
In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

HIERARCHICAL CLASSIFICATION OF G-PROTEIN-COUPLED
RECEPTORS WITH A PSO/ACO ALGORITHM

Nicholas Holden

Computing Laboratory, University of Kent

Canterbury, CT2 7NF, UK
nh56@kent.ac.uk

Alex A. Freitas

Computing Laboratory, University of Kent

Canterbury, CT2 7NF, UK
A.A.Freitas@kent.ac.uk

ABSTRACT

In our previous work we have proposed a hybrid Particle
Swarm Optimisation / Ant Colony Optimisation (PSO/ACO)
algorithm for discovering classification rules. In this paper we
propose some modifications to the algorithm and apply it to a
challenging hierarchical classification problem. This is a
bioinformatics problem involving the prediction of G-Protein-
Coupled Receptor’s (GPCR) hierarchical functional classes. We
report the results of an extensive comparison between four
versions of swarm intelligence algorithms – two versions based
on our proposed algorithm and two versions based on Discrete
PSO for discovering classification rules proposed in the
literature. The experiments also compared the effectiveness of
different kinds of protein signatures when used as predictor
attributes, namely Prints, Interpro and Prosite signatures.

I. INTRODUCTION

The large amount of proteomic and genomic data now

being produced by modern and efficient sequencing
techniques has exceeded the capacity of wet lab
experimentation. UniProt is a good example of this. This
large protein sequence database contains 205,780 entries
from Swiss-Prot which have been manually annotated and
verified by curators. It also contains 2,533,011 entries [1]
from TrEMBL, which have yet to be manually annotated and
so are annotated automatically. It is clear to see the gap
between the number of proteins with sequences identified and
the number that are closely examined by human curators. The
importance of the automatic techniques created to deal with
this data is also apparent. Many biologists rely on the data
that is automatically annotated and so it is important that the
automatic annotation process be accurate, transparent and
accountable.

A large sub set of proteins is the G-Protein Coupled

Receptor (GPCR) family. GPCR research is an area of
intense study due to the success of past drugs that interact
with them. The prediction of their function is the topic of this
paper. Although there has been work in this field already [2]-
[4], the techniques that have been used so far are in general
“black box” techniques from the point of view of the user,
i.e., they produce predictions that cannot be interpreted by
biologists. Examples of these techniques are SVMs (Support
Vector Machines) and HMMs (Hidden Markov Models).
These techniques tend to produce good classification
accuracies, but their output is opaque. To overcome this
limitation, in this paper we classify GPCR functions with a

hybrid Particle Swarm Optimisation / Ant Colony
Optimisation (PSO/ACO) algorithm that discovers IF-THEN
classification rules. By comparison with the opaque output
produced by SVMs and HMMs, classification rules have the
advantage that they tend to be easily interpreted by the user.

Another limitation of the body of work in the area of

GPCR function prediction is that the works in this area, in
general, do not consider the importance of the hierarchical
nature of this data. Indeed, several papers on GPCR
prediction address the prediction of only the topmost levels
of the class Hierarchy [2]-[4], effectively ignoring that
hierarchy. The hierarchy present in GPCR functional data
conveys information in its own respect. We believe it is
important to try and exploit this property and we show the
advantages of doing so in our experiments.

This paper has the following contributions. First, to the

best of our knowledge, it is the first paper to apply a swarm
intelligence technique to the problem of predicting GPCR
function. Second, it proposes important modifications to the
original hybrid PSO/ACO classification algorithm, recently
proposed and applied to hierarchical classification in our
previous work [5]. We describe a drawback of the rule
quality measure used in the original algorithm (and also used
in several other bio-inspired algorithms), in the context of
rules predicting the minority class, and then propose a
method of rectifying that rule quality measure in this context.
Thirdly it also describes a minimum pheromone limit similar
to the MiniMax [6] system used in ACO to improve search.

II. PROTEINS AND G-PROTEIN-COUPLED

RECEPTORS (GPCR)

Proteins are the main building blocks of the cell, and

perform almost all the functions related to cell activity. Their
primary structure, the one decoded from DNA, is formed
from a sequence of amino acids which are held together by
covalent bonds (strong bonds). This chain is built one amino
acid at a time by the ribosome. In order to function a protein
usually must fold to form a complex 3D structure. Some parts
of protein sequences are found throughout evolution and
across different species. These conserved regions are usually
important and efficient protein functional building blocks.

GPCRs are proteins involved in signalling. They span cell

walls so that they influence the chemistry inside the cell by

In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

sensing the chemistry outside the cell. More specifically,
when a ligand (a substance that binds to a protein) is received
by the GPCR, it causes the G-proteins to swap chemicals, a
biological switch that causes other reactions within the cell to
either be inhibited or allowed. Discussions about the detailed
working of this system are ongoing. This kind of protein is
particularly important for medical applications because it is
believed that 40%-50% of current drugs target GPCR activity
[7]. They are a prime target for “magic bullet” type drugs as
they are directly accessible from the outside of the cell and
can influence important processes inside the cell.

III. HIERARCHICAL CLASSIFICATION

Data mining consists of a set of concepts and techniques

used to find useful patterns within a set of data [9], [10]. In
this project the discovered knowledge is represented as
classification rules. A rule consists of an antecedent (a set of
attribute values) and a consequent (class):

IF <attrib = value> AND ... AND <attrib = value>
THEN <class>

The consequent of the rule is the class predicted by the rule

for the records (examples) where the predictor attributes
hold. An example rule might be IF <Salary = high> AND
<Mortgage = No> THEN <Good Credit>. This kind of
knowledge representation has the advantage of being
intuitively comprehensible to the user. This is important,
because the general goal of data mining is to discover
knowledge that is not only accurate, but also comprehensible
[9][10].

In this paper the classes are arranged in a tree structure

where each node (class) has only one parent – with the
exception of the root of the tree, which does not have any
parent and does not correspond to any class. Hierarchical
class datasets present new challenges when compared to flat
class datasets. The main challenge comes from the extra
complexity associated with such datasets, which is due to two
main factors. Firstly, many (depending on the depth) more
classes must be assigned to the examples. Secondly, the
prediction of a class becomes increasingly difficult as deeper
levels are considered, due to the smaller number of examples
per class. Most of the previous work related to hierarchical
classification has been conducted in the field of text mining
[11]. By contrast, this paper addresses the hierarchical
classification task in bioinformatics. In particular, in this
work each class corresponds to a GPCR function.

In this paper the approach used to take advantage of the

hierarchy is the divide and conquer principle [11]. In order to
explain this approach, let us first introduce some notation.
Each node of the class hierarchy is described by a series of
digits separated by a “.” delimiter, where the first digit is the
index of the class at the first hierarchical level (children of
the root node), the second digit is the index of the class at the
second level, and so on. For instance, in a dataset with four

hierarchical levels, the series of digits 2.3.1.2 refers to a
GPCR function defined by class 2 at the first level of the
hierarchy, class 3 at the second level of the hierarchy, class 1
at the third level, and class 2 at the fourth level. If, say, class
1.X.X.X (where X denotes any digit) is predicted at the first
level for a given protein and the tree node for that class has
only the child nodes 1.1.X.X and 1.2.X.X, only these two
nodes should be considered when predicting the second-level
class of that protein. That is, there is no need to consider the
possibility of assigning that protein to the children of, say, the
class node 2.X.X.X. This holds both during training and test
set classification.

This approach has the important advantage of reducing the

number of classes to be considered for prediction at every
hierarchical level – with the exception of the first level,
where there is no previous classification at a higher class
level (since there is no higher class level). It also leads
naturally to the creation of a hierarchical set of rules, where
each node of the class hierarchy is associated with its own
modular set of rules. Hence, if the user wants to get insight
about the classification of proteins at any particular internal
node of the hierarchy, they can be shown the set of rules
associated with that specific node, i.e., the rules that will
discriminate among the classes corresponding to the children
nodes of that internal node. This approach does, however,
create the following potential problem of misclassification. If
an example is misclassified at a higher node then in general it
has no chance of being correctly classified at lower nodes.
Techniques have been suggested [12] [13] to correct this
specific problem.

A. A Hierarchical Classification Accuracy Measure

In flat classification, the most common method of

evaluating the predictive accuracy of a classification-rule
discovery algorithm is to generate a rule set from a training
set and then apply the rules to a test set comprised of
examples with an unknown class. Predictive accuracy can
then be calculated as the percentage of test examples which
had their class correctly predicted by the rule set. The same
process could be carried out for hierarchical classification,
but to gain any insight into the performance of the algorithm
we have to use a measure of predictive accuracy that is more
oriented towards the hierarchical nature of the class
hierarchy. One possibility is to report the predictive accuracy
at every level of classification. This generates as many
accuracy measures as there are classification levels.

However, measuring hierarchical-classification

performance purely in terms of accuracy can be misleading.
All classifications are not equal in hierarchical classification.
In general, classifications at lower (deeper) levels of the class
hierarchy are more difficult than classifications at higher
(shallower) levels of the class hierarchy. This is because in
general the number of training examples belonging to a class
is smaller for classes at lower levels than for classes at higher

In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

levels. Hence, a misclassification at a lower level – say
predicting class 1.1.1.1 for a protein that actually has class
1.1.1.2 – tends to be more forgivable than a misclassification
at a higher level – say predicting class 1.1.1.1 for a protein
that actually has class 4.2.3.2. The former is more forgivable
for a twofold reason. First, it is more difficult to avoid, due to
the greater difficulty of predicting lower level nodes. Second,
it misleads the user less than a misclassification at a higher
level.

In order to take this into account, we propose to measure

the misclassification of hierarchical GPCR functions as
follows. First of all, we associate with each edge of the class
tree a weight w. The value of this weight is inversely
proportional to the number of the hierarchical level. That is,
an edge at the first level – i.e., an edge connecting the root
node to one of its (first-level) children – has a larger weight
than an edge at the second level – i.e., an edge connecting a
first-level node to one of its (second-level) children; an edge
at the second level has a larger weight than an edge at the
third level, and so on. Once each edge in the class tree has
been assigned a weight, the “degree of misclassification” of a
given protein is computed as follows. Let Cpred be the class
predicted for a protein and Ctrue be the true class of that
protein. Let M be the misclassification degree associated with
predicting class Cpred for a given protein when the correct
class of that protein is Ctrue. M is computed as the summation
of the weight of all edges in the path from the class node Cpred
to the class node Ctrue in the class tree. Note that if Cpred =
Ctrue then M = 0, since the previously-defined path is an
empty set of edges. On the other hand, if Cpred ≠ Ctrue then M
> 0, assuming all edge weights are positive, which is the case
in this paper. The meaning of M is illustrated in Figure 1. To
keep the figure simple we consider just a two-level
hierarchical classification problem.

 0.3 0.3

 1 2

 0.2 0.2 0.2 0.2

 1.1 1.2 2.1 2.2

Figure 1: Example of the edge weights used for computing degree of

misclassification

In Figure 1, the numbers beside each edge denote the

weight of that edge. Suppose Cpred = class 1.1 and Ctrue= class
2.1, characterizing a completely wrong prediction. Then the
misclassification degree is 0.2 + 0.3 + 0.3 + 0.2 = 1.0. Now
suppose Cpred = class 1.1 and Ctrue= class 1.2. Then the
misclassification degree is 0.2 + 0.2 = 0.4. This is consistent
with the fact that this misclassification is much less serious
than the previous misclassification example. After all, when

Cpred = class 1.1 and Ctrue= class 1.2 at least the prediction
was correct at the first level (class 1).

In the GPCR dataset addressed in this paper, there are four

levels in the class hierarchy. To keep the value of the
misclassification degree for a given protein normalized in the
range 0 to 1, and to make the edge weight values decrease
roughly exponentially as we go down the class tree, we
assign the weights 0.26, 0.13, 0.07 and 0.04 to the edges at
the first, second, third and fourth level of the class tree,
respectively. Hence, a completely wrong classification – such
as Cpred = class 1.1.1.1 and Ctrue= 3.1.1.1 – has a
misclassification degree of 1, as desired.

This measure of misclassification cost is essentially a kind

of weighted shortest path distance, a class-distance measure
for hierarchical classification discussed in [14]. In addiction,
an extensive discussion about the evaluation of hierarchical
classification algorithms can be found in [15].

IV. AN OVERVIEW OF THE PSO/ACO

ALGORITHM

Here we provide just an overview of the hybrid Particle
Swarm Optimization / Ant Colony Optimization (PSO/ACO)
algorithm, originally proposed in [5]. For details about this
algorithm, readers are referred to that reference. This
algorithm was designed to be the first PSO-based
classification algorithm to natively support nominal data –
i.e., to cope with nominal data directly, without converting a
nominal attribute into a numerical one and then apply a
mathematical operator to the numerical value. The motivation
to natively support nominal data is that by converting a
nominal attribute such as gender into a numerical attribute
(say, mapping male into 0 and female into 1) we would be
introducing an artificial order among the numerical values (1
> 0). Such an order clearly makes no sense in the context of
the original nominal values, and mathematical operations
applied to this artificial order may generate counter-intuitive
results.

The PSO/ACO algorithm achieves a native support of
nominal data by combining ideas from Ant Colony
Optimisation (Ant-Miner classification algorithm [16]) and
Particle Swarm Optimisation [17][18] to create a
classification meta heuristic that supports both nominal
(including binary as a special case) and continuous attributes.

The hybrid PSO/ACO algorithm discovers a set of rules

for each internal node of the class hierarchy. At each internal
class node, the algorithm discovers a set of rules of the form
IF (conditions) THEN (classi), where classi is one of the child
classes of that internal node. Each rule predicts just a single
class, but the set of rules as a whole will predict all classes,
because the algorithm guarantees that one or more rules will
be discovered predicting each of the child classes.

In order to cope directly with nominal attributes, the hybrid

PSO/ACO uses the following approach. A particle contains a

In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

number of pheromone matrices equal to number of
categorical attributes in the data set. Each pheromone matrix
contains values for pheromones for each possible value that
that attribute can take [16] plus a flag value (the indifference
flag) indicating whether or not the corresponding attribute is
selected to occur in the decoded rule. The particle
representation for categorical attributes is shown in graphical
form in Figure 2, where each attribute value and the
indifference flag are represented as slots in a roulette wheel.
This analogy is appropriate for explaining the process of
moving the particles with respect to nominal attributes, as
discussed next.

Figure 2: Particle representation for nominal attributes

At each iteration, each categorical attribute in the rule

antecedent represented by each particle has its value chosen,
in order to give a particle a fixed position and so quality. This
is the decoding process. An attribute value is chosen with
probability proportional to its pheromone value. This fixed
position and so quality is used to update the particle’s
pheromone matrices in the next iteration. If the new position
has a higher quality than any position the particle has ever
occupied then it is set as the particle’s past best position. To
update the values in the pheromone matrices of the current
particle, the past best, current and its best neighbour’s
positions are used. The quality of these three positions,
multiplied by individual random learning factors as usual in
PSO, are added to the values in the appropriate entries in the
pheromone matrices of the current particle. Hence, the
mechanism of increasing the pheromone of a given attribute
value in the hybrid PSO/ACO corresponds to the mechanism
of moving a particle towards that attribute value in
conventional PSO. For more details about this process the
reader is referred to [5].

After a set of rules has been discovered for each class

node, the examples in the test set are classified by using a
top-down approach, as follows. The example is shown to the
set of rules at the root node, and the system identifies all rules
covering that example, i.e. all rules whose antecedent
conditions (the IF part of the rule) is satisfied by the attribute
values in the example. Out of all rules covering the example,
the system chooses the highest-quality one – according to a
measure of rule quality to be described later – and assigns the
first-level class predicted by that rule to the example. If there
are no rules at the root node covering the example, the first-
level class assigned to the example is simply the most
frequent first-level class in the training set. Let C1 denote the
first-level class assigned to the test example. Next, the

example will be classified by the rule set at the node
corresponding to class C1 in the class hierarchy. Similarly,
the example will be assigned the second-level class predicted
by the highest-quality rule among all rules covering the
example, or, if no rule covers the example, the most-frequent
second-level class in the training set. And so on, until the
example is assigned the leaf-level class.

A. The Modified Rule Quality Measure

The previous version of the PSO/ACO algorithm used the
following rule-quality measure to evaluate the predictive
accuracy of a candidate rule:

Rule Quality = Sensitivity × Specificity, where
Sensitivity = TP / (TP + FN), Specificity = TN / (TN +

FP):
• TP (True Positives) is the number of training cases that

have the positive class and satisfy the antecedent of the
current rule predicting the positive class

• FP (False Positives) is the number of training cases that
have the negative class but satisfy the antecedent of
the current rule predicting the positive class

• FN (False Negatives) is the number of training cases that
have the positive class but do not satisfy the
antecedent of the rule predicting the positive class;

• TN (True Negatives) is the number of training cases that
have the negative class and do not satisfy the
antecedent of the current rule predicting the positive
class.

Note that the sum (TP + TN) represents the total number of

correct classifications in the training set, whilst the sum (FP +
FN) represents the total number of misclassifications in the
training set. This rule quality measure is also used in several
other bio-inspired meta-heuristic based classification
algorithms – e.g., [16][18][19]. In other words sensitivity is a
measure of how well a rule’s antecedent covers the examples
in the class predicted by its consequent. Specificity is a
measure of how well a rule’s antecedent avoids covering
examples in classes that are not the predicted by the rules
consequent. When the proportion of negative and positive
examples are well balanced, this rule quality measure works
well. However, this rule quality measure does not represent
the desirability of a rule as well when the vast majority of the
examples belong to the negative class, as explained next.

TABLE 1: EXAMPLE CONFUSION MATRIX (RULE 1)

Actual Class
Positive Negative

Positive TP = 5 FP = 0 Predicted
Class Negative FN = 5 TN = 90

Rule 1’s Quality = Sens × Spec = 0.5 × 1 = 0.5

TABLE 2: EXAMPLE CONFUSION MATRIX (RULE 2)

Actual Class
Positive Negative

Positive TP = 9 FP = 36 Predicted
Class Negative FN = 1 TN = 54

Rule 2’s Quality = Sens × Spec = 0.9 × 0.6 = 0.54

In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

Consider two example rules with the confusion matrices

shown in Tables 1 and 2, where 90 of the examples belong to
the negative class and just 10 examples belong to the positive
class. Note that rule 2 (Table 2) has a higher Sensitivity x
Specificity value than rule 1. However, it is interesting to
compute the precision of each of those rules, where precision
is usually defined as:

Precision = TP / (TP + FP)

Precision is important because it is a direct measure of the

confidence or reliability of the rule, when it is applied. Note
that, from the point of view of the application of an
individual rule, maximizing the number of true negatives
(which is incorporated in the use of Specificity as a term of
the rule quality) is not so crucial. After all, the rule will be
used just to classify examples that are satisfying its
antecedent. It is true that Specificity involves not only
maximizing the number of true negatives, but also
minimizing the number of false positives. However, when the
vast majority of examples have the negative class, it is
relatively easy to maximize specificity, even though there
might be several examples in the category of false positives.
In this case, the measure of precision introduces a stronger
pressure towards minimizing the number of false positives,
because the number of true positives will tend to be relatively
low – given that the positive class is the minority class.

Let us now compute the precision of the rules in Table 1

and Table 2. The precision of rule 1 is 5 / 5 = 100%, whilst
the precision of rule 2 is just 9 / 36 = 20%. Of course, rule 2
has the advantage of covering a significant higher proportion
of examples of the positive class (i.e., significantly higher
sensitivity). However, in the above example the price paid for
this high sensitivity is too high, the confidence of the rule is
simply too low. Hence, intuitively rule 1 seems the best rule,
a fact that is not captured by the definition of the Sensitivity
× Specificity formula.

Therefore, we propose replacing specificity with precision,

when a rule predicts the minority class (as in this example).
The hybrid PSO/ACO algorithm uses the following modified
quality measure as a particle’s fitness when it predicts the
minority class.

Rule Quality = Sensitivity × Precision

When the majority class is to be predicted the normal rule
quality measure is used. So, in the above examples, the new
qualities of rules 1 and 2 are 0.5 × 1 = 0.5 and 0.9 × 0.2 =
0.18, so that rule 1 is considered better than rule 2. We have
verified that this modified rule quality measure produces
significantly higher test set accuracies during preliminary
experiments.

B. Minimum Pheromone Limit

To increase the exploration of the PSO/ACO algorithm, it

has been found useful to add a mechanism to allow
exploration even after the population has converged. This is
achieved by limiting the minimum value possible for an
attribute-value’s pheromone entry. This means that there is
never a probability of 0 of choosing an attribute-value. This
is conceptually similar to the ACO MiniMax system [6] as
due to normalisation there is a maximum pheromone limit of
1 and also a minimum limit defined by the minimum
pheromone limit. It is also conceptually similar to setting a
maximum velocity value in conventional Binary PSO [20],
which has the effect of introducing a minimum value for the
probability of choosing a certain binary value. The optimal
value of this lower bound – like most parameters in PSO and
other bio-inspired algorithms – tends to be problem
dependent. In this work we used the lower bound of 0.1% for
each pheromone value. This threshold value was empirically
determined in our preliminary experiments, but we make no
claim that this is an optimal value. Parameter optimisation is
a topic left for future research.

V COMPUTATIONAL EXPERIMENTS

A. Creation of the Data Sets Used in the Experiments

The classes to be predicted in the data sets used in our

experiments are the functional classes of GPCRs. These
functional classes are given unique hierarchical indexes by
[8]. Records have up to 5 class levels, but only 4 levels are
used in the datasets, as the data in the 5th level is too sparse
for training – i.e., in general there are too few examples of
each class at the 5th level. In any case, it should be noted that
predicting all the first four levels of GPCR’s classes is
already a challenging task. Indeed, most works on the
classification of GPCRs limit the predictions to just the
topmost or the two topmost class levels (families and
subfamilies but not groups etc) [2]-[4].

The data used in our experiments was derived from

UniProt [21] and GPCRDB [8]. UniProt contains sequence
data with a very rich annotation. It also has cross references
for other major biological databases such as Prosite, Prints,
Interpro (see below). It was extensively used in this work as a
source of data for creating the data sets used in our
experiments. Only the UniProtKB/Swiss-Prot was used as a
data source, as it contains a higher quality, manually
annotated set of proteins.

We did experiments with three different kinds of predictor

attributes, each of them representing a kind of “protein
signature”. The three kinds of predictor attributes used in our
experiments are: FingerPrints from the Prints [22] database,
Prosite [23] patterns and Interpro [24] entries. In essence, the
protein signatures associated with these databases have the
following characteristics. Prosite patterns are regular
expressions describing short fragments of protein sequences.

In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

Such patterns are especially good at detecting things like
catalytic sites in enzymes. The regular expressions employed
are good at detecting such highly conserved functional
regions, as they do not allow partial hits. However due to this
rigidity there tend to be a large number of false negatives
[25]. Prints contains a set of motifs in each entry, along with
descriptions. FingerPrint signatures are different from Prosite
entries in that they use multiple sets of amino acid frequency
matrices to try and identify an unknown protein rather than
just one motif. Note that these motifs are ordered. Another
difference is that Prosite’s patterns usually correspond to
functional regions, whilst it is often the case that a Prints
motif refers only to a highly conserved region with no
specific function. Interpro integrates several protein
identification databases into one.

For each of these three kinds of protein signatures we
created a separate dataset, using just that kind of protein
signature as the predictor attributes. This allows to compare
the results of an algorithm across the three different kinds of
protein signatures, to determine whether one of them
constitutes a better kind of predictor attribute (in the sense of
maximizing the predictive accuracy of an algorithm) than the
others. In each of the three datasets, each protein signature
was encoded as a binary attribute, where 1 indicates the
presence of a protein signature and 0 the absence.

After the initial creation of the data sets, each data set had

many duplicate examples (proteins). This happens because
often a protein has several variations (produced by mutations
in the coding DNA) and each of these variations is stored as a
separate entry in Uniprot. Once these proteins are represented
by sets of motifs (Prosite, FingerPrints or Interpro
signatures), this high level representation tends to lose the
details of the variations of a given protein. It is in fact the
purpose of these signatures to generalise across protein
families. Hence, proteins which are somewhat different from
each other in terms of sequence can be represented by the
same set of attribute-values, creating many duplicate records.
All duplicate examples were removed to avoid the unfair
situation where the same example might be included in both
the training set and the test set.

After considering the duplication problem, the size of each

data set is as follows:
• FingerPrints: 5577 and 338 examples before and

after duplicate removal, 281 attributes, 11, 43, 78
and 83 classes at the 1st, 2nd, 3rd and 4th level.

• Prosite: 6462 and 194 examples before and after
duplicate removal, 127 attributes, 11, 37, 42 and
12 classes at the 1st, 2nd, 3rd and 4th level.

• Interpro: 7623 and 584 examples before and after
duplicate removal, 448 attributes, 14, 49, 98 and
84 classes at the 1st, 2nd, 3rd and 4th level.

B. Experimental Methodology

In all the experiments reported in the next section, the
results were produced by a 10-fold cross-validation
procedure [9]. We report results concerning two measures of
predictive accuracy. First, Tables 3, 4, and 5 report the
standard measure of classification accuracy (followed by its
standard deviation) for each level of the GPCR class
hierarchy. The standard classification accuracy is simply the
number of correctly classified test examples divided by the
total number of test examples. Tables 3, 4 and 5 report results
for the 3 datasets used in our experiments, using as predictor
attributes FingerPrint signatures, Interpro entries and Prosite
patterns, respectively. Second, Table 6 reports the results
according to the misclassification cost measure based on the
distance between predicted and actual class nodes in the class
hierarchy, as explained earlier.

The experiments involve a comparison between four

different algorithms, as follows. PSO/ACO_Hier is the
algorithm described in section 4, producing a rule set for each
internal node of the class hierarchy and classifying the test
examples in a top-down fashion. PSO/ACO_flat is a flat-
classification version of that algorithm, where the basic
PSO/ACO algorithm is used to produce a single rule set that
directly assigns to a test example a bottom level class. Note
that by assigning a 4th level class to an example the system is
automatically assigning to that example classes at the 1st, 2nd
and 3rd level of the hierarchy as well. DPSO_flat is the
Discrete PSO algorithm proposed in [18], which was also
used to produce a single rule set that directly assigns to a test
example a bottom-level class. Note that, unlike the hybrid
PSO/ACO algorithm, DPSO transforms nominal attributes
into numerical, discrete attributes, and so introduces an
artificial ordering among the originally nominal values.
DPSO_Heir is a new version of the algorithm proposed in
[18] which performs hierarchical classification in the same
sense as PSO/ACO_Hier, i.e., producing a rule set for each
internal node of the class hierarchy and classifying the test
examples in a top-down fashion. For both versions of the
DPSO algorithm the values of χ=0.73 (constriction
coefficient), ϕ1 = ϕ2 = 2.05 (social and personal learning
factors) were used as is standard in the literature [26]. We
compared DPSO and PSO/ACO using the same seeding
method and using the same modified rule quality measure.

C. Computational Results

TABLE 3: PREDICTIVE ACCURACY (%) WITH PRINTS
ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 75.65±6.82 75.65±6.82 89.64±6.75 88.62±8.37

Level: 2 34.99±9.09 33.09±8.12 63.44±6.42 62.61±6.28

Level: 3 24.46±5.18 23.22±4.59 45.18±6.61 43.79±9.12

Level: 4 24.23±9.6 24.79±6.28 33.76±8.79 32.09±10.28

In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

TABLE 4: PREDICTIVE ACCURACY (%) WITH
INTERPRO ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 55.86±4.64 55.86±4.64 86.31±3.18 86.99±4.27

Level: 2 27.47±4.81 26.62±5.14 72.33±2.84 70.58±4.2

Level: 3 20.74±3.38 20.97±3.04 48.02±7.02 47.53±6.98

Level: 4 30.73±7.55 31.31±7.96 36.52±11.3 35.81±7.61

TABLE 5: PREDICTIVE ACCURACY (%) WITH PROSITE
ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 32.27±9.92 32.27±9.92 73.03±8.51 73.54±8.6

Level: 2 6.39±5.96 6.39±5.96 37.49±11.47 37.66±13.3

Level: 3 3.73±4.82 3.98±5.34 22.13±15.58 22.02±15.5

Level: 4 NA NA NA NA

TABLE 6: MISSCLASSIFICATION COST BASED ON
DISTANCES IN CLASS TREE

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier
GPCR
Prints 45.95±5.42 46.8±5.17 25.06±5.66 26.92±7.15
GPCR

InterPro 59.87±3.61 59.16±3.55 22.45±3.38 23.31±4.94
GPCR
Prosite 78.13±7.45 78.06±7.43 38.56±6.68 38.67±7.15

TABLE 7: NUMBER OF RULES DISCOVERED WITH
PRINTS ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 6.9±0.32 6.9±0.32 7.0±0.47 6.9±0.32

Level: 2 26.8±1.99 26.7±1.95 24.8±1.48 24.6±2.27

Level: 3 36.2±3.08 39.6±2.99 28.8±1.32 29.2±1.03

Level: 4 22.6±2.37 22.0±1.83 15.1±1.37 15.9±1.37

TABLE 8: NUMBER OF RULES DISCOVERED WITH
INTERPRO ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 12.1±1.45 10.4±0.84 11.4±1.51 10.4±0.7

Level: 2 41.0±2.11 41.1±1.52 36.2±1.4 36.9±0.99

Level: 3 59.3±2.67 58.6±2.8 50.0±2.0 50.3±1.64

Level: 4 18.7±2.0 18.5±1.9 15.8±1.4 17.7±1.57

TABLE 9: NUMBER OF RULES DISCOVERED WITH
PROSITE ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 7.4±0.7 7.4±0.7 7.4±0.7 7.4±0.7

Level: 2 18.5±1.35 18.2±1.69 16.0±1.15 16.9±1.29

Level: 3 11.7±1.16 12.0±1.15 9.7±0.82 10.8±0.79

Level: 4 NA NA NA NA

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 6.28±0.9 8.03±1.24 6.43±0.63 7.35±0.57

Level: 2 6.93±0.98 7.94±0.92 5.89±0.42 6.69±1.22

Level: 3 4.23±1.98 5.75±2.02 4.14±0.67 5.07±0.67

Level: 4 3.07±2.1 5.43±1.65 2.39±0.22 2.32±0.21

TABLE 11: NUMBER OF TERMS PER RULE WITH
INTERPRO ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 4.09±0.4 5.06±0.51 4.36±0.67 4.98±0.47

Level: 2 5.81±0.91 7.89±0.53 5.03±0.35 5.14±0.49

Level: 3 1.88±1.0 3.96±1.73 3.56±0.54 4.02±0.51

Level: 4 2.65±1.35 5.09±1.14 2.64±0.23 2.46±0.21

TABLE 12: NUMBER OF TERMS PER RULE WITH
PROSITE ATTRIBUTES

PSO/

ACO_Flat DPSO_Flat
PSO/

ACO_Hier DPSO_Hier

Level: 1 5.03±0.86 6.76±0.96 5.01±0.81 6.69±0.94

Level: 2 6.07±1.27 7.96±0.69 5.76±0.63 5.81±0.48

Level: 3 4.43±2.11 5.07±1.65 3.73±0.43 3.45±0.35

Level: 4 NA NA NA NA

It is clear to see, from the results in Tables 3 through 6,

that the divide and conquer approach (associated with
algorithms PSO/ACO_Hier and DPSO_Hier) obtains a
considerably higher predictive accuracy than simply
predicting bottom-level classes. This is due to the way in
which the problem is split into manageable chunks by the
divide and conquer approach whilst taken as a whole it is a
difficult, many class problem, sometimes with very few
positive examples (as discussed earlier). Overall, there is no
significant difference in the predictive accuracy of
PSO/ACO_Hier and DPSO_Hier. The cells with NA in them
refer to the fact that there were not enough examples present
to train the classification system on.

Still concerning predictive accuracy, it is also clear that, as

predictor attributes for GPCRs classification, Prosite patterns
are not as effective as Interpro entries or FingerPrints
signatures. Interpro and Prints attributes were competitive
with each other. Although it should be noted that they have
different strengths and weaknesses. It was to be expected that
Interpro entries would produce some of the best results,
purely because the Interpro database tends to cover more
proteins than either of the other identification systems (as it
combines these and other systems). On the other hand, one
potential disadvantage of Interpro attributes is that their
broader coverage may cause it to loose some accuracy as
classifying a wider array of proteins is a harder task.
Although Prints does not cover as many proteins as Interpro,
the ones it does cover seem to be classified well.

In: Proc. of the 2006 IEEE Swarm Intelligence Symposium, pp. 77-84.

In Table 4 the accuracies actually increase at the bottom
level during flat classification. At first glance, this is
unexpected as it is impossible for the hybrid PSO/ACO
algorithm to correctly classify an example at the bottom level
once an incorrect classification has been made at a higher
level. However, this is not an error. Some GPCRs have their
functional classes specified only up to the third level (or
shallower), and not up to the fourth level. If a significant
fraction of those GPCRs are misclassified at the third level,
the classification accuracy at the third level can actually be
smaller than the classification accuracy at the fourth level.

Let us now consider the simplicity of the discovered rule

sets – see Tables 7 through 12. In general, the smaller a rule
set (the smaller the number of rules and the number of terms
per rule), the simpler that rule set is. A simpler rule set
facilitates the interpretation of the discovered rules, and
therefore is a desirable result [9]. It should be noted that
PSO/ACO produces rules with slightly fewer terms in
general, by comparison with DPSO. This small effect is
observed both in the flat and the hierarchical versions of the
two algorithms.

VI. CONCLUSIONS AND FUTURE RESEARCH

The main contributions of this paper are as follows. First,

we proposed some modifications to the original PSO/ACO
algorithm and justified them. Second, we have clearly shown
the advantages of considering the class hierarchy when
attempting to classify GPCRs. These results were obtained in
an extensive comparison with two versions of a flat
classification algorithm and two versions of a hierarchical
classification algorithm. Third, the results reported have also
shown that Interpro and Prints attributes are much more
effective for predicting GPCR ligand binding classes than
Prosite attributes.

Future research will involve experiments with other kinds

of biological data and with mixed nominal/continuous
attributes. Another research direction is to develop a
PSO/ACO classification algorithm that is truly hierarchical.
Note that although the current algorithm produces a
hierarchical rule set, it only considers the flat classification
problem during the run of the algorithm at each node in the
class tree. It may be useful to try and take advantage of the
rule set previously discovered within the hierarchy and so
produce an algorithm that is more “aware” of the class-
hierarchy structure.

REFERENCES

[1] UniProt Release Notes,
ftp://ftp.ebi.ac.uk/pub/databases/UniProt/relnotes.txt, Visited on
Jan. 2006.

[2] P.K. Papasaikas, P.G. Bagos, Z.I. Litou, S.J. Hamodrakas. A
novel method for GPCR recognition and family classification
from sequence alone using signatures derived from profile hidden
Markov models. SAR QSAR Environ Res, 14(5-6),pp. 413-20,
Oct-Dec, 2003.

[3] M. Bhasin, G.P. Raghava. GPCRpred: an SVM-based method for
prediction of families and subfamilies of G-protein coupled
receptors. Nucleic Acids Res. 1, 32(Web Server issue),pp. 383-9,
Jul 2004.

[4] R. Karchin, K. Karplus, D. Haussler. Classifying G-protein
coupled receptors with support vector machines. Bioinformatics,
18(1):pp. 147-59, 2002 Jan.

[5] N. Holden, A.A. Freitas. A hybrid particle swarm/ant colony
algorithm for the classification of hierarchical biological data.
Proc. 2005 IEEE Swarm Intelligence Symp., pp. 100-107, 2005.

[6] M. Dorigo, T.S. Stützle, Ant Colony Optimization. MIT Press.
199. 2004

[7] D. Fillmore, It’s a GPCR world, Modern drug discovery, vol. 11,
issue 7, pp 24-28, Nov 2004

[8] GPCR, http://www.gpcr.org/7tm/, Visited on Jan. 2006.
[9] I.H. Witten and E. Frank. Data Mining: Practical Machine

Learning Tools, 2nd Ed. Morgan Kaufmann Publications, 2005.
[10] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth. From data mining

to knowledge discovery: an overview, Advances in Knowledge
Discovery and Data Mining, AAAI/MIT, pp. 1-34, 1996.

[11] A. Sun, E.-P. Lim, Hierarchical Text Classification and
Evaluation, Proc. 2001 IEEE ICDM (Int. Conf. on Data Mining),
pp. 521-528, 2001

[12] S. T. Dumais, H. Chen. Hierarchical classification of web
content. In Proc. of the 23rd Int'l ACM Conf. on Research and
Development in Information Retrieval (SIGIR). pp. 256—263.
August 2000.

[13] A. Sun, E.-P. Lim, W. Keong Ng, J. Srivastava. Blocking
Reduction Strategies in Hierarchical Text Classification. IEEE
Trans. Knowl. Data Eng. 16(10): pp. 1305-1308 .2004.

[14] H. Blockeel, M. Bruynooghe, S. Dzeroski, J. Ramon, and J.
Struyf, Hierarchical Multi-Classification. SIGKDD Workshop
on Multi-Relational Data Mining (MRDM-2002), pp. 21—35,
2002.

[15] A. Sun , E.P. Lim. Hierarchical Text Classification and
Evaluation. Proceedings of the 2001 IEEE International
Conference on Data Mining, pp. 521-528. 2001.

[16] R.S. Parpinelli, H.S. Lopes, A.A. Freitas. Data Mining with an
Ant Colony Optimization Algorithm, IEEE Trans. on Evolutionary
Computation, special issue on Ant Colony algorithms, 6(4), pp.
321-332, Aug 2002.

[17] J. Kennedy, R. C. Eberhart, with Y. Shi. Swarm Intelligence, San
Francisco: Morgan Kaufmann/ Academic Press, 2001.

[18] T. Sousa, A. Silva, A. Neves, Particle Swarm based Data Mining
Algorithms for classification tasks, Parallel Computing 30, pp.
767–783, 2004.

[19] R.T. Alves, M.R. Delgado, H.S. Lopes, A.A. Freitas. An artificial
immune system for fuzzy-rule induction in data mining. Proc.
Parallel Problem Solving from Nature (PPSN-2004), LNCS 3242,
pp. 1011-1020, 2004.

[20] J. Kennedy, R. C. Eberhart. A discrete binary version of the
particle swarm algorithm. Proceedings of the 1997 Conference on
Systems, Man, and Cybernetics, pp. 4104-4109. 1997.

[21] UniProt, http://www.ebi.UniProt.org/, Visited on Jan. 2006.
[22] Prints, http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/, Visited

on Jan. 2006.
[23] ProSite, http://us.expasy.org/prosite/, Visited on Jan. 2006.
[24] Interpro, http://www.ebi.ac.uk/interpro/, Visited on Jan. 2006.
[25] J. McDowall, InterPro: Exploring a Powerful Protein Diagnostic

Tool, ECCB05, Tutorial, pp 14, 2005.
[26] M. Clerc, J. Kennedy, The particle swarm-explosion, stability and

convergence in a multidimensional complex space, IEEE
Transactions on Evolutionary Computation 6 (1). 2002.

