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Abstract 

This paper advocates a problem-oriented approach for the design of Artificial Immune Systems (AIS) for data 

mining. By problem-oriented approach we mean that, in real-world data mining applications, the design of an 

AIS should take into account the characteristics of the data to be mined together with the application domain: the 

components of the AIS – such as its representation, affinity function and immune process – should be tailored for 

the data and the application. This is in contrast with the majority of the literature, where a very generic AIS algo-

rithm for data mining is developed and there is little or no concern in tailoring the components of the AIS for the 

data to be mined or the application domain. To support this problem-oriented approach, we provide an extensive 

critical review of the current literature on AIS for data mining, focusing on the data mining tasks of classification 

and anomaly detection. We discuss several important lessons to be taken from the natural immune system to de-

sign new AIS that are considerably more adaptive than current AIS. Finally, we conclude the paper with a sum-

mary of seven limitations of current AIS for data mining and 10 suggested research directions. 
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1 Introduction 

Artificial immune systems (AIS) are aimed at solving real-world problems, and therefore are mainly related to 

the areas of computer science and engineering. For the purposes of this paper, the following definition of AIS is 

appropriate [de Castro & Timmis 2002] (p. 58): 

“Artificial Immune Systems (AIS) are adaptive systems, inspired by theoretical immunology and observed im-

mune functions, principles and models, which are applied to problem solving.” 



 2

This paper focuses on one kind of application for AIS, namely data mining [Fayyad et al. 1996], [Witten & 

Frank 2005]. More precisely, this paper focuses on two of the data mining tasks which have typically been ad-

dressed by AIS, namely classification (supervised learning) and anomaly detection. 

The cornerstone of this paper is to advocate a problem-oriented approach for the design of AIS for data min-

ing. By problem-oriented approach we mean that, in real-world data mining applications, intuitively the design 

of an AIS should be tailored for the data to be mined and the application. This is in contrast with the majority of 

the literature, where a very generic AIS algorithm for data mining is developed and there is little or no concern in 

tailoring the components of the AIS for the data to be mined or the application domain. 

From a data mining point of view, the need for a problem-oriented approach is not only intuitive, but also 

strongly supported by the facts that every data mining algorithm has an inductive bias (which will be defined 

later), and every inductive bias is suitable for some datasets or application domains and unsuitable for others 

[Mitchell 1990], [Schaffer 1994], [Rao et al. 1995], [Michie et al. 1994]. Therefore, in order to maximize the 

performance of an AIS for data mining in real-world applications, one has to first carefully understand the nature 

of the data being mined and the requirements of the application domain, and then design an AIS (or choose an 

existing AIS) whose inductive bias is well suitable for the target data and application domain. 

This current paper can be regarded as a major extension of our previous work discussed in [Freitas & Timmis 

2003]. The main differences between this paper and our previous work are as follows. First, this paper discusses 

in much more detail some issues discussed in [Freitas & Timmis 2003]. In particular this paper discusses the in-

ductive bias of knowledge representations and the application of clonal selection algorithms to data mining, top-

ics which were not covered in [Freitas & Timmis 2003]. Second, this paper addresses a topic largely unexplored 

in [Freitas & Timmis 2003], namely a discussion of four important features of the natural immune system, 

namely: (a) the large diversity of antibody functional classes; (b) antibodies’ ability to dynamically switch their 

functional classes; (c) the principle of antigen clustering; and (d) the principle of two-signal activation – the lat-

ter two principles specify requirements for cloning an immune cell. For each of these four features, we discuss 

why these features are important, as a metaphor, for the design of a more adaptive AIS than current AIS are at 

present, in the context of data mining.  

There are several reviews of AIS, such as [Dasgupta 1999], [Timmis and Knight, 2002], [Tarakanov et al. 

2003], [Timmis et al. 2004] but, as pointed out by [Garret 2005], most these reviews are outdated now, are not 

focused on evaluating the effectiveness of AIS and do not present many suggestions for improving the design of 

AIS. By contrast to these previous reviews, this paper focuses on evaluating the effectiveness of AIS, but in the 
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context of data mining, and we suggest several improvements for their design and a number of research direc-

tions. We should also note that work such as [Tarakanov et al. 2003], [Tarakanov & Tarakanov 2004], [Taraka-

nov et al. 2004] has developed techniques inspired by immune network theory. Results published in these works 

are certainly competitive with standard data mining approaches. However, it should be noted this work, due to 

the focus on immune networks, is not the focus of this paper. For compactness, in this paper we focus on popula-

tion-based AIS. 

We are aware of only a few other recent works which present a critical review of AIS, as follows. [Garret 

2005] has recently presented a comprehensive critical review of the area of AIS. There are three main differ-

ences between Garret’s work and this paper. First, Garret evaluated AIS with respect to two major criteria, 

namely how distinct they are from other related computational intelligence paradigms and how effective they 

are. By contrast, the issue of to what extent AIS are distinct from other paradigms is out of the scope of this pa-

per, which focuses only on how effective AIS are. Second, Garret’s work addressed the area of AIS in general, 

without focusing on any particular kind of application. By contrast, this paper is more specialized: it focuses only 

on AIS for data mining. Third, Garret’s discussion was “algorithm-oriented”, whilst the critical review presented 

in this paper is much more problem-oriented. In particular, this paper discusses in detail the inductive biases of 

AIS for data mining; an issue not discussed in Garret’s review, which had no focus on data mining. 

[Hart & Timmis 2005] also presented a critical review of AIS from a type of problem-oriented perspective. 

The main differences between [Hart & Timmis 2005] and this paper are as follows. First, [Hart & Timmis 2005] 

discuss not only data mining applications but also other applications such as optimization, robotics and control; 

whilst these other applications are out of the scope of this paper. Second, the discussion of [Hart & Timmis 

2005] also has a considerable focus on the issue of to what extent AIS are distinct from other computational in-

telligence paradigms – again, a topic out of the scope of this paper. Third, although [Hart & Timmis 2005] men-

tion the importance of inductive biases in analyzing AIS for data mining, they do not elaborate on this issue, i.e., 

they do not discuss the inductive biases of AIS for data mining. By contrast, this paper presents a detailed dis-

cussion on the inductive biases of AIS for data mining. 

We emphasize that the scope of this paper is a discussion of the inductive biases of AIS for data mining. For a 

review of the inductive biases of data mining algorithms belonging to other paradigms (i.e., not AIS) the reader 

is referred to [Michie et al. 1994] and [Mitchell 1997]. 

The remainder of this paper is organized as follows. Section 2 presents an overview of data mining tasks and 

the concept of inductive bias. Section 3 discusses representation issues in AIS for data mining. Section 4 dis-
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cusses affinity issues, also in the context of data mining. Section 5 discusses two kinds of immune processes for 

AIS, namely clonal selection and negative selection, again in the context of data mining. Finally, Section 6 con-

cludes the paper and suggests future research directions. 

 

2 An Overview of Data Mining Tasks and Inductive Bias 

2.1 The Classification Task 

In the classification task we are given a data set with N data instances (records). Each instance consists of 

values for m + 1 attributes, where the m attributes are called predictor attributes and the other attribute is called 

the goal (or class) attribute. The value of the goal attribute for an instance is called the class of that instance. The 

data set being mined is divided into two mutually exclusive sets, namely the training set and the test set. The aim 

of a classification algorithm is to discover a relationship between the predictor attributes and the goal attribute 

using the training set only – i.e., without any access to the test set. The discovered relationship has to be useful to 

predict, as accurately as possible, the value of the goal attribute for each of the unknown-class instances in the 

test set, based on the values of the predictor attributes of that instance. In general, one wants to maximize a 

measure of predictive accuracy such as the simple classification accuracy rate in the test set or a more sophisti-

cated measure based, e.g., on ROC curves [Flach 2004], [Flach 2003].  

In addition to predictive accuracy, there are other criteria to evaluate the performance of a classification algo-

rithm, in particular the comprehensibility of the discovered knowledge [Fayyad et al. 1996], [Witten and Frank 

2005] – i.e., how comprehensible the classification model is to the user. The importance of knowledge compre-

hensibility depends on the application domain and the user. In general this is not an important criterion in many 

pattern recognition tasks, but it tends to be an important criterion when discovered knowledge will be validated 

and interpreted by a user wanting to get more insight about the data. Although there is no consensus about a pre-

cise definition of comprehensibility, it is usually accepted that some knowledge representations lend themselves 

better than others to the discovery of comprehensible knowledge. For instance, in general rule-based representa-

tions (to be reviewed later) have a tendency to represent knowledge in a more comprehensible way than, say, the 

low-level representation of the numerical weights of a neural network [Witten & Frank 2005]. 

Classification vs. Clustering – It is worth mention the main difference between the classification and clus-

tering tasks because, although clustering is not the focus of the paper, this task is briefly referred to in some parts 

of this paper. The classification task is a form of supervised learning. By contrast, the clustering task involves a 

form of unsupervised learning, where there are no pre-defined classes assigned to instances. In general the objec-
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tive of a clustering algorithm is to partition the instances into a set of clusters, where each cluster consists of 

similar instances. It should be stressed that in general the clustering task does not involve any prediction.  

 

2.2 The Anomaly Detection Task and Its Relationship to the Classification Task 

The anomaly detection task is described as follows by [Hart & Timmis 2005]:  

“Such techniques [for anomaly detection] are required to decide whether an unknown test sample is produced by 

the underlying probability distribution that corresponds to the training set of normal examples. Typically, only a 

single class is available on which to train the system. The goal of these immune inspired systems was to take ex-

amples from one class (usually what was considered to be normal operation data) and generate a set of detec-

tors that was capable of identifying when the normal or known system had changed, thus indicating a possible 

intrusion.” 

This summarizes the way the anomaly detection task is typically described in the AIS literature. In this paper, 

however, we propose to examine this task from a broader perspective, by putting it in the context of a larger data 

mining literature. The essence of the anomaly detection task is that the training set contains instances of a single 

class, called the “self” (or normal) class, whilst the test set contains instances of two (or more) classes, the “self” 

and the “non-self” (e.g. intrusion) classes. The main difference between this description and the essence of the 

conventional classification task is that in the latter the training set contains instances of all classes (both self and 

non-self). Another important difference between the anomaly detection task and the classification task is that in 

the former the distribution of the two “classes” (anomaly vs. non-anomaly) is extremely unbalanced – i.e., find-

ing anomalies is like finding “needles in a haystack” [Tan et al. 2006]. 

Despite these differences, there are important similarities between the anomaly detection task typically ad-

dressed in the AIS literature and the conventional classification task. First, in both tasks there is a division of the 

data into training and test set, and the algorithm must learn from the training data and apply the result of that 

learning on the test data. Second, the result of the learning in the training data has to be a classification model, 

i.e., a model that assigns, to each test instance, a value out of a small set of categorical (nominal) values (self and 

non-self in the AIS literature, or more generally any set of categorical classes). Thirdly, in several AIS papers 

addressing anomaly detection the performance of the algorithm is evaluated in the same way as one evaluates the 

performance of an algorithm for the classification task, i.e., reporting rates of false positives and false negatives, 

ROC curve or another appropriate measure of predictive accuracy. The evaluation of an anomaly detection AIS 

within a classification framework is clear, for instance, in the works of [Kim & Bentley 2002], [Balthrop et al. 
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2002], [Anchor et al. 2002], [Gonzales & Dasgupta 2002]. There are even projects where the evaluation of an 

AIS algorithm developed for anomaly detection is performed in public domain datasets that are well-known 

benchmarks for the classification task, and there is no natural notion of “intrusion” or “anomaly”. This is the 

case, for instance, in the works of [Kim & Bentley 2002] and [Greensmith et al. 2005], where the only dataset 

used in the experiments was the Wisconsin Breast Cancer dataset, a well-known classification benchmark from 

the UCI dataset repository.  

 Taken together, these similarities are strong evidence that the kind of anomaly detection task typically ad-

dressed in the AIS literature is very related to the conventional classification task. 

 

2.3 Inductive Bias 

Given a number of data instances (facts or observations about the real-world), the number of hypotheses or 

data models implying those instances is potentially infinite [Michalski et al. 1983]. Therefore, we must use a bias 

that goes beyond consistency with the observed data instances in order to choose a hypothesis or data model over 

another. An inductive bias can be defined as any (explicit or implicit) basis for favoring one hypothesis or data 

model over another, other than strict consistency with the data being mined [Mitchell 1990], [Mitchell 1997]. 

Note that, without inductive bias, a data mining algorithm would not be able to choose between two hypotheses 

or data models that are equally consistent with the data. Therefore, the algorithm would be limited, in essence, to 

a kind of simple rote learning. Hence, every data mining algorithm that performs some generalization – and not 

merely memorizes the data – must have an inductive bias. This includes virtually every useful data mining algo-

rithm, since merely memorizing the data could hardly be called data mining. 

For the purpose of the review of AIS in this paper, a very important point is that any inductive bias has an ap-

plication domain-dependent (more specifically, a dataset-dependent) effectiveness. Since every data mining al-

gorithm based on machine learning has an inductive bias, it follows that the performance of a data mining algo-

rithm is very dependant on the application domain and the data being mined. The application domain/dataset-

dependent effectiveness of algorithms and their corresponding inductive biases has been well established in the 

machine learning literature for more than a decade – both theoretically [Schaffer 1994], [Rao et al. 1995] and 

empirically [Michie et al. 1994], [Lim et al. 2000]. 

This fact strongly suggests that, in order to maximize the performance of a data mining algorithm in real-

world applications, one has to first carefully understand the nature of the data being mined and the requirements 

of the application domain, and then design a new algorithm or choose an existing algorithm whose inductive bias 
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is well suited for the target data and application domain. This is a problem-oriented approach, and it requires a 

good understanding of the inductive biases of data mining algorithms. In particular, this paper will discuss in de-

tail the inductive biases of AIS for data mining, therefore giving a significant contribution to the design or choice 

of an AIS whose inductive bias is suitable for the target data and application domain. 

 

3 Representation Issues  

According to [de Castro & Timmis 2002], an antibody – representing a candidate solution to the target prob-

lem – can, in general, be represented by an L-dimensional vector Ab = <Ab1, …, AbL>, where L is the length (i.e. 

the number of components) of the vector. In the context of the classification task, usually each Abi, i = 1,…L, es-

sentially represents the value of the i-th attribute (feature) of the data being mined.  

In [Freitas & Timmis 2003] we briefly reviewed three kinds of antibody representation with respect to attrib-

ute data types, namely binary, continuous (real-valued) and categorical (nominal) data representations. In this 

paper we propose to go considerably further, by considering knowledge representations [Langley et al. 1996], as 

discussed in the next subsection.  

 

3.1 A Brief Review of Instance-Based and Rule-Based Knowledge Representations  

Most AIS for classification use an instance-based representation. This includes well-known AIS such as AIRS 

[Watkins 2001], [Watkis & Boggess 2002b], [Watkins et al 2004] and CLONALG [de Castro & von Zuben 

2000a], [de Castro & von Zuben 2002a]. Instance-based representations have a form of specificity bias, in the 

sense that in this representation the candidate solutions considered by the classification algorithm take the form 

of a subset of the original data instances, each of them with all its attribute values. This allows the representation 

of very specific relationships between the predictor attributes and the classes of instances.  

A very different kind of representation is the rule-based one. This representation is used, for instance, in 

IFRAIS [Alves et al. 2004] – an AIS for discovering fuzzy classification rules. Rule-based representations have a 

kind of generality bias. In this representation, the candidate solutions considered by the algorithm take the form 

of IF-THEN classification rules, where each rule typically contains a conjunction of a few attribute values in its 

antecedent, namely just the attribute values that are relevant to predict the class specified in the rule consequent. 

A rule can be used to classify any instance satisfying the conjunction of attribute values in its antecedent, so that 

each rule is effectively a generalized representation for the set of instances satisfying its antecedent.  
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The difference between the rule-based and instance-based representations can be more easily understood from 

a geometrical point of view, as illustrated by Figure 1. In this figure the training instances are represented by “+” 

or “–”, denoting that they belong to the positive or negative class, respectively, and an unknown-class test in-

stance is denoted by “?”. To keep the example simple, the figure refers to a data space with just two attributes, 

A1 and A2. The position of an instance in that space is given by its values for attributes A1 and A2. In Figure 1(a) 

there is a box covering a set of 9 training instances. This box represents the following classification rule: IF (t1 ≤ 

A1 ≤ t2) AND (t3 ≤ A2 ≤ t4) THEN (class =  “+”). Given that the test instance denoted by “?” satisfies this rule, it 

will be classified as a positive instance. This is a result of the generalization made by the rule. By contrast, the 

same instance set is shown in Figure 1(b), but now an instance-based representation is used. Assuming the test 

instance is assigned the class of its nearest training instance (as in the 1-NN algorithm [Aha 1997]), that test in-

stance will be assigned the negative class. This is a result of the specificity bias of the instance-based classifica-

tion algorithm. Of course, we could increase the generality of the instance-based representation by assigning the 

test instance to the class of the majority of its k nearest neighbors, as in the k-NN algorithm [Aha 1997], but even 

in this case the value of k is typically a small integer, so that even k-NN algorithms still have a relatively strong 

specificity bias,. Further discussions contrasting the specificity bias of instance-based representations with the 

generality bias of rule-based representations can be found in [Ting 1994], [Carvalho & Freitas 2004]. 

In any case, the question of which bias, generality or specificity, leads to a higher predictive accuracy depends 

strongly on the data being mined – this is also true for any other kind of inductive bias. In Figure 1, it is possible 

that the negative training instance nearest to the test instance contains noisy data – say the wrong value of A1 or 

A2, or the wrong value of the class. If so, the rule of Figure 1(a) is correctly generalizing all the training in-

stances inside the box and the test instance is likely to really have the positive class. On the other hand, the nega-

tive training instance nearest to the test instance can contain correct data and represent a true exception to the 

more generic pattern represented by the rule of Figure 1(a).  If so, the test instance is likely to really have the 

negative class and the very specific prediction of the 1-NN algorithm would be more likely to be correct. 

 
                   A2                                                                     A2 

  
                               –         –     –    –                                              –         –     –    – 

                        t4     –    –    +       +       +                                        –    –    +       +       + 
                                  –          +  +    ? –                                              –         +  +    ? – 
                        t3      –  –     +      +      +                                           –  –     +      +      + 
                                                                                
                                          t1                    t2       A1                                                              A1 

                       (a) rule-based representation                     (b) instance-based representation 
 
                      Figure1: Difference between rule-based and instance-based representation 
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Regardless of predictive accuracy issues, one advantage of the rule-based representation over the instance-

based one is that the former tends to be more comprehensible to the user [Witten & Frank 2005]. This is because 

it uses an intuitively interpretable IF-THEN structure and the antecedent usually contains a conjunction of a few 

conditions, rather than a vector containing values for all attributes as in a typical instance-based representation.  

On the other hand, the generalized representation of the data associated with IF-THEN rules comes with a 

corresponding disadvantage. As pointed out by [Chao & Forrest 2003], rule induction requires that many training 

instances be observed before a rule generalizing those instances is created. By contrast, the instance-based repre-

sentation can learn, in principle, even from a single instance. A related point is that instance-based representa-

tions are more incremental, i.e., they are more easily updated as the data being mined changes. This remark pro-

vides further support to the claim of [Hart & Timmis 2005] that continuous learning is a promising application of 

AIS, since most current AIS use an instance-based representation. 

To conclude this section, the question: “Which knowledge representation is better, the instance-based or the 

rule-based one?” does not make sense per se, in isolated form. It all depends on the nature of the data being 

mined, the requirements of the application domain, how important knowledge comprehensibility is to the user, 

etc. From a data mining, problem-oriented perspective, the right question to ask is: “For a particular application 

domain and a particular dataset to be mined, which knowledge representation should be used?” The optimal an-

swer might not even be the instance-based or rule-based representation, of course, since many other knowledge 

representations are available [Witten & Frank 2005], [Langley 1996].  

 

3.2 A Critical Review of Representation Issues in a Number of Existing Artificial Immune Systems 

Table 1 presents a summary of the antibody representation used by a number of AIS (this table is not exhaus-

tive). Each row in that table corresponds to a given kind of AIS work. For each work the table reports: (a) the 

kind of application / data mining task addressed by that work; (b) the antibody representation; (c) the general 

geometrical shape of the antibody’s recognition area in the data space – or how an antibody recognizes an anti-

gen, if the geometrical shape of the antibody’s recognition area is not well defined; and (d) the knowledge repre-

sentation paradigm: instance-based or rule-based. 

The majority of the AIS mentioned in Table 1 use one out of a couple of “standard” antibody representations, 

namely a real-valued vector or a binary vector, or a variation of those representations. In general these works 

show little or no concern in designing a representation tailored for the data or the application domain. 
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Table 1: A Summary of Representation Issues in a Number of Existing AIS 

AIS Kind of applica-
tion or task 

Antibody representation Antibody’s recognition 
area 

Kn. Rep. 
Paradigm 

[Dasgupta et al. 
2004] 

Fault detection / 
classification 

Real-valued vector Hyper-sphere with a 
variable radius 

Instance-
based 

[Gonzales et al. 2002] Anomaly detec-
tion /  
classification 

Real-valued vector Hyper-sphere with 
variable radius  

Instance-
based 

[Cserey et al. 2004] Real-time process-
ing of image se-
quences for sur-
veillance 

Binary vector with “don’t 
care” values 

Hyper-sphere with 
fixed radius  

Instance-
based 

[Dasgupta & Majum-
dar 2002] 

Anomaly detec-
tion /  
classification 

Binary vector encoding 
real numbers 

Antibody and antigen 
must match in r con-
tiguous bits 

Instance-
based 

[Sarafijanovic  
& Le Boudec 2004] 

Misbehaviour de-
tection in mobile 
ad-hoc networks 

Binary vector encoding 
discretised numbers 

Antibody must have 
“1” in every position 
where antigen has “1” 

Instance-
based 

[Balthrop et al. 2002] Network intrusion 
detection /  
Classification 

Binary vector  Antibody and antigen 
must match in r con-
tiguous bits 

Instance-
based 

[Anchor et al. 2002] Network intrusion 
detection /  
Classification 

Binary vector encoding 
ranges of numerical vari-
ables 

Hyper-rectangle (each 
attribute has lower and 
upper bounds) 

Instance-
based 

[Taylor & Corne 
2003] 

Fault detection / 
classification in 
time series 

Discrete-number vector 
using two encodings – 
one of them tailored for 
time series  

Hyper-sphere with 
fixed radius or match-
ing r contiguous bits of 
antigen 

Instance-
based 

[de Castro & von Zu-
ben 2001 ; 2002b] 

Clustering  Real-valued vector Select n antibodies 
nearest to the current 
antigen 

Instance-
based 

[de Castro & von 
Zuben 2000a; 2002a] 

Digit recognition Binary vector Select n antibodies 
nearest to the current 
antigen 

Instance-
based 

[White & Garret 
2003] 

Digit recognition Real-valued vector Select n antibodies 
nearest to the current 
antigen 

Instance-
based 

[Watkins et al. 2004], 
[Watkings & Boggess 
2002a] 

Classification Real-valued vector Select memory cell 
nearest to the current 
antigen1 

Instance-
based 

[Sahan et al. 2005] Medical diagnosis 
/ classification 

Real-valued vector Hyper-sphere with 
fixed radius 

Instance-
based 

[Alves et al. 2004] Classification A fuzzy classification 
rule 

Hyper-rectangle Rule-
based 

[Castro et al. 2005] Classification A set of fuzzy classifica-
tion rules 

Hyper-rectangle Rule-
based 

[Secker et al 2003] Classification Vector encoding words 
extracted from emails 

Antibody must have n 
number of equal words 
to antigen 

Instance 
based 

[Ayara et al 2005] Error detection / 
Classification 

Vector containing dis-
crete states of an auto-
mated teller machine 

Antibody and antigen 
must match in r-
contiguous bits  

Instance 
based 

 

                                                           
1 It should be noted AIRS has two recognition areas during training, one for deciding if an antibody is cloned, the other used 

to decide if a new candidate memory cell is actually added to the set of memory cells. Here we discuss the first. 
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The work of [Taylor & Corne 2003] is an exception. This work used an antibody representation consisting of 

a vector of discrete, integer numbers in the range 0-9. Two alternative encodings of the data into that representa-

tion were investigated. First, each original temperature value – in a time series of temperature values – was dis-

cretized into an integer in [0…9]. The second kind of encoding involved comparing the temperature value at 

time t with the temperature at the previous time t – 1 in a time series, and then encode that difference as the dis-

crete number 0, 1, or 2, to denote an upward slope, no change or downward slope, respectively. This representa-

tion was designed in collaboration with experts in the application domain, involving fault detection in refrigera-

tion systems. To quote from the paper:  

“ In conjunction with experts in the application area, our view is that the key elements of a faulty defrost tem-

perature curve are not the precise pattern of real-valued temperatures, but the local ‘ruggedness’ of the tem-

perature curve.”  

This kind of data encoding tailored for the data being mined, designed in collaboration with experts in the appli-

cation domain, is a good example of the problem-oriented approach for the design of AIS advocated in this pa-

per. The other exception is the work by [Ayara et al 2005]. In that paper, the authors used explicit domain 

knowledge from engineers to establish failure criteria for ATMs (Automated Teller Machines). This knowledge 

is used to identify sequences of states that lead to failure: these are then used as the basis for antibodies that pre-

dict if an ATM is likely to fail or not.  Results obtained showed that it was possible to identify up to 12 hours in 

advance of such failure. 

It should also be noted that, in some AIS reported in Table 1, the corresponding paper makes it explicit the 

fact that the choice of the used representation was driven by an algorithm-oriented approach, rather than a prob-

lem-oriented approach. For example, quoting [Anchor et al. 2002]:  

“The binary string representation is employed to allow for easy manipulation by a genetic algorithm in the affin-

ity maturation.”  

It is not clear that a binary representation is needed for that reason, since evolutionary algorithms can handle 

real-valued variables without any significant problem, and the real-valued individual representation is arguably 

more suitable than the binary one when the data consists of real-valued variables [Back 2000], [Freitas 2002].  

As another example of work emphasizing the algorithm-oriented nature of an AIS, [Dasgupta & Majumdar 

2002] used an AIS for anomaly detection in personnel data containing both numerical and categorical (nominal) 

attributes. That project ignored the categorical attributes and used an antibody representation containing only 

numerical attributes. Hence, several attributes that were potentially useful for the target anomaly detection task 
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were ignored, possibly reducing the predictive accuracy of the system. The justification for working only with 

numerical attributes given by the authors was:  

“ It is difficult to numerically represent categorical data. Any attempt to do so arbitrarily imposes an ordering in 

the data, which is not true in real life. To apply the negative selection algorithm we need numerical data.”  

We agree with the authors that a numerical representation of categorical data is not a good approach, introducing 

an arbitrary order in the data. However, it does not follow that the best solution is to ignore categorical data and 

use only numerical data. Rather, intuitively a better approach is to use a hybrid numerical/categorical representa-

tion. As pointed out by [Freitas & Timmis 2003], it is possible to use an affinity function that handles categorical 

attributes without converting them into numerical attributes. A very simple way of doing that is to define the dis-

tance between two categorical values as 0 if the two values are the same or 1 if they are different. This does not 

introduce any arbitrary order in the data and it returns a numerical value that can be straightforwardly used in the 

formula for any distance measure. A more sophisticated approach to measure the numerical distance between 

two categorical attribute values (again, without introducing an artificial ordering in the data) consists of using the 

Value Difference Metric [Stanfill & Waltz 1986], [Liao et al. 1998]. 

A common choice of representation in existing AIS for data mining consists of representing an antibody as a 

real-valued vector and, when matching an antibody and an antigen, considering that the antigen is recognized by 

the antibody if the distance between them is smaller than a given threshold. This defines, for each antibody, a 

hyper-spherical recognition region centered at the coordinates of its real-valued data vector and with radius given 

by the distance threshold. This kind of representation, sometimes called “artificial recognition ball”, is used in 

several AIS mentioned in Table 1, namely the works of [Dasgupta et al. 2004], [Gonzales et al. 2002], [Cserey et 

al. 2004], [Taylor & Corne 2003]. In early AIS the radius was fixed, but more recently some works proposed a 

variable radius [Dasgupta et al. 2004], [Gonzales et al. 2002]. The idea of a variable radius is an improvement, 

intuitively making the antibodies more adaptable to the data being mined, but it should be pointed that, even 

when the length of the radius is variable, existing AIS still use the fixed representation of a hyper-spherical rec-

ognition ball, which has its own representational bias and so is not suitable for all kinds of data being mined.  

To see this point, consider for example the two very simple datasets shown in Figure 2(a) and 2(b), and let the 

target task be clustering. In Figure 2, each data instance is represented by a “x”. A hyper-spherical representation 

is naturally suitable for the data of Figure 2(a), but not suitable for the data of Figure 2(b), for which a hyper-

rectangular representation is more suitable. 
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It should be noted that not all instance-based representations have a hyper-spherical recognition region. In 

particular, the work of [Anchor et al. 2002] proposes a hyper-rectangular representation, where the antibody en-

codes a lower and an upper bound for the value of each attribute.  
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       (a) suitability of hyper-spherical representation       (b) suitability of hyper-rectangular representation 
 

Figure 2: Examples of datasets for which hyper-spherical or hyper-rectangular representations are suitable 
 
 
There are also several works where an antibody’s recognition region is not explicitly defined as a property of 

the antibody itself, but is rather implicitly defined by a competition between that antibody and other antibodies 

[de Castro & von Zuben 2002b], [de Castro & von Zuben 2002a], [White & Garret 2003], [Watkins et al. 2004]. 

In such AIS, when an antigen is presented to the system, the nearest antibody(ies) to that antigen is(are) deemed 

to recognize that antigen, regardless of the actual value of the distance between the antibody(ies) and the antigen. 

This avoids the need to specify a parameter such as the radius of a hyper-sphere, although this advantage might 

be cancelled out if the system requires another parameter such as the number of nearest neighbors (antibodies) 

that should be considered as recognizing the current antigen – and therefore are selected for cloning.  

Almost all AIS mentioned in Table 1 use an instance-based representation. The only exceptions are the works 

of [Alves et al. 2004] and [Castro et al. 2005]. In [Alves et al. 2004] an antibody represents a fuzzy classification 

rule. In geometric terms, the rule-based representation corresponds to a hyper-rectangle in the data space. Inter-

estingly, both the work of [Alves et al. 2004] and the work of [Anchor et al. 2002] use a hyper-rectangle repre-

sentation. The main differences between these two works are as follows. First, the work of [Anchor et al. 2002] 

uses an instance-based representation, where the data vector contains a pair of values (lower and upper bounds) 

for every attribute of the data being mined. By contrast, the work of [Alves et al. 2004] uses a rule-based repre-

sentation, where each rule typically contains values for relatively few attributes, rather than all attributes. Hence, 

in the latter representation an antibody tends to be considerably shorter than an antibody in the former, which 

makes the latter representation easier to interpret for the user. Second, the antibody representation used in [An-
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chor et al. 2002] handles only numerical data, whilst the antibody representation used in [Alves et al. 2004] han-

dles both numerical and categorical data.  

In [Castro et al. 2005] an antibody represents a set of fuzzy classification rules, rather than just a single rule. 

From a geometrical point of view, each of the rules encoded in an antibody has the same hyper-rectangular shape 

as the rule representation used in [Alves et al. 2004]. Encoding a set of rules (rather than a single rule) into an 

antibody has the advantage that the antibody’s fitness evaluation directly takes into account the interactions 

among rules, but it has the disadvantage that the antibody representation becomes more complex and the size of 

the search space for the AIS becomes correspondingly larger [Freitas 2002]. 

Both the instance-based representation of [Anchor et al. 2002] and the rule-based representations of [Alves et 

al. 2004], [Castro et al. 2005] have the limitation that they represent only hyper-rectangles whose boundaries are 

defined by propositional-logic conditions such as “(18 ≤ Age ≤ 30)”, and not first-order logic (relational) condi-

tions such as “(Income > Expenses)”. This point will be further discussed later. 

Overall, considering the contents of Table 1 and the previous analysis, it should be noted that existing AIS are 

not very flexible nor adaptive in their choice of antibody representation. That is, in general each of these AIS 

uses a fixed kind of representation throughout the run of the system, implicitly assuming that that representation 

is suitable for the data being mined, an assumption that is not usually justified.  

With this important limitation of current AIS in mind, it is now timely to turn to a discussion of “antibody 

representation” issues in the natural immune system (a much more flexible system), in order to investigate the 

possibility of identifying useful metaphors for the design of a more adaptive AIS.  Indeed, work in [Stepney et 

al. 2005] advocate the re-examination of the immunological literature and to move away from simplistic views 

of immunological operation, and seek to capture a richer (or appropriate level of metaphor) aspect of immunol-

ogy that can be used in the development of AIS.  

 

3.3 Antibody Diversity in the Natural Immune System 

There are four main kinds of antibody according to their functional class, namely IgA, IgE, IgG, and IgM. 

These kinds of antibody have different functional properties, evolved to function in different environments (dif-

ferent parts of the body) and mediate different biological responses following antigen binding [Sompayrac 

2003], [Alberts et al. 2002], [Mims 2000]. 

IgM is a relatively large antibody, and it is the first kind of antibody secreted into the blood in the early stages 

of a primary immune response. As the immune response develops, IgM antibodies are replaced by other kinds of 
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antibodies, mainly IgG ones. The logic behind the use of IgM as a “first antibody” is that in the early stage of an 

infection IgM antibodies are more effective than IgG ones, because IgM antibodies are considerably better at 

“fixing complement” – i.e., activating the complement cascade. Furthermore, IgM antibodies are very good at 

binding to viruses and preventing them from attaching to cells that they could infect. Due to their large size, IgM 

antibodies cannot easily pass through blood vessel walls, so they stay mainly in the blood. 

IgG is the most abundant kind of antibody in the blood. IgG is produced in large quantities during a secondary 

immune response. There are several different subclasses of IgG antibodies, with different functions. For in-

stance, IgG1 is very good at opsonizing invaders, i.e., preparing them to be ingested by phagocytes such as 

macrophages; whereas IgG3 is the subclass which best fixes complement. IgG antibodies are good at binding to 

viruses and preventing them from attaching to cells that they could infect.  

IgA antibodies are very good at clumping pathogens, creating clumps that are large enough to be swept out of 

the body with the mucus. IgA is the most abundant kind of antibody in the body. They are not so numerous in 

the blood (where IgG predominate), but there are a very large number of them in the mucosal surfaces of the 

body. IgA is sometimes called a secretory antibody and it is the main kind of antibody in secretions such as sa-

liva, tears, respiratory and intestinal secretions, and it is also secreted into the milk of nursing mothers. Although 

IgA antibodies are very good in the fight against mucosal invaders, they are useless at fixing complement. 

IgE antibodies are present in relatively small amounts in the body (by comparison with other kinds of antibod-

ies), and they are produced by B cells lying just below the respiratory and intestinal surfaces. IgE binds with un-

usually high affinity to special cells such as mast cells, which protect us against parasitic infections. Then, when 

the IgE antibody binds an antigen, it triggers the mast cell to secrete substances that kill the parasite.  

Interestingly, the immune system is quite clever in using these different kinds of antibodies, because a B cell 

can switch the kind of antibody that it produces based “on demand”. As mentioned earlier, when B cells are first 

activated they secrete mainly IgM antibodies. In a later stage of the immune response, many B cells change the 

kind of antibody that they are producing (to IgG, IgE or IgA), based on the combination of antigens binding to 

the B cell and cytokines secreted by helper T cells. For instance, if a B cell detects an abundance of cytokines IL-

4 and IL-5 in its environment, it tends to switch their kind of antibody from IgM to IgE – ideal for fighting para-

sitic worms. By contrast, if a B cell detects TGF-β it tends to change its kind of antibody from IgM to IgA – 

ideal for the common cold.  

 
3.4 Lessons To Be Taken From Natural Antibody Diversity for Designing More Adaptive AIS 
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First of all, recall that, in AIS, an antibody is a candidate solution to the target problem. At a high level of ab-

straction, there are two main lessons that we can take from the antibody diversity in the natural adaptive immune 

system, in order to identify generic principles for designing more adaptive AIS than the AIS currently available 

in the literature.  

The first lesson is that there is a considerable diversity of natural antibodies. They come into several func-

tional classes and subclasses. Each of those classes and subclasses is particularly suitable for protecting us 

against one kind of invader. Each of the functional classes of natural antibodies can be thought of as a kind of 

“antibody representation”, having a role conceptually analogous (as a metaphor) to a knowledge representation 

of an artificial antibody in an AIS. In terms of diversity of representations, AIS lag considerably behind their 

natural counterpart. As discussed earlier, in general AIS use only one kind of antibody representation.  

The motivation for designing an AIS that considers more than one kind of knowledge representation is clear 

in the context of data mining, where different subsets of the data being mined may be better covered by different 

kinds of knowledge representation. A very simple example of this point is shown in Figure 3, which is based on 

the same geometrical perspective of knowledge representations (and the same notation) as used in Figure 2. Con-

sider first the six positive training instances within the box in the lower-right part of the data space in Figure 3. 

These instances are naturally covered by the rule represented by that box, i.e. the rule: IF (t1 ≤ A1 ≤ t2) AND (A2 

≤ t3) THEN (class =  “+”). Borrowing terminology from the field of Logic, this kind of rule is called a proposi-

tional rule. The majority of rule induction algorithms discover rules in this representation. This representation is 

not suitable, however, to cover the many positive examples above the diagonal line in Figure 3. Those examples 

are ideally covered by a more sophisticated kind of rule, viz. the rule: IF (A2 > A1) THEN (class = “+”). This is a 

first-order logic (or relational) rule representation, whose antecedent is comparing the values of two attributes, 

rather than just comparing the value of an attribute with a given threshold value. On the other hand, there are 

other training instances which apparently would not be well covered by a generic rule, and for which an in-

stance-based representation seems more appropriate. Examples are the two negative training instances above the 

box and below the diagonal line in Figure 3. This figure is a very simplified example, but it illustrates the point. 

The need for diverse knowledge representations intuitively tends to grow stronger as larger and more complex 

datasets are mined. In other words, the ability to use diverse knowledge representations is a desirable characteris-

tic of AIS for scaling them up to large and complex datasets, a research direction very open in the AIS literature. 

Although the use of hybrid knowledge representations is not easy and is not the main approach in machine 

learning and data mining, there is evidence that well-designed systems with hybrid knowledge representations 
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are effective. To quote just five examples, [Ting 1994] used a hybrid decision tree and instance-based learning 

representation; [Lopes and Jorge 2000] and [Domingos 1995] used a hybrid rule and instance-based representa-

tion; [Quinlan 1993] used a hybrid system involving instance-based learning and three different forms of model-

based learning; and [Carvalho & Freitas 2004] used a hybrid decision tree and rule representation where the rules 

are evolved by a genetic algorithm. In general these systems have been shown to obtain a high predictive accu-

racy, and they often obtained better results than the individual base algorithms which they combined.  
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Figure 3: Example of Data Requiring Diversity of Knowledge Representations 
 
The second lesson about representation to be taken from the natural immune system is that B cells are adap-

tive enough to switch the class of antibody that they produce as necessary, depending on the kind of invader that 

is currently attacking the body. Again, AIS lag considerably behind their natural counterpart in this kind of adap-

tivity, since in general they do not allow the kind of knowledge representation to be changed as new antigens are 

found – i.e., as a new region of the search space is explored.  

 
4 Affinity Issues 

4.1 A Review of the Importance of Affinity Functions in Artificial Immune Systems 

Any kind of affinity function used to decide which antibodies will be cloned (and how many clones of them 

will be produced) is, in more general data mining terms, an evaluation function that guides the search for better 

models of the data; and any evaluation function is a source of inductive bias. Therefore, one should choose or 

design an affinity function whose bias is suitable for the data being mined [Freitas & Timmis 2003].  

Since most AIS use an instance-based representation, as discussed in Section 3, it is natural that most AIS use 

an affinity function that is specified in terms of a distance function, i.e., the smaller the distance between an anti-

body and an antigen, the higher the affinity between them, and so the more stimulated the antibody is.  

To illustrate the importance of the choice of a distance function, consider the following example, adapted 

from [Freitas & Timmis 2003]. The first column of Table 2 shows the coordinates – in a two-dimensional data 

space – of three data instances, namely antigen A and antibodies B and C. Which of the two antibodies, B or C, 
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is nearest to antigen A? This is the sort of question that has to be continuously answered within the execution of 

an AIS such as CLONALG or aiNet, where the n nearest antibodies to an antigen are chosen to be cloned, and 

within the execution of AIRS, where the nearest (highest affinity) memory cell is chosen to generate new artifi-

cial recognition balls. Interestingly, different distance measures might give quite different results. This is shown 

in the second and third columns of Table 2, where two popular distance measures are considered: Manhattan and 

Euclidean distance [Liao et al. 1998]. As shown in the table, according to the Manhattan distance, the distance 

between A and B is 8, whilst the distance between A and C is 7, which suggests that C is the nearest antibody to 

A. However, according to the Euclidean distance, B is the nearest antibody to A.  

This significant difference in the results happens because the Manhattan and the Euclidean distance have dif-

ferent inductive biases. The Euclidean distance tends to amplify the importance of a large difference between the 

values of a single attribute (coordinate) between two data instances. Intuitively, this makes the Euclidean dis-

tance more sensitive to noise in a single attribute than the Manhattan distance, because in the latter a large differ-

ence between two values of an attribute will have less impact than in the Euclidean distance. 

The example of Table 2 is very simple, but is shows the point: the choice of a particular distance measure is 

important and affects the results of the AIS algorithm. There is no such thing as the “best” distance measure in 

general. This means that, in order to maximize the performance of an algorithm in a given dataset, one should 

carefully study the dataset in detail in a pre-processing phase of the knowledge discovery process, and then se-

lect the distance measure whose inductive bias is most suitable for that particular dataset. This is part of the 

problem-oriented approach advocated in this paper. Note that this is in contrast with the conventional “algo-

rithm-oriented” approach of specifying the distance measure of the algorithm in a way independent of the data 

being mined. This pre-specification of a fixed distance measure might be appropriate for academic experiments 

where the algorithm is evaluated across a number of datasets, in order to show the algorithm’s robustness. How-

ever, if the goal is to maximize the performance of the algorithm in an important real-world dataset, where the 

results of the algorithm will be actually used for decision making in the real-world, then a more careful and justi-

fied choice of the distance function, tailored for the data being mined, should be made. 

 
Table 2: Example of the influence of choice of distance measure in the results of an AIS 

Data instances’ coordinates Manhattan Distance to A Euclidean distance to A 
Antigen A:  (0,0) N/A N/A 
Antibody B: (4,4) 8 5.7 
Antibody C: (6,1) 7 6.1 

 
The importance of choosing a suitable affinity function (or distance measure) has also been emphasized in the 

work of Hart investigating different geometrical shapes of an antibody’s recognition area [Hart 2005], [Hart & 
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Ross 2004] – an investigation performed in the context of immune network-based AIS. One result of this inves-

tigation was that [Hart 2005] (p. 41): “The results clearly show that the dynamics and size of the emergent net-

works are heavily influenced by the recognition region shape, and that the networks show varying ability to tol-

erate antigens over different ranges of recognition radius.” 

However, it should be noted that the results of Hart’s investigation were produced by considering the per-

formance of an immune network algorithm with randomly generated data. Hence, this investigation can be con-

sidered as an algorithm-oriented one, rather than the problem-oriented approach advocated in this paper. 

4.2 A Critical Review of Affinity Issues in a Number of Existing Artificial Immune Systems 

Table 3 compares the distance or affinity functions of a number of AIS. Out of all works quoted in Table 3, 

only the works of [Bezerra et al. 2004] and [Dasgupta et al. 1999] have proposed an affinity function particularly 

tailored for the data being mined. [Bezerra et al. 2004] used an affinity function based on the correlation coeffi-

cient, rather than on Euclidean distance. This choice was justified by the fact that the data being mined was a 

gene expression data set, consisting of expression levels measured across a number of different experimental 

conditions. The goal was to cluster genes according to their similarity with respect to expression levels. Note that 

in this case the use of Euclidean distance would be inappropriate, because it would be based on the magnitude of 

the differences in expression levels of two genes across different experimental conditions. Differences in magni-

tude are not important; what matters is the correlation. Two genes are considered to have similar expression pat-

terns – and so should be assigned to the same cluster by the AIS clustering algorithm – to the extent that they are 

correlated in the sense that, the higher (lower) the expression level of the first gene in an experimental condition, 

the higher (lower) the expression level of the second gene on the same experimental condition.  

[Dasgupta et al. 1999] used a data representation where a light spectrum was represented by a binary string 

where each bit was assigned a weight based on the corresponding spectroscopic band, and the affinity function 

was a bit-weighted one. Therefore, the affinity function exploited background knowledge about light spectra.  

Hence, these two works provide good examples of how the choice of the affinity function should be dictated 

by the application domain and the nature of the data being mined.  

The IFRAIS algorithm [Alves et al. 2004] uses an affinity function partially tailored for the target problem, as 

follows. An important point about this work is that it uses both an affinity function and a fitness function. The af-

finity function measures the degree of fuzzy matching between an antibody (fuzzy classification rule) and an an-

tigen (training data instance). A data instance is deemed to satisfy a rule if the degree of fuzzy matching between 

the instance and the rule is greater than or equal to an affinity threshold.  
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Table 3: A Summary of Affinity Issues in a Number of Artificial Immune Systems 

AIS Kind of application or task Distance or Affinity Function Is the affinity func-
tion tailored for the 
data or application? 

[Dasgupta et al. 
2004] 

Fault detection /  
classification 

Euclidean distance 
 

No 

[Gonzales et al. 
2002] 

Anomaly detection / 
classification 

Euclidean distance, affinity 
threshold based on median dis-
tance of k-neighbors 

No 

[Cserey et al. 2004] Real-time processing  
of image sequences for  
surveillance 

Hamming distance with “don’t 
care” elements 

No.  

[Dasgupta & 
Majumdar 2002] 

Anomaly detection /  
classification 

r-contiguous bits rule No. 

[Sarafijanovic  
& Le Boudec 2004] 

Misbehaviour detection in 
mobile ad-hoc networks 

Antibody must have “1” in every 
position where antigen has “1” 

No 

[Balthrop et al. 
2002] 

Network intrusion  
detection / classification 

r-contiguous bit rule and a vari-
ant (r-chunks) 

No 

[Anchor et al. 2002] Network intrusion  
detection / classification 

At least 1 antigen must match 
hypervolume of antibody 

No 

[Hofmeyr & Forrest 
1999] 

Network intrusion  
detection / classification 

r-contiguous bits rule No 

[Taylor & Corne 
2003] 

Fault detection/ classifica-
tion in time series 

Compared Euclidean and r-
contiguous rules 

No (but used repre-
sentation tailored for 
time series) 

[Dasgupta et al. 
1999] 

Spectra recognition Hamming distance with 
weighted bits 

Yes 

[Bezerra et al. 2004] Clustering of gene  
expression data 

Correlation coefficient Yes 

[Timmis et al. 1999] Clustering Euclidean distance No 
[de Castro & von 
Zuben 2001 ; 2002b] 

Clustering  Euclidean distance No 

[de Castro & von 
Zuben 2000a;2002a] 

Digit recognition /  
classification 

Hamming distance No 

[White & Garret 
2003] 

Digit recognition /  
classification 

Hamming distance No 

[Watkins et al. 
2004], [Watkins & 
Boggess 2002a] 

Classification Euclidean distance No 

[Sahan et al. 2005] Medical diagnosis /  
classification 

Euclidean distance with attribute 
weights 

Partially (due to use 
of data-driven  
attribute weights) 

[Alves et al. 2004] Classification Affinity based on fuzzy match-
ing and fitness based specific for 
classification 

Partially (due to data-
driven adaptation of 
affinity threshold) 

[Secker at al 2003] Classification Antibody must have n number of 
similar words to antigen 

No 

[Ayara et al 2005] Error detection /  
Classification 

Antibody and antigen must 
match in r-contiguous bits 

Partially (takes into 
account time-based 
ordering of states) 

 
 

In IFRAIS the fitness of an antibody is computed by a certain formula that measures the predictive accuracy 

of its rule, and that formula computes a global measure of the affinity of the antibody with respect to all antigens, 

rather than with respect to just one antigen. This formula is tailored for the classification task of data mining, but 
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it is not tailored for the dataset being mined. However, the computation of the affinity (and so the fitness) is par-

tially adapted to the dataset being mined in an automatic fashion. This is done by using an adaptive, data-driven 

procedure to adjust the affinity threshold. This still has the limitation that the basic structure of the affinity and 

fitness functions are the same for all datasets used in the experiments – different datasets might well require dif-

ferent affinity/fitness functions for optimal performance of the algorithm – but at least the adaptation of the affin-

ity threshold for each dataset is a step in the direction of making the algorithm more adaptable to the data being 

mined.  

The basic idea of an affinity threshold that varies according to the data being mined can also be found in other 

AIS, although in somewhat simplified forms. The AIRS algorithm [Watkins et al. 2004] also computes an affin-

ity threshold value which is specific for the dataset being mined, since the value of that threshold is given by the 

average affinity value over all pairs of antigens (training data instances). In this case, however, the value of that 

threshold is computed once in the initialization procedure and kept fixed during the run of the algorithm, whilst 

in the IFRAIS algorithm the value of the affinity threshold is dynamically adapted during the run. In the AIS of 

[Gonzales et al. 2002] the affinity threshold is given by the median distance among the distances of the k nearest 

neighbors of an antibody, which also makes that threshold dynamically variable during the run, as in the IFRAIS 

algorithm. However, in IFRAIS the affinity threshold value is adapted in a way that directly maximizes the fit-

ness of the antibody, which is not the case in the AIS of [Gonzales et al. 2002] and in AIRS.  

As a brief aside, work in [Neal 2003] proposes an immune network algorithm that dynamically adjusts the 

size (and connectivity, thus affinity threshold) of the network in a data driven manner. However, this work was 

not included in Table 3 because it involves immune networks, which is out of the focus of this paper. 

In any case, with the exception of the works of [Bezerra et al. 2004] and [Alves et al. 2004], the other works 

mentioned in Table 3 have in general used affinity functions which are popular in the AIS literature, such as the 

Hamming distance, the Euclidean distance or the r-contiguous bits rule. The fact that a work has used a conven-

tional affinity function – rather than one tailored for the data being mined – is not necessarily a negative charac-

teristic of that work. It is possible that a conventional affinity function be suitable – though not necessarily the 

ideal function – for the data being mined. For instance, if the data being mined consists of binary pixels in a pat-

tern recognition application, it may be the case that a simple Hamming distance is a satisfactory affinity function, 

since there is no apparent higher-level structure or meaning in the data that could be exploited to design a tai-

lored affinity function. In this sense the Hamming distance used by [De Castro & von Zuben 2000a], [De Castro 

& von Zuben 2002a], [White & Garret 2003] may be a satisfactory affinity function, since these works address 
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the problem of digit recognition where the predictor attributes are binary pixels. In any case, it is also interesting 

to consider variations of a conventional Hamming distance, e.g. [Cserey et al. 2004] has used a modified kind of 

Hamming distance which also takes into account “don’t care” elements. In addition, even when working with a 

low-level data representation, it might be possible to exploit domain knowledge in order to design an affinity 

function tailored for the problem at hand. An example is the previously-mentioned work of [Dasgupta et al. 

1999], where the bit weights are based on spectroscopic bands.  

In the case of works using the Euclidean distance, it is important to remark that almost all the works men-

tioned in Table 3 are using an unweighted distance measure, assuming that all attributes have the same weight. A 

notable exception is the work of [Sahan et al. 2005]. Although this work is a step in the right direction, the at-

tribute-weighting method used in this work is quite simple and it could be improved. In particular, as recognised 

by the authors, the method computes weights for attributes individually, ignoring attribute interactions; and it as-

sumes that, if the standard deviation of the values of a predictor attribute within a class of instances is low, that 

attribute is relevant for predicting that class. This assumption seems unlikely to be true in many datasets. 

The choice of an unweighted distance measure is likely to be a suboptimal choice in many application do-

mains. This is particularly the case in the classification task, where the goal is to predict the class of a data in-

stance. In this context, it is well-established that instance-based learning algorithms tend to be very sensitive to 

irrelevant attributes [Aha 1998], and it is normally the case that different attributes should have different 

weights, because they have different degrees of relevance for the prediction of the class of an instance. For in-

stance, if we are trying to predict whether or not a bank customer should have a high credit, intuitively the attrib-

ute salary of the customer should have a much greater weight than the attribute gender. There is a large literature 

on intelligent methods for automatically computing attribute weights in the instance-based learning paradigm 

[Aha 1998], [Wettschereck et al. 1997], including evolutionary methods [Freitas 2002], and it is a pity that these 

kinds of methods are typically ignored in the AIS literature.  

Another important remark is that several works mentioned in Table 3 have used an affinity function based on 

the r-contiguous bits rule, which has a strong positional bias [Freitas & Timmis 2003]. This kind of bias occurs 

due to a combination of two factors. First, when computing the degree of affinity between an antibody and an an-

tigen according to the r-contiguous bits rule, the influence of the matching of one bit on the computed value of 

affinity depends on the position of that bit in the binary strings representing the antibody and the antigen. Sec-

ond, although the attributes of the data being mined are encoded in a linear string representing an antibody or an-

tigen in a certain order (from left to right), this encoding order is arbitrary and irrelevant from a data mining 
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point of view. In general, in data mining applications the set of attributes describing the data to be mined is a set 

in the mathematical sense of a set, i.e., a collection of elements with no ordering and no duplication. Hence, in 

principle the affinity function should interpret the antibodies and antigens as sets of attributes, and compute a 

degree of affinity independent on the arbitrary position of the attributes in the strings representing the antibod-

ies/antigens – unless specific characteristics of the data being mined suggest that a positional bias is desirable, 

such as in the work of [Ayara et al 2005], involving a kind of time series data. 

As an example of positional bias, in [Hofmeyr & Forrest 1999] each antibody or antigen is a binary string rep-

resenting three attributes, each of them represented by a certain number of bits, and the binary representations of 

those attributes is concatenated to produce a linear binary string. The r-contiguous bits rule is used in this work. 

The number of possible orderings of the three attributes in a linear string is 3! = 6. The choice of one particular 

attribute ordering to be used to compose the antibody/antigen strings is arbitrary in the target problem of network 

intrusion detection, where the attributes are the source IP address, the destination IP address and the service 

(port) by which two computers communicate. The value of affinity computed by the r-contiguous bits rule de-

pends on the arbitrarily chosen ordering of the attributes in the antibody/antigen encoding, and so the result of 

the algorithm will depend on which of the six possible attribute orderings was chosen. This characterizes the po-

sitional bias of the system. Another example of an AIS using the r-contiguous bits rule, with its corresponding 

positional bias, is found in [Balthrop et al. 2002]. It should be pointed out, though, that in these projects the AIS 

also used the mechanism of permutation masks, which store different permutations of the bits representing the 

antibody. This mechanism helps to alleviate the positional bias of the r-contiguous bits rule [Garret 2005], since 

different bit permutations will cause the r-contiguous bits rule to produce different results, discovering different 

correlations among the bits in the antibody. In any case, if one does not want a positional bias, intuitively a sim-

pler (and effective) solution would be to replace the r-contiguous bits rule by another affinity function which 

does not have a positional bias. 

It should be noted that in general the choice of r-contiguous bits rule as the affinity function, with its posi-

tional bias, is not well justified in the works using this function quoted in Table 3. In other words, none of those 

works argued that such a strong positional bias was suitable for the data being mined or the target problem, so 

that it is quite possible that the strong positional bias of the r-contiguous bits rule is unsuitable for the kind of 

data mined in those works, again noting the possible exception of [Ayara et al 2005].  

Note that the r-contiguous bits rule is based on a metaphor with a physical principle – the antibody-antigen 

matching in the natural immune system occurs in a physical 3D-space, where physical proximity is important. 
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Physical principles are not in general a good source of metaphors for AIS, because the latter works in a virtual 

space, free from physical properties. Logical principles are in general a better source of metaphors for AIS. 

 

5 Immune Processes for AIS: Clonal Selection and Negative Selection 

[de Castro & Timmis 2002] identify several major kinds of immune processes, inspired by their biological 

counterparts, which have been used in the design of AIS, namely: bone marrow models, negative selection, posi-

tive selection, clonal selection and immune network processes. Out of these, we focus on the clonal selection and 

the negative selection processes, which have been used extensively in AIS for data mining.  

 

5.1 Clonal Selection 

In the natural immune system, the basic idea of the clonal selection theory is as follows. When a B-cell’s anti-

bodies recognize an antigen with at least a certain degree of affinity, that B-cell is cloned in order to produce 

more antibodies with high affinity to that antigen. During its reproduction, the B-cell’s clones are subject to a 

high rate of mutation, creating variations in the B-cell’s antibodies. Due to a strong selective pressure, the new 

clones with higher affinity to the antigen will proliferate more than clones with lower affinity, so that this selec-

tive process usually results in B-cells having antibodies with a very high affinity to the antigen. Two important 

properties of the biological clonal selection process are: (a) the rate of cloning of each B-cell is proportional to 

the affinity to the antigen; (b) the rate of mutation of each B-cell during its reproduction is inversely proportional 

to the affinity to the antigen. Both properties are logical properties, independent of physical details, and they 

have been extensively used in the design of AIS. 

In the context of AIS, a core issue in the use of the clonal selection principle is to decide which antibody(ies) 

should be cloned. This is related to the affinity issues discussed in Section 4, since in general the antibodies with 

highest affinity to an antigen are selected for cloning. However, in this subsection we analyze the problem of 

choosing which antibodies should be cloned from a broader perspective, going beyond affinity function issues. 

In particular, we consider important criteria to be used in order to choose the antibodies to be cloned. Regardless 

of how the affinity between an antibody and an antigen is computed, should the decision to clone an antibody be 

based on its affinity to a single antigen or based on its affinity with a number of antigens? Should that decision 

be based on just the antibody’s affinity (to one or more antigens) or should some other additional criterion be 

used? These two questions are the topic of the next two Subsections.  
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5.1.1 The Clustering of Receptors for Activating Immune Cells and Its Significance for AIS 

In the natural immune system, in general, one of the signals necessary to activate a B cell is the recognition of 

its cognate antigen. This recognition is performed by B cell receptors (BCRs) on the surface of the B cell. In 

general the activation of the B cell requires that many BCRs be brought close together on the B cell surface; this 

involves a “clustering” or “crosslinking” of BCRs [Sompayrac 2003]. This clustering of BCRs can be produced 

when BCRs bind to an epitope that is repeated many times on a single antigen or when BCRs bind to epitopes on 

antigens that are clumped together.  

Although there are exceptions to this requirement of BCR clustering, the principle is important enough to de-

serve our attention here. In particular, it is important to abstract the logical principle behind the physical issues 

associated with such clustering. The lesson to be taken from this immune principle, from a logical point of view, 

is that the activation of an immune cell requires a substantial number of epitopes to be matched with the cell re-

ceptors, rather than a single epitope. In terms of AIS, this suggests that the activation of an artificial cell should 

likewise require many data items (artificial antigens or epitopes) to be matched to that cell. Intuitively, this 

makes sense from a statistical point of view, i.e., an artificial cell should not be activated by a matching to a sin-

gle antigen or epitope, because that antigen/epitope could easily represent some noisy data or some spurious rela-

tionship in the data. By requiring that a B cell match many antigens/epitopes before it is activated, intuitively we 

would be making the AIS more robust, less sensitive to noisy data. It should be noted that our discussion in this 

paper is focused on clonal selection and negative selected-based systems. By contrast, works such as [Timmis 

and Neal 2001], [de Castro and Von Zuben 2002b], [Neal 2003] and [Hart 2005] have extracted various aspects 

of the immune network theory that have led to the development of ‘clustering type’ applications.  Inherent within 

the immune network idea is that BCRs will interact with other BCRs that have a similar affinity (interaction is 

via idiotopes located on the BCR).  In addition, the artificial B Cells contained within an immune network do re-

quire many interactions with different antigens to promote survival.  However, our focus is not on these immune 

network models here, but an interested reader could consult the references provided. 

 

5.1.2 The Two-Signal Mechanism for Activating Immune Cells and Its Significance for AIS 

The natural immune system has several kinds of cells that need to be activated in order to help the fight 

against invader pathogens. This activation often involves a two-signal mechanism. The basic principle of this 

mechanism is quite generic, being used to activate several different kinds of immune cells. This generality makes 
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the principle of two-signal activation intuitively attractive as a logical principle to be used, as a metaphor, in the 

design of AIS.  

Let us first review, briefly, the mechanism of two-signal activation in four kinds of cells.  

a) B cell activation – There are two kinds of B-cell activation, namely T-cell dependent activation and T-cell 

independent activation. In the former, the first signal required for activation is the recognition of cognate antigen 

by the B cell receptors (BCRs) on the surface of a B cell. This is called a specific signal, because it is provided 

specifically by the kind of antigen that the B cell can recognize – different B cells recognize different antigens. 

The second signal is a non-specific (independent of the antigen) co-stimulatory signal provided by a helper T 

cell. Typically this involves a contact between a protein called CD40L on a helper T cell and another protein 

called CD40 on the B cell. In T-cell independent activation, the first signal involves the recognition of special 

kinds of antigens – typically, microbial polysaccharides – by the BCRs. In this case the activation of the B cell 

does not require the co-stimulatory signal provided by a helper T cell. Once the first signal is received, the B cell 

proliferates. However, unlike T-cell dependent activation, after proliferation the B cell cannot secrete antibodies 

yet. This will happen only after the B cell receives a second signal, which is a cytokine like IFN-γ (interferon 

gamma) generated by the innate immune system. 

b) T cell activation –The first signal required for T cell activation is the recognition of cognate antigen by the 

T cell receptors (TCRs) on the surface of a T cell. This is a specific signal, conceptually similarly to the first sig-

nal for B cell activation. Unlike B cells, however, T cells only recognize an antigen when it is presented by an 

Antigen Presenting Cell (APC). The basic idea is that the antigen is first chewed up into small pieces called pep-

tides, which are then presented to T cells by special molecules on the surface of APCs called Major Histocom-

patibility Complex (MHC) molecules – “histo” means tissue. Hence, a TCR recognizes a “MHC-peptide com-

plex”, rather than just the antigen. There are three main kinds of APCs, namely dendritic cells, macrophages and 

activated B cells. The second signal required for T cell activation is a non-specific co-stimulatory signal pro-

vided by APCs, e.g. B7 proteins on the surface of the APC, which bind to CD28 proteins on the surface of the T 

cell. In addition, APCs secrete cytokine molecules that contribute to the co-stimulation of T cells. The basic 

principle of this two-signal activation mechanism is used for activating both killer T cells (cytotoxic lympho-

cytes) and helper T cells, but important details vary for those two types of T cells. Killer T cells almost always 

recognize class I MHC molecules. These molecules can be thought of as “billboards” that present, on the surface 

of the cell, fragments of proteins (peptides) that are being made inside the cell. Hence, class I MHC molecules 

present to T cells a “sampling” of endogenous proteins, giving T cells a chance to detect viral or other intra-
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cellular infections. By contrast, helper T cells almost always recognize class II MHC molecules. These mole-

cules can be thought of as billboards that present extra-cellular peptides, representing a sampling of the environ-

ment around the cell. This gives T cells a chance to detect extra-cellular pathogens. 

c) Macrophage activation – Macrophages can be activated in several ways. For the purposes of this subsec-

tion, it is enough to mention their activation by two signals provided by Th1, a kind of helper T cell that activates 

macrophages [Alberts et al. 2002]. The first signal used by a Th1 cell to activate a macrophage is IFN-γ, which 

binds to IFN-γ receptors on the surface of the macrophage. The second signal is a co-stimulatory protein called 

CD40 ligand on the Th1 cell, which binds to CD40 on the macrophage. 

d) Natural killer (NK) “activation” – In order for a NK cell to kill its target cell, two signals seem to be 

necessary. The first one is a “kill” signal, which seems to involve interactions between proteins on the surface of 

the NK cell and carbohydrates on the surface of the target cell. The second signal, which is a “don’t kill” signal, 

seems to be the expression of class I MHC molecules on the surface of the target. Hence, NK cells kill their tar-

gets only if the latter do not have class I MHC molecules on their surface. 

Table 4: A Summary of Two-Signal Activation in Different Kinds of Immune Cells 
 

Signals required for activation Kind of cell to be activated 
First signal Second (co-stimulatory) signal 

B cell (T cell-dependent activation) Recognition of antigen by BCR Binding between proteins on the 
B cell and on the helper T cell 

B cell (T cell-independent  
activation) 

Recognition of antigen by BCR a cytokine such as IFN-γ, gener-
ated by the innate immune system 

T cell Recognition, by TCR, of the  
MHC-peptide complex presented  
by Antigen Presenting Cells 
(APCs) 

Mainly binding between proteins 
on the T cell and on the APC, and 
also cytokines secreted by APCs 

Macrophage IFN-γ secreted by helper T cell 
Th1 

Binding between proteins on the 
Th1 cell and on the macrophage 

Natural killer Interactions between proteins on 
the NK and carbohydrates on the 
target 

Absence of class I MHC mole-
cules on the surface of the target 
cell 

 
 

A summary of the previous discussion is shown in Table 4. It is clear that, although the details vary depending 

on the kind of cell being activated, the principle of two-signal activation is generic enough to have been adopted 

in nature for the activation of several different kinds of cells of the immune system. Hence, it is important to un-

derstand the logic behind this principle. The two-signal activation principle is a “fail-safe” mechanism. By using 

this principle, in general the decision to activate an immune cell is not made by a single cell nor based on a sin-

gle signal. Rather, two signals are necessary for activation, and in general at least one of the signals is provided 

by a kind of immune cell different from the one that is to be activated. An exception is the activation of natural 
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killer cells, where the second signal is not provided by an immune cell, since it involves the absence of a mole-

cule on the target cell. However, even in this case, the second signal is very different in nature from the first sig-

nal, which characterizes the “fail-safe” nature of this activation mechanism. This logical principle makes the 

two-signal activation mechanism attractive as a generic principle to be used in the design of AIS algorithms. 

 
 
5.1.3 A Critical Review of the Use of Natural Immune Cell Activation Principles in Existing AIS 

Table 5 compares several AIS with respect to whether or not they follow two logical principles used by the 

natural immune system for cell activation in a given clonal selection-based AIS. More precisely, for each AIS 

Table 5 mentions: (a) the kind of application or task addressed by the AIS; (b) the main kinds of immune proc-

esses used by the AIS; and (c) whether the AIS uses (implicitly or explicitly) the previously-discussed principles 

of antigen clustering or two-signal activation as a requirement for cloning an artificial immune cell. 

All AIS mentioned in Table 5 use the clonal selection process. This was a pre-requisite for including an AIS 

in that table, since the last two columns of the table make sense particularly for clonal selection-based AIS. In 

Table 5 the term “clonal selection” is being used in a broad sense to refer to any kind of algorithm where the fit-

test artificial immune cells tend to be selected for cloning, regardless of whether or not mutation with a rate in-

versely proportional to fitness is applied to the clones. Mutation issues are irrelevant for our discussion in this 

subsection, as here we focus only on the criteria used to decide whether or not an artificial immune cell should 

be cloned. This has allowed us to include in the table some works which are predominantly based on negative se-

lection, but where the fittest cells are cloned, such as the work of [Dasgupta et al. 2004]. 

Let us start with the analysis of how (if at all) existing AIS use the principle of two-signal activation. Recall 

the previously-described rationale for this principle as a “fail-safe” mechanism for the activation and cloning of 

an immune cell. Only four of the AIS mentioned in Table 5 – namely, the works of [Sarafijanovic & Le Boudec 

2004], [Kim & Bentley 2002], [Secker et al 2003] and [Ayara et al 2005] – use the principle of two-signal acti-

vation. We will examine two of these. In [Kim & Bentley 2002] the second signal is manually provided by the 

user, whilst in [Sarafijanovic & Le Boudec 2004] the second signal is generated in an automatic fashion. [Sarafi-

janovic & Le Boudec 2004] have proposed a virtual thymus that includes not only the popular negative selection 

process, but also more sophisticated concepts such as the use of a danger signal and a short time of antigen pres-

entation in the thymus. The danger theory metaphor seems very appropriate for the target application domain of 

misbehaviour detection in mobile ad-hoc networks. Indeed, in this work the danger signal has a spatial-temporal 

nature, related to a loss of a packet in the network. In any case, the fact that just a minority of the AIS mentioned 
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in Table 5 use the principle of two-signal activation suggests that the potential of this principle has been under-

explored in the AIS literature. 

 
Table 5: A Summary of Whether or Not AIS Follow Two Immune-Inspired Principles for Deciding Whether or 

Not to Clone an Artificial Immune Cell 

AIS Kind of applica-
tion or task 

Immune Process Antigen  
clustering?  

Two-signal  
activation ? 
 

[Sarafijanovic  
& Le Boudec 2004] 

Misbehaviour de-
tection in mobile 
ad-hoc networks 

Thymus model  
(including negative  
selection),  
clonal selection 

Yes,  
explicitly 

Yes  
(danger signal) 

[Kim & Bentley 
2002] 

Network intru-
sion detection / 
classification  

Negative selection, 
clonal selection 

Yes,  
implicitly 

Yes  
(manual signal) 

[Dasgupta et al. 2004] Fault detection / 
classification 

Negative selection, 
clonal selection 

Yes,  
implicitly 

No 

[Sahan et al. 2005] Medical diagno-
sis / classification 

Clonal selection No No 

[de Castro & von Zu-
ben 2000a; 2002a]  

Digit recognition 
/ classification 

Clonal selection No No 

[White & Garret 
2003] 

Digit recognition 
/ classification 

Clonal selection No No 

[de Castro & von 
Zuben 2000b; 2001; 
2002b] 

Clustering  Clonal selection,  
immune network 

No No 

[Watkins et al. 2004], 
[Watkings & Boggess 
2002a] 

Classification Clonal selection No No 

[Alves et al. 2004] Classification Clonal selection Yes,  
implicitly 

No 

[Secker et al 2003] Classification Clonal selection No Yes  
(manual signal) 

[Ayara et al 2005] Classification Clonal selection No Yes  
(semi-automated) 

 
 

Let us now turn to a detailed discussion on the principle of antigen clustering. An AIS based on this principle 

is described in [Sarafijanovic & Le Boudec 2004]. The authors explicitly emphasize the metaphor with antigen 

clustering in the natural immune system. The principle of antigen clustering is also used in [Kim & Bentley 

2002], [Dasgupta et al. 2004], and [Alves et al. 2004] although in these works the principle was used implicitly. 

That is, these works did not emphasize the metaphor with antigen clustering in the natural immune system, but 

the cloning of antibodies does depend on the strength of matching with a number of (not just one) antigens.  

It should be noted that the principle of antigen clustering is not followed in several well-known clonal selec-

tion-based AIS such as CLONALG [de Castro & von Zuben 2000a; 2002a], aiNet [de Castro & von Zuben 

2000b; 2001; 2002b], and AIRS [Watkins et al. 2004], [Watkings & Boggess 2002a]. Let us analyse why this is 
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the case. First of all, it should be noted that both CLONALG and AIRS perform a classification task, whilst 

AiNet performs a clustering task – here we are referring to the versions of CLONALG and aiNet performing the 

tasks of pattern recognition/classification and clustering, respectively, and not their versions for multi-modal op-

timisation [de Castro & von Zuben 2002a], [de Castro & Timmis 2002b]. AIRS was designed specifically for 

classification, whilst CLONALG seems to have been designed as a more generic kind of AIS – and indeed it has 

a variant for optimisation, unlike AIRS. Despite these important differences, it is striking that CLONALG, AIRS 

and aiNet share a very important design feature. The clonal selection principle is incorporated within the pseu-

docode of these AIS in essentially the same way, as shown by the excerpt of pseudocode in Algorithm 1, at a 

high level of abstraction. That excerpt of pseudocode describes particularly well the corresponding part of the 

pseudocodes of CLONALG and aiNet. In the case of AIRS, a more precise description would be to replace the 

line “Select n highest affinity antibodies” with the line “Select the highest affinity memory cell belonging to the 

same class as the antigen”. However, this is a relatively small difference for the purposes of our discussion here, 

and of course n can be set to 1, so we opted for representing that part of the pseudocode of these three AIS in a 

single Algorithm, for the sake of simplicity. 

 

FOR EACH antigen 

 FOR EACH antibody 

  Compute affinity between antigen and antibody 

 END FOR EACH antibody 

          Select n highest affinity antibodies 

          Clone the n selected antibodies 

… 

END FOR EACH antigen 

Algorithm 1:  Excerpt of pseudocode of CLONALG, aiNet and AIRS, at a high level of abstraction 
 
 
We emphasize that the excerpt of pseudocode shown in Algorithm 1 is meant just to show that these three 

AIS loop over the antigens and the antibodies (or memory cells) in order to choose the highest affinity antibodies 

to be cloned, and not to show other aspects of the AIS which are irrelevant for the current discussion. Note that 

in the original description of these AIS the loop over the antibodies is not shown explicitly, but rather implicitly 

in an instruction like “present the antigen to all antibodies” or “find the (n) antibodies closest to the antigen”. 

Showing this loop explicitly, as in Algorithm 1, helps to highlight the important point that this excerpt of pseu-

docode performs an external loop over the antigens, and an internal loop over the antibodies. As a result, the af-

finity of an antibody is computed with respect to just one antigen.  
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From the viewpoint of a metaphor with the natural immune system, this means that the principle of antigen 

clustering is not followed. From a problem-oriented viewpoint, this means that the computation of an antibody’s 

affinity is based on a single data instance. If the goal of computing the affinity is to decide whether or not the 

current antibody should be cloned, as it is the case in CLONALG, AIRS and AiNet, computing affinity based on 

a single antigen seems a somewhat risky strategy, since there is very little statistical support for such a decision. 

By contrast, if the system computed the antibody’s affinity with respect to a number of antigens, then the princi-

ple of antigen clustering would be followed, and a more statistically sound decision could be made about 

whether or not the current antibody should be cloned. That decision would be more statistically sound because it 

would be based on the global value of the antibody’s affinity with respect to all antigens. This global affinity 

value will be here referred to as simply the “fitness” of an antibody, by analogy with the common use of the term 

in evolutionary algorithms – where usually the fitness of an individual is computed with respect to all data in-

stances [Freitas 2002]. Such distinction between an antibody’s affinity to a single antigen and the antibody’s fit-

ness with respect to all training antigens is found in IFRAIS [Alves et al. 2004], an AIS that, like AIRS, was spe-

cifically designed for classification. 

Note that one way of computing the fitness of an antibody in CLONALG, AIRS and aiNet could be obtained 

by simply swapping the order of the loops over antigens and antibodies in the excerpt of pseudocode shown in 

Algorithm 1, which would produce the new excerpt of pseudocode shown in Algorithm 2. However, this would 

require, of course, significant modifications in other parts of the pseudocode of these AIS. Such modifications 

would not guarantee an improvement in the performance of these AIS, but they seem worth trying, considering 

the previously-discussed rationale for the principle of antigen clustering. 

Actually, there is one more motivation to design and evaluate variants of CLONALG, AIRS and aiNet follow-

ing the excerpt of pseudocode shown in Algorithm 2. This is a data mining-oriented motivation, and it is the fact 

that, in the current version of these AIS, following the excerpt of pseudocode shown in Algorithm 1, the results 

produced by these AIS tend to vary according to the order in which antigens (data instances) are used in the ex-

ternal loop. After all, in the ith iteration of the external loop, when the ith antigen is presented to the current anti-

body population, the antibodies included in that population have been produced as the result of an evolution 

guided by the antigens presented at iterations 1, …, i – 1. This dependency of the results in the ordering of pres-

entation of data instances is a kind of “instance-ordering bias”, and is not necessarily a bad thing, but it does in-

troduce one more source of non-determinism in the AIS, without any clear advantage. Note that instance-based 

learning or rule induction algorithms usually treat the training instances as an unordered set of instances. 
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FOR EACH antibody 

 FOR EACH antigen 

  Compute affinity between antigen and antibody 

 Compute antibody’s fitness based on total affinity with respect to all antigens 

 …. 

 END FOR EACH antibody 

… 

END FOR EACH antigen  

Algorithm 2:  Excerpt of pseudocode modifying CLONALG, AIRS, aiNet to use the antigen clustering principle 

 
 

5.2 Negative Selection 

In the natural immune system, negative selection is a process that occurs in the thymus, the organ where T-

cells mature. T-cells that match self are eliminated before they mature in the thymus. Hence, in general the ma-

ture T-cells leaving the thymus will not match self, and will therefore match only non-self.  

The basic idea of the negative selection process as used in AIS is shown in the pseudocode of Algorithm 3. 

Given a set of “normal” data instances – the self – as input, the system performs a loop where, at each iteration, it 

randomly generates immature immune cells (detectors) and tries to match each cell with all the instances in the 

self. If that immune cell matches at least one instance in the self it is discarded, otherwise it is promoted to a ma-

ture cell and is output by the algorithm. This iterative process is repeated until almost all the non-self space has 

been covered by the generated immune cells, or another stopping criterion is met. From a data mining point of 

view, this phase is a kind of “training phase”, whose goal is to generate a set of mature immune cells that should 

be able to detect non-self data instances only. Next, during the “test phase”, if a given test instance matches a 

mature immune cell, that instance is classified as non-self (anomaly); otherwise it is classified as self (normal). 

Input: a set of “normal” data instances, called the self (S) 

Output: a set of “mature” immune cells that do not match any instance in S 

REPEAT 

     Randomly generate an “immature” immune cell 

     Measure the affinity (similarity) between this immune cell and each instance in S 

     IF the affinity between the immune cell and at least one instance in S is greater than a user-defined threshold 

         THEN discard this immune cell 

         ELSE output this immune cell as a “mature” immune cell 

UNTIL stopping criterion 

Algorithm 3:  Pseudocode of the Negative Selection Process 
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Since the pioneering work of [Forrest et al. 1994], there has been an extensive research on negative selection-

based AIS, most of them applied to the “anomaly detection” task, according to the terminology used in the AIS 

literature. Recall however, that the use of this term is somewhat misleading in the context of data mining, as ex-

plained in Section 2. In other words, several of those negative selection-based works are effectively performing a 

task which is similar to the conventional classification task, as explained in that section. In this context, the use 

of a negative selection-based AIS is problematic, presenting disadvantages such as [Freitas & Timmis 2003]:  

(a) Immune cells (detectors) are randomly generated throughout the pseudocode of Algorithm 3, a method 

which is not adaptive and does not use any information in the set of self instances to guide the search;  

(b) The lack of mechanisms to minimize overfitting;  

(c) The evaluation of the negative selection-based AIS for “anomaly detection” is often based on standard 

benchmarks for evaluating classification algorithms. In particular, some negative selection-based AIS have been 

evaluated in a test set containing instances of both “normal” and “anomalous” classes, but a training set contain-

ing only instances of the normal class – in order to allow the application of negative selection process, which is 

trained with normal instances only – as discussed in Subsection 2.3.  

The latter item is essentially a criticism of the application of a negative selection-based AIS to a scenario 

where both normal and anomalous classes were available in the original dataset as a whole and so both classes 

could be included in the training set, but only the normal class was included in order to justify the use of the 

negative selection algorithm. That is, an algorithm-oriented approach, rather than the problem-oriented approach 

has been adopted. 

It should be noted that there is a counter-argument to the latter criticism. The counter-argument is that there 

are problems where indeed just the normal class is available in the training set, and so a standard classification 

algorithm – trained with more than one class – is not directly applicable. At first glance, this could seem a natu-

ral scenario for a negative selection-based AIS, given its ability in training with just one class. 

There are two replies to this counter-argument. First, it is important to evaluate the negative selection-based 

AIS on real-world problems where indeed the original training set contains only instances of the class normal, 

rather than artificially remove the anomalous class from the training set. Second, even limiting the training set to 

have just one class, it is not clear that a negative selection-based AIS would perform well by comparison with 

other machine learning or data mining techniques also trained on just one class. Actually, in recent work evaluat-

ing a negative selection-based AIS [Stibor et al. 2005], the performance of that algorithm was shown to be infe-

rior to the performance of two statistical data mining techniques in a problem where all methods were trained 
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with a single class only. In this paper, the authors used a real-valued negative selection algorithm [Ji and Das-

gupta 2004] and compared it to a one-class support vector machine and a Parzen Window algorithm.  Each of the 

algorithms was tested on a subset of the well-known KDD Cup data from 1999.  Results found that the one-class 

support vector machine was significantly better at identifying intrusions; in fact the negative selection approach 

averaged only around 3% detection rate, compared to the one-class support vector machines 98% detection rate 

[Stibor et al. 2005].  

Concerning the performance of negative selection-based AIS for classification and related problems – such as 

the kind of “anomaly detection” problem addressed in the AIS literature – the general conclusion of [Hart & 

Timmis 2005] (p. 488) still seems to hold: 

“… at present it is not clear from the literature that the immune approach [negative selection-based AIS] of-

fers anything. It is necessary to use two classes of data to train and tune the system, a high false positive rate 

seems to blight systems and the computational complexity of generating detectors seems prohibitive in large di-

mensional data sets.” 

Does that mean that the metaphor with the natural immune system’s process of negative selection is a useless 

metaphor for designing an AIS? No. The problem is not the metaphor per se, but the way the metaphor has been 

used. In the natural immune system, the process of negative selection is just one out of many processes going on 

at the same time in the organism. Even within the confined region of the thymus, T-cells are subject not only to 

negative selection but also to positive selection. After leaving the thymus, a T-cell still needs to collaborate with 

other immune cells in order to have a useful effect in the organism. In other words, the negative selection process 

per se is simply not adaptive. It is, however, an important process in the context of a bigger picture, the immune 

system as a whole, due to the interaction of this process with several other processes in the organism.  

The realization that the negative selection process per se is not adaptive and is essentially a kind of random 

search should not be viewed as negating the usefulness of that process. An analogy with evolutionary algorithms 

is appropriate. Taken in isolation, mutation is clearly a non-adaptive, random-search like operator; and a conven-

tional crossover randomly mixes the contents of two individuals. However evolutionary algorithms using these 

operators in general work fine, because these operators are not used in isolation. They are used in conjunction 

with a selection operator, which introduces selective pressure in the solutions randomly produced by mutation 

and crossover. It is the combination of selection, mutation and crossover that makes an evolutionary algorithm 

work well. 
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To summarize, negative selection, per se, is a kind of random search procedure. In order to design adaptive, 

intelligent AIS using the negative selection principle, that principle should not be used in stand-alone mode, but 

should rather be combined with more adaptive processes. Actually, this research direction is being followed in 

some works in the AIS literature, see e.g. [Kim & Bentley 2002], [Kim et al. 2003], [Gonzales & Dasgupta 

2002], [Anchor et al. 2002], [Gonzales et al. 2002]. However, it is difficult to evaluate the results of these works, 

since most of them do not compare the result of the proposed AIS with the result of a conventional data mining 

algorithm. An exception is the aforementioned work of [Stibor et al. 2005]. In any case, much more research is 

required comparing the aforementioned works with conventional data mining techniques in challenging real-

world datasets. A similar comment has also recently been made by [Garret 2005]: “Comparison [of negative se-

lection] with many more techniques is required…”.  

 

6 Conclusions and Future Research 

This paper has advocated the use of a problem-oriented approach for designing an AIS for data mining, by 

contrast with the kind of algorithm-oriented approach often followed in the AIS literature. This algorithm-

oriented approach is perfectly reasonable in some scenarios, particularly in academic research. However, in sce-

narios where the goal is to develop an AIS that is at least competitive with state-of-the-art data mining tech-

niques in an important real-world application, a problem-oriented approach is necessary. In such scenarios we 

need to tailor the design of the AIS for the data being mined or the application domain, because every AIS for 

data mining – like every other kind of data mining algorithm – has an inductive bias, and it is a well-established 

fact that every inductive bias is suitable for some datasets or application domains and unsuitable for others 

[Schaffer 1994], [Rao et al. 1995], [Michie et al. 1994], [Lim et al. 2000].  

In order to design an AIS with an inductive bias suitable for the target data, it is of course crucial to under-

stand the inductive biases of the major components of an AIS, such as its representation(s), affinity function(s) 

and immune process(es). This is a hard task, which was started with our preliminary work on this topic, de-

scribed in [Freitas & Timmis 2003]. This paper is a major extension of that preliminary work, and hopefully it 

represents a significant contribution towards the challenging goal of understanding the inductive biases of AIS. 

Another contribution of this paper was a discussion about several important lessons that can be taken from the 

natural immune system to help us to design more adaptive AIS.  

These two kinds of contribution can be summarized by briefly listing some important conclusions of the pa-

per. Let us do this by listing a set of limitations found in existing AIS for data mining and the corresponding 
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suggestions for future research in order to mitigate that limitation. These limitations and corresponding sugges-

tions are listed in Table 6. We stress that the limitations and suggested research directions mentioned in the table 

refer only to AIS for data mining, and not for other kinds of application such as optimization and control. 

The 10 suggested research directions in Table 6 vary considerably in the degree of difficulty, and so in the de-

gree of rewarding too. Overall the most challenging – and also very rewarding – research direction seems to be 

the development of the first AIS with hybrid knowledge representations and capable of dynamically adapting the 

knowledge representations to the data during its run – a very open research area at the present.  

Table 6: A Summary of Limitations of AIS for Data Mining and Corresponding Suggested Research Directions 

Limitations in Existing AIS 
for Data Mining 

Suggested Research Direction 

Most AIS use a data representation 
consisting of numerical data only 

Develop more AIS with representations for categorical data, as well 
as hybrid numerical/categorical data, tailoring the AIS representation 
for the data, rather than ignoring non-numerical data 
Develop more AIS with alternative knowledge representations, such 
as rule-based representation (including first-order logic representa-
tions) or probability-based representations (e.g. Bayesian networks) 

Most AIS use the instance-based rep-
resentation: a single and fixed repre-
sentation 

Develop the first AIS with hybrid knowledge representations and ca-
pable of dynamically adapting the knowledge representations to the 
data during their run 
Develop more AIS with affinity function tailored for the data being 
mined, rather than just using a standard affinity function 
In AIS with instance-based representation for the classification task, 
develop affinity function considering attribute weights 

Most AIS use standard affinity func-
tions, mainly for binary or numerical 
data 

Avoid using the r-contiguous bits rule or another representation with 
positional bias, unless it is clear this is suitable for the data being 
mined 

Several AIS based on the process of 
clonal selection do not follow the prin-
ciple of antigen clustering and have an 
“instance-ordering” bias 

Modify the corresponding AIS to follow the principle of antigen clus-
tering; hopefully making them more robust to noisy data and remov-
ing their instance-ordering bias 

Several AIS based on the process of 
clonal selection do not follow the prin-
ciple of two-signal activation 

Modify the corresponding AIS to follow the principle of two-signal 
activation, so implementing a fail-safe mechanism on the artificial 
clonal selection process 

Several AIS based on the process of 
negative selection use that process 
only, which is a kind of random search 

Extend the corresponding AIS to combine the negative selection 
process with other immune processes or with conventional data min-
ing algorithms 

Most AIS are evaluated in either artifi-
cial data or public domain datasets 
which are not very challenging 

Evaluate AIS in many more challenging real-world datasets, e.g. 
datasets on which conventional data mining algorithms do not obtain 
a high classification accuracy, or very high dimensional datasets 
(with hundreds of attributes); and perform much more comparisons 
with conventional data mining algorithms 

 
 

The motivation for hybrid representations is twofold. The first motivation is an analogy with the natural im-

mune system, which certainly uses many kinds of immune cell (corresponding to many different kinds of repre-

sentation) to achieve a high level of robustness and adaptability. Second, there are several examples of success-

ful machine learning and data mining systems using hybrid representations (see Section 3.4). However, in some 

works discussed in Section 3.4, e.g. [Ting 1994] and [Carvalho & Freitas 2004], the decision about which train-
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ing instances are better covered by which kind of representation (decision tree or instance-based or rule) is made 

in a simple way, by using the result of a run of a decision tree algorithm. The design of a hybrid representation 

system that decides which representation should be used to cover which training instance in a much more dy-

namic way, continuously making these decisions during its run, is more challenging, but there are machine learn-

ing systems with this flexibility. One example is the RISE algorithm [Domingos 1995], which dynamically de-

cides whether to use an instance-based or rule-based representation to cover training instances.  

Another suggested research direction mentioned in Table 6 that is worth highlighting here is the need for 

evaluating AIS in many more challenging real-world datasets and performing much more comparisons with con-

ventional data mining algorithms. This is very important, because artificial datasets and public domain datasets 

have obvious limitations. Even if public domain datasets are derived from real-world data, sometimes those data-

sets have been already carefully preprocessed, including a selection of attributes particularly useful for the target 

data mining task, which makes them less challenging than true real-world applications where preparing the data 

for data mining purposes is a major part of the challenge of knowledge discovery. As examples of data mining 

application areas where such challenging datasets can be found relatively easy, one can quote bioinformatics and 

text mining, two very active research areas in data mining. 
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