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ABSTRACT

In our previous work we have proposed a hybrid Paicle
Swarm Optimisation / Ant Colony Optimisation (PSO/ACO)
algorithm for discovering classification rules. Inthis paper we
propose some modifications to the algorithm and agyp it to a
challenging hierarchical classification problem. Tls is a
bioinformatics problem involving the prediction of G-Protein-
Coupled Receptor’'s (GPCR) hierarchical functional tasses. We
report the results of an extensive comparison betwea four
versions of swarm intelligence algorithms — two veions based
on our proposed algorithm and two versions based oBiscrete
PSO for discovering classification rules proposed ni the
literature. The experiments also compared the efféiveness of
different kinds of protein signatures when used agredictor
attributes, namely Prints, Interpro and Prosite sighatures.
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hybrid Particle Swarm Optimisation / Ant Colony
Optimisation (PSO/ACO) algorithm that discoversTIHEN
classification rules. By comparison with the opadqueput
produced by SVMs and HMMs, classification rules énéve
advantage that they tend to be easily interpreyeitido user.

Another limitation of the body of work in the ared
GPCR function prediction is that the works in thi®a, in
general, do not consider the importance of theahihical
nature of this data. Indeed, several papers on GPCR
prediction address the prediction of only the toptrievels
of the class Hierarchy [2]-[4], effectively ignognthat
hierarchy. The hierarchy present in GPCR functiotaia
conveys information in its own respect. We beligvés
important to try and exploit this property and wew the
advantages of doing so in our experiments.

The large amount of proteomic and genomic data now This paper has the following contributions. First, the

being produced by modern and efficient sequencir{%e . - M
|4pelligence technique to the problem of predictiGfCR

technigues has exceeded the capacity of wet
experimentation. UniProt is a good example of thikis

st of our knowledge, it is the first paper to lg@ swarm

function. Second, it proposes important modificagido the

large protein sequence database contains 205,78@sen Original hybrid PSO/ACO classification algorithngcently

from Swiss-Prot which have been manually annotated
verified by curators. It also contains 2,533,011riea [1]
from TrEMBL, which have yet to be manually annothésd
so are annotated automatically. It is clear to #ee gap
between the number of proteins with sequencesifihand
the number that are closely examined by humanansiathe
importance of the automatic techniques createdetd with
this data is also apparent. Many biologists relytloa data
that is automatically annotated and so it is imgurthat the
automatic annotation process be accurate, trangparel
accountable.

A large sub set of proteins is the G-Protein Cadiple

proposed and applied to hierarchical classificationour
previous work [5]. We describe a drawback of thée ru
quality measure used in the original algorithm (atsb used
in several other bio-inspired algorithms), in thentext of
rules predicting the minority class, and then pezp@a
method of rectifying that rule quality measurehistcontext.
Thirdly it also describes a minimum pheromone lisifhilar
to the MiniMax [6] system used in ACO to improvexseh.

Il. PROTEINS AND G-PROTEIN-COUPLED
RECEPTORS (GPCR)

Proteins are the main building blocks of the calhd

Receptor (GPCR) family. GPCR research is an area pgrform almost all the functions related to cetivaty. Their

intense study due to the success of past drugsirtextict
with them. The prediction of their function is ttapic of this
paper. Although there has been work in this fidtdaaly [2]-
[4], the techniques that have been used so famageneral
“black box” techniques from the point of view ofettuser,
i.e., they produce predictions that cannot be jmeted by
biologists. Examples of these techniques are S\@dgpport

primary structure, the one decoded from DNA, isnfed
from a sequence of amino acids which are held begdby
covalent bonds (strong bonds). This chain is ikt amino
acid at a time by the ribosome. In order to funci@oprotein
usually must fold to form a complex 3D structurent® parts
of protein sequences are found throughout evoluaod
across different species. These conserved regrenssaally

Vector Machines) and HMMs (Hidden Markov Mode|s)_important and efficient protein functional buildibtpcks.
These techniques tend to produce good classifitatio

accuracies, but their output is opaque. To overcahie
limitation, in this paper we classify GPCR funcsowith a

GPCRs are proteins involved in signalling. Theynspall
walls so that they influence the chemistry inside ¢ell by
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sensing the chemistry outside the cell. More sjudiy,
when a ligand (a substance that binds to a proi®i@ceived
by the GPCR, it causes the G-proteins to swap dasyia
biological switch that causes other reactions withe cell to
either be inhibited or allowed. Discussions abbet detailed
working of this system are ongoing. This kind obtein is
particularly important for medical applications base it is
believed that 40%-50% of current drugs target GRCirity
[7]. They are a prime target for “magic bullet” &/drugs as
they are directly accessible from the outside ef ¢kll and
can influence important processes inside the cell.

Ill. HIEERARCHICAL CLASSIFICATION

Data mining consists of a set of concepts and tqaes
used to find useful patterns within a set of d&a [10]. In
this project the discovered knowledge is represkrdae
classification rules. A rule consists of an anteceda set of
attribute values) and a consequent (class):

IF <attrib = value> AND ... AND <attrib = value>
THEN <class>

The consequent of the rule is the class predicyatidrule
for the records (examples) where the predictoribaties
hold. An example rule might be IF <Salary = highN&
<Mortgage =
knowledge
intuitively comprehensible to the user. This is onpnt,

hierarchical levels, the series of digits 2.3.1e?ers to a
GPCR function defined by class 2 at the first legklthe

hierarchy, class 3 at the second level of the tibga class 1
at the third level, and class 2 at the fourth lelfelsay, class
1.X.X.X (where X denotes any digit) is predictedttze first

level for a given protein and the tree node fot tlass has
only the child nodes 1.1.X.X and 1.2.X.X, only thesvo

nodes should be considered when predicting thenselewel

class of that protein. That is, there is no needottsider the
possibility of assigning that protein to the chédrof, say, the
class node 2.X.X.X. This holds both during trainamd test
set classification.

This approach has the important advantage of radubie
number of classes to be considered for predictioavary
hierarchical level — with the exception of the ffilgvel,
where there is no previous classification at a digtlass
level (since there is no higher class level). Boaleads
naturally to the creation of a hierarchical setwés, where
each node of the class hierarchy is associated itgitbwn
modular set of rules. Hence, if the user wantsebigsight
about the classification of proteins at any pafticunternal
node of the hierarchy, they can be shown the seules
associated with that specific node, i.e., the rdbet will
discriminate among the classes corresponding tahhéren
nodes of that internal node. This approach doegeter,

No> THEN <Good Credit>. This kind ofcreate the following potential problem of miscléisation. If
representation has the advantage of beiagexample is misclassified at a higher node thegeneral it

has no chance of being correctly classified at fomades.

because the general goal of data mining is to d&co Techniques have been suggested [12] [13] to cottast

knowledge that is not only accurate, but also cemgnsible
[9][10].

In this paper the classes are arranged in a treetste

specific problem.

A. A Hierarchical Classification Accuracy Measure

where each node (class) has only one parent — théh |y flat classification, the most common method of
exception of the root of the tree, which does retehany evaluating the predictive accuracy of a classiicatule
parent and does not correspond to any class. ldecal discovery algorithm is to generate a rule set f@mnaining
class datasets present new Challenges when Comfm set and then app|y the rules to a test set Conq*)rﬁfe
class datasets. The main challenge comes from xha € examples with an unknown class. Predictive accurcay
CompleXity associated with such datasets, whicluesto two then be calculated as the percentage of test egarn*ﬂich
main factors. Firstly, many (depending on the deptiore had their class correctly predicted by the rule $ae same
classes must be assigned to the examples. Secahély, process could be carried out for hierarchical dfiassion,

prediction of a class becomes increasingly diffiad deeper
levels are considered, due to the smaller numbexafples
per class. Most of the previous work related tadrighical

classification has been conducted in the fieldeat mining

[11]. By contrast, this paper addresses the hikizat
classification task in bioinformatics. In particylan this

work each class corresponds to a GPCR function.

In this paper the approach used to take advanthgeeo
hierarchy is the divide and conquer principle [1h]order to
explain this approach, let us first introduce somagation.
Each node of the class hierarchy is described bgri@s of
digits separated by a “.” delimiter, where thetfulgit is the
index of the class at the first hierarchical le(@hildren of
the root node), the second digit is the index efdlass at the
second level, and so on. For instance, in a dawisetfour

but to gain any insight into the performance of aligorithm
we have to use a measure of predictive accuratystimore
oriented towards the hierarchical nature of thes<la
hierarchy. One possibility is to report the preidietaccuracy
at every level of classification. This generates naany
accuracy measures as there are classificatiorslevel

However, measuring hierarchical-classification
performance purely in terms of accuracy can beeaishg.
All classifications are not equal in hierarchicklssification.

In general, classifications at lower (deeper) Iswlthe class
hierarchy are more difficult than classifications ragher

(shallower) levels of the class hierarchy. Thidbéxause in
general the number of training examples belonging tlass
is smaller for classes at lower levels than fossts at higher
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levels. Hence, a misclassification at a lower levekay

predicting class 1.1.1.1 for a protein that acyuhlhs class
1.1.1.2 — tends to be more forgivable than a nésdiaation

at a higher level — say predicting class 1.1.1rlafgrotein

that actually has class 4.2.3.2. The former is nioirgivable

for a twofold reason. First, it is more difficutt void, due to
the greater difficulty of predicting lower level des. Second,
it misleads the user less than a misclassificadiba higher
level.

In order to take this into account, we propose easare
the misclassification of hierarchical GPCR functomas
follows. First of all, we associate with each edd¢he class
tree a weight w. The value of this weight is inedys
proportional to the number of the hierarchical levédnat is,
an edge at the first level — i.e., an edge conngdtie root
node to one of its (first-level) children — hasaegker weight
than an edge at the second level — i.e., an edgsecting a
first-level node to one of its (second-level) cteld; an edge
at the second level has a larger weight than ae etighe
third level, and so on. Once each edge in the d¢l@gshas
been assigned a weight, the “degree of misclaaiic” of a
given protein is computed as follows. Letdsbe the class

predicted for a protein andyf be the true class of that

Corea = class 1.1 and G~ class 1.2 at least the prediction
was correct at the first level (class 1).

In the GPCR dataset addressed in this paper, #nerfour
levels in the class hierarchy. To keep the valuetraf
misclassification degree for a given protein noineal in the
range 0 to 1, and to make the edge weight valuesedse
roughly exponentially as we go down the class twe,
assign the weights 0.26, 0.13, 0.07 and 0.04 tetiges at
the first, second, third and fourth level of thesd tree,
respectively. Hence, a completely wrong classikicat such
as Grg = class 1.1.1.1 and 4= 3.1.1.1 — has a
misclassification degree of 1, as desired.

This measure of misclassification cost is esséptiakind
of weighted shortest path distance, a class-distameasure
for hierarchical classification discussed in [14i.addiction,
an extensive discussion about the evaluation afidhical
classification algorithms can be found in [15].

IV. AN OVERVIEW OF THE PSO/ACO
ALGORITHM

Here we provide just an overview of the hybrid Rt

protein. Let M be the misclassification degree esded with Swarm Optimization / Ant Colony Optimization (PS@RA)
predicting class fq for a given protein when the correctalgorithm, originally proposed in [5]. For detaddout this
class of that protein isiG M is computed as the summationalgorithm, readers are referred to that referenthis

of the weight of all edges in the path from thesslaode G.q algorithm was designed to be the first PSO-based
to the class nodeGe in the class tree. Note that if,(g = classification algorithm to natively support nonlimata —
Cwue then M = 0, since the previously-defined path s ai.e., to cope with nominal data directly, withowneerting a
empty set of edges. On the other hand i@ Cie then M nominal attribute into a numerical one and thenlagp

> 0, assuming all edge weights are positive, wiidhe case mathematical operator to the numerical value. Thévation

in this paper. The meaning of M is illustrated igie 1. To to natively support nominal data is that by conngrta
keep the figure simple we consider just a two-levgiominal attribute such agenderinto a numerical attribute

hierarchical classification problem.

Figure 1: Example of the edge weights used for admg degree of
misclassification

In Figure 1, the numbers beside each edge denete
weight of that edge. Supposg.dg= class 1.1 and = class
2.1, characterizing a completely wrong predicti®hen the
misclassification degree is 0.2 + 0.3 + 0.3 + 0.2.& Now
suppose Geq = class 1.1 and (= class 1.2. Then the
misclassification degree is 0.2 + 0.2 = 0.4. Thisdnsistent
with the fact that this misclassification is mu@ss serious
than the previous misclassification example. A&#y when

(say, mappingnaleinto 0 andfemaleinto 1) we would be
introducing an artificial order among the numericalues (1
> 0). Such an order clearly makes no sense indheext of
the original nominal values, and mathematical ojema
applied to this artificial order may generate cewibtuitive
results.

The PSO/ACO algorithm achieves a native support of
nominal data by combining ideas from Ant Colony
Optimisation (Ant-Miner classification algorithm g]) and
Particle Swarm Optimisation [17][18] to create a
classification meta heuristic that supports bothmimal
(including binary as a special case) and continatgutes.

The hybrid PSO/ACO algorithm discovers a set oésul
for each internal node of the class hierarchy. aheinternal
Hass node, the algorithm discovers a set of rodgbe form
IF (conditions) THEN (clags where classs one of the child
classes of that internal node. Each rule predigtsa single
class, but the set of rules as a whole will predittlasses,
because the algorithm guarantees that one or mtas will
be discovered predicting each of the child classes.

In order to cope directly with nominal attributése hybrid
PSO/ACO uses the following approach. A particletams a
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number of pheromone matrices equal to number
categorical attributes in the data set. Each phenenmatrix
contains values for pheromones for each possillee vhat
that attribute can take [16] plus a flag value (tidifference
flag) indicating whether or not the corresponditigilzute is
selected to occur in the decoded
representation for categorical attributes is shawgraphical

ekample will be classified by the rule set at thede
corresponding to class;@n the class hierarchy. Similarly,
the example will be assigned the second-level @esgicted
by the highest-quality rule among all rules cowgrithe
example, or, if no rule covers the example, thetrregjuent

rule. The partickecond-level class in the training set. And so wtjl the

example is assigned the leaf-level class.

form in Figure 2, where each attribute value ané th

indifference flag are represented as slots in tetteuwheel.
This analogy is appropriate for explaining the s of
moving the particles with respect to nominal atités, as
discussed next.
Particle
(Antecedent)

(Consequent)

Attribute 1 Attribute n

&

Figure 2:Particle representation for nominal attributes

THEN <class>

At each iteration, each categorical attribute ie tule
antecedent represented by each particle has iig ealosen,
in order to give a particle a fixed position andgsality. This
is the decoding process. An attribute value is ehosith
probability proportional to its pheromone value.isTfixed
position and so quality is used to update the gats
pheromone matrices in the next iteration. If they p®sition
has a higher quality than any position the partids ever
occupied then it is set as the particle’s past pesition. To
update the values in the pheromone matrices ottineent
particle, the past best, current and its best teighs
positions are used. The quality of these three tipasi
multiplied by individual random learning factors asual in
PSO, are added to the values in the appropriategim the
pheromone matrices of the current particle. Hertbe,
mechanism of increasing the pheromone of a giveibaie
value in the hybrid PSO/ACO corresponds to the mgism
of moving a particle towards that attribute value
conventional PSO. For more details about this m®dbe
reader is referred to [5].

After a set of rules has been discovered for edabsc
node, the examples in the test set are classifiedsing a
top-down approach, as follows. The example is shtothe
set of rules at the root node, and the systemifaemnall rules
covering that example, i.e. all rules whose anteged
conditions (the IF part of the rule) is satisfigdthe attribute
values in the example. Out of all rules covering ¢éixample,
the system chooses the highest-quality one — aiceptd a
measure of rule quality to be described later —assigns the
first-level class predicted by that rule to therepte. If there
are no rules at the root node covering the exantipéefirst-
level class assigned to the example is simply thestm
frequent first-level class in the training set. Ggtdenote the
first-level class assigned to the test example. tNéxe

A. The Modified Rule Quality Measure

The previous version of the PSO/ACO algorithm uthed
following rule-quality measure to evaluate the jtde
accuracy of a candidate rule:

Rule Quality = Sensitivityx Specificity, where

Sensitivity = TP / (TP + FN), Specificity = TN / KT+
FP):

* TP (True Positives) is the number of training cabes
have the positive class and satisfy the anteceatehe
current rule predicting the positive class

* FP (False Positives) is the number of training sdbkat
have the negative class but satisfy the anteceafent
the current rule predicting the positive class

* FN (False Negatives) is the number of training sabkat
have the positive class but do not satisfy the
antecedent of the rule predicting the positives;las

¢ TN (True Negatives) is the number of training cabes

have the negative class and do not satisfy the

antecedent of the current rule predicting the pa@sit
class.

Note that the sum (TP + TN) represents the totaiber of
correct classifications in the training set, whitgt sum (FP +
FN) represents the total number of misclassificegion the
training set. This rule quality measure is alsaduseseveral
other bio-inspired meta-heuristic based classificat
algorithms — e.g., [16][18][19]. In other words séivity is a
measure of how well a rule’s antecedent coverexaenples
in the class predicted by its consequent. Spetifid a
measure of how well a rule’s antecedent avoids rioge
examples in classes that are not the predictechéyrules
consequent. When the proportion of negative andtipes
examples are well balanced, this rule quality mesastorks
well. However, this rule quality measure does rtresent
the desirability of a rule as well when the vasjarity of the
examples belong to the negative class, as explaiest

TABLE 1: EXAMPLE CONFUSION MATRIX (RULE 1)

Actual Class
Positive Negative
Predicted | Positive TP=5 FP=0
Class Negative | FN=5 TN =90

Rule 1's Quality = Sens Spec = 0.5 1 = 0.5

TABLE 2: EXAMPLE CONFUSION MATRIX (RULE 2)

Actual Class
Positive Negative
Predicted | Positive TP=9 FP =36
Class Negative | FN=1 TN =54

Rule 2's Quality = Sens Spec = 0.% 0.6 = 0.54
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Consider two example rules with the confusion masi
shown in Tables 1 and 2, where 90 of the examémng to
the negative class and just 10 examples belorgetpasitive
class. Note that rule 2 (Table 2) has a higher iféts x
Specificity value than rule 1. However, it is irdsting to
compute the precision of each of those rules, whezeision
is usually defined as:

Precision=TP / (TP + FP)

Precision is important because it is a direct memastithe
confidence or reliability of the rule, when it ipgied. Note
that, from the point of view of the application @i
individual rule, maximizing the number of true ntges
(which is incorporated in the use of Specificityaaserm of
the rule quality) is not so crucial. After all, thele will be
used just to classify examples that are satisfyitg)
antecedent. It is true that Specificity involvest ranly
maximizing the number of true negatives,
minimizing the number of false positives. Howewehen the
vast majority of examples have the negative clisss
relatively easy to maximize specificity, even thbutpere
might be several examples in the category of fptsstives.
In this case, the measure of precision introducegranger
pressure towards minimizing the number of falseitppes,
because the number of true positives will tendeadiatively
low — given that the positive class is the minodigss.

Let us now compute the precision of the rules ibl@d
and Table 2. The precision of rule 1 is 5/ 5 =%00vhilst
the precision of rule 2 is just 9 / 36 = 20%. Ofis®, rule 2
has the advantage of covering a significant higineportion
of examples of the positive class (i.e., signifibarhigher
sensitivity). However, in the above example thegpaid for
this high sensitivity is too high, the confidendetlwe rule is
simply too low. Hence, intuitively rule 1 seems thest rule,
a fact that is not captured by the definition ¢ Bensitivity
x Specificity formula.

Therefore, we propose replacing specificity witeqision,
when a rule predicts the minority class (as in tiample).
The hybrid PSO/ACO algorithm uses the following rfied
quality measure as a particle’s fitness when idjgte the
minority class.

Rule Quality = Sensitivityx Precision

When the majority class is to be predicted the rmbmule
quality measure is used. So, in the above examiilesew
qualities of rules 1 and 2 are 051 = 0.5 and 0.% 0.2 =
0.18, so that rule 1 is considered better than2uM/e have
verified that this modified rule quality measureoguces
significantly higher test set accuracies duringlipri@ary
experiments.

B. Minimum Pheromone Limit

To increase the exploration of the PSO/ACO algoitit
has been found useful to add a mechanism to allow
exploration even after the population has converdéis is
achieved by limiting the minimum value possible fan
attribute-value’s pheromone entry. This means thate is
never a probability of O of choosing an attribugduee. This
is conceptually similar to the ACO MiniMax syste®] [as
due to normalisation there is a maximum pheromoni of
1 and also a minimum limit defined by the minimum
pheromone limit. It is also conceptually similar getting a
maximum velocity value in conventional Binary PSED]|
which has the effect of introducing a minimum vafae the
probability of choosing a certain binary value. Tdimal
value of this lower bound — like most parameterB80 and
other bio-inspired algorithms — tends to be problem
dependent. In this work we used the lower bound. oo for
each pheromone value. This threshold value wasraalhy

but alsdetermined in our preliminary experiments, but wakeino

claim that this is an optimal value. Parameterrojsttion is
a topic left for future research.

V COMPUTATIONAL EXPERIMENTS
A. Creation of the Data Sets Used in the Experiment

The classes to be predicted in the data sets usediri
experiments are the functional classes of GPCR&sdh
functional classes are given unique hierarchicdbxes by
[8]. Records have up to 5 class levels, but onlgwls are
used in the datasets, as the data in the 5th ie¥eb sparse
for training — i.e., in general there are too fexaraples of
each class at the 5th level. In any case, it shioelldoted that
predicting all the first four levels of GPCR's das is
already a challenging task. Indeed, most works lba t
classification of GPCRs limit the predictions tostjuthe
topmost or the two topmost class levels (familiexd a
subfamilies but not groups etc) [2]-[4].

The data used in our experiments was derived from
UniProt [21] and GPCRDB [8]. UniProt contains seuge
data with a very rich annotation. It also has cmeferences
for other major biological databases such as RroBitints,
Interpro (see below). It was extensively used is tork as a
source of data for creating the data sets used un o
experiments. Only the UniProtKB/Swiss-Prot was uasd
data source, as it contains a higher quality, mianua
annotated set of proteins.

We did experiments with three different kinds oéglictor
attributes, each of them representing a kind ofotgin
signature”. The three kinds of predictor attributeed in our
experiments are: FingerPrints from the Prints [@2{abase,
Prosite [23] patterns and Interpro [24] entriese$sence, the
protein signatures associated with these databzses the
following characteristics. Prosite patterns are ulag
expressions describing short fragments of protequences.
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Such patterns are especially good at detectinggshiike
catalytic sites in enzymes. The regular expresséongloyed

are good at detecting such highly conserved funatio

regions, as they do not allow partial hits. Howedee to this
rigidity there tend to be a large number of falsgatives
[25]. Prints contains a set of motifs in each engétpng with
descriptions. FingerPrint signatures are diffefesrn Prosite
entries in that they use multiple sets of aminal #@quency
matrices to try and identify an unknown proteirheaitthan
just one motif. Note that these motifs are order&aother
difference is that Prosite’s patterns usually cgpoad to
functional regions, whilst it is often the casettlaPrints
motif refers only to a highly conserved region witio
specific function. Interpro integrates several eimot
identification databases into one.

For each of these three kinds of protein signatuves
created a separate dataset, using just that kindrattin
signature as the predictor attributes. This allbevsompare
the results of an algorithm across the three diffekinds of

B. Experimental Methodology

In all the experiments reported in the next sectite
results were produced by a 10-fold cross-validation
procedure [9]. We report results concerning two sness of
predictive accuracy. First, Tables 3, 4, and 5 meploe
standard measure of classification accuracy (f@kby its
standard deviation) for each level of the GPCR <las
hierarchy. The standard classification accuracsirigply the
number of correctly classified test examples digidy the
total number of test examples. Tables 3, 4 anghérteesults
for the 3 datasets used in our experiments, usngedictor
attributes FingerPrint signatures, Interpro enteed Prosite
patterns, respectively. Second, Table 6 reportsrésalts
according to the misclassification cost measuredbas the
distance between predicted and actual class nodés iclass
hierarchy, as explained earlier.

The experiments involve a comparison between four

protein signatures, to determine whether one ofmthegifferent algorithms, as follows. PSO/ACO_Hier iket

constitutes a better kind of predictor attributetfie sense of
maximizing the predictive accuracy of an algoritithgn the

others. In each of the three datasets, each preigitature

was encoded as a binary attribute, where 1 indictte

presence of a protein signature and O the absence.

After the initial creation of the data sets, eaekadset had
many duplicate examples (proteins). This happertsise
often a protein has several variations (producechbtations
in the coding DNA) and each of these variatiorstdsed as a
separate entry in Uniprot. Once these proteinsegnesented

algorithm described in section 4, producing a sdefor each
internal node of the class hierarchy and clasgifitime test
examples in a top-down fashion. PSO/ACO _flat isla- f
classification version of that algorithm, where tbasic
PSO/ACO algorithm is used to produce a single selethat
directly assigns to a test example a bottom leladsc Note
that by assigning a 4th level class to an exanff@esystem is
automatically assigning to that example classéiseatst, 2nd
and 3rd level of the hierarchy as well. DPSO_fkatthe

Discrete PSO algorithm proposed in [18], which vedso

used to produce a single rule set that directligasgo a test

by sets of motifs (Prosite, FingerPrints or Interprexample a bottom-level class. Note that, unlike hiyerid

signatures), this high level representation terwd$ose the
details of the variations of a given protein. ltinsfact the
purpose of these signatures to generalise acrostimpr
families. Hence, proteins which are somewhat diffiefrom

each other in terms of sequence can be represégtede

same set of attribute-values, creating many dugglicecords.
All duplicate examples were removed to avoid thdaiun
situation where the same example might be includdabth

the training set and the test set.

After considering the duplication problem, the sifeach
data set is as follows:

PSO/ACO algorithm, DPSO transforms nominal attedsut
into numerical, discrete attributes, and so intoedu an
artificial ordering among the originally nominal lues.
DPSO_Heir is a new version of the algorithm propose
[18] which performs hierarchical classification tine same
sense as PSO/ACO_Hier, i.e., producing a rule @eedch
internal node of the class hierarchy and clasdgifytine test
examples in a top-down fashion. For both versiohshe
DPSO algorithm the values o0f=0.73 (constriction
coefficient), ¢, = ¢, = 2.05 (social and personal learning
factors) were used as is standard in the litergfi26g We
compared DPSO and PSO/ACO using the same seeding

*  FingerPrints: 5577 and 338 examples before angethod and using the same modified rule qualitysmea
after duplicate removal, 281 attributes, 11, 43, 78

and 83 classes at th& 24 3%and 4 level.

C. Computational Results

* Prosite: 6462 and 194 examples before and after

duplicate removal, 127 attributes, 11, 37, 42 and

12 classes at the'12™ 3%and &' level.

* Interpro: 7623 and 584 examples before and after
duplicate removal, 448 attributes, 14, 49, 98 and

84 classes at the'12™ 39 and &' level.

TABLE 3: PREDICTIVE ACCURACY (%) WITH PRINTS

ATTRIBUTES
PSO/ PSO/
ACO_Flat | DPSO _Flat| ACO _Hier |DPSO_Hier
Level: 1| 75.65+6.82 75.65+6.82| 89.64+6.75 88.62+8.3}
Level: 2| 34.9949.09 33.09+8.12| 63.44+6.42] 62.61+6.28
Level: 3|24.4615.18 23.22+4.59| 45.18+6.61] 43.79+9.12
Level: 4]|24.23+9.6 | 24.79+6.2§ 33.76+8.70 32.09+10|28
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TABLE 4: PREDICTIVE ACCURACY (%) WITH
INTERPRO ATTRIBUTES

PSO/
ACO_Flat

DPSO_Flat

PSO/
ACQO_Hier

DPSO Hier

Level: 1

55.86+4.64

55.86+4.64

86.31+3.18

86.99+4.27

Level: 2

27.47+4.8]

26.62+5.14

72.33+£2.84

70.58+4.2

Level: 3

20.74+3.38

20.97+3.04

48.02+7.02

47.53+6.98

Level: 4

30.73+7.55

31.31+7.96

36.52+11.3

35.81+7.61

TABLE 5: PREDICT
ATTRIBUTES

IVE ACCUR

ACY (%) WITH PROSITE

PSO/
ACO_Flat

DPSO_Flat

PSO/
ACO_Hier

DPSO_Hier

Level: 1

32.2749.92

32.27+9.92

73.03+8.51]

73.5448.6

Level: 2

6.39+5.96

6.39+5.96

37.49+11.437.66+13.3

Level: 3

3.73+4.82

3.98+5.34

22.13+15.582.02+15.5

Level: 4

NA

NA

NA

NA

TABLE 6: MISSCLASSIFICATION COST BASED ON
DISTANCES IN CLASS TREE

PSO/
ACO_Flat

DPSO_Flat

PSO/
ACO_Hier

DPSO _ Hier

GPCR
Prints

45.95+5.42

46.8+5.17

25.06+5.66)

26.92+7.1%

GPCR
InterPro

59.87+3.61)

59.16+3.55

22.45+3.38

23.31+4.94

GPCR

Prosite

78.13£7.45

78.06+7.43

38.56+6.68

38.67+7.1%

TABLE 7: NUMBER OF RULES DISCOVERED WITH
PRINTS ATTRIBUTES

PSO/ PSO/
ACO_Flat | DPSO_Flat| ACO_Hier | DPSO Hier
Level: 1]/ 6.9+0.32 6.9+0.32 7.0+0.47 6.9+0.32
Level: 2(26.8+1.99 | 26.7+1.95| 24.8+1.48| 24.6+2.27
Level: 3(36.2+3.08 | 39.6+2.99| 28.8+1.32| 29.2+1.03
Level: 4| 22.6+2.37 | 22.0+1.83| 15.1+1.37 15.9+1.37
TABLE 8: NUMBER OF RULES DISCOVERED WITH
INTERPRO ATTRIBUTES
PSO/ PSO/
ACO_Flat | DPSO _Flat| ACO_Hier |DPSO _Hier
Level: 1{12.1+1.45 | 10.4+0.84 11.4+1.51 10.4+0.7
Level: 2(41.0+2.11 | 41.1+1.52 36.2+1.4 36.9+0.99
Level: 3|59.3+2.67 | 58.6+2.8 50.0+2.0 50.3+1.64
Level: 4| 18.7+2.0 18.5+1.9 15.8+1.4 17.7£1.57
TABLE 9: NUMBER OF RULES DISCOVERED WITH
PROSITE ATTRIBUTES
PSO/ PSO/
ACO Flat | DPSO _Flat| ACO Hier | DPSO_Hier
Level: 1|7.4+0.7 7.4+0.7 7.4+0.7 7.4+0.7
Level: 2/18.5+1.35 | 18.2+1.69| 16.0+1.15| 16.9+1.29
Level: 3[11.7+1.16 | 12.0+1.15| 9.7+0.82 10.8+0.79
Level: 4| NA NA NA NA

PSO/ PSO/
ACO _Flat | DPSO _Flat| ACO Hier |DPSO_Hier

Level: 1{6.28+0.9 | 8.03x1.24 | 6.43+0.63| 7.35+0.57|
Level: 2|6.93+0.98 | 7.94+0.92 | 5.89+0.42| 6.69+1.27
Level: 3|4.23+1.98 | 5.75+2.02 | 4.14+0.67| 5.07+0.67
Level: 4/3.07£2.1 | 5.43+1.65| 2.39+0.22| 2.32+0.2]]

TABLE 11: NUMBER OF TERMS PER RULE WITH
INTERPRO ATTRIBUTES

PSO/ PSO/
ACO_Flat | DPSO Flat| ACO Hier | DPSO_ Hier

Level: 1 4.09+0.4 5.06+0.51 | 4.36+0.67| 4.98+0.47
Level: 2|5.81+0.91 | 7.89+0.53 | 5.03+£0.35| 5.14+0.49
Level: 3|1.88+1.0 | 3.96+1.73 | 3.56+0.54| 4.02+0.5]
Level: 4/ 2.65+1.35 | 5.09+1.14 | 2.64+0.23| 2.46x0.2]

TABLE 12: NUMBER OF TERMS PER RULE WITH
PROSITE ATTRIBUTES

PSO/ PSO/
ACO_Flat | DPSO_Flat| ACO_Hier | DPSO_Hier

Level: 1{5.03+0.86 | 6.76+0.96 | 5.01+0.81| 6.69+0.94
Level: 2|6.07+1.27 | 7.96+0.69 | 5.76+0.63| 5.81+0.4§
Level: 3|4.43+2.11 | 5.07+1.65| 3.73+0.43| 3.45+0.3§
Level: 4| NA NA NA NA

—

It is clear to see, from the results in Tables ®ugh 6,
that the divide and conquer approach (associatetth wi
algorithms PSO/ACO_Hier and DPSO_Hier) obtains a
considerably higher predictive accuracy than simply
predicting bottom-level classes. This is due to Wey in
which the problem is split into manageable chunstte
divide and conquer approach whilst taken as a whakea
difficult, many class problem, sometimes with veigw
positive examples (as discussed earlier). Ovaetadle is no
significant difference in the predictive accuracyf o
PSO/ACO_Hier and DPSO_Hier. The cells with NA ierth
refer to the fact that there were not enough examptesent

to train the classification system on.

Still concerning predictive accuracy, it is alsea that, as
predictor attributes for GPCRs classification, Reopatterns
are not as effective as Interpro entries or Finget$
signatures. Interpro and Prints attributes were petitive
with each other. Although it should be noted ttnyt have
different strengths and weaknesses. It was to peated that
Interpro entries would produce some of the besuli®s
purely because the Interpro database tends to coeee
proteins than either of the other identificatiorsteyns (as it
combines these and other systems). On the othet, lume
potential disadvantage of Interpro attributes iat titheir
broader coverage may cause it to loose some agc@asc
classifying a wider array of proteins is a hardeskt
Although Prints does not cover as many proteinsgspro,
the ones it does cover seem to be classified well.
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In Table 4 the accuracies actually increase atbthttom [3]
level during flat classification. At first glancethis is
unexpected as it is impossible for the hybrid PSTDA
algorithm to correctly classify an example at tiogtdm level [4]
once an incorrect classification has been made ligleer
level. However, this is not an error. Some GPCR&hheir
functional classes specified only up to the thiedel (or
shallower), and not up to the fourth level. If grsficant
fraction of those GPCRs are misclassified at thel tevel, [6]
the classification accuracy at the third level eatually be 7
smaller than the classification accuracy at thetfolevel.

8]

Let us now consider the simplicity of the discowkrale [9]
sets — see Tables 7 through 12. In general, thesraarule
set (the smaller the number of rules and the nurob&rms
per rule), the simpler that rule set is. A simptate set
facilitates the interpretation of the discoveredesu and [11]
therefore is a desirable result [9]. It should lmed that
PSO/ACO produces rules with slightly fewer terms irplz]
general, by comparison with DPSO. This small effisct
observed both in the flat and the hierarchical ieess of the
two algorithms.

(5]

[20]

(23]

VI. CONCLUSIONS AND FUTURE RESEARCH 141

The main contributions of this paper are as follofisst,
we proposed some modifications to the original P&
algorithm and justified them. Second, we have gfesttown  [15]
the advantages of considering the class hierarchenw
attempting to classify GPCRs. These results wetairdd in [16]
an extensive comparison with two versions of a flat
classification algorithm and two versions of a érehical
classification algorithm. Third, the results regadrthave also
shown that Interpro and Prints attributes are muoure
effective for predicting GPCR ligand binding clessthan [18]
Prosite attributes.

[17]

- . . . 19

Future research will involve experiments with otkerds [19]
of biological data and with mixed nominal/contingou

attributes. Another research direction is to devela 20]

PSO/ACO classification algorithm that is truly lEsrhical.
Note that although the current algorithm produces a
hierarchical rule set, it only considers the flissification [21]
problem during the run of the algorithm at eachenodthe [22]
class tree. It may be useful to try and take adgabf the (23]
rule set previously discovered within the hierar@nd so 54
produce an algorithm that is more “aware” of thasst [25]
hierarchy structure.

[26]
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