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Abstract—This work addresses a type of survival prediction
(or survival analysis) problem, where the goal is to predict the
time passed until an individual is diagnosed with a certain age-
related disease. Survival prediction is more challenging than
standard regression because the former involves censored data,
i.e. individuals who have not been diagnosed with the disease
yet. Random Survival Forests (RSFs) are a powerful type of
Random Forest algorithm developed specifically for survival
analysis. In this work we investigate new variations of RSFs,
namely variations in the node-splitting criterion and the leaf-
node-prediction criterion. Results of experiments on 10 real-
world survival prediction problems show that, although the
variations in node-splitting criteria did not lead to significant
differences in predictive performance, RSFs with a new proposed
leaf-node-prediction criterion had significantly better predictive
performance than standard RSFs.

Index Terms—Random forest, Regression tree, Survival anal-
ysis, Censored data, Age-related diseases

I. INTRODUCTION

Survival analysis consists of a set of statistical or machine
learning methods concerned with analysing the time until the
occurrence of an event of interest [1]. The occurrence of such
event is often referred to as a “failure” in the literature, but
the event of interest can be a “failure” or a “success”, or
any other type of event of interest. To some extent, survival
analysis is similar to linear regression analysis where the
prediction of the value of a target (response) variable is
computed from a set of features, since the time to an event
occurrence can be considered a numerical target variable to be
predicted. The important difference, however, is the presence
of data censoring, i.e. uncertainty about whether an event has
occurred, which cannot be effectively handled by traditional
linear regression methods.

Consider, for example, Random Forests (RFs) for regression
[2], which is the basis for Random Survival Forests (discussed
later). RFs are a powerful type of technique which tends
to obtain high predictive performance in regression tasks in
general, using the power of an ensemble of decision trees to
make more robust predictions. By default, RFs use the Root-
Mean-Square-Error (RMSE) measure as the node-splitting
criterion [2], which cannot cope with data censoring. Hence,
some studies developed pre-processing methods to cope with
data censorship before applying the algorithm in the model-
training step. The complexity of these methods varies from

the simplest approach of removing the censored data [3],
[4] to more sophisticated statistical approaches, for example,
computing Inverse Probability of Censoring (IPC) Weights [5],
[6] and Pseudo Survival Values [7].

However, the most popular variation of RFs for survival
analysis is the Random Survival Forests (RSF) algorithm [8],
[9]. The RSF algorithm learns an ensemble of survival trees
(decision trees adapted to survival analysis problems, consider-
ing censored data), and has been shown to outperform several
methods in survival analysis [10]. Compared to the classical
RF [2], RSF employs some statistical techniques which enable
it to cope with the censoring issue. Therefore, in this paper we
develop new variants of RSFs based around these techniques.
More precisely, we focus on variants that modify two key
components of RSFs, namely the node-splitting criterion and
the leaf-node-prediction criterion, as follows.

First, regarding the node-splitting criterion, we investigate
replacing the Log-rank test (the criterion in standard RSFs) by
the Wilcoxon and Tarone-Ware tests. The latter two tests were
proposed in [11] as alternative node-splitting criteria for learn-
ing a single survival tree, rather than for learning a RSF (as an
ensemble of survival trees). Recent survival analysis studies
employing the RSF algorithm are still using the Log-rank
criterion in general, see e.g. [12]–[15]. Studies considering
different node-splitting criteria in RSFs are relatively rare, and
they have tended to focus on criteria other than the Wilcoxon
and Tarone-ware ones. In particular, references [8] and [16]
considered not only the standard Log-Rank test criterion, but
also other node-splitting criteria, like conservation of events,
the Log-Rank score and even random. In addition, reference
[17] introduced oblique splits, applying the Log-Rank test
to regularized Cox Proportional hazards (PH) models; and
reference [18] proposed an AUC-based node-splitting criteria
involving the well-known C-index. However, to the best of
our knowledge, no previous work on RSFs has considered the
Wilcoxon and Tarone-Ware node-splitting criteria which are
investigated in this work.

Regarding the leaf-node-prediction criterion, we investigate
replacing the criterion used in standard RSFs (the ensemble
Cumulative Hazard Function, described later) by a new pro-
posed criterion, which is a more direct and simpler estimate
of the survival time for each individual, directly based on



Fig. 1: Diagrammatic representation of uncensored and cen-
sored instances in survival analysis. “X” denotes an occurrence
of the event of interest.

the mean of the target variable, but taking into account the
presence of censored data.

In order to evaluate the predictive performance of the
proposed variants of RSFs, we use datasets derived from
the English Longitudinal Study of Ageing (ELSA) [19] and
Survey of Health, Ageing and Retirement in Europe (SHARE)
[20], [21] – surveys of ageing and quality of life among people
aged 50 and over. This paper focuses on the biomedical data
from these surveys, such as the results of blood tests and other
data collected by nurses, and information about the subjects’
age-related diseases.

This paper is organised as follows. Section II reviews
background on survival analysis. Section III describes the
proposed variants of RSF. Section IV describes the experi-
mental methodology. Section V reports experimental results,
and Section VI presents the conclusions.

II. BACKGROUND

A. Censoring in Survival Analysis

As mentioned earlier, data censoring involves uncertainty
about whether an event has occurred, which cannot be effec-
tively handled by traditional linear regression methods. Hence,
survival analysis methods have been developed to effectively
cope with data censoring.

There are two main types of censoring, namely right cen-
soring and left censoring [1]. The first and most common one
is right censoring, where no event of interest occurred for a
subject during the period in which he/she was observed in the
study. There are essentially two reasons for the occurrence of
right censoring. First, the patient was observed until the end
of the study, and no event of interest occurred until that time
(instance B in Fig.1). Second, the subject dropped out of the
study or was lost to follow up before its end and no event

of interest occurred before the drop out (instance C in Fig.1).
Note that, in both cases of right censoring, the last observed
time for a subject is a lower bound for the unknown event
occurrence time. Left censoring occurs when a subject enters
the study after its start (i.e., she/he starts to be observed after
the start of the study) (instance D in Fig.1), so that we lack
information about whether or not an event of interest occurred
for the subject between the start of the study and the time the
subject joined the study.

We focus on right-censoring (as opposed to left-censoring),
which is generally encountered in medical research [1], such
as the prediction of cancer survival [22]. More specifically,
it is also a common type of censoring in the datasets used
in our experiments, described later; since, a patient is often
either lost to follow up before the end of the study or does
not experience the event during the study.

B. Random Target Imputation Forests

Recall that standard random forests cannot cope with cen-
sored training data, where the target variable is a lower bound
for the unknown survival time. To bypass this limitation,
reference [23] proposed Random Target-Imputation Forests
(RTIF). RTIF first calculates (based on the training data) an
upper bound for the target variable for each censored instance.
Then, when generating the bootstrap samples for learning
the trees in the forest, for each censored instance in each
bootstrap sample, the censored value of the target variable
in that instance is replaced by a randomly generated value
between the lower and upper bounds for that instance. Then, a
standard regression tree method is used for learning each tree.
RTIF stochastically imputes the values of the target variable
for censored instances by using instance-specific lower and
upper bounds. That is, for each instance (subject), lower and
upper bounds for the target variable (an age-related disease)
are calculated based on the data, and then, before learning each
decision tree in the random forest, the censored values of the
target variable in the training set for that tree are imputed
with a randomly generated value within those lower bounds.
Note that the generated target values of an instance will tend
to vary across the bootstrap samples containing that instance,
increasing the diversity of the trees in the forest (contributing
to the forest’s robustness).

In [23], RTIF was compared against a well-known random
forest variation for survival prediction, named Survival En-
semble [24], which was also used in [6], [8], [14]. The results
in [23] showed that RTIF significantly outperformed Survival
Ensembles, so in this work we use RTIF as a baseline method
in our experiments.

C. Nelson-Aalen Estimates of Cumulative Hazard Function

The Cumulative Hazard Function (CHF) defines the ratio
of occurrence of the event of interest given that subjects
survive past a certain amount of time. We review the CHF
here since it is an important component of Random Survival
Forests, the target type of algorithm in this work, as discussed
later. The CHF is another measure of the population’s survival



TABLE I: An example of the Nelson-Aalen estimates for a
CHF

Time
(t)

Risk set
(nt))

Failed
(mt)

Censored
(ct) H(t)

0 1000 0 0 0

2 1000 90 10
90

1000
= 0.09

3 900 300 100 0.09 +
300

900
= 0.42

7 500 250 50 0.42 +
250

500
= 0.92

9 200 50 50 0.92 +
50

200
= 1.17

10 100 10 90 1.17 +
10

100
= 1.27

distribution against time. Whilst the well-known Kaplan-Meier
estimator analyses the survival distribution of the population
through their survival function, the Nelson-Aalen estimator
is its counterpart, analysing the survival distribution of the
population through their CHF [25].

The Nelson-Aalen estimate of the Cumulative Hazard Func-
tion for the event of interest at a time point t, denoted by H(t),
is given by Equation (1) [25].

H(t) =

t∑
j=0

(
mj

nj

)
(1)

Where mj is the number of failures at time j and nj is
the number of subjects in the risk set at time j, i.e., the set
containing subjects who have survived at least to time j.

Table I shows an example of how the Nelson-Aalen method
estimates several values of a Cumulative Hazard rate from an
example hypothetical dataset of 1000 subjects, with censored
data included. Table I has five columns, where

• t is the observed failure time;
• nt is the number of subjects in the risk set at time t, i.e.,

the set containing subjects who have survived at least to
time t; for each row i where i in [2. . . 6], corresponding
to t in {2,3,7,9,10}, ni = ni−1 −mi−1 − ci−1;

• mt is the number of subjects who “failed” at time t;
• ct is the number of subjects who were censored in the

time interval starting with time t up to but excluding the
next failure time.

• H(t) is the ratio estimated by the Cumulative Hazard
Function at time t. Note that there are five unique failure
times by which the table is ordered.

Hence, in the example of Table I, subjects who survived
until at least time t = 10 have a CHF of 1.27.

D. Random Survival Forests

We assume that the reader is familiar with the well-known
standard Random Forest algorithm for regression [2]. Hence,
we focus here on describing mainly the characteristics of
the Random Survival Forest (RSF) algorithm that makes
it specifically adapted for survival analysis with censored
data [8], rather than standard regression. RSF is a powerful

technique for learning prediction models from survival data,
which learns an ensemble of “survival trees” (as opposed to
standard regression trees). It uses the Log–rank test as the
node-splitting criterion; this is a non-parametric test designed
for comparing the survival distributions between two (or more)
groups (in our case, child nodes in a survival tree). It compares
the hazard or survival functions at each observed event time.
The Log-rank statistics is given by Equation (2):

Log–rank statistics =
(Oi − Ei)

2

Var (Oi − Ei)
(2)

Oi − Ei =

k∑
j=1

(mij − eij) (3)

eij =

(
nij

n1j + n2j

)
× (m1j +m2j) (4)

Var (Oi − Ei) =
k∑

j=1

n1jn2j (m1j +m2j) (n1j + n2j −m1j −m2j)

(n1j + n2j)
2
(n1j + n2j − 1)

(5)

In Equation (2), Oi is the sum of the number of observed
failures in group i across all failure times and Ei is the
expected value of the sum of the number of failures in group
i across all failure times. To compute the Log–rank statistics,
we need to calculate the term Oi − Ei, which is a measure
of the overall differences of the survival or hazard function
(curve) over all k failure times and is given by Equation (3),
where eij is the expected number of failures for group i at
the failure time j, as shown in Equation (4). Var(Oi – Ei) is
the estimated variance, which involves the number of subjects
in the risk set in each group (nij) and the number of failures
in each group (mij) at time j. k is the number of distinct
times of observed failures. The summation is over all distinct
failure times. Note that when comparing any pair of survival
functions, this calculation will be done for just one of the two
groups since the absolute difference is the same for the two
groups.

In addition, standard RSFs use a specific type of predicted
outcome at their leaf nodes, based on the ensemble Cumulative
Hazard Function [8], [9], which was designed to cope with
censored data. Hence, this replaces the normal prediction of
target values at leaf nodes in random forests for regression
(which cannot cope wtih censored data).

The ensemble CHF for a given subject is calculated as
follows. First, for each tree in the RSF, the subject’s feature
values are used to find the leaf node used to predict the survival
time for that subject. In each tree, the CHF for that subject
is calculated using Equation 1 (the Nelson-Aalen estimate for
CHF), setting t to the last observed failure time (so that all
failure times are considered in the summation), and calculating
the terms mj and nj for the j-th failure time based on all
the subjects assigned to the same leaf node as the current
subject. Finally, the ensemble CHF for a subject is simply the



TABLE II: weights used in Equations (6) and (7) by different
Log-rank statistics variants

Test Statistics Weight
Log-rank 1
Wilcoxon n

Tarone-Ware sqrt(n)

arithmetic mean of the CHF for that subject over all trees in
the RSF.

III. PROPOSED VARIANTS OF THE RANDOM SURVIVAL
FORESTS

We propose new variants of the Random Survival Forest
(RSF) algorithm, in order to try to improve this type of algo-
rithm’s predictive performance. Since RSF is a decision tree-
based learning algorithm, we propose modifying the two key
components of the algorithm: (1) the node-splitting criterion,
and (2) the leaf-node-prediction criterion.

A. Modifying the Node-Splitting Criterion

We propose to replace the log-rank statistics, the default
node-splitting criterion used in RSF, with its weighted ver-
sions, replacing the Oi − Ei term in the numerator and
the denominator of Equation (2) by Equations (6) and (7),
respectively. Note that Equations (6) and (7) have weights wj

and w2
j , respectively, multiplying the term within the scope of

the summation symbol. Hence, the effect of using the weighted
Equations (6) and (7) to implement Equation (2) will depend
on how those weights are determined. In this work, the weight
wj is varied according to the Log-rank variants in Table II,
including the Wilcoxon and Tarone-Ware criteria, where n is
the number of subjects in the current risk set (n1j + n2j) and
sqrt(n) is the square root of n.

Oi − Ei =

k∑
j=1

wj (mij − eij) (6)

Var (Oi − Ei) =
k∑

j=1

w2
j

n1jn2j (m1j +m2j) (n1j + n2j −m1j −m2j)

(n1j + n2j)
2
(n1j + n2j − 1)

(7)

Note that in Equations (6) and (7) the summation is per-
formed over the k distinct failure times. Hence, the original
Log-rank node-splitting criterion assigns the same importance
(weight 1) to all failure times, whilst the Wilcoxon and Tarone-
Ware node-splitting criteria emphasize earlier failure times,
since the value of n (the size of the risk set) tends to be
greater in earlier failure times.

B. Modifying the Leaf-Node-Prediction Criterion

As discussed earlier, in the standard RSF algorithm, the
prediction made by the leaf nodes of the trees for the current
instance (subject) being classified is the value of the ensemble
Cumulative Hazard Function (CHF) for that instance, which

is the average of the CHF values over all trees in the forest.
Note that a CHF value is essentially a sum of the “failure rates”
across all observed failure times, but it was not designed to
directly answer the fundamental question about how long a
subject will “survive”, i.e. how much time will pass until the
event of interest occurs for a given subject.

Therefore, we propose a leaf-node-prediction criterion that
is inspired by the standard Random Forest algorithm for
regression (rather than for survival analysis), where the value
predicted at a leaf node is an estimate of the mean of the target
variable over the instances at that leaf node.

However, the standard Random Forest algorithm for regres-
sion cannot cope with censored data. Therefore, we propose a
variation of the Random Survival Forest algorithm where, at
each leaf node in a decision tree, the value predicted at that
leaf node will be an estimate of the mean survival time of
the instances at that leaf node by taking into account censored
data.

We make the following two assumptions:
• the hazard rate is constant throughout the study — i.e.,

a person’s chance of experiencing the event of interest
does not change with time (a strong assumption); and

• the censoring is non-informative — i.e., the time when an
instance is censored is independent of its “failure” time,
or in short, instances are censored at random (a common
assumption in the survival analysis literature).

At first glance, the constant hazard rate assumption would
seem unlikely to be satisfied in our datasets of age-related
diseases, since the time passed until the diagnosis of an age-
related disease (our “survival time”) tends to be smaller for
older subjects. However, in our datasets this age effect is
relatively small in general, and so that assumption can still
be used to produce reasonable estimates of survival time in
practice, as shown next.

To be precise, we measured the Pearson’s correlation co-
efficient between the age and survival time of uncensored
subjects, for each disease (target variable), i.e. for each dataset.
Age was measured at the ELSA/SHARE survey’s baseline,
and survival time is the number of months passed from that
baseline time until the diagnosis of a disease. Table III reports
these correlations.

As expected, the correlations are negative, since older
individuals are more likely to be diagnosed with an age-related
disease sooner, resulting in a shorter ’survival time’. However,
these correlations are quite weak in general. In addition, Fig 2
shows the scatterplots for two diseases (datasets) as examples:
Angina (with the largest negative correlation, -0.251) and
Cancer (with the 5th largest negative correlation, -0.164). Note
that there is no clear correlation between age and survival time
for ages below about 85. The (negative) correlation is clear
and strong only for ages above about 85, representing a small
minority of subjects in our datasets. Therefore, the constant
hazard rate assumption is approximately valid in our datasets
in general.

Given the aforementioned assumptions, we can conclude
that all instances have identical remaining mean survival time



TABLE III: The correlation coefficients between age and survival time for the uncensored instances, for each dataset (disease).

Dataset Alzheim. Angina Heart
attack Psychiat. Stroke Diabetes Cancer Arthritis Any-dise.

ELSA
Any-dise.
SHARE

Correl.
Coeff. -0.196 -0.251 -0.168 -0.044 -0.163 -0.113 -0.164 -0.081 -0.125 -0.175

(a) Angina dataset (b) Cancer dataset

Fig. 2: Survival time of uncensored individuals over different ages

µ, regardless of their previously observed survival time t [26].
With these two assumptions, as shown in [26], the estimated
mean survival time (µ̂) can be computed as shown in Equation
(8):

µ̂ =

∑n
j=1 tj +mµ̂

n
(8)

where tj is the value of the target variable (survival time)
for the j-th individual, n is the total number of individuals
(counting both uncensored and censored individuals), and m
is the number of censored individuals. Recall that tj is the
true value of survival time if the j-th individual is uncensored,
whilst it is a lower bound of the true, unknown survival time
for censored individuals. Hence, in Equation (8), the term∑n

j=1 tj is simply the sum of all observed survival times,
considering both uncensored and censored individuals, whilst
the term mµ̂ adds the total “missing”, unobserved survival
time associated with all m censored individuals — assuming
that each censored individual has a remaining expected sur-
vival time (after censorship) of µ — as implied by the above
two assumptions [26]. By applying some simple algebraic
operations to Equation (8), we derive Equation (9):

nµ̂ =

n∑
j=1

tj +mµ̂

µ̂(n−m) =

n∑
j=1

tj

µ̂ =

∑n
j=1 tj

(n−m)
(9)

Hence, the estimated mean survival time at each leaf node of
the survival trees in a RSF model is computed using Equation
(9), where the summation of all survival times, censored and
uncensored included, is divided by the number of uncensored
instances.

IV. EXPERIMENTAL METHODOLOGY

A. Dataset Creation

We created 10 datasets for 10 different age-related diseases
(i.e. 10 separate survival prediction problems) from two dif-
ferent surveys, ELSA (English Longitudinal Study of Ageing)
[19] and the Survey of Health Ageing and Retirement in
Europe (SHARE) [20]. The ELSA survey collected data from
English subjects living in private households, aged 50 and
over; whilst the SHARE survey collected data from European
individuals living in 28 European countries and Israel with
the same age range. 9 out of the 10 datasets were constructed
from the ELSA data, containing between 3,000 and 7,000
instances (depending on the target variable), with exactly the
same 44 predictive features, but different target variables.
On the other hand, the dataset constructed from the SHARE
data is much larger, containing almost 140,000 instances but
only 15 predictive features. In essence, the instances represent
individuals (subjects) in these surveys, the target variables
represent the ‘survival times’ (defined more precisely below),
and the predictive features represent biomedical information



collected by nurses or other relevant characteristics of an
individual (age and gender).

As part of the data preparation for the survival prediction
task, we create two special types of variables, the target
variables and the uncensored status variables. For each dataset,
the target variable, representing the ‘survival time’, contains
the time passed (in months) until an individual is diagnosed
with a certain disease (for 8 datasets) or any of several diseases
(for two datasets); and the uncensored status variable indicates
whether or not we know the “survival time” of an individual.
Note that the target variables and uncensored status variables
come into pairs, one pair for each dataset (for each target
disease).

B. Predictive Performance Measure

The predictive performance of the survival models was esti-
mated by the concordance index (C-index), which is a measure
accounting for censored data, and is probably the most used
measure of performance for survival prediction tasks. The C-
index can be interpreted as the probability of correctly ordering
the predicted survival values for a randomly chosen pair of
subjects whose actual survival times are different.

As described in [27], the C-index can be adapted for cen-
sored data by considering the concordance of actual survival
times versus predicted survival times among pairs of subjects
whose survival outcomes can be ordered with respect to their
survival times, i.e., among pairs where both subjects were
observed to experience an event, or one subject was observed
to experience an event before the other subject was censored.
Note that in this latter case we know that the censored subject
survived longer than the subject whose event was observed,
so this pair of subjects can be ordered, even though we do not
know the precise survival time for the censored subject.

Formally, the C-index is computed by equations (10) and
(11), where T̂i and Ti denote the predicted and actual target
values (‘survival times’) of the i-th subject, respectively; and
Usable(i,j) returns true if subjects i and j can be ordered
with respect to their survival times (as described above) or
false otherwise.

C-index =

|{(i, j)| Usable (i, j) AND Agreed order (i, j)}|
|{(i, j)|Usable(i, j)}|

(10)

Agreed order(i, j) =

 true, if T̂i > T̂j and Ti > Tj

true, if T̂j > T̂i and Tj > Ti

false, otherwise
(11)

C. Hyper-Parameter Tuning via Nested Cross-Validation

All experiments are performed using a nested cross-
validation procedure, where an inner cross-validation performs
hyper-parameter tuning and an outer cross-validation estimates
the predictive performance of the survival models. That is, for

each iteration of the outer cross-validation, each candidate con-
figuration of hyper-parameters for the Random Survival Forest
(RSF) algorithm is evaluated via an inner cross-validation
using only the training set (i.e. not the test set) of the current
outer cross-validation iteration; and the configuration with the
highest C-index is chosen as the best configuration for the
current outer iteration of cross-validation. Then, the RSF is
run with that best configuration using the entire training set to
learn the survival model, and finally that model’s predictive
performance (C-index) is evaluated on the test set of the
current outer cross-validation iteration. The result returned by
the nested cross-validation is of course the average C-index
over all test sets of the outer cross-validation.

We used 5 folds for the inner cross-validation for all
datasets, whilst the number of folds for the outer cross-
validation was set to 10 in the ELSA datasets and 5 in the
SHARE dataset. The latter has fewer folds to save computa-
tional time, since the SHARE dataset is much larger than the
ELSA datasets.

We tune two hyper-parameters of the RSF algorithm,
namely: (a) mtry, i.e., the number of features randomly sam-
pled to be used as candidate features for selection at each
decision tree node; and (b) d0, i.e., the minimum number of
uncensored instances required at each leaf node. According
to [28], mtry has been recognized as the most influential
hyper-parameter in general in random forests. In addition,
d0 can be seen as the survival task-related counterpart of
the hyper-parameter node size in classical random forests.
It is considered worth tuning according to, for instance, the
experiments in [29] and [30].

We consider three candidate values for d0, namely 1, 2 and
3, for all datasets. We consider a different set of candidate mtry
values for the ELSA datasets and SHARE dataset separately,
since there is a difference between their numbers of features,
where the former contains 44 and the latter contains 15
predictive features. For ELSA, we specify four candidate
values for mtry (4, 7, 10, 13). The first two values were
calculated from ceil(ln(44)) = 4 and ceil(sqrt(44)) = 7,
which are often considered default functions for specifying
the value of mtry in random forests, where ceil(x) returns the
‘ceiling’ of x, i.e. the lowest integer that is greater than or
equal to x (i.e. it rounds x up to the nearest integer). Similarly,
the set of candidate values for SHARE is (3, 4, 6, 8) since
ceil(ln(15)) = 3 and ceil(sqrt(15)) = 4.

We also tune two hyper-parameters of the RTIF algorithm:
(a) mtry, with the same aforementioned candidate values used
for RSF; and (b) node size, analogous to d0 in RSF, with
one difference: node size is the minimum number of instances
(regardless of their original censorship status) in a leaf node.
So, its candidate values, (5, 7, 10), are larger than RSF’s
candidate d0 values.

Hence, for all methods (the RSF versions and RTIF), for
each dataset, at each iteration of the outer cross-validation,
the inner cross-validation is run 12 times on the training set,
considering 12 candidate random survival forest configurations
(4 candidate mtry values times 3 candidate d0 or node size



values).
All analyses were performed using Python 3 with the scikit-

survival library version 0.14.0 [31], a Python module built on
top of the scikit-learn machine learning library [32]. In addi-
tion, some parts of the program were written and customised
in Cython-code, which played an important role in boosting
the performance of RSF due to Python’s relatively slow
performance. Our program code is made publicly available in
the following GitHub link: https://github.com/mastervii/new
variants of RSF.

V. COMPUTATIONAL RESULTS

A. Comparing results of RSF variants with different node-
splitting criteria and standard leaf-node-prediction criterion

Table IV reports the C-index values obtained by three
different variants of Random Survival Forests (RSF), using
three different node-splitting criteria, breaking down by each
disease used as the target ‘survival’ variable (time passed until
disease diagnosis). In all these three RSF variants, the leaf
nodes compute the CHF as in standard RSFs. In this and the
other result tables, the best result (highest C-index) for each
dataset is shown in boldface.

The non-parametric Friedman test [33] was used to deter-
mine whether or not there is a significant difference between
the average ranks of the three RSF variants and the mean rank
of 2.0 under the null hypothesis. The calculated value of FF

is 0.278. With 3 variants and 10 datasets, FF is distributed
according to the F distribution with 3 – 1 = 2 and (3-1) x
(10-1) = 18 degrees of freedom. The critical value of F(2,18)
for α = 0.05 is 3.555. Note that FF is smaller than the critical
value, and so the null hypothesis cannot be rejected. Hence,
there is no statistical evidence to support the claim that any of
the three RSF variants has better performance than the others.

B. Comparing results of RSF variants with a new leaf-node-
prediction criterion and different node-splitting criteria

Similarly to the previous comparison, Table V reports the
C-index values obtained by three different variants of our
proposed Mean-at-Leaf RSF (with a new leaf-node-prediction
criterion), using three different node-splitting criteria.

Again, after applying the Friedman test and calculating the
value of FF which is 0.512 in this case, the null hypothesis
cannot be rejected. Hence, there is no statistical evidence to
support the claim that any of the three variants of the Mean-
at-Leaf RSF has better performance than the others.

C. Comparing results of the best RSF for each type of leaf-
node-prediction criterion

The previous two subsections showed that the choice
of node-splitting criterion does not significantly affect the
C-index values, both when using the standard leaf-node-
prediction criterion and when using the new leaf-node-
prediction criterion (Mean-at-Leaf). This subsection investi-
gates the complementary issue of whether the choice of leaf-
node-prediction criterion affects the C-index, by comparing the

best RSF variant from Table IV (with a standard leaf-node-
prediction criterion) against the best RSF variant from Table
V (with the new leaf-node-prediction criterion).

As can be observed in Table IV, both the Log-rank and
the Wilcoxon RSF variants were tied in terms of achieving
the highest C-index (boldfaced values) in 4 out 10 datasets,
whilst the Tarone-Ware RSF achieved the highest C-index in
only two datasets. In addition, the last row of the table shows
the average rank for each variant — recall that the smaller
the average rank, the better (higher) the C-index value of a
RSF variant across all datasets in general. Both the original
(Log-rank) RSF and the Wilcoxon RSF were tied with the
best average rank (1.9), whilst the Tarone-Ware RSF had a
slightly worst average rank (2.2). Hence, the Log-Rank and
Wilcoxon criteria were tied as winners, and we chose the Log-
Rank variant as the representative “best” variant of this table
because it is the default variant, much more used in practice
than the Wilcoxon variant.

In Table V, the winner was clearly the Log-rank variant of
Mean-at-Leaf RSF, which has both the highest number (6) of
wins and the best (smallest) average rank, 1.8.

Table VI shows the C-index values obtained by RTIF [23],
the original RSF with standard leaf-node prediction and Log-
Rank [8], and the proposed Mean-at-Leaf RSF variant with
Log-Rank, for each disease used as the target ‘survival time’
variable. In this table, the uncensoring ratio is the ratio of the
number of uncensored instances over the total number of (cen-
sored or uncensored) instances. Note that most datasets have
small uncensoring ratios, representing challenging problems.
In terms of C-index values, the proposed Mean-at-Leaf RSF
outperformed the two other methods in 9 out of 10 datasets.
Moreover, the average rank of Mean-at-Leaf RSF (1.2) is much
lower (better) than that of RTIF (2.7) and the original RSF
(2.1).

The non-parametric Friedman test [33] was used to deter-
mine whether or not there is a significant difference between
the average ranks of the three methods and the mean rank
of 2.0 under the null hypothesis. The calculated value of FF

is 11.93. With 3 methods and 10 datasets, FF is distributed
according to the F distribution with 3 – 1 = 2 and (3-1) x
(10-1) = 18 degrees of freedom. The critical value of F(2,18)
for α = 0.05 is 3.555. FF is greater than the critical value,
and so the null hypothesis is rejected (p-value = 0.003) at the
conventional significance level of α = 0.05. Hence, there is a
statistically significant difference between the performances of
the three methods as a whole. Therefore, we proceed with the
Holm post-hoc test [33], which compares the average rank of
the best (control) method, viz. Mean-at-Leaf RSF, against each
of the other two methods, by adjusting the significance level of
α = 0.05 to compensate for multiple comparisons. The results
were that Mean-at-Leaf RSF significantly outperformed both
RTIF (p-value = 0.0004, smaller than adjusted α = 0.025) and
the original RSF (p-value = 0.0221, smaller than α = 0.05).

https://github.com/mastervii/new_variants_of_RSF
https://github.com/mastervii/new_variants_of_RSF


TABLE IV: C-index values of three RSF variants with different node-splitting criteria. All RSF variants had their mtry and d0
hyper-parameters tuned via nested cross-validation

Dataset (Disease) RSF Log-rank RSF Wilcoxon RSF Tarone-Ware
Alzheimer 0.7725 0.776 0.7736

Angina 0.6018 0.6002 0.6013
HeartAtt 0.6351 0.6370 0.6343

Psychiatric 0.5372 0.541 0.5462
Stroke 0.6373 0.635 0.6335

Diabetes 0.7527 0.7542 0.7516
Cancer 0.5473 0.5436 0.5382

Arthritis 0.5340 0.5383 0.5380
Any-disease (ELSA) 0.5426 0.5425 0.5455

Any-disease (SHARE) 0.6890 0.6882 0.6883
Average Rank 1.90 1.90 2.20

TABLE V: C-index values of three RSF variants of Mean-at-leaf with different node-splitting criteria. All RSF variants had
their mtry and d0 hyper-parameters tuned via nested cross-validation

Dataset (Disease) RSF Mean-at-leaf Log-rank RSF Mean-at-leaf Wilcoxon RSF Mean-at-leaf Tarone-Ware
Alzheimer 0.7564 0.7738 0.7576

Angina 0.6085 0.6054 0.6073
HeartAtt 0.651 0.6537 0.6538

Psychiatric 0.5596 0.5539 0.557
Stroke 0.6425 0.6424 0.6417

Diabetes 0.7594 0.7641 0.7611
Cancer 0.5553 0.5476 0.5532

Arthritis 0.5462 0.5423 0.5458
Any-disease (ELSA) 0.5616 0.5578 0.5583

Any-disease (SHARE) 0.7104 0.7126 0.7126
Average Rank 1.80 2.25 1.95

TABLE VI: C-index values of RTIF, standard RSF and the proposed mean-at-leaf RSF (Log-rank), all with hyper-parameters
tuned via nested cross-validation

Dataset RTIF [23] RSF [8] RSF Mean-at-Leaf (Log-rank)Disease uncensoring ratio
Alzheimer 69/6825 (1.0%) 0.7742 0.7725 0.7564

Angina 165/6488 (2.5%) 0.5723 0.6018 0.6085
HeartAttack 186/6607 (2.8%) 0.6228 0.6351 0.651
Psychiatric 219/5972 (3.5%) 0.4692 0.5372 0.5596

Stroke 270/6632 (4.1%) 0.6366 0.6373 0.6425
Diabetes 416/6500 (6.4%) 0.7443 0.7527 0.7594
Cancer 562/6386 (8.8%) 0.5135 0.5473 0.5553

Arthritis 784/4276 (18.3%) 0.5078 0.5340 0.5462
Any-disease

(ELSA) 979/3280 (29.8%) 0.5384 0.5426 0.5616

Any-disease
(SHARE)

101300/139522
(72.6%) 0.7061 0.6890 0.7104

Average Rank 2.70 2.10 1.20

D. Identifying the top-ranked features for survival prediction

Although the model learned by a RSF algorithm is not
directly interpretable, since there are too many survival trees
for human interpretation, we can use a feature importance
measure to identify the most important features in a RSF
model learned from the data, i.e., the features that most
influence the predictions of the RSF model. This feature-
importance analysis can highlight general trends in the learned
models and can be useful to better understand the relationships
between some features and the target variable – i.e., the time
passed until the diagnosis of an age-related disease.

Hence, we report the most important features in the survival
models learned by the Mean-at-Leaf RSF algorithm, which
was the algorithm with the best overall predictive performance
in the experiments. To identify the most important features for
each dataset, we first computed the importance of each feature
in the learned RSF model, using the well-known “permutation
feature importance” measure [34]. This measure essentially
quantifies the decrease in the C-index of the learned RSF
model when a single feature has its values randomly shuffled.
The permutation importance measure was computed by ELI5,
a Python package built on top of scikit-learn.



TABLE VII: The 8 features which appear most often in the sets of top-10 features in the RSF models learned from the ELSA
datasets

Feature count Alzheimer Angina HeartAtt Psychiatric Stroke Diabetes Cancer Arthritis Any-disease
(ELSA)

mmgsn me 7 V V V V V V V
confage 6 V V V V V V
mmrroc 5 V V V V V
wtval 5 V V V V V
hdl 5 V V V V V
scako 4 V V V V
smokerstat 4 V V V V
indsex 4 V V V V

TABLE VIII: The 4 most important features in the RSF model learned from the SHARE dataset

Rank Feature Description
1 age Age at interview (in years)
2 mobilityind Mobility index (high: has difficulties)
3 bmi Body mass index
4 lgmuscle Large muscle index (high: has difficulties)

We report two sets of most important features, one for the
ELSA datasets and another for the SHARE dataset, as follows.
First, recall that the 9 ELSA datasets share the same set of
44 predictive features – those datasets differ in their target
variables (age-related diseases). Hence, we identify the top-
8 ranked features across the RSF models learned for those
9 datasets as a whole, which allows us identify the most
predictive features for multiple age-related diseases at the same
time, which is useful to study the ageing process as a whole,
from a more systemic perspective. Second, in the case of the
SHARE dataset, since this dataset has only 15 features, we
simply report the top-4 ranked features in the RSF model
learned from this dataset.

Table VII shows the 8 top-ranked features in the models
learned from the 9 ELSA datasets. To identify these features,
we first ranked the features in decreasing order of the permu-
tation feature importance in each learned RSF model (i.e. for
each dataset). Then, we computed the frequency of occurrence
of each feature in the sets of top-10 features for those 9
datasets, and ranked the features in decreasing order of that
frequency. That frequency is shown in the column “count”
in Table VII, and the following columns show precisely for
which datasets (i.e., diseases) the feature was among the top-
10 features in the learned RSF model.

The top-8 features in Table VII can be described as fol-
lows [19]: mmgsn me is the grip strength (Kg) of the non-
dominant hand, confage is the subject’s age when the data
were collected, mmrroc is the outcome of chair-rise tests,
wtval is the subject’s valid weight (Kg), hdl is the blood HDL
(High-Density Lipoprotein) level, scako measures how often
the subject had an alcoholic drink during the last 12 months,
smokerstat is the present or past smoker status, and indsex is
the gender.

In addition, Table VIII reports the 4 top-ranked features in
the RSF model learned from the SHARE dataset.

As expected, Age is one of the top-ranked features, with
ranks 2 and 1 in the ELSA and SHARE datasets, respectively.
Interestingly, several of the top-ranked features for both types
of dataset are not standard biomarkers of specific diseases,
but rather reflect the level of frailty of individuals, like
mmgsn me and mmrroc for ELSA datasets and mobilityind
for the SHARE dataset. Out of the several blood test results
used as features in the ELSA datasets, only the HDL (“good
cholesterol”) level is among the top-8 features in Table VII.

VI. CONCLUSIONS

We have proposed two types of variations in Random
Survival Forests (RSFs), namely: (a) modifying the node-
splitting criterion, more precisely replacing the standard Log-
rank test by the Wilcoxon and Tarone-Ware tests; and (b)
modifying the leaf-node-prediction criterion, more precisely
replacing the ensemble Cumulative Hazard Function (CHF)
by a more direct and simpler estimate of the survival time for
each subject, directly based on the mean of the target variable,
but taking into account the presence of censored data.

We have evaluated the proposed RSF variants on 10 survival
prediction problems, involving the prediction of the time
passed until an individual is diagnosed with a given age-related
disease or any of a set of age-related diseases.

We first compared the effectiveness of the three aforemen-
tioned node-splitting criteria. The experimental results have
shown that the standard Log-rank and the Wilcoxon criteria
achieved the joint best predictive performance when the RSF
used the standard leaf-node-prediction criterion; whilst the
standard Log-Rank criterion achieved the best performance
when the RSF used the new proposed leaf-node-prediction
criterion. In both cases, however, there was no statistically
significant difference in the predictive performance of the 3
RFS variants using different node-splitting criteria.

Next, we compared the predictive performance of two RSF
variants using the same standard (default) Log-Rank criterion



but two different leaf-node-prediction criteria: the standard
CHF-based one and the new proposed leaf-node-prediction
criterion. The experimental results have shown that the pro-
posed leaf-node-prediction criterion has led to a statistically
significant improvement of predictive performance, across the
10 survival prediction problems.

Future work could involve evaluating other node-splitting
criteria or developing other leaf-node prediction criteria for
RSFs, to try to further improve their effectiveness.
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