
Abstract-- Distributed Genetic Algorithms (DGAs) constitute an
interesting approach to undertake the premature convergence
problem in evolutionary optimization. This is done by spatial
partitioning a huge panmitic population into several semi-isolated
groups, called demes, each evolving in parallel by its own pace,
and possibly exploring different regions of the search space. At
the center of such approach lies the migratory process that
simulates the swapping of individuals belonging to different
demes, in such a way to ensure the sharing of good genetic
material. In this paper, we model the migration step in DGAs as
an explicit means to promote cooperation among genetic agents,
autonomous entities encapsulating GA instances for possibly
tackling different sub-problems of a complicated task. The focus is
on the characterization of adaptive migration policies in which the
choice of what individuals to migrate and/or replace is not defined
a priori but according to a more knowledge-oriented rule.
Comparative results obtained for a data-mining task were
conducted, in order to assess the performance of adaptive
migration according to efficiency/effectiveness criteria.

Index terms-- distributed genetic algorithms, adaptive
migration policies, multiagent systems.

I. INTRODUCTION

The execution of a genetic algorithm (GA) can be regarded
as a parallel search engine acting upon a population of
feasible problem solutions codified as chromosome strings
[10]. The GA success is very dependent on a proper balance
between the explorative/exploitative activities performed
throughout its run. When such balance is disproportionate, a
premature convergence side-effect may appear, fruit of the
lack of genotypical diversity. Moreover, the higher and more
complex the search space, the more demanding will be the
computational power required to realize the optimization
process. One approach devised to tackle such problems is
the distributed genetic algorithm (DGA) model [3][9], which
is based on the spatial separation philosophy applied over
the strings population.

The basic idea of DGAs (also known as coarse-grained
parallel GAs) lies in the partition of the population into
several small semi-isolated subpopulations (demes), each
one being associated to an independent GA and possibly
exploring different promising regions of the search space.
These demes may, occasionally, interact with their

neighborhoods through the exchange of few individuals,
simulating a seasonal migratory process (migration or
swapping) by means of which new genotypical material can
be injected and precipitated convergence can be avoided.
This hopefully ensures that good genetic material be shared
from time to time throughout the genetic system. The
exchange typically takes the form of copying individuals
between the demes [3] inasmuch as the same codification
semantics is preserved through all the basic GAs. Otherwise,
some kind of translation mechanism is necessary.

In this paper, we model the migration step in DGAs as
an explicit means to promote cooperation among genetic
agents, autonomous entities encapsulating GA instances for
possibly tackling different sub-problems of a complicated
task. The focus is on the characterization of adaptive
migration policies in which the choice of what individuals to
migrate and/or replace is not defined a priori but according
to a more knowledge-oriented perspective. This is in
contrast to more conventional static heuristic rules, like to
emigrate a random or the current best individual, which
sometimes show inefficiency aspects such as replication of
genetic material.

In what follows, we briefly describe the basic steps
underlying a typical DGA; comment on some related work;
concentrate on the aspects behind MAS-DGA (our
framework of distributed genetic agents); introduce and
characterize some adaptive migration policies; present some
simulation results for assessing the pros and cons of using
adaptive migration policies; and finally address some
remarks on future work.

II.  IMPORTANT ISSUES ON DISTRIBUTED GENETIC ALGORITHMS

The application of DGAs to complicated optimization tasks
is usually justified in the light of two advantages shown: (i)
the maintenance of diversity owing to the semi-isolation of
the sub-populations; and (ii) the easy implementation of
DGAs in parallel architectures. The former is prominent for
avoiding premature convergence and for multimodal
optimization [1] as it prevents that all individuals be clones
of the current best one. The latter is interesting for achieving
improvements on computational performance.
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Although there are a lot of different types of DGAs, all
of them may be considered as variants of the "canonical
DGA", which encompasses the following steps [9]:
1 Generate at random a population P of chromosomes;
2 Divide P into Nd demes;
3 Define the topological structure of the system;
4 Execute, in parallel for each deme, the next sub-steps:

4.1 Apply, during fm generations, the genetic and
selection operators (customized to each GA instance);

4.2 Send rm individuals to neighboring demes;
4.3 Receive new chromosomes and replace old ones;

5 Verify if the stopping criteria are satisfied.
In such framework, some issues deserve distinguished

consideration. For instance, the neighborhood structure, or
topology, indicates who communicates directly with whom,
and, by this means, may be decisive for the whole DGA
efficiency. Concerning this parameter, DGAs may be
categorized as following either the island model (fully-
connected demes) or the stepping-stone model (interaction
restricted by customized logical or physical neighborhood).
The choice of one arrangement against the other surely
should observe the tradeoff "time spent in computation
versus time spent in communication" [3].

As well, the deme connections may be either static
(fixed a priori) or dynamic (reconfigured along the run).
Still in this context, there are also some interesting
approaches promulgating the creation of hierarchical DGAs
(HDGAs) [9], DGAs whose nodes are other simple DGAs
being connected one to the other. In such setting, two types
of migrations are produced, local and global, according to
the level of granularity we are looking at.

Another important issue in DGAs refers to the number of
subpopulations (Nd) as well as the size (Sd) of each of them.
Usually, the former is set in advance in consonance with the
complexity of the problem at hand. The second should be
kept small enough to make it possible to drift into a set of
gene frequencies that correspond to a higher peak, after the
introduction of good foreign genetic material. Yet, there are
some approaches, like the one proposed by Bessaou and
others [1], which dynamically stipulate the number and size
of subpopulations according to the number of species (or
clusters) current available in the whole system–speciation
occurs via a distance operator that judges the similarity
between strings.

Moreover, regarding the homogeneity of the demes,
DGAs may be either known as homogeneous or
heterogeneous, whether the configuration parameters,
genetic operators or codification schemes are kept the same
or not in all basic GAs. In this regard, Herrera et al. [9] have
also examined the behavior of heterogeneous HDGAs (high-
level DGAs making use of different basic homogenous
DGAs) in well-known hard optimization problems.

Albeit most of the work in parallel evolutionary
computation has focused, directly or indirectly, on
topological aspects [3], there is by now some research
focusing specifically on issues of the migratory process
[4][5]. Basically, migration consists of an exchange of
individuals between demes in such a manner to "perturb"
their premature convergence and to foster the generation of
new building blocks representing still unexplored regions.

The migration rate (rm), which controls how many
individuals to emigrate, the migration interval (fm), which
stipulates how frequent is the swapping process, and the
migration policy, comprehending both which chromosomes
should emigrate (selection strategy) as well as how to
embody the incoming individuals (replacement strategy), are
important parameters whose influence upon the DGA
effectiveness should also be more investigated. Here, we
also consider as part of the migration policy issue the choice
of whether or not to replicate migrating individuals, i.e., to
decide whether to send a clone or the string itself to the new
deme. According to Herrera et al. [7], "if one does not copy
individuals, it is possible that a subpopulation could be set
back several generations in evolutionary terms by mass
emigration of its best performers. On the other hand, simply
copying individuals across could lead to highly fit
individuals dominating several populations".

III.  A FRAMEWORK OF DISTRIBUTED GENETIC AGENTS

In this work, we follow a novel perspective of modeling and
implementing DGAs as a framework of multiple genetic
search agents. Such framework, known as MAS-DGA,
should serve as a testbed for studying aspects such as
coordination, cooperation, communication, and problem
decomposition, which are basic in DAI research [12].

In a MAS-DGA instance, each basic GA is encapsulated
into an agent, an autonomous entity that must keep
knowledge of the search, learning, or optimization problem
it should operate on. Agents should be coordinated through a
set of rules stipulating the topological and communication
(migration) aspects, and these rules may be fixed a priori or
set in run-time via a coordination entity (meta-agent). In this
work, the topological issues are made fixed while the
migration process is provided to be more adaptive (see next
section), despite the fact that we do not apply any
coordination entity.

Agents in MAS-DGA may also be classified as
homogeneous or heterogeneous in accordance with the tasks
they tackle, the settings of the GAs they represent, or the
embedded knowledge they are endowed with (Fig. 1). By
this means, it is possible to decompose huge, complicated
tasks into smaller, simple subtasks to be each assigned to a
different (heterogeneous) genetic agent. To make it possible
that two heterogeneous agents communicate properly (that
is, that their sent individuals be well-interpreted), maybe
some kind of translation mechanism (indicated in the figure
by an interface) could be necessary.

Distinct levels of optimization can also be envisaged,
such as in a hierarchical perspective [9], wherein agents in
the same level tackle identical subproblems (thus, being
homogenous in a task accomplishment sense) and agents in
lower levels provide solutions to subtasks of problems of
higher-level agents (both considered as heterogeneous one to
the other). In this work, however, we only employ one level
of resolution in our simulation experiments. Furthermore,
the application of MAS-DGA seems to be suited for dealing
with multimodal [1], multiobjective [6], as well as dynamic,
non-stationary [2] optimization problems, as one makes
proper use of the homogenous/heterogeneous facility.



Fig. 1: MAS-DGA framework in a hierarchical perspective.

IV.  ADAPTIVE MIGRATION POLICIES FOR COOPERATIVE DGAS

Although there is a bunch of work on DGAs or related
material [3], most of them focus on the influence that
topological aspects and/or the migration rate and migration
interval exert on the final performance results. In this paper,
we concentrate mainly on the migration policy issues [4] by
contemplating them also as "first-class" parameters for
improving the DGA performance.

In this context, Cantú-Paz [4][5] has provided a thorough
investigation of how the policy used to select emigrants and
the individuals they replace affects the selection pressure in
multi-populated parallel EAs. Such research has focused
primarily on how to quantify accurately the additional
selection pressure caused by migration in order to predict
precisely the number of generations until convergence.
According to the author, "understanding the effect of the
migration policies on the selection pressure is important
because excessively slow or fast convergence rates may
cause the search to fail. If selection is too weak the
population may drift aimlessly for a long time, and the
quality of the solutions found is not likely to be good. On the
other hand, rapid convergence is desirable, but an
excessively fast convergence may cause the EA to converge
prematurely to a suboptimal solution" [4].

In the work of Cantú-Paz, there are two alternatives to
select individuals for emigration: at random or by selecting
the current best samples. As well, the replacement of
existent individuals in the receiving deme with the incoming
migrants may be done either randomly or by dropping out
the current worst of them. The paper examines each of the
four combinations of migrant selection and replacement
within two perspectives: (i) by first computing the takeover
time (which is a measure of how fast a good solution
dominates a population once it is found), thus indicating the
effect of the selection growth of good solutions; and (ii) by
then calculating the increase in the selection intensity (used
to compare the selection pressure of common selection
methods with the one caused solely by migration). The
achieved results showed that the migration policy that has
caused the greatest reduction in workload is to choose both
the emigrants and replacements according to their fitness
(i.e., choose the best, replace the worst).

Conversely, in this work, we perceive the migration
process through a different viewpoint, basically as a means

of promoting cooperation between MAS-DGA agents, and
not only as a merely exchange of genotypical material. So,
the migration policies to be adopted by the genetic agents
should take such cooperation aspects into account, in order
to promote the high performance of the team as a whole. Our
interest is to embed more quality in the decision of whom to
emigrate or to replace.

In this sense, we distinguish between static and dynamic
(adaptive) migration policies, the former being fixed a priori
and not changed throughout the DGA execution, and the
latter being more context-oriented. So, the four migration
policies followed in the study of Cantú-Paz are considered to
be static (arbitrary simple rules of thumb). Another option
would be to choose individuals with fitness values near to
the average population fitness, as they would keep
information about the (possibly promising) region of
exploration by the deme and yet being less prone to
entrapment in local valleys.

We advocate that with adaptive migration policies DGA
agents turn to be more pro-active than passive in the search
for the best solution(s). Moreover, by this means, it is
possible to make more efficient use of the heterogeneous
property of MAS-DGA. Static migration policies do work
well in homogeneous DGAs, since the simple GAs work on
the same optimization task and there is no requirement
demanding each GA to maintain information on the task of
its peers. Even in multimodal optimization [1], we may say
that static policies have their effectiveness assured.
However, this is not the same if some genetic agents are
working on different, but also interdependent subtasks.

Adaptive (or dynamic) migration policies can be
envisaged in consonance with two perspectives. The first
encompasses the cases where each agent starts with a given
static migration policy, which, according to the following
circumstances of the search, may be allowed to vary. Such
kind of adaptation may be achieved through a coordination
entity or via a (multiagent) learning process. To our best
knowledge, the impact of varying static migration policies
along the DGA execution has not been investigated yet.
However, in the preliminary results shown in Section 4, we
do not make use of this kind of policy adaptation.

The second perspective on migration policy adaptation is
more knowledge-oriented. In this case, there is no switch
between static policies. Instead, we make use of some
migration policies mechanisms that provide each agent with
capability for reasoning about what and how many elements
to emigrate (or to replace). In this paper, we propose and
assess three types of mechanisms for emigration, namely:
1. social awareness (SA), where each agent knows the

tasks (fitness functions) of (part or all) of its peers and
then can send more appropriate (fitter) individuals to
them;

2. environment feedback (EF), where each agent decision
is guided by the (positive and negative)
acknowledgments it receives from its peers about the
quality of the individuals it sent before; and

3. memory-oriented (MO), where the current selection
takes into account (some of) the past individuals
already sent.



"Social awareness", actually, delimits a continuum
between two ends, an agent only knowing the task of one of
the peers to knowing the tasks of all of them. Moreover, it
also encompasses the possibility that each agent being
dynamically learning the tasks of the others, something we
may call as "learning social awareness". This could be
interesting to be exploited, for instance, in non-stationary
multiobjective optimization problems [2][6], where the
agent's tasks may be continuously updated.

Specifically for the EF emigration mechanism, we have
conceived an associated replacement mechanism, named as
diversity-based, which besides being fitness-oriented it also
takes into account which of the new individuals provide
higher levels of diversity in the deme. For the others, we
have decided to use only the fitness-based static policy.

V. SIMULATION EXPERIMENTS

In this paper, we assess the effectiveness of applying
adaptive migration policies for cooperative DGAs through a
series of data mining experiments. The simulations aim at
dependence modeling (DM) which is a kind of
generalization of classification tasks where there are several
goal attributes to be predicted instead of just one. We follow
the approach suggested in [11] in which the user specifies a
small set of potential goal attributes (each with more than
one value) that she/he is interested in predicting. Although
allowing more than one goal attribute, each prediction rule
should only have a single goal attribute as its consequent.
This does not impose, however, that different rules need to
have the same goal attributes as their consequent.

In this work, the DM task is decomposed into N
subtasks, where N is the number of potential goal attributes.
Each subtask is then assigned to a MAS-DGA genetic agent,
which is in charge of seeking for the best predicting rules of
its associated goal attribute. The overall objective of this
MAS-DGA instance is, thus, to concurrently discover good
solutions for the whole DM task by assembling the sub-
solutions found for each of its subtasks. This surely demands
some kind of cooperative behavior among the simple GAs.

Our customized GA implementation (employed in each
genetic agent) for tackling DM is called GA Nuggets [11],
whose main configuration aspects are given briefly as
follows. Each individual represents a candidate prediction
rule of the form: IF Ant THEN Cons, where Ant is the rule
antecedent (formed by a conjunction of conditions) and Cons
is the rule consequent. An individual is encoded as a fixed-
length string containing n genes (with discrete values),
where n is the number of attributes, even though the
genotype-phenotype mapping allows the creation of
differently sized rules.

The prediction rules discovered by a data mining
algorithm should satisfy three properties, namely, predictive
accuracy, comprehensibility and interestingness. This is
taken into account in the formulation of the fitness function
[11] used in GA Nuggets. Regarding the genetic operators,
we have employed in all experiments simple mutation (with
rate equal to 5%), uniform crossover (with probability equal
to 70%), and tournament-based selection (against 2 other
players). By employing a kind of elitism, it is always
possible to find at least one rule for each value of the given

goal attribute. Two other operators are necessary: (i)
insertion-removal, for the random introduction or erasure of
antecedent genetic material; and (ii) consequent assembling,
for creating meaningful consequent parts [8].

We have conducted experiments in four distinct data sets
obtained from the UCI machine learning repository
(http://www.ics.uci.edu/AI/Machine-Learning.html). The
data sets used are named as (Z)oo, (C)ar Evaluation, (A)uto
Imports and (N)ursery, and were chosen for they seem to
contain more than one potential interesting goal attribute.

According to the problem at hand, the number of genetic
agents (demes) in MAS-DGA for DM is set. So, Nd equals
3, 2, 3, and 3 for data sets (Z), (C), (A), and (N),
respectively. The size of each deme (Sd) is 25, so the whole
panmitic population equals to 25xNd. The topological
structure employed is fully-connected whereas the maximum
number of generations for each deme is 150.

As indicated in the prior section, we have devised three
emigration mechanisms for adaptive migration policies. The
migration interval (fm) is 5 for the all of them, despite the
fact that, sometimes, the genetic agents are allowed to send
no individuals for its peers (for EF and MO). This is why we
refer to them as adaptive. The migration rate (rm) is always
one for SA and may vary within the range [0-5] for the
others. For MO, the individuals to be sent are chosen
following a diversity perspective (in relation to those sent
before). For this purpose, a threshold of difference (30%, in
the experiments) delimits those individuals that are allowed
to emigrate. Conversely, for EF, the individuals to be
transmitted should exhibit at least 30% of different genes in
relation to those sent before but labeled as "rejected" by the
destination demes.

Tables 1-4 show comparative results (obtained with
cross-validation factor 10) between MAS-DGA instances
implementing the three different adaptive migration policies
regarding the predictive accuracy of the best-achieved rules
for the four data sets. For reference purposes, we also
present the results obtained for a simple GA Nuggets
instance (whose population sizes 25xNd). From Table 5,
which brings a more qualitative summary of the results, we
can notice that:
• In average, MAS-DGA/SA has produced prediction
rules that outperformed the simple GA rules eight times
against one. For MAS-DGA/EF and MAS-DGA/MO, the
results are even better, which certify the improvement
achieved by employing MAS-DGA.
• Despite the fact that SA has produced rules with
prediction accuracy lower than the ones achieved with the
other migration mechanisms, its convergence is made faster
as the selective pressure for each deme is always kept
elevated along the generations. Since the task for agent j in
SA is known by the others, and as they send to j individuals
more fitter for its purposes (even though these individuals
are evolved according to their own objectives), the selective
activity for j is enhanced through a partial task-sharing.
• Another remarkable result refers to the number of
swapping operations realized by each of the three emigration
mechanisms along its MAS-DGA execution. Agents in SA
have performed all 30 possible migrations as previously
established. Conversely, agents in EF and MO, for the



Table 1: Predictive Accuracy (%) in the Zoo data set
Goal

Attrib.
Attrib.
Value

Single Population
G.A.

Static social
Awareness

Memory
Diversity

Feedback
Fitness – Diversity

False 50.5 ± 5.9 60.0 ± 1.9 (+) 63.3 ± 1.0 (+) 66.7 ± 0.9 (+)Predator
True 75.0 ± 11.2 85.0 ± 10.1 93.3 ± 6.0 (+) 88.0 ± 8.0
False 97.1 ±  5.2 90.5 ± 4.4 93.1 ± 3.5 96.4 ± 1.8Domestic
True 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
3 0.0 ± 0.0 89.0 ± 6.9 (+) 78.6 ± 6.9 (+) 90.0 ± 4.7 (+)
4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
6 90.0 ± 10.0 90.0 ± 10.0 90.0 ± 10.0 100.0 ± 0.0

Type

7 83.3 ± 7.2 85.0 ± 7.1 90.0 ± 6.7 96.7 ± 3.0 (+)

Table 2: Predictive Accuracy (%) in the Car Evaluation data set
Goal

Attrib.
Attrib.
Value

Single Population
G.A.

Static social
Awareness

Memory
Diversity

Feedback
Fitness – Diversity

V-high 60.0 ± 16.3 62.3 ± 14.7 75.0 ± 12.9 88.9 ± 9.9 (+)
High 4.5 ± 3.0 8.5 ± 3.8 12.5 ± 3.2 (+) 8.3 ± 3.7
Med 2.5 ± 2.5 6.0 ± 3.3 10.0 ± 2.9 (+) 8.3 ± 3.0 (+)

Buying

Low 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Unacc 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Acc 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Good 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0Accept.

V-good 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Table 3: Predictive Accuracy (%) in the Auto Imports data set
Goal

Attrib.
Attrib.
Value

Single Population
G.A.

Static social
Awareness

Memory
Diversity

Feedback
Fitness – Diversity

-3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
-2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
-1 55.0 ± 13.8 91.7 ± 4.3 (+) 90.5 ± 4.2 (+) 79.2 ± 9.9 (+)
0 96.0 ± 2.7 98.0 ± 2.0 100.0 ± 0.0 (+) 100.0 ± 0.0 (+)
1 70.0 ± 15.3 90.0 ± 10.0 88.9 ± 4.1 93.3 ± 3.1(+)
2 63.3 ± 14.4 70.0 ± 10.2 87.5 ± 9.9 100.0 ± 0.0 (+)

Simb.

3 70.0 ± 15.3 70.0 ± 12.6 87.5 ±  4.8 (+) 90.5 ± 4.2 (+)
Hardtop 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Wagon 0.0 ± 0.0 13.3 ± 5.4 (+) 22.0 ± 4.2 (+) 19.0 ± 4.6 (+)
Sedan 60.0 ± 12.3 85.5 ± 9.9 (+) 90.0 ± 4.1(+) 87.5 ± 4.2 (+)
Hatch 76.7 ± 6.7 71.7 ± 5.4 74.1 ± 7.9 77.1 ± 4.1

Body

Convert. 40.0 ± 16.3 35.7 ± 6.3 43.7 ± 4.9 41.7 ± 4.8
Low 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Average 90.0 ± 4.1 81.7 ± 9.7 90.7 ± 3.4 92.7 ± 3.1Price
High 72.5 ± 12.6 100.0 ± 0.0 (+) 100.0 ± 0.0 (+) 100.0 ± 0.0 (+)

knowledge they communicate (EF) or learn (MO), behave
more intelligently in the decision of when to migrate. By
these means, we have a trade-off of computation versus
communication, which is typical in parallel GAs: SA implies
quite no cost on additional computational calculus or
resources (such as buffers), although it is more expensive in
the communication viewpoint. The inverse is true for the
other emigration mechanisms.
• Regarding the embodiment of incoming individuals, SA
agents typically have shown lower (decreasing through time)

acceptance rates when compared with those for EF and MO.
This owes to its static fitness-oriented replacement rule.
Since MO and EF works with diversity-based replacement,
such acceptance rate is kept higher.

VI.  FINAL REMARKS

In this paper, we have presented a novel framework for
implementing DGAs, called MAS-DGA. In this framework,
each basic GA is encapsulated into an autonomous entity,
which may be assigned to a different subtask. For promoting



Table 4: Predictive Accuracy (%) in the Nursery data set
Goal

Attrib.
Attrib.
Value

Single Population
G.A.

Static social
Awareness

Memory
Diversity

Feedback
Fitness – Diversity

Conv. 80.0 ± 13.3 100.0 ± 0.0(+) 100.0 ± 0.0 (+) 100.0 ± 0.0 (+)
Finance Inconv. 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Non-prob 1.1 ± 1.1 0.0 ± 0.0 (-) 11.1 ± 0.8 (+) 7.4 ± 0.2 (+)
Slightly

prob
6.4 ± 4.3 9.1± 4.0 31.9 ± 2.2 (+) 19.38 ± 3.7 (+)Social

Problem. 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
Recomm. 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.1 (+) 0.0 ± 0.0
Priority 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

Not
recomm.

12.8 ± 9.8 41.8 ± 14.4(+) 59.7 ± 11.2 52.3 ± 12.6

Spec
priority

100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Health

Very
recomm.

100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 5: Summary of Results

Average
Static social
Awareness

Memory
Diversity

Feedback
Fitness – Diversity

Accuracy (vs. G.A) 8 – 1 15 – 0 16 – 0
Convergence
(generation)

37.3 ± 7.5 62.1 ± 8.4 57.8 ± 6.9

Migrations 30 ± 0.0 13.3 ± 3.3 16.3 ± 5.5
Acceptance % 77.5 ±  2.6 87.0 ± 3.1 89.5 ± 2.7

cooperation among those genetic agents, we have devised
new migration policies that are shown to be more adaptive
when compared with those already available in literature [4].
For assessing the improvements achieved with these
migration policies, we have performed several simulations
of different MAS-DGA instances for data modeling tasks on
four distinct data sets. The results ratify our expectations of
improvement in efficiency (higher convergence and lower
communication) as well as effectiveness (when compared
with a single GA [11]).

As future work, we plan to devise novel adaptive
migration policies with different emigrant/replacement
mechanisms. As well, we shall also investigate the
application of adaptive migration rates for MAS-DGA as
(decreasing) functions of each deme current generation.
Finally, the employment of MAS-DGA with adaptive
migration policies in multiobjective dynamic problems [2][6]
is subject to further research.
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