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Abstract — This paper proposes two extensions to a Multi-Label 

Correlation Based Feature Selection Method (ML-CFS): (1) ML-

CFS using the absolute value of the correlation coefficient in the 

equation for evaluating a candidate feature subset, and (2) ML-

CFS using Mutual Information for class label weighting. These 

extensions are evaluated in a bioinformatics case study 

addressing the multi-label classification of a cancer-related DNA 

microarray dataset with over 20,000 features. The results show 

that ML-CFS with absolute value of correlation obtained a 

significantly better predictive accuracy (smaller hamming loss) 

than the original ML-CFS. On the other hand, using Mutual 

Information to assign weights to labels showed some positive 

effect when using the ML-RBF classifier, but it showed a negative 

effect when using the ML-kNN classifier. 

Keywords - multi-label feature selection, multi-label classification, 

microarray data 

I.  INTRODUCTION  

Classification is a data mining task which aims to learn the 

relationship between the values of the predictor attributes of 

an instance and its class label(s). This relationship is learned 

from pre-classified instances in the training set, and then the 

learned classification model is used to predict the class label of 

previously unseen instances in the test set. Traditionally, the 

vast majority of works on the classification task have 

addressed a single-label classification problem, where each 

instance in the data set is associated with just one class label. 

Another type of classification problem is multi-label 

classification. In this type of problem each instance can be 

associated with a set of class labels, rather than just one class 

label as in single-label classification. Multi-label classification 

methods have been used in many application domains; such as 

text classification, music classification, bioinformatics and 

medical diagnosis [1]. In this work we focus on multi-label 

classification of a DNA microarray dataset. 

The main challenge in microarray data classification is that 

the number of features (genes) is very large – more than 

20,000 in the dataset used in this work – whilst the number of 

instances is very small – only 24 instances (cell lines) in this 

work. This high degree of data sparseness makes classification 

models prone to over-fitting. Hence, feature selection is an 

important task in microarray data classification, and we 

address this task in the context of multi-label classification. 

In this context, we propose two extensions to a recently 

proposed multi-label correlation-based feature selection 

method [2]. The first extension consists of using the absolute 

value of the correlation coefficient in the equations for 

evaluating a candidate feature subset. The second extension 

consists of computing the mutual information between pairs of 

class labels and using that information to assign, to each label, 

a weight that depends on its degree of correlation with other 

labels – again, modifying the equation for evaluating a 

candidate feature subset. These two extensions are evaluated 

in a case study with a cancer-related DNA microarray dataset. 

The rest of this paper is organized as follows. Section II 

gives an overview of microarray data classification. Section III 

presents a brief review of feature selection methods, both 

single-label and multi-label ones. Section IV introduces the 

two proposed extensions to a multi-label feature selection 

method. Section V reports the computational results. Section 

VI concludes the paper and mentions future work. 

II. MICROARRAY DATA CLASSIFICATION 

DNA microarray technology was developed for measuring 

the gene expression levels of tens of thousands of gene 

simultaneously [3]. DNA microarray datasets are widely used 

to find out correlations between gene expression values and 

diseases or different functional statuses of cells.  

The vast majority of DNA microarray datasets contain a 

single column representing the class of each instance, 

characterizing a conventional single-label classification 

problem. In this work we focus on a more challenging type of 

DNA microarray data, where there are 3 columns representing 

3 class attributes. This is a multi-label classification problem 

where each class attribute refers to a drug applied to 

neuroblastoma (a type of cancer) cell lines, and each cell line 

(instance) is assigned the label “sensitive” or “resistant” for 

each of the 3 class attributes (drugs). The drug names are 

Cisplatin, Carboplatin and Oxaliplating. The dataset used here 

was obtained from the resistant cancer cell line (RCCL) 

collection [4]. 



III. FEATURE SELECTION 

In the context of microarray data analysis, where the 

number of features (attributes or genes) is very large while the 

number of instances (or cell lines) is very small, feature 

selection is a very important task, and it can significantly 

decrease the risk of model overfitting [5]. Feature selection is 

often performed in a data pre-processing step of the 

knowledge discovery processes, in order to select a relevant or 

useful feature subset according to an evaluation criterion [6]. 

Feature selection can improve the predictive performance and 

eliminate irrelevant and/or redundant features [7].  

A. Conventional, Single-Label Feature Selection 

In general, feature selection methods can be classified into 

three approaches: (1) the filter approach, (2) the wrapper 

approach, and (3) the embedded approach [5]. The filter 

approach is independent of the classifier, and this approach is 

usually fast and scalable to datasets with very large number of 

features. This approach has been used to design several feature 

selection methods, such as Correlation-based Feature 

Selection [8] and Fast Correlation-based Feature Selection [9].  

Additionally, Lui et al [10] highlighted that the filter 

approach is the feature selection approach most used in real-

world applications, especially when the number of features in 

the dataset is very large, such as in microarray data. The 

structure of filter algorithms is very simple, and it provides a 

simple way to calculate the relevance of features in large-scale 

data in a short time.  

On the other hand, the structure of the wrapper approach is 

more complicated. This approach selects the best feature 

subset by doing a search in the feature space guided by an 

evaluation function based on a classifier’s predictive accuracy. 

The wrapper approach tends to be better at maximizing 

predictive accuracy than the filter approach, because the 

former directly uses the accuracy of the classifier as the 

evaluation function of a feature subset.  However, when using 

the wrapper approach there is a risk of model overfitting [5, 

7]. Moreover, the wrapper approach is usually much more 

computationally expensive than the filter approach because a   

classification algorithm has to be run for each candidate 

feature subset, which is not the case in filter approach.  

The third feature selection approach is the embedded 

approach. This approach embeds the search for a good feature 

into the classifier construction process. Hence, this approach is 

classifier-specific, and can also be computationally expensive.  

In this paper we focus on the filter approach, due to its 

more natural scalability to datasets with a very large number 

of features, like the microarray dataset mined in this work. 

B. Multi-Label Feature Selection 

The size of the literature on multi-label feature selection is 
relatively small, by comparison with the huge size of the 
literature on traditional single-label selection. Some works on 
the filter approach for multi-label feature selection (the focus of 
this paper) are briefly reviewed next. 

Doquire and Verleysen [11], as well as Spolaor et al. [12], 
have essentially transformed the multi-label dataset into a 
single-label one – which is usually referred to as the binary 

relevance approach – and then applied a single-label feature 
selection method to the transformed data. The main drawbacks 
of this binary relevance approach are that it cannot deal with 
the multi-label problem directly and it does not consider the 
relationship between labels – since it considers each label 
separately. By contrast, we propose two extensions to a multi-
label feature selection method that directly copes with the 
original multi-label data, and one extension considers the 
relationship between labels during the feature selection process.  

Lastra et al [13] extended the single-label feature selection 
method proposed by Yu and Lui [9] to multi-label 
classification. Their method assumed all features were discrete. 
However, microarray data are continuous and the discretization 
of microarray data can lead to loss of relevant information, 
especially in microarray datasets with over 20,000 continuous 
features (like the dataset used in our experiment). By contrast, 
the extended multi-label feature selection method proposed 
here does not require data discretization, it can directly cope 
with continuous attributes. 

The method proposed by Spolaor [14], called IG-ML, 
selects features which have a multi-label information gain (IG) 
value greater than or equal to a pre-defined threshold. The IG-
ML method is a version of the IG where an instance is counted 
once for each class label’s IG calculation, and then the IGs of 
all labels are added [15]. This method has the drawback of 
requiring a pre-defined threshold value, which is typically 
chosen via extensive trial and error experiments or chosen by 
the user in an ad-hoc fashion.   

Multi-label ReliefF and F-statistic feature selection were 
proposed by Kong et al [16]. In the former, the problem is 
decomposed into a set of pairwise multi-label two class 
problems and the multi-class single label RelifF score is 
adapted to the multi-label scenario. In multi-label F-statistics, 
they utilized the class-wise between-class scatter matrix and 
class-wise within-class matrix associated with a multi-Label 
linear discriminant analysis algorithm.    

C. Multi-Label –Correlation based Feature Selection (ML-

CFS) 

This ML-CFS method has been recently proposed by 

Jungjit et al. [2]. In that work the authors extended the single-

label Correlation-based Feature Selection (CFS) method – 

which was proposed by Hall [8] – to the more complex 

scenario of multi-label classification. The basic idea of the 

CFS method is to perform a search in the space of candidate 

feature subsets guided by a merit function, which evaluates the 

merit (quality) of each candidate feature subset. The search 

method used was a simple hill-climbing algorithm, which tries 

to find the feature subset with the maximum value of the merit 

function. This involves maximizing the correlations between 

features and the class labels for features in a candidate feature 

subset (to select features with high predictive accuracy) and  

minimizing the correlations between pairs of features in the 

feature subset (to avoid the selection of redundant features).  

The component of the single-label CFS method that was 

extended to derive the multi-label ML-CFS method was the 

merit function used to measure the quality of a candidate 

feature subset, as defined by equation (1), where k is the 

number of features in a candidate feature subset F – other 



terms are defined below. Both the single-label CFS and ML-

CFS use that equation. The difference between these methods 

is that ML-CFS computes the average correlation coefficient 

(   ̅̅ ̅̅ ) between each feature in feature set F and each of the 

multiple class labels in label set L. I.e., for each feature f, it 

averages the feature-label correlation over all labels in L, using 

equation (2); and then averages the result of equation (2) over 

all features, as shown in equation (3). By contrast, in the 

conventional single-label CFS method the equations are 

simpler, because there is no need to measure average 

correlations over multiple class labels. Note that the difference 

between single-label CFS and ML-CFS refers only to the 

computation of (   ̅̅ ̅̅ ); the term (   ̅̅ ̅̅ ) – the average correlation 

over all pairs of features – is the same in both methods.  
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The ML-CFS method has the advantage of being able to 
cope with multi-label classification problems directly (it does 
not need to transform a multi-label problem into a set of single-
label problems).  However, there are some issues in the original 
ML-CFS that could potentially be improved, in order to try to 
improve the predictive accuracy of the feature subset selected 
by this method, as discussed in the next Section. 

IV. TWO PROPOSED EXTENSIONS TO MULTI-LABEL 

CORRELATION-BASED FEATURE SELECTION 

This work proposes two different extensions to the multi-

label correlation-based feature selection (ML-CFS) method: 

(1) using the absolute value of the correlation coefficient, and 

(2) using Mutual Information for class label weighting.  

A. Extending ML-CFS with the Absolute Value of the 

Correlation Coefficient 

In the original multi-label ML-CFS method [2], like in the 
original single-label CFS method [8], Pearson’s correlation 
coefficient was used to estimate the terms    ̅̅ ̅̅  and    ̅̅ ̅̅  in 
equation (1). In general, there are two types of correlation: 
positive correlation and negative correlation. Both of them can 
represent redundancy between a pair of features, or represent 
the relevance of a feature to predict a set of labels, as follows.  

For the purpose of measuring redundancy between two 
features, what matters is the absolute value of the correlation 
coefficient (r), regardless of its sign. E.g., both r = +0.8 and r = 
–0.8 represent a strong degree of redundancy. However, in the 
original single-label and multi-label CFS methods, the value of 
the merit formulas depend on both the value and the sign of r. 
If a feature subset contains, say, one pair of features with r = 
+0.8 and another pair of features with r = –0.8, these two 
values would cancel each other resulting in an average r over 
those two feature pairs of 0; a misleading value, since the two r 
values actually suggest a large degree of redundancy in each of 
those feature pairs. 

Analogously, for the purpose of measuring the relevance of 
a feature for predicting a set of labels, what matters is the 
absolute value of the correlation coefficient, not its sign. E.g., 
both r = +0.8 and r = –0.8 represent strong correlations which 
can be exploited by a multi-label classification algorithm (to be 
applied to the features selected in a preprocessing phase). 

To mitigate the aforementioned problems, when calculating 
the value of the average correlation between features in a 

feature subset F (   ̅̅ ̅̅ ) and the average correlation between 
features and labels (   ̅̅ ̅̅ ), we use the absolute (without sign) 
value of the correlation coefficient in all occurrences of the 
correlation coefficient r in equation (1). Hence, the average 

correlation between features in a feature subset F (   ̅̅ ̅̅ ) is 
computed by equation (4), where fp is the number of feature 
pairs in feature subset F. The average value of the correlation 
coefficient between features and labels is given by equation (5). 

Note that |     
|     |   ̅|return a value in [0..+1].  
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B. ML-CFS using Mutual Information for Class Label 

Weighting  

In the original ML-CFS method [2], equation (2) 

computes, for a given feature f, the arithmetic average of the 

correlation between that feature and a class label over all 

labels, implicitly assuming that all labels are equally relevant 

and ignoring dependencies between labels.  However, in real-

world datasets there might be a significant degree of 

dependence between some labels, where the occurrence of one 

label would increase the probability of another label for a 

given instance. For example, in multi-label classification of 

emotions in a music dataset, the class label ‘Sadness’ might be 

more correlated with the class label ‘Depressing’ than with the 

class label ‘Cheerful’. 

The correlation between labels is important in multi-label 

classification [17]. If the labels were independent from each 

other, we could simply transform a multi-label problem into a 

set of single-label problems using the binary relevance 

method. However, when there are strong dependences among 

labels in the data, simply using an approach that ignores label 

correlations, like binary relevance or computing the arithmetic 

average of correlations across all labels may not be sufficient 

to cope well with the label-dependence problem.  

To take label dependences into account, we used mutual 

information (MI) to measure the correlation between each pair 

of labels. We use MI, rather than Pearson’s correlation 

coefficient, because labels are nominal, rather than numerical, 

and MI is often used to measure dependencies between 

nominal variables in feature selection. If the MI between two 

variables is near zero, this would indicate that the variables are 

close to independent. The mutual information I(X; Y) between 

the random variables (class attributes) X and Y is shown in 

equation (6), where p(x,y) denotes the joint probability of class 

labels x and y, p(x) denotes the marginal probability of x, the 

(2) 

(3) 

(4) 

(5) 

(1) 



(10) 

log is in base 2, and the summation is over all values of 

variables X and Y – i.e., over the sensitive and resistant values 

of the three class attributes, in our case.  

         ∑∑         
      

        
 

To use MI as a measure of label correlation, we first compute 

the average MI of each label Li (AvgMI(Li)) as defined in 

equation (7). This is simply the mean of the MI between label 

Li and each of the other class labels Lj (j ≠ i). 
 

           
∑         | |
          

| |-   

The AvgMI(Li) value for each label Li can then be used to 

modify the Merit function as follows. When computing the 

correlation between a feature and a set of labels, equation (2) 

is extended by assigning a different weight to each feature-

label correlation term (for each label Li), where the weights are 

based on the AvgMI values computed by equation (7). We 

investigated two opposite approaches to assign such weights, 

based on two opposite rationales, as follows.  

On one hand, it could be argued that a greater weight should 

be assigned to feature-label correlations involving labels with 

greater AvgMI values. The rationale for this is that, if a given 

label Li is highly correlated with the other labels – i.e., 

AvgMI(Li) is large – one should reward features which are 

strong predictors of that label because a multi-label 

classification algorithm exploiting label correlations could use 

an accurate prediction of that label to improve the accuracy in 

the prediction of other labels. Hence, one approach 

investigated in this work is to extend equation (2) with 

equation (8). 

On the other hand, it could be argued that a greater weight 

should be assigned to feature-label correlations involving 

labels with smaller AvgMI values. The rationale for this is 

that, if a given label Li is weakly correlated with the other 

labels – i.e., AvgMI(Li) is small – a multi-label classification 

algorithm exploiting label correlations would not be able to 

use an accurate prediction of other labels to improve the 

accuracy in the prediction of label Li, and therefore features 

which are strong predictors of that label should be rewarded 

regardless of their ability to predict other labels. 

In equations (8) and (9), the denominators normalize the 

weight values so that the sum of weights is 1. 
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V. COMPUTATIONAL RESULTS 

We ran experiments with 6 variations of the extended ML-

CFS method, i.e., the 6 possible combinations of our two 

extensions, namely: two ways of using correlation coefficients 

(with and without absolute correlations) times three MI-based 

approaches for label weighting (assigning greater weight to 

labels with larger average MI, assigning greater weight to 

labels with smaller MI and not using MI-based weights). 

For each of those 6 variations, the features selected by ML-

CFS were used as input by two different multi-label 

classification algorithms, namely ML-KNN (multi-label K-

nearest neighbours) [18] and ML-RBF (multi-label radial basis 

function) neural networks [19]. These algorithms were run 

with their default parameters, mentioned on the corresponding 

papers. 

Before running ML-KNN and ML-RBF, all features were 

normalized according to the zero-mean normalization method. 

I.e., a feature’s mean value is normalized to 0, and the value of 

a feature for an instance was normalized to the number of 

standard deviations above or below the feature’s mean. 

Genes with unknown names were deleted before running 

experiments. This is because we aimed at selecting genes 

whose relevance to drug resistance/sensitivity can be 

interpreted by biologists. The original dataset had 28,536 

genes, 22.7% of which had unknown names, so the reduced 

dataset used in our experiments has 22,058 genes (features). 

Predictive accuracy was measured by hamming loss 

(equation (10)), a popular measure of multi-label predictive 

accuracy that takes into account prediction errors (an incorrect 

label is predicted) and missing errors (a label is not predicted). 

            
 

| |
∑
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| |
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Where     is a multi-label test data set, consisting of |D| 

multi-label instances (xi,Yi,), i = 1..|D|, Yi is the set of class 

labels associated with the i-th instance.     , L is the set of 

class labels and |L| is the number of labels in L. Zi is the set of 

labels predicted by the multi-label classifier for the i-th 

instance and    is the symmetric difference of two sets and 

corresponds to the XOR operation in Boolean logic. That is, a 

class label belongs to the set of labels defined by         if and 

only if that label occurs in either Yi or Zi, but not in both sets. 

TABLE I.  HAMMING LOSS VALUES MEASURED BY LEAVE-ONE-OUT 

CROSS-VALIDATION (WITH STANDARD ERRORS BETWEEN BRACKETS)  

ML-kNN 

Using absolute  

value of correlation? 

Using mutual information? 

(Assign greater weight to) 

Hamming 

loss 

no yes (greater AvgMI) 0.388 (0.052) 

no yes (smaller AvgMI) 0.305 (0.072) 

no no 0.291 (0.061) 

yes yes (greater AvgMI) 0.361 (0.072) 

yes yes (smaller AvgMI) 0.250 (0.070) 

yes no 0.153 (0.053) 

ML-RBF 

Using absolute  

value of correlation? 

Using mutual information? 

(Assign greater weight to) 

Hamming  

loss 

no yes (greater AvgMI) 0.232 (0.062) 

no yes (smaller AvgMI) 0.431 (0.084) 

no no 0.375 (0.076) 

yes yes (greater AvgMI) 0.083 (0.046) 

yes yes (smaller AvgMI) 0.041 (0.035) 

yes no 0.083 (0.041) 

(6) 

(8) 

(9) 

(7) 



TABLE II.  GENES MOST FREQUENTLY SELECTED BY DIFFERENT 

VERSIONS OF THE ML-CFS METHOD 

Using 

absolute 

correlation? 

Using mutual 

information? 
(Assign greater 

weight to) 

Selected  

genes 

Selection 

Frequency 

Avg. 

No. of 
selected 

genes 

no 
yes  

(greater AvgMI) 
EPRS 19 

8.47 
CLMN  18 

no 
yes  

(smaller AvgMI) 

C1orf183  23 

7.88 

EPRS  22 
TACC2  21 
BCL2  19 
CALN1  15 

no no 

EPRS  24 

7.5 RIMS3  20 
CYSLTR2  14 

yes 
yes  

(greater AvgMI) 
NECAP2  14 4.42 

yes 
yes  

(smaller AvgMI) 

AURKAIP1 22 

6.58 RASL10B  17 
KPNA6  16 

yes no 

KIAA2013  22 

6.67 MAD2L2  18 
CSNK2A1  12 

 

We used the well-known leave-one-out cross validation 

(LOOCV) procedure [20] to estimate the hamming loss of the 

classification models built by ML-KNN and ML-RBF from 

the features selected by the ML-CFS feature selection method. 

A. Discussion of Predictive Accuracy Results  

Table I shows the hamming losses (and standard errors 

between brackets) obtained by ML-kNN and ML-RBF with 

the features selected by ML-CFS. The effect of using the 

absolute correlation coefficient values can be seen by 

comparing pairs of rows that have different values in the 

column “using absolute value of correlation?” but have the 

same values in the column “using mutual information?” and 

refer to the same multi-label classification algorithm. Using 

the absolute correlation values improved the predictive 

performance (reduced the hamming loss) in every case: 

comparing the first and fourth rows, the second row and fifth 

rows, the third and the sixth rows, for each classifier.  

We also evaluated the statistical significance of the 

difference in hamming loss when comparing the third and the 

sixth rows of results (where mutual information is not used) 

for each classifier. Hence, this comparison focuses on the 

different results associated with using or not the absolute value 

of correlation, without interference of the mutual information. 

We used a two-sided Wilcoxon Signed-Rank test [21], where 

the null hypothesis is that the hamming loss obtained by a 

classifier (ML-kNN or ML-RBF) is the same regardless of 

whether or not the ML-CFS method uses the absolute value of 

correlation. For both classifiers, the smaller hamming loss 

associated with the use of the absolute value of correlation is 

statistically significant at the 5% level. 

The effect of using the MI weights can be seen by 

comparing pairs of rows that have different values in the 

column “using mutual information?” but have the same value 

in the column and “using absolute value of correlation?” and 

refer to the same multi-label classification algorithm. When 

ML-kNN is used as the classifier, unfortunately both MI-based 

weight strategies led to larger hamming loss than not using 

MI-based weights at all. However, when using ML-RBF as the 

classifier, the use of MI weights led to better results. In the 

scenario where absolute correlation values are not used, 

assigning greater weight to labels with greater AvgMI led to a 

substantially smaller hamming loss than not using MI weights 

(0.232 vs. 0.375). This difference is statistically significant 

according to the two-tailed Wilcoxon Signed-Rank test at the 

5% significance level. In the scenario where absolute 

correlation values are used, assigning greater weight to labels 

with smaller AvgMI led to a somewhat smaller hamming loss 

than not using MI weights (0.041 vs. 0.083). This difference is 

statistically significant according to the two-tailed Wilcoxon 

Signed-Rank test at the 5% significance level.  

The reason why using MI as label weights is more 

effective when using ML-RBF than when using ML-kNN 

seems to be because ML-RBF copes better with correlations 

between labels. Actually, when classifying a test instance, 

ML-kNN decides to assign the “yes” or “no” value for each 

class label separately, based on the maximum a posteriori 

principle, ignoring label correlations [18]. 

B. Discussion on the Most Frequently Selected Genes 

Table II shows the genes most frequently selected by each 

of the 6 previously defined variants of the ML-CFS feature 

selection method. The “selection frequency” column shows 

how many times each gene was selected, out of the 24 

iterations of the leave-one-out cross-validation (LOOCV) 

procedure. Note that this table shows only the genes which 

were selected in at least 12 LOOCV iterations. 

In general, the set of most frequently selected genes 

(features) varied considerably among the 6 ML-CFS. 

However, the gene EPRS was consistently very frequently 

selected (with a frequency between 19 and 24) in the scenario 

where the absolute value of correlation was not used. On the 

other hand, this gene is not among the ones most frequently 

selected in the scenario using absolute value of correlation. 

A literature search revealed that EPRS (“glutamyl-prolyl-

tRNA synthetase”) was detected as a tumor-associated antigen 

in colon cancer [22]. Moreover, another gene (DUS2L – 

“dihydrouridine synthase 2”) which interacts with EPRS was 

suggested to be involved in pulmonary carcinogenesis [23]. 

However, conclusive evidence whether (and if yes which) role 

EPRS might play in cancer is missing.  

When using the absolute correlation values, the most 

frequently selected genes were AURKAIP1 and KIAA2013. 

Not much is known about AURKAIP1. It induces degradation 

of the oncoprotein Aurora A [24]. This suggests that 

AURKAIP1 may act as a tumour suppresor protein. 

KIAA2013 is an uncharacterised gene for which no relevant 

information is available. 

In terms of the average number of genes selected by each 

variant of ML-CFS, the variants using absolute correlation 

selected fewer (4.4 – 6.7) genes than the variants that do not 

use absolute correlation (which select 7.5 – 8.5 genes).  



VI. CONCLUSION 

In this paper we presented two extensions of a multi-label 

feature selection method (ML-CFS): (1) ML-CFS using the 

absolute value of the correlation coefficient, and (2) ML-CFS 

using Mutual Information for class label weighting. Six ML-

CFS versions were evaluated on a bioinformatics dataset, 

giving the genes selected by those ML-CFS versions to two 

different multi-label classification algorithms (ML-kNN and 

ML-RBF) and measuring the corresponding predictive 

accuracy, in terms of hamming loss. The experiments focused 

on a case study involving a cancer-related DNA microarray 

dataset with over 20,000 features (genes) and 3 different class 

attributes (whose class labels indicate whether a cancer cell 

line is sensitive or resistant to a certain drug). The results 

reported can be summarized from two different perspectives:  

1) ML-CFS with vs. without absolute correlations. 

Modifying the ML-CFS’s merit function to use the absolute 

correlation values clearly led to a smaller hamming loss when 

compared with the original ML-CFS proposed in [2]. The use 

of absolute correlation values also led to some reduction in the 

average number of genes selected in each run of ML-CFS. 

2) ML-CFS with vs. without mutual information (MI) 

weights: Unlike the use of absolute correlation values, the use 

of MI weights led to mixed results: broadly speaking, it 

reduced hamming loss (at least in some cases) when using 

ML-RBF as the classifier, but it increased hamming loss when 

using ML-KNN as the classifier. 
We also reported a brief analysis of the biological 

relevance of some genes selected by the ML-CFS method.  

Our experiments were run on only one multi-label 

microarray dataset, as a case study; and so a natural future 

research direction is to run further experiments evaluating the 

proposed ML-CFS extensions on other multi-label datasets. In 

addition, we would like to incorporate biological knowledge 

as a part of the merit function that evaluates the quality of 

candidate feature subsets. 
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