
unstable angina.

Rule 3: IF starting fador is emotion AND pain is continuous THEN disease is aaute myocardia
infarction.

Rule 4: |F chest x-ray shows dilatation of the acending or descending aorta THEN disease is
aortic dissdion.

Rule 5: IF eledrocardiogram voltages are low AND edhocardiogram shows me evidence of
tamponade THEN disease is cadiactamponade.

Rule 6: IF history of recatt surgery in pelvis or lower limbs THEN disease is pumonary
embolism.

Rule 7: IF chest x-ray shows air in the pleural spaceTHEN disease is pneumothorax.

Rule 8: IF edhocardiogram shows pericardia bleeding AND (pain occurs when the patient is
lying OR pericardia friction is observed) THEN disease is aaute pericarditis

Rule 9: IF arelief fador is feading OR pain irradiates to the right upper quarter of abdomen
THEN disease is peptic ulcer.

Rule 10: IF patient has heatburn AND NOT (history of chronic obstructive pulmonary disease)
THEN disease is esophaged pain.

Rule 11: IF (starting fador is physicd effort AND (pain is in the upper bad region OR starting
faador is movement)) AND NOT (patient has dyspneg THEN disease is musculoskeletal
disorder.

Rule 12: |F patient takes drugs for anxiety AND pain charader is unspedfic AND starting fador
is emotion THEN disease is psychogenic chest pain.
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