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ABSTRACT 
 

In our previous work we have proposed a hybrid Particle 
Swarm Optimisation / Ant Colony Optimisation (PSO/ACO) 
algorithm for discovering classification rules. In this paper we 
propose some modifications to the algorithm and apply it to a 
challenging hierarchical classification problem. This is a 
bioinformatics problem involving the prediction of G-Protein-
Coupled Receptor’s (GPCR) hierarchical functional classes. We 
report the results of an extensive comparison between four 
versions of swarm intelligence algorithms – two versions based 
on our proposed algorithm and two versions based on Discrete 
PSO for discovering classification rules proposed in the 
literature. The experiments also compared the effectiveness of 
different kinds of protein signatures when used as predictor 
attributes, namely Prints, Interpro and Prosite signatures. 

 
I. INTRODUCTION 

 
The large amount of proteomic and genomic data now 

being produced by modern and efficient sequencing 
techniques has exceeded the capacity of wet lab 
experimentation. UniProt is a good example of this. This 
large protein sequence database contains 205,780 entries 
from Swiss-Prot which have been manually annotated and 
verified by curators. It also contains 2,533,011 entries [1] 
from TrEMBL, which have yet to be manually annotated and 
so are annotated automatically. It is clear to see the gap 
between the number of proteins with sequences identified and 
the number that are closely examined by human curators. The 
importance of the automatic techniques created to deal with 
this data is also apparent. Many biologists rely on the data 
that is automatically annotated and so it is important that the 
automatic annotation process be accurate, transparent and 
accountable. 

 
A large sub set of proteins is the G-Protein Coupled 

Receptor (GPCR) family. GPCR research is an area of 
intense study due to the success of past drugs that interact 
with them. The prediction of their function is the topic of this 
paper. Although there has been work in this field already [2]-
[4], the techniques that have been used so far are in general 
“black box” techniques from the point of view of the user, 
i.e., they produce predictions that cannot be interpreted by 
biologists. Examples of these techniques are SVMs (Support 
Vector Machines) and HMMs (Hidden Markov Models). 
These techniques tend to produce good classification 
accuracies, but their output is opaque. To overcome this 
limitation, in this paper we classify GPCR functions with a 

hybrid Particle Swarm Optimisation / Ant Colony 
Optimisation (PSO/ACO) algorithm that discovers IF-THEN 
classification rules. By comparison with the opaque output 
produced by SVMs and HMMs, classification rules have the 
advantage that they tend to be easily interpreted by the user. 

 
Another limitation of the body of work in the area of 

GPCR function prediction is that the works in this area, in 
general, do not consider the importance of the hierarchical 
nature of this data. Indeed, several papers on GPCR 
prediction address the prediction of only the topmost levels 
of the class Hierarchy [2]-[4], effectively ignoring that 
hierarchy. The hierarchy present in GPCR functional data 
conveys information in its own respect. We believe it is 
important to try and exploit this property and we show the 
advantages of doing so in our experiments.  

 
This paper has the following contributions. First, to the 

best of our knowledge, it is the first paper to apply a swarm 
intelligence technique to the problem of predicting GPCR 
function. Second, it proposes important modifications to the 
original hybrid PSO/ACO classification algorithm, recently 
proposed and applied to hierarchical classification in our 
previous work [5]. We describe a drawback of the rule 
quality measure used in the original algorithm (and also used 
in several other bio-inspired algorithms), in the context of 
rules predicting the minority class, and then propose a 
method of rectifying that rule quality measure in this context. 
Thirdly it also describes a minimum pheromone limit similar 
to the MiniMax [6] system used in ACO to improve search. 

 
II. PROTEINS AND G-PROTEIN-COUPLED 

RECEPTORS (GPCR) 
 
Proteins are the main building blocks of the cell, and 

perform almost all the functions related to cell activity. Their 
primary structure, the one decoded from DNA, is formed 
from a sequence of amino acids which are held together by 
covalent bonds (strong bonds). This chain is built one amino 
acid at a time by the ribosome. In order to function a protein 
usually must fold to form a complex 3D structure. Some parts 
of protein sequences are found throughout evolution and 
across different species. These conserved regions are usually 
important and efficient protein functional building blocks. 

 
GPCRs are proteins involved in signalling. They span cell 

walls so that they influence the chemistry inside the cell by 
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sensing the chemistry outside the cell. More specifically, 
when a ligand (a substance that binds to a protein) is received 
by the GPCR, it causes the G-proteins to swap chemicals, a 
biological switch that causes other reactions within the cell to 
either be inhibited or allowed. Discussions about the detailed 
working of this system are ongoing. This kind of protein is 
particularly important for medical applications because it is 
believed that 40%-50% of current drugs target GPCR activity 
[7]. They are a prime target for “magic bullet” type drugs as 
they are directly accessible from the outside of the cell and 
can influence important processes inside the cell. 

 
III. HIERARCHICAL CLASSIFICATION 

 
Data mining consists of a set of concepts and techniques 

used to find useful patterns within a set of data [9], [10]. In 
this project the discovered knowledge is represented as 
classification rules. A rule consists of an antecedent (a set of 
attribute values) and a consequent (class): 

 
IF <attrib = value> AND ... AND <attrib = value>  
THEN <class> 
 
The consequent of the rule is the class predicted by the rule 

for the records (examples) where the predictor attributes 
hold. An example rule might be IF <Salary = high> AND 
<Mortgage = No> THEN <Good Credit>. This kind of 
knowledge representation has the advantage of being 
intuitively comprehensible to the user. This is important, 
because the general goal of data mining is to discover 
knowledge that is not only accurate, but also comprehensible 
[9][10]. 

 
In this paper the classes are arranged in a tree structure 

where each node (class) has only one parent – with the 
exception of the root of the tree, which does not have any 
parent and does not correspond to any class. Hierarchical 
class datasets present new challenges when compared to flat 
class datasets. The main challenge comes from the extra 
complexity associated with such datasets, which is due to two 
main factors. Firstly, many (depending on the depth) more 
classes must be assigned to the examples. Secondly, the 
prediction of a class becomes increasingly difficult as deeper 
levels are considered, due to the smaller number of examples 
per class. Most of the previous work related to hierarchical 
classification has been conducted in the field of text mining 
[11]. By contrast, this paper addresses the hierarchical 
classification task in bioinformatics. In particular, in this 
work each class corresponds to a GPCR function. 

 
In this paper the approach used to take advantage of the 

hierarchy is the divide and conquer principle [11]. In order to 
explain this approach, let us first introduce some notation. 
Each node of the class hierarchy is described by a series of 
digits separated by a “.” delimiter, where the first digit is the 
index of the class at the first hierarchical level (children of 
the root node), the second digit is the index of the class at the 
second level, and so on. For instance, in a dataset with four 

hierarchical levels, the series of digits 2.3.1.2 refers to a 
GPCR function defined by class 2 at the first level of the 
hierarchy, class 3 at the second level of the hierarchy, class 1 
at the third level, and class 2 at the fourth level. If, say, class 
1.X.X.X (where X denotes any digit) is predicted at the first 
level for a given protein and the tree node for that class has 
only the child nodes 1.1.X.X and 1.2.X.X, only these two 
nodes should be considered when predicting the second-level 
class of that protein. That is, there is no need to consider the 
possibility of assigning that protein to the children of, say, the 
class node 2.X.X.X. This holds both during training and test 
set classification.  

 
This approach has the important advantage of reducing the 

number of classes to be considered for prediction at every 
hierarchical level – with the exception of the first level, 
where there is no previous classification at a higher class 
level (since there is no higher class level). It also leads 
naturally to the creation of a hierarchical set of rules, where 
each node of the class hierarchy is associated with its own 
modular set of rules. Hence, if the user wants to get insight 
about the classification of proteins at any particular internal 
node of the hierarchy, they can be shown the set of rules 
associated with that specific node, i.e., the rules that will 
discriminate among the classes corresponding to the children 
nodes of that internal node. This approach does, however, 
create the following potential problem of misclassification. If 
an example is misclassified at a higher node then in general it 
has no chance of being correctly classified at lower nodes. 
Techniques have been suggested [12] [13] to correct this 
specific problem. 

 
A. A Hierarchical Classification Accuracy Measure 

 
In flat classification, the most common method of 

evaluating the predictive accuracy of a classification-rule 
discovery algorithm is to generate a rule set from a training 
set and then apply the rules to a test set comprised of 
examples with an unknown class. Predictive accuracy can 
then be calculated as the percentage of test examples which 
had their class correctly predicted by the rule set. The same 
process could be carried out for hierarchical classification, 
but to gain any insight into the performance of the algorithm 
we have to use a measure of predictive accuracy that is more 
oriented towards the hierarchical nature of the class 
hierarchy. One possibility is to report the predictive accuracy 
at every level of classification. This generates as many 
accuracy measures as there are classification levels. 

 
However, measuring hierarchical-classification 

performance purely in terms of accuracy can be misleading. 
All classifications are not equal in hierarchical classification. 
In general, classifications at lower (deeper) levels of the class 
hierarchy are more difficult than classifications at higher 
(shallower) levels of the class hierarchy. This is because in 
general the number of training examples belonging to a class 
is smaller for classes at lower levels than for classes at higher 
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levels. Hence, a misclassification at a lower level – say 
predicting class 1.1.1.1 for a protein that actually has class 
1.1.1.2 – tends to be more forgivable than a misclassification 
at a higher level – say predicting class 1.1.1.1 for a protein 
that actually has class 4.2.3.2. The former is more forgivable 
for a twofold reason. First, it is more difficult to avoid, due to 
the greater difficulty of predicting lower level nodes. Second, 
it misleads the user less than a misclassification at a higher 
level. 

 
In order to take this into account, we propose to measure 

the misclassification of hierarchical GPCR functions as 
follows. First of all, we associate with each edge of the class 
tree a weight w. The value of this weight is inversely 
proportional to the number of the hierarchical level. That is, 
an edge at the first level – i.e., an edge connecting the root 
node to one of its (first-level) children – has a larger weight 
than an edge at the second level – i.e., an edge connecting a 
first-level node to one of its (second-level) children; an edge 
at the second level has a larger weight than an edge at the 
third level, and so on. Once each edge in the class tree has 
been assigned a weight, the “degree of misclassification” of a 
given protein is computed as follows. Let Cpred be the class 
predicted for a protein and Ctrue be the true class of that 
protein. Let M be the misclassification degree associated with 
predicting class Cpred for a given protein when the correct 
class of that protein is Ctrue. M is computed as the summation 
of the weight of all edges in the path from the class node Cpred 
to the class node Ctrue in the class tree. Note that if Cpred = 
Ctrue then M = 0, since the previously-defined path is an 
empty set of edges. On the other hand, if Cpred ≠ Ctrue then M 
> 0, assuming all edge weights are positive, which is the case 
in this paper. The meaning of M is illustrated in Figure 1. To 
keep the figure simple we consider just a two-level 
hierarchical classification problem. 

 
 
 
                                      0.3            0.3         
 
                                1                             2 
 
                      0.2            0.2           0.2        0.2 
 
                     1.1              1.2         2.1           2.2 

 
Figure 1: Example of the edge weights used for computing degree of 

misclassification  

 
In Figure 1, the numbers beside each edge denote the 

weight of that edge. Suppose Cpred = class 1.1 and Ctrue= class 
2.1, characterizing a completely wrong prediction. Then the 
misclassification degree is 0.2 + 0.3 + 0.3 + 0.2 = 1.0. Now 
suppose Cpred = class 1.1 and Ctrue= class 1.2. Then the 
misclassification degree is 0.2 + 0.2 = 0.4. This is consistent 
with the fact that this misclassification is much less serious 
than the previous misclassification example. After all, when 

Cpred = class 1.1 and Ctrue= class 1.2 at least the prediction 
was correct at the first level (class 1).  

 
In the GPCR dataset addressed in this paper, there are four 

levels in the class hierarchy. To keep the value of the 
misclassification degree for a given protein normalized in the 
range 0 to 1, and to make the edge weight values decrease 
roughly exponentially as we go down the class tree, we 
assign the weights 0.26, 0.13, 0.07 and 0.04 to the edges at 
the first, second, third and fourth level of the class tree, 
respectively. Hence, a completely wrong classification – such 
as Cpred = class 1.1.1.1 and Ctrue= 3.1.1.1 – has a 
misclassification degree of 1, as desired. 

 
This measure of misclassification cost is essentially a kind 

of weighted shortest path distance, a class-distance measure 
for hierarchical classification discussed in [14]. In addiction, 
an extensive discussion about the evaluation of hierarchical 
classification algorithms can be found in [15]. 

 
IV. AN OVERVIEW OF THE PSO/ACO 

ALGORITHM 
 

Here we provide just an overview of the hybrid Particle 
Swarm Optimization / Ant Colony Optimization (PSO/ACO) 
algorithm, originally proposed in [5]. For details about this 
algorithm, readers are referred to that reference. This 
algorithm was designed to be the first PSO-based 
classification algorithm to natively support nominal data – 
i.e., to cope with nominal data directly, without converting a 
nominal attribute into a numerical one and then apply a 
mathematical operator to the numerical value. The motivation 
to natively support nominal data is that by converting a 
nominal attribute such as gender into a numerical attribute 
(say, mapping male into 0 and female into 1) we would be 
introducing an artificial order among the numerical values (1 
> 0). Such an order clearly makes no sense in the context of 
the original nominal values, and mathematical operations 
applied to this artificial order may generate counter-intuitive 
results. 

The PSO/ACO algorithm achieves a native support of 
nominal data by combining ideas from Ant Colony 
Optimisation (Ant-Miner classification algorithm [16]) and 
Particle Swarm Optimisation [17][18] to create a 
classification meta heuristic that supports both nominal 
(including binary as a special case) and continuous attributes. 

 
The hybrid PSO/ACO algorithm discovers a set of rules 

for each internal node of the class hierarchy. At each internal 
class node, the algorithm discovers a set of rules of the form 
IF (conditions) THEN (classi), where classi is one of the child 
classes of that internal node. Each rule predicts just a single 
class, but the set of rules as a whole will predict all classes, 
because the algorithm guarantees that one or more rules will 
be discovered predicting each of the child classes.  

 
In order to cope directly with nominal attributes, the hybrid 

PSO/ACO uses the following approach. A particle contains a 
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number of pheromone matrices equal to number of 
categorical attributes in the data set. Each pheromone matrix 
contains values for pheromones for each possible value that 
that attribute can take [16] plus a flag value (the indifference 
flag) indicating whether or not the corresponding attribute is 
selected to occur in the decoded rule. The particle 
representation for categorical attributes is shown in graphical 
form in Figure 2, where each attribute value and the 
indifference flag are represented as slots in a roulette wheel. 
This analogy is appropriate for explaining the process of 
moving the particles with respect to nominal attributes, as 
discussed next. 

 
Figure 2: Particle representation for nominal attributes 

 
At each iteration, each categorical attribute in the rule 

antecedent represented by each particle has its value chosen, 
in order to give a particle a fixed position and so quality. This 
is the decoding process. An attribute value is chosen with 
probability proportional to its pheromone value. This fixed 
position and so quality is used to update the particle’s 
pheromone matrices in the next iteration. If the new position 
has a higher quality than any position the particle has ever 
occupied then it is set as the particle’s past best position. To 
update the values in the pheromone matrices of the current 
particle, the past best, current and its best neighbour’s 
positions are used. The quality of these three positions, 
multiplied by individual random learning factors as usual in 
PSO, are added to the values in the appropriate entries in the 
pheromone matrices of the current particle. Hence, the 
mechanism of increasing the pheromone of a given attribute 
value in the hybrid PSO/ACO corresponds to the mechanism 
of moving a particle towards that attribute value in 
conventional PSO. For more details about this process the 
reader is referred to [5]. 

 
After a set of rules has been discovered for each class 

node, the examples in the test set are classified by using a 
top-down approach, as follows. The example is shown to the 
set of rules at the root node, and the system identifies all rules 
covering that example, i.e. all rules whose antecedent 
conditions (the IF part of the rule) is satisfied by the attribute 
values in the example. Out of all rules covering the example, 
the system chooses the highest-quality one – according to a 
measure of rule quality to be described later – and assigns the 
first-level class predicted by that rule to the example. If there 
are no rules at the root node covering the example, the first-
level class assigned to the example is simply the most 
frequent first-level class in the training set. Let C1 denote the 
first-level class assigned to the test example. Next, the 

example will be classified by the rule set at the node 
corresponding to class C1 in the class hierarchy. Similarly, 
the example will be assigned the second-level class predicted 
by the highest-quality rule among all rules covering the 
example, or, if no rule covers the example, the most-frequent 
second-level class in the training set. And so on, until the 
example is assigned the leaf-level class. 
 

A. The Modified Rule Quality Measure 
 

The previous version of the PSO/ACO algorithm used the 
following rule-quality measure to evaluate the predictive 
accuracy of a candidate rule: 

Rule Quality = Sensitivity × Specificity, where 
Sensitivity = TP / (TP + FN), Specificity = TN / (TN + 

FP): 
• TP (True Positives) is the number of training cases that 

have the positive class and satisfy the antecedent of the 
current rule predicting the positive class 

• FP (False Positives) is the number of training cases that 
have the negative class but satisfy the antecedent of 
the current rule predicting the positive class 

• FN (False Negatives) is the number of training cases that 
have the positive class but do not satisfy the 
antecedent of the rule predicting the positive class; 

• TN (True Negatives) is the number of training cases that 
have the negative class and do not satisfy the 
antecedent of the current rule predicting the positive 
class. 

 
Note that the sum (TP + TN) represents the total number of 

correct classifications in the training set, whilst the sum (FP + 
FN) represents the total number of misclassifications in the 
training set. This rule quality measure is also used in several 
other bio-inspired meta-heuristic based classification 
algorithms – e.g., [16][18][19]. In other words sensitivity is a 
measure of how well a rule’s antecedent covers the examples 
in the class predicted by its consequent. Specificity is a 
measure of how well a rule’s antecedent avoids covering 
examples in classes that are not the predicted by the rules 
consequent. When the proportion of negative and positive 
examples are well balanced, this rule quality measure works 
well. However, this rule quality measure does not represent 
the desirability of a rule as well when the vast majority of the 
examples belong to the negative class, as explained next. 

 
TABLE 1: EXAMPLE CONFUSION MATRIX (RULE 1) 

Actual Class  
Positive Negative 

Positive TP = 5 FP = 0 Predicted 
Class Negative FN = 5 TN = 90 

Rule 1’s Quality = Sens × Spec = 0.5 × 1 = 0.5 
 
TABLE 2: EXAMPLE CONFUSION MATRIX (RULE 2) 

Actual Class  
Positive Negative 

Positive TP = 9 FP = 36 Predicted 
Class Negative FN = 1 TN = 54 

Rule 2’s Quality = Sens × Spec = 0.9 × 0.6 = 0.54 
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Consider two example rules with the confusion matrices 

shown in Tables 1 and 2, where 90 of the examples belong to 
the negative class and just 10 examples belong to the positive 
class. Note that rule 2 (Table 2) has a higher Sensitivity x 
Specificity value than rule 1. However, it is interesting to 
compute the precision of each of those rules, where precision 
is usually defined as:  

 
Precision = TP / (TP + FP) 

 
Precision is important because it is a direct measure of the 

confidence or reliability of the rule, when it is applied. Note 
that, from the point of view of the application of an 
individual rule, maximizing the number of true negatives 
(which is incorporated in the use of Specificity as a term of 
the rule quality) is not so crucial. After all, the rule will be 
used just to classify examples that are satisfying its 
antecedent. It is true that Specificity involves not only 
maximizing the number of true negatives, but also 
minimizing the number of false positives. However, when the 
vast majority of examples have the negative class, it is 
relatively easy to maximize specificity, even though there 
might be several examples in the category of false positives. 
In this case, the measure of precision introduces a stronger 
pressure towards minimizing the number of false positives, 
because the number of true positives will tend to be relatively 
low – given that the positive class is the minority class. 

 
Let us now compute the precision of the rules in Table 1 

and Table 2. The precision of rule 1 is 5 / 5 = 100%, whilst 
the precision of rule 2 is just 9 / 36 = 20%. Of course, rule 2 
has the advantage of covering a significant higher proportion 
of examples of the positive class (i.e., significantly higher 
sensitivity). However, in the above example the price paid for 
this high sensitivity is too high, the confidence of the rule is 
simply too low. Hence, intuitively rule 1 seems the best rule, 
a fact that is not captured by the definition of the Sensitivity 
× Specificity formula. 

 
Therefore, we propose replacing specificity with precision, 

when a rule predicts the minority class (as in this example). 
The hybrid PSO/ACO algorithm uses the following modified 
quality measure as a particle’s fitness when it predicts the 
minority class.  
 

Rule Quality = Sensitivity × Precision 
 

When the majority class is to be predicted the normal rule 
quality measure is used. So, in the above examples, the new 
qualities of rules 1 and 2 are 0.5 × 1 = 0.5 and 0.9 × 0.2 = 
0.18, so that rule 1 is considered better than rule 2. We have 
verified that this modified rule quality measure produces 
significantly higher test set accuracies during preliminary 
experiments. 

 

B. Minimum Pheromone Limit 
 
To increase the exploration of the PSO/ACO algorithm, it 

has been found useful to add a mechanism to allow 
exploration even after the population has converged. This is 
achieved by limiting the minimum value possible for an 
attribute-value’s pheromone entry. This means that there is 
never a probability of 0 of choosing an attribute-value. This 
is conceptually similar to the ACO MiniMax system [6] as 
due to normalisation there is a maximum pheromone limit of 
1 and also a minimum limit defined by the minimum 
pheromone limit. It is also conceptually similar to setting a 
maximum velocity value in conventional Binary PSO [20], 
which has the effect of introducing a minimum value for the 
probability of choosing a certain binary value. The optimal 
value of this lower bound – like most parameters in PSO and 
other bio-inspired algorithms – tends to be problem 
dependent. In this work we used the lower bound of 0.1% for 
each pheromone value. This threshold value was empirically 
determined in our preliminary experiments, but we make no 
claim that this is an optimal value. Parameter optimisation is 
a topic left for future research. 

 
V COMPUTATIONAL EXPERIMENTS 

 
A. Creation of the Data Sets Used in the Experiments 

 
The classes to be predicted in the data sets used in our 

experiments are the functional classes of GPCRs. These 
functional classes are given unique hierarchical indexes by 
[8]. Records have up to 5 class levels, but only 4 levels are 
used in the datasets, as the data in the 5th level is too sparse 
for training – i.e., in general there are too few examples of 
each class at the 5th level. In any case, it should be noted that 
predicting all the first four levels of GPCR’s classes is 
already a challenging task. Indeed, most works on the 
classification of GPCRs limit the predictions to just the 
topmost or the two topmost class levels (families and 
subfamilies but not groups etc) [2]-[4]. 

 
The data used in our experiments was derived from 

UniProt [21] and GPCRDB [8]. UniProt contains sequence 
data with a very rich annotation. It also has cross references 
for other major biological databases such as Prosite, Prints, 
Interpro (see below). It was extensively used in this work as a 
source of data for creating the data sets used in our 
experiments. Only the UniProtKB/Swiss-Prot was used as a 
data source, as it contains a higher quality, manually 
annotated set of proteins.  

 
We did experiments with three different kinds of predictor 

attributes, each of them representing a kind of “protein 
signature”. The three kinds of predictor attributes used in our 
experiments are: FingerPrints from the Prints [22] database, 
Prosite [23] patterns and Interpro [24] entries. In essence, the 
protein signatures associated with these databases have the 
following characteristics. Prosite patterns are regular 
expressions describing short fragments of protein sequences. 
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Such patterns are especially good at detecting things like 
catalytic sites in enzymes. The regular expressions employed 
are good at detecting such highly conserved functional 
regions, as they do not allow partial hits. However due to this 
rigidity there tend to be a large number of false negatives 
[25]. Prints contains a set of motifs in each entry, along with 
descriptions. FingerPrint signatures are different from Prosite 
entries in that they use multiple sets of amino acid frequency 
matrices to try and identify an unknown protein rather than 
just one motif. Note that these motifs are ordered. Another 
difference is that Prosite’s patterns usually correspond to 
functional regions, whilst it is often the case that a Prints 
motif refers only to a highly conserved region with no 
specific function. Interpro integrates several protein 
identification databases into one. 

For each of these three kinds of protein signatures we 
created a separate dataset, using just that kind of protein 
signature as the predictor attributes. This allows to compare 
the results of an algorithm across the three different kinds of 
protein signatures, to determine whether one of them 
constitutes a better kind of predictor attribute (in the sense of 
maximizing the predictive accuracy of an algorithm) than the 
others. In each of the three datasets, each protein signature 
was encoded as a binary attribute, where 1 indicates the 
presence of a protein signature and 0 the absence.  

 
After the initial creation of the data sets, each data set had 

many duplicate examples (proteins). This happens because 
often a protein has several variations (produced by mutations 
in the coding DNA) and each of these variations is stored as a 
separate entry in Uniprot. Once these proteins are represented 
by sets of motifs (Prosite, FingerPrints or Interpro 
signatures), this high level representation tends to lose the 
details of the variations of a given protein. It is in fact the 
purpose of these signatures to generalise across protein 
families. Hence, proteins which are somewhat different from 
each other in terms of sequence can be represented by the 
same set of attribute-values, creating many duplicate records. 
All duplicate examples were removed to avoid the unfair 
situation where the same example might be included in both 
the training set and the test set.  

 
After considering the duplication problem, the size of each 

data set is as follows: 
• FingerPrints: 5577 and 338 examples before and 

after duplicate removal, 281 attributes, 11, 43, 78 
and 83 classes at the 1st, 2nd, 3rd and 4th level. 

• Prosite: 6462 and 194 examples before and after 
duplicate removal, 127 attributes, 11, 37, 42 and 
12 classes at the 1st, 2nd, 3rd and 4th level. 

• Interpro: 7623 and 584 examples before and after 
duplicate removal, 448 attributes, 14, 49, 98 and 
84 classes at the 1st, 2nd, 3rd and 4th level. 

 
 
 
 

B. Experimental Methodology 
 

In all the experiments reported in the next section, the 
results were produced by a 10-fold cross-validation 
procedure [9]. We report results concerning two measures of 
predictive accuracy. First, Tables 3, 4, and 5 report the 
standard measure of classification accuracy (followed by its 
standard deviation) for each level of the GPCR class 
hierarchy. The standard classification accuracy is simply the 
number of correctly classified test examples divided by the 
total number of test examples. Tables 3, 4 and 5 report results 
for the 3 datasets used in our experiments, using as predictor 
attributes FingerPrint signatures, Interpro entries and Prosite 
patterns, respectively. Second, Table 6 reports the results 
according to the misclassification cost measure based on the 
distance between predicted and actual class nodes in the class 
hierarchy, as explained earlier. 

 
The experiments involve a comparison between four 

different algorithms, as follows. PSO/ACO_Hier is the 
algorithm described in section 4, producing a rule set for each 
internal node of the class hierarchy and classifying the test 
examples in a top-down fashion. PSO/ACO_flat is a flat-
classification version of that algorithm, where the basic 
PSO/ACO algorithm is used to produce a single rule set that 
directly assigns to a test example a bottom level class. Note 
that by assigning a 4th level class to an example the system is 
automatically assigning to that example classes at the 1st, 2nd 
and 3rd level of the hierarchy as well.  DPSO_flat is the 
Discrete PSO algorithm proposed in [18], which was also 
used to produce a single rule set that directly assigns to a test 
example a bottom-level class. Note that, unlike the hybrid 
PSO/ACO algorithm, DPSO transforms nominal attributes 
into numerical, discrete attributes, and so introduces an 
artificial ordering among the originally nominal values. 
DPSO_Heir is a new version of the algorithm proposed in 
[18] which performs hierarchical classification in the same 
sense as PSO/ACO_Hier, i.e., producing a rule set for each 
internal node of the class hierarchy and classifying the test 
examples in a top-down fashion. For both versions of the 
DPSO algorithm the values of χ=0.73 (constriction 
coefficient), ϕ1 = ϕ2 = 2.05 (social and personal learning 
factors) were used as is standard in the literature [26]. We 
compared DPSO and PSO/ACO using the same seeding 
method and using the same modified rule quality measure. 

 
C. Computational Results 

 
TABLE 3: PREDICTIVE ACCURACY (%) WITH PRINTS 
ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 75.65±6.82 75.65±6.82 89.64±6.75 88.62±8.37 

Level: 2 34.99±9.09 33.09±8.12 63.44±6.42 62.61±6.28 

Level: 3 24.46±5.18 23.22±4.59 45.18±6.61 43.79±9.12 

Level: 4 24.23±9.6 24.79±6.28 33.76±8.79 32.09±10.28 
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TABLE 4:  PREDICTIVE ACCURACY (%) WITH 
INTERPRO ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 55.86±4.64 55.86±4.64 86.31±3.18 86.99±4.27 

Level: 2 27.47±4.81 26.62±5.14 72.33±2.84 70.58±4.2 

Level: 3 20.74±3.38 20.97±3.04 48.02±7.02 47.53±6.98 

Level: 4 30.73±7.55 31.31±7.96 36.52±11.3 35.81±7.61 

 
TABLE 5: PREDICTIVE  ACCURACY (%) WITH PROSITE 
ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 32.27±9.92 32.27±9.92 73.03±8.51 73.54±8.6 

Level: 2 6.39±5.96 6.39±5.96 37.49±11.47 37.66±13.3 

Level: 3 3.73±4.82 3.98±5.34 22.13±15.58 22.02±15.5 

Level: 4 NA NA NA NA 
 
 
TABLE 6: MISSCLASSIFICATION COST BASED ON 
DISTANCES IN CLASS TREE 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 
GPCR 
Prints 45.95±5.42 46.8±5.17 25.06±5.66 26.92±7.15 
GPCR 

InterPro 59.87±3.61 59.16±3.55 22.45±3.38 23.31±4.94 
GPCR 
Prosite 78.13±7.45 78.06±7.43 38.56±6.68 38.67±7.15 

 
 
TABLE 7: NUMBER OF RULES DISCOVERED WITH 
PRINTS ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 6.9±0.32 6.9±0.32 7.0±0.47 6.9±0.32 

Level: 2 26.8±1.99 26.7±1.95 24.8±1.48 24.6±2.27 

Level: 3 36.2±3.08 39.6±2.99 28.8±1.32 29.2±1.03 

Level: 4 22.6±2.37 22.0±1.83 15.1±1.37 15.9±1.37 
 
TABLE 8: NUMBER OF RULES DISCOVERED WITH 
INTERPRO ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 12.1±1.45 10.4±0.84 11.4±1.51 10.4±0.7 

Level: 2 41.0±2.11 41.1±1.52 36.2±1.4 36.9±0.99 

Level: 3 59.3±2.67 58.6±2.8 50.0±2.0 50.3±1.64 

Level: 4 18.7±2.0 18.5±1.9 15.8±1.4 17.7±1.57 

 
TABLE 9: NUMBER OF RULES DISCOVERED WITH 
PROSITE ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 7.4±0.7 7.4±0.7 7.4±0.7 7.4±0.7 

Level: 2 18.5±1.35 18.2±1.69 16.0±1.15 16.9±1.29 

Level: 3 11.7±1.16 12.0±1.15 9.7±0.82 10.8±0.79 

Level: 4 NA NA NA NA 
 
 
 
 
 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 6.28±0.9 8.03±1.24 6.43±0.63 7.35±0.57 

Level: 2 6.93±0.98 7.94±0.92 5.89±0.42 6.69±1.22 

Level: 3 4.23±1.98 5.75±2.02 4.14±0.67 5.07±0.67 

Level: 4 3.07±2.1 5.43±1.65 2.39±0.22 2.32±0.21 
 
TABLE 11: NUMBER OF TERMS PER RULE WITH 
INTERPRO ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 4.09±0.4 5.06±0.51 4.36±0.67 4.98±0.47 

Level: 2 5.81±0.91 7.89±0.53 5.03±0.35 5.14±0.49 

Level: 3 1.88±1.0 3.96±1.73 3.56±0.54 4.02±0.51 

Level: 4 2.65±1.35 5.09±1.14 2.64±0.23 2.46±0.21 
 
TABLE 12: NUMBER OF TERMS PER RULE WITH 
PROSITE ATTRIBUTES 

 
PSO/ 

ACO_Flat DPSO_Flat 
PSO/ 

ACO_Hier DPSO_Hier 

Level: 1 5.03±0.86 6.76±0.96 5.01±0.81 6.69±0.94 

Level: 2 6.07±1.27 7.96±0.69 5.76±0.63 5.81±0.48 

Level: 3 4.43±2.11 5.07±1.65 3.73±0.43 3.45±0.35 

Level: 4 NA NA NA NA 

 
It is clear to see, from the results in Tables 3 through 6, 

that the divide and conquer approach (associated with 
algorithms PSO/ACO_Hier and DPSO_Hier) obtains a 
considerably higher predictive accuracy than simply 
predicting bottom-level classes. This is due to the way in 
which the problem is split into manageable chunks by the 
divide and conquer approach whilst taken as a whole it is a 
difficult, many class problem, sometimes with very few 
positive examples (as discussed earlier).  Overall, there is no 
significant difference in the predictive accuracy of 
PSO/ACO_Hier and DPSO_Hier. The cells with NA in them 
refer to the fact that there were not enough examples present 
to train the classification system on. 

 
Still concerning predictive accuracy, it is also clear that, as 

predictor attributes for GPCRs classification, Prosite patterns 
are not as effective as Interpro entries or FingerPrints 
signatures. Interpro and Prints attributes were competitive 
with each other. Although it should be noted that they have 
different strengths and weaknesses. It was to be expected that 
Interpro entries would produce some of the best results, 
purely because the Interpro database tends to cover more 
proteins than either of the other identification systems (as it 
combines these and other systems). On the other hand, one 
potential disadvantage of Interpro attributes is that their 
broader coverage may cause it to loose some accuracy as 
classifying a wider array of proteins is a harder task. 
Although Prints does not cover as many proteins as Interpro, 
the ones it does cover seem to be classified well. 
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In Table 4 the accuracies actually increase at the bottom 
level during flat classification. At first glance, this is 
unexpected as it is impossible for the hybrid PSO/ACO 
algorithm to correctly classify an example at the bottom level 
once an incorrect classification has been made at a higher 
level. However, this is not an error. Some GPCRs have their 
functional classes specified only up to the third level (or 
shallower), and not up to the fourth level. If a significant 
fraction of those GPCRs are misclassified at the third level, 
the classification accuracy at the third level can actually be 
smaller than the classification accuracy at the fourth level. 

 
Let us now consider the simplicity of the discovered rule 

sets – see Tables 7 through 12. In general, the smaller a rule 
set (the smaller the number of rules and the number of terms 
per rule), the simpler that rule set is. A simpler rule set 
facilitates the interpretation of the discovered rules, and 
therefore is a desirable result [9]. It should be noted that 
PSO/ACO produces rules with slightly fewer terms in 
general, by comparison with DPSO. This small effect is 
observed both in the flat and the hierarchical versions of the 
two algorithms.  

 
VI. CONCLUSIONS AND FUTURE RESEARCH 

 
The main contributions of this paper are as follows. First, 

we proposed some modifications to the original PSO/ACO 
algorithm and justified them. Second, we have clearly shown 
the advantages of considering the class hierarchy when 
attempting to classify GPCRs. These results were obtained in 
an extensive comparison with two versions of a flat 
classification algorithm and two versions of a hierarchical 
classification algorithm. Third, the results reported have also 
shown that Interpro and Prints attributes are much more 
effective for predicting GPCR ligand binding  classes than 
Prosite attributes. 

 
Future research will involve experiments with other kinds 

of biological data and with mixed nominal/continuous 
attributes. Another research direction is to develop a 
PSO/ACO classification algorithm that is truly hierarchical. 
Note that although the current algorithm produces a 
hierarchical rule set, it only considers the flat classification 
problem during the run of the algorithm at each node in the 
class tree. It may be useful to try and take advantage of the 
rule set previously discovered within the hierarchy and so 
produce an algorithm that is more “aware” of the class-
hierarchy structure. 
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