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Abstract

This paper advocates a problem-oriented approadhdadesign of Artificial Immune Systems (AIS) fdaita
mining. By problem-oriented approach we mean timateal-world data mining applications, the desigran
AIS should take into account the characteristichefdata to be mined together with the applicatiomain: the
components of the AIS — such as its representai@injty function and immune process — shoulddiloted for
the data and the application. This is in contra#t Whe majority of the literature, where a veryngac AlS algo-
rithm for data mining is developed and there ielibr no concern in tailoring the components af A4S for the
data to be mined or the application domain. To etphis problem-oriented approach, we provide xdereive
critical review of the current literature on AlS fdata mining, focusing on the data mining taskslagsification
and anomaly detection. We discuss several impoleéasbns to be taken from the natural immune sysbete-
sign new AIS that are considerably more adaptiaa turrent AIS. Finally, we conclude the paper vaitum-

mary of seven limitations of current AlS for dataning and 10 suggested research directions.
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1 Introduction

Artificial immune systems (AIS) are aimed at sotyireal-world problems, and therefore are mainlgtesl to
the areas of computer science and engineeringhEgourposes of this paper, the following defimtif AIS is

appropriate [de Castro & Timmis 2002] (p. 58):

“Artificial Immune Systems (AIS) are adaptive systénspired by theoretical immunology and observed

mune functions, principles and models, which angliad to problem solving
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This paper focuses on one kind of application ft6,Ahamelydata mining[Fayyad et al. 1996], [Witten &
Frank 2005]. More precisely, this paper focusesvam of the data mining tasks which have typicalgeb ad-
dressed by AIS, namely classification (supervisadring) and anomaly detection.

The cornerstone of this paper is to advocate al@gmsloriented approach for the design of AIS foradain-
ing. By problem-oriented approach we mean thateai-world data mining applications, intuitivelyetldesign
of an AIS should be tailored for the data to beediand the application. This is in contrast with thajority of
the literature, where a very generic AlS algorittamdata mining is developed and there is littlenorconcern in
tailoring the components of the AIS for the datibéomined or the application domain.

From a data mining point of view, the need for alyem-oriented approach is not only intuitive, llgo
strongly supported by the facts that every dataingimlgorithm has an inductive bias (which will defined
later), and every inductive bias is suitable fomesodatasets or application domains and unsuitalethers
[Mitchell 1990], [Schaffer 1994], [Rao et al. 199%Wichie et al. 1994]. Therefore, in order to makie the
performance of an AIS for data mining in real-waalgplications, one has to first carefully underdtdre nature
of the data being mined and the requirements offipdication domain, and then design an AIS (oroskeoan
existing AlS) whose inductive bias is well suitafile the target data and application domain.

This current paper can be regarded as a majorsatenf our previous work discussed in [Freitas i&his
2003]. The main differences between this papercamgrevious work are as follows. First, this pagiscusses
in much more detail some issues discussed in & &itTimmis 2003]. In particular this paper dis@sthe in-
ductive bias of knowledge representations and pipdication of clonal selection algorithms to datanimg, top-
ics which were not covered in [Freitas & Timmis 3DP(Becond, this paper addresses a topic largelyplored
in [Freitas & Timmis 2003], namely a discussionfofir important features of the natural immune syste
namely: (a) the large diversity of antibody funoti classes; (b) antibodies’ ability to dynamicadlyitch their
functional classes; (c) the principle of antigemstéring; and (d) the principle of two-signal aatien — the lat-
ter two principles specify requirements for clonag immune cell. For each of these four featuresdiscuss
why these features are important, as a metaphothéodesign of a more adaptive AlS than currer@ Ate at
present, in the context of data mining.

There are several reviews of AIS, such as [Dasglp®®], [Timmis and Knight, 2002], [Tarakanov et al
2003], [Timmis et al. 2004] but, as pointed out[®arret 2005], most these reviews are outdated @mognot
focused on evaluating the effectiveness of AIS @mdhot present many suggestions for improving esgh of

AIS. By contrast to these previous reviews, thiggrdocuses on evaluating the effectiveness of BAl,n the
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context of data mining, and we suggest severalargments for their design and a number of resegirelc-
tions. We should also note that work such as [Tarak et al. 2003], [Tarakanov & Tarakanov 2004hrAka-
nov et al. 2004] has developed techniques insgiyedhmune network theory. Results published ine¢h&srks
are certainly competitive with standard data minapproaches. However, it should be noted this wdule, to
the focus on immune networks, is not the focusisf paper. For compactness, in this paper we foaoysopula-
tion-based AIS.

We are aware of only a few other recent works whigdsent aritical review of AIS, as follows. [Garret
2005] has recently presented a comprehensivearitawview of the area of AlS. There are three nuffer-
ences between Garret's work and this paper. FBatyret evaluated AIS with respect to two majoreci#,
namely how distinct they are from other related patational intelligence paradigms and how effectivey
are. By contrast, the issue of to what extent AkSdistinct from other paradigms is out of the gopthis pa-
per, which focuses only on how effective AIS arec&d, Garret's work addressed the area of AlSireral,
without focusing on any particular kind of applicat By contrast, this paper is more specializethduses only
on AIS for data mining. Third, Garret's discussisas “algorithm-oriented”, whilst the critical rewepresented
in this paper is much more problem-oriented. Irtipalar, this paper discusses in detail the indecbiases of
AIS for data mining; an issue not discussed in &&rreview, which had no focus on data mining.

[Hart & Timmis 2005] also presented a critical ewiof AIS from a type of problem-oriented perspezti
The main differences between [Hart & Timmis 20084 éhis paper are as follows. First, [Hart & Timr2305]
discuss not only data mining applications but algeer applications such as optimization, robotied eontrol;
whilst these other applications are out of the scopthis paper. Second, the discussion of [HafTigamis
2005] also has a considerable focus on the isst® what extent AIS are distinct from other compiotzal in-
telligence paradigms — again, a topic out of thepecof this paper. Third, although [Hart & Timmi8%] men-
tion the importance of inductive biases in analgziS for data mining, they do not elaborate o8 iksue, i.e.,
they do not discuss the inductive biases of AlSdata mining. By contrast, this paper presentstaildd dis-
cussion on the inductive biases of AIS for dataimgn

We emphasize that the scope of this paper is asign of the inductive biases of AlIS for data mgniFor a
review of the inductive biases of data mining aittpons belonging to other paradigms (i.e., not AI®) reader
is referred to [Michie et al. 1994] and [MitcheB47].

The remainder of this paper is organized as folldsextion 2 presents an overview of data miningstasd

the concept of inductive bias. Section 3 discusepeesentation issues in AIS for data mining. $ectt dis-
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cusses affinity issues, also in the context of daitdaing. Section 5 discusses two kinds of immurezesses for
AIS, namely clonal selection and negative selectamain in the context of data mining. Finally, &t 6 con-

cludes the paper and suggests future researchidirec

2 An Overview of Data Mining Tasks and Inductive Bas

2.1 The Classification Task

In the classification task we are given a datawstt N data instances (records). Each instance consists of
values form + 1 attributes, where thm attributes are called predictor attributes andatier attribute is called
the goal (or class) attribute. The value of thel gttaibute for an instance is called the clasthaf instance. The
data set being mined is divided into two mutuakglesive sets, namely the training set and thestetstThe aim
of a classification algorithm is to discover a tielaship between the predictor attributes and thal gttribute
using the training set only — i.e., without anyessto the test set. The discovered relationstsgdbe useful to
predict, as accurately as possible, the value efgthal attribute for each of the unknown-classainsgs in the
test set, based on the values of the predictabuatitss of that instance. In general, one wants aximize a
measure of predictive accuracy such as the simiassitication accuracy rate in the test set or aensophisti-
cated measure based, e.g., on ROC curves [Flaet,2Bach 2003].

In addition to predictive accuracy, there are otlréeria to evaluate the performance of a classiifbn algo-
rithm, in particular the comprehensibility of thesebvered knowledge [Fayyad et al. 1996], [Wittexd &rank
2005] — i.e., how comprehensible the classificatimmdel is to the user. The importance of knowleclg@apre-
hensibility depends on the application domain dreduser. In general this is not an important égatem many
pattern recognition tasks, but it tends to be aooitant criterion when discovered knowledge willvadidated
and interpreted by a user wanting to get more imsapout the data. Although there is no consenisasta pre-
cise definition of comprehensibility, it is usualigcepted that some knowledge representationstiemaselves
better than others to the discovery of comprehén&ibowledge. For instance, in general rule-baspdessenta-
tions (to be reviewed later) have a tendency toesmt knowledge in a more comprehensible way tan,the
low-level representation of the numerical weighta aeural network [Witten & Frank 2005].

Classification vs. Clustering -t is worth mention the main difference betweea thassification and clus-
tering tasks because, although clustering is reofdbus of the paper, this task is briefly refetr@th some parts
of this paper. The classification task is a fornmsopervised learning. By contrast, the clusterask involves a

form of unsupervised learning, where there arereedgfined classes assigned to instances. In deherabjec-
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tive of a clustering algorithm is to partition timstances into a set of clusters, where each clagstesists of

similar instances. It should be stressed that neg# the clustering task does not involve any iptiah.

2.2 The Anomaly Detection Task and Its Relationshipo the Classification Task

The anomaly detection task is described as folloywfHart & Timmis 2005]:

“Such techniques [for anomaly detection] are requiit@ decide whether an unknown test sample is pextiby
the underlying probability distribution that corygsnds to the training set of normal examples. Tajfyiconly a
single class is available on which to train theteys. The goal of these immune inspired systemsontake ex-
amples from one class (usually what was considerdge normal operation data) and generate a setabéc-
tors that was capable of identifying when the ndroraknown system had changed, thus indicating ssiiate

intrusion?”

This summarizes the way the anomaly detectionitaskpically described in the AIS literature. Iriglpaper,
however, we propose to examine this task from adepperspective, by putting it in the context ¢drger data
mining literature. The essence of the anomaly dietetask is that the training set contains insésnef a single
class, called the “self” (or normal) class, whils test set contains instances of two (or mogssés, the “self”
and the “non-self” (e.g. intrusion) classes. Themuifference between this description and the mss®f the
conventional classification task is that in thedathe training set contains instances of allsgagboth self and
non-self). Another important difference between dnemaly detection task and the classification taghat in
the former the distribution of the two “classesfigenaly vs. non-anomaly) is extremely unbalance - find-
ing anomalies is like finding “needles in a hayktddan et al. 2006].

Despite these differences, there are importantlaiitiés between the anomaly detection task tyfyicadl-
dressed in the AIS literature and the conventiatesification task. First, in both tasks thera wivision of the
data into training and test set, and the algorithust learn from the training data and apply theltes that
learning on the test data. Second, the resultefdarning in the training data has to beassificationmodel,
i.e., a model that assigns, to each test instanealue out of a small set of categorical (nomimaljes (self and
non-self in the AIS literature, or more generally aet of categorical classes). Thirdly, in sevéi® papers
addressing anomaly detection the performance dltggithm is evaluated in the same way as onauated the
performance of an algorithm for the classificatiask, i.e., reporting rates of false positives fatse negatives,
ROC curve or another appropriate measure of piedieccuracy. The evaluation of an anomaly detachts

within a classification framework is clear, for fasce, in the works of [Kim & Bentley 2002], [Bailtp et al.
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2002], [Anchor et al. 2002], [Gonzales & Dasgupt®2)]. There are even projects where the evaluatfcan

AIS algorithm developed for anomaly detection isf@ened in public domain datasets that are wellvkno
benchmarks for the classification task, and therea natural notion of “intrusion” or “anomaly”. Bhis the
case, for instance, in the works of [Kim & Bent2§02] and [Greensmith et al. 2005], where the aldiaset
used in the experiments was the Wisconsin Breast&alataset, a well-known classification benchnierin
the UCI dataset repository.

Taken together, these similarities are strongendd that the kind of anomaly detection task tylyiced-

dressed in the AIS literature is very related @ ¢bnventional classification task.

2.3 Inductive Bias

Given a number of data instances (facts or obdenstbout the real-world), the number of hypothese
data models implying those instances is potentiafipite [Michalski et al. 1983]. Therefore, we siwse a bias
that goes beyond consistency with the observedidist@nces in order to choose a hypothesis orrdatkel over
another. An inductive bias can be defined as arpli@t or implicit) basis for favoring one hypotsie or data
model over another, other than strict consistenity the data being mined [Mitchell 1990], [MitchdlB97].
Note that, without inductive bias, a data miningogithm would not be able to choose between twmthgses
or data models that are equally consistent withdtta. Therefore, the algorithm would be limitedessence, to
a kind of simple rote learning. Hence, every dataimg algorithm that performs some generalizatioand not
merely memorizes the data — must have an indubtas This includes virtually every useful data iminalgo-
rithm, since merely memorizing the data could habdl called data mining.

For the purpose of the review of AlS in this pagevery important point is that any inductive hias arap-
plication domain-dependeiftnore specificallya dataset-dependeneffectivenessSince every data mining al-
gorithm based on machine learning has an indubia®, it follows that the performance of a dataingralgo-
rithm is very dependant on the application domaid the data being mined. The application domaia&#t
dependent effectiveness of algorithms and theresponding inductive biases has been well estaduligh the
machine learning literature for more than a decadeth theoretically [Schaffer 1994], [Rao et #9%] and
empirically [Michie et al. 1994], [Lim et al. 20Q0]

This fact strongly suggests that, in order to méaénthe performance of a data mining algorithmeal+
world applications, one has to first carefully uredend the nature of the data being mined andetheinements

of the application domain, and then design a ngerdhm or choose an existing algorithm whose inigdedoias
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is well suited for the target data and applicatimmain. This is a problem-oriented approach, amdqtires a
good understanding of the inductive biases of daténg algorithms. In particular, this paper wilsduss in de-
tail the inductive biases of AIS for data mininigetefore giving a significant contribution to theseyn or choice

of an AIS whose inductive bias is suitable for theget data and application domain.

3 Representation Issues

According to [de Castro & Timmis 2002], an antibodyepresenting a candidate solution to the tgvgst-
lem — can, in general, be represented bi-dimensional vectoAb = <Ab,, ..., Ab_>, whereL is the length (i.e.
the number of components) of the vector. In theedrof the classification task, usually eadfy, i = 1,..L, es-
sentially represents the value of tk attribute (feature) of the data being mined.

In [Freitas & Timmis 2003] we briefly reviewed tler&inds of antibody representation with respedattab-
ute data types, namely binary, continuous (reakad) and categorical (nominalata representationdn this
paper we propose to go considerably further, bysideningknowledge representatiofisangley et al. 1996], as

discussed in the next subsection.

3.1 A Brief Review of Instance-Based and Rule-Baséthowledge Representations

Most AIS for classification use an instance-basgasentation. This includes well-known AlS sucliABRS
[Watkins 2001], [Watkis & Boggess 2002b], [Watkias al 2004] and CLONALG [de Castro & von Zuben
2000a], [de Castro & von Zuben 2002a]. Instanceethaspresentations have a form of specificity biaghe
sense that in this representation the candidateis$ considered by the classification algorittaiket the form
of a subset of the original data instances, eathesh with all its attribute values. This allowe ttepresentation
of very specific relationships between the prediettributes and the classes of instances.

A very different kind of representation is the rilesed one. This representation is used, for instain
IFRAIS [Alves et al. 2004] — an AIS for discoverifigzzy classification rules. Rule-based represemtathave a
kind of generality bias. In this representatiorg dandidate solutions considered by the algoritie the form
of IF-THEN classification rules, where each rulpitglly contains a conjunction of a few attributdues in its
antecedent, namely just the attribute values tteatedevant to predict the class specified in tile consequent.
A rule can be used to classify any instance satigfthe conjunction of attribute values in its amgent, so that

each rule is effectively a generalized represeamdtir the set of instances satisfying its antecede
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The difference between the rule-based and insthased representations can be more easily underfstond
a geometrical point of view, as illustrated by Feyd. In this figure the training instances areespnted by “+”
or “~, denoting that they belong to the positive or ateg class, respectively, and an unknown-clagsites
stance is denoted by “?”. To keep the example ginthe figure refers to a data space with just attbutes,
A; and A. The position of an instance in that space ismglweits values for attributes;/and A. In Figure 1(a)
there is a box covering a set of 9 training instsnd his box represents the following classificatiole: IF (§ <
A1 <t) AND (t:< A, < ty) THEN (class = “+”). Given that the test instartEnoted by “?” satisfies this rule, it
will be classified as a positive instance. This igesult of the generalization made by the rulecBytrast, the
same instance set is shown in Figure 1(b), but aounstance-based representation is used. Assuimngpest
instance is assigned the class of its nearesirtcpinstance (as in the 1-NN algorithm [Aha 199Tpt test in-
stance will be assigned the negative class. Thasrésult of the specificity bias of the instanesdd classifica-
tion algorithm. Of course, we could increase theegality of the instance-based representation bigaimg the
test instance to the class of the majority okitearest neighbors, as in thé&lN algorithm [Aha 1997], but even
in this case the value &fis typically a small integer, so that eveNN algorithms still have a relatively strong
specificity bias,. Further discussions contrastimg specificity bias of instance-based represemtstivith the
generality bias of rule-based representations ediolnd in [Ting 1994], [Carvalho & Freitas 2004].

In any case, the question of which bias, generalitypecificity, leads to a higher predictive aemyrdepends
strongly on the data being mined — this is alse far any other kind of inductive bias. In Figuregtlis possible
that the negative training instance nearest tadbeinstance contains noisy data — say the wrahggvof A or
A,, or the wrong value of the class. If so, the mfld=igure 1(a) is correctly generalizing all thaiming in-
stances inside the box and the test instancedly Itk really have the positive class. On the otfaerd, the nega-
tive training instance nearest to the test instarae contain correct data and represent a trueptgneto the
more generic pattern represented by the rule afrBig.(a). If so, the test instance is likely tallyehave the

negative class and the very specific predictiothef1-NN algorithm would be more likely to be catre

Az A
| - -] + + i - - + + +
— + ® - - + + ?-
t3] — —| + + O+ - — o+ + +
ty t >A1 'A
(a) rule-based representatio (b) instance-based represiemnta

Figurel: Difference between rule-based and instance-bagedsentation



Regardless of predictive accuracy issues, one #ayarof the rule-based representation over tharnst
based one is that the former tends to be more @imepsible to the user [Witten & Frank 2005]. Thki®écause
it uses an intuitively interpretable IF-THEN struiet and the antecedent usually contains a conpmofi a few
conditions, rather than a vector containing vafeesll attributes as in a typical instance-basgatesentation.

On the other hand, the generalized representafidtheodata associated with IF-THEN rules comes ith
corresponding disadvantage. As pointed out by [Gh&orrest 2003], rule induction requires that maraning
instances be observed before a rule generalizimggtinstances is created. By contrast, the insfaased repre-
sentation can learn, in principle, even from a lgingstance. A related point is that instance-baspdesenta-
tions are more incremental, i.e., they are morédyeagdated as the data being mined changes. €hisuk pro-
vides further support to the claim of [Hart & Ting12005] that continuous learning is a promisingliapfion of
AIS, since most current AIS use an instance-basgeksentation.

To conclude this section, the question: “Which klemlge representation is better, the instance-bas¢uke
rule-based one?” does not make sense per se,lateddorm. It all depends on the nature of theadaging
mined, the requirements of the application domhagw important knowledge comprehensibility is to theer,
etc. From a data mining, problem-oriented perspegcthe right question to ask is: “For a particidpplication
domain and a particular dataset to be mined, wkindwledge representation should be used?” The aptm-
swer might not even be the instance-based or mdedrepresentation, of course, since many ottmwlkdge

representations are available [Witten & Frank 20(15dngley 1996].

3.2 A Critical Review of Representation Issues in Bumber of Existing Artificial Immune Systems

Table 1 presents a summary of the antibody reptasem used by a number of AIS (this table is ndtaais-
tive). Each row in that table corresponds to amgikimd of AlIS work. For each work the table repofes the
kind of application / data mining task addressedhat work; (b) the antibody representation; (& general
geometrical shape of the antibody’s recognitioraanethe data space — or how an antibody recogmizemti-
gen, if the geometrical shape of the antibody'sgadtion area is not well defined; and (d) the kiexnlge repre-
sentation paradigm: instance-based or rule-based.

The majority of the AIS mentioned in Table 1 use omit of a couple of “standard” antibody represioma,
namely a real-valued vector or a binary vectoraamriation of those representations. In genemgddahvorks

show little or no concern in designing a repred@naailored for the data or the application domai
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Table 1: A Summary of Representation Issues in a Numbéixddting AlS

AIS Kind of applica-| Antibody representation Antibody’s recognitiorkn. Rep.
tion or task area Paradigm

[Dasgupta et al| Fault detection/ | Real-valued vector Hyper-sphere with | énstance-

2004] classification variable radius based

[Gonzales et al. 2002] Anomaly detgcReal-valued vector Hyper-sphere withnstance-
tion/ variable radius based
classification

[Cserey et al. 2004] Real-time proces®Binary vector with “don’t| Hyper-sphere with Instance-
ing of image se; care” values fixed radius based

quences for surt

veillance
[Dasgupta & Majum- Anomaly detec- Binary vector encoding Antibody and antigen Instance-
dar 2002] tion / real numbers must match in r conr based
classification tiguous bits
[Sarafijanovic Misbehaviour deq Binary vector encoding Antibody must have Instance-
& Le Boudec 2004] | tection in mobile| discretised numbers “1” in every position| based
ad-hoc networks where antigen has “1”
[Balthrop et al. 2002]| Network intrusionBinary vector Antibody and antigeninstance-
detection / must match in r cont based
Classification tiguous bits
[Anchor et al. 2002] Network intrusiopBinary vector encoding Hyper-rectangle (eachlnstance-
detection / ranges of numerical varij- attribute has lower angdbased
Classification ables upper bounds)
[Taylor & Corne| Fault detection/ | Discrete-number vectgr Hyper-sphere with Instance-
2003] classification in using two encodings t+fixed radius or matcht based
time series one of them tailored fof ing r contiguous bits of
time series antigen
[de Castro & von Zu4 Clustering Real-valued vector Selech antibodies| Instance-
ben 2001 ; 2002b] nearest to the currentbased
antigen
[de Castro & von| Digit recognition Binary vector Selectn antibodies| Instance-
Zuben 2000a; 2002a] nearest to the currentbased
antigen
[White & Garret| Digit recognition Real-valued vector Selech antibodies| Instance-
2003] nearest to the currentbased
antigen
[Watkins et al. 2004]| Classification Real-valued vector Select memory | céhstance-

[Watkings & Boggess

nearest to the currentbased

20023a] antigen
[Sahan et al. 2005] Medical diagnosifeal-valued vector Hyper-sphere withnstance-
/ classification fixed radius based
[Alves et al. 2004] Classification A fuzzy classdtion Hyper-rectangle Rule-
rule based
[Castro et al. 2005] Classification A set of fuzagssifica-| Hyper-rectangle Rule-
tion rules based
[Secker et al 2003] Classification Vector encodigyds Antibody must haven | Instance
extracted from emails number of equal words based
to antigen
[Ayara et al 2005] Error detection |/Mector containing dist Antibody and antigen Instance
Classification crete states of an autpmust match in r- | based

mated teller machine

contiguous bits

1 It should be noted AIRS has two recognition aiaing training, one for deciding if an antibodycisned, the other used
to decide if a new candidate memory cell is acyumtided to the set of memory cells. Here we distheséirst.
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The work of [Taylor & Corne 2003] is an exceptidinis work used an antibody representation congjsiin
a vector of discrete, integer numbers in the rdi§e Two alternative encodings of the data intd tkaresenta-
tion were investigated. First, each original terapate value — in a time series of temperature gatue/as dis-
cretized into an integer in [0...9]. The second kafdencoding involved comparing the temperature eat
time t with the temperature at the previous titmel in a time series, and then encode that differas the dis-
crete number O, 1, or 2, to denote an upward slopehange or downward slope, respectively. Tipsasenta-
tion was designed in collaboration with expertshia application domain, involving fault detectiamrefrigera-

tion systems. To quote from the paper:

“In conjunction with experts in the application ayear view is that the key elements of a faultyadeftem-
perature curve are not the precise pattern of realied temperatures, but the local ‘ruggednessthef tem-

perature curve.

This kind of data encoding tailored for the datanpenined, designed in collaboration with expentshie appli-
cation domain, is a good example of the problerarded approach for the design of AIS advocatethigfga-
per. The other exception is the work by [Ayara le2@05]. In that paper, the authors used explicindin
knowledge from engineers to establish failure detéor ATMs (Automated Teller Machines). This knledge
is used to identify sequences of states that ledailture: these are then used as the basis fdvaalies that pre-
dict if an ATM is likely to fail or not. Resultsbtained showed that it was possible to identifstaup2 hours in
advance of such failure.

It should also be noted that, in some AIS repoitedable 1, the corresponding paper makes it exyhie
fact that the choice of the used representationdsigen by an algorithm-oriented approach, rathanta prob-
lem-oriented approach. For example, quoting [Anattal. 2002]:

“The binary string representation is employed towlfor easy manipulation by a genetic algorithnthia affin-
ity maturation’

It is not clear that a binary representation isdeeefor that reason, since evolutionary algorittoas handle
real-valued variables without any significant peh| and the real-valued individual representatsoarguably
more suitable than the binary one when the datsisisof real-valued variables [Back 2000], [Frei2802].

As another example of work emphasizing the algoritiriented nature of an AIS, [Dasgupta & Majumdar
2002] used an AIS for anomaly detection in persbdata containing both numerical and categoricahrimal)
attributes. That project ignored the categorictilattes and used an antibody representation gontaionly

numerical attributes. Hence, several attributes weae potentially useful for the target anomalyeddon task
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were ignored, possibly reducing the predictive aacy of the system. The justification for workingly with

numerical attributes given by the authors was:

“It is difficult to numerically represent categorlaiata. Any attempt to do so arbitrarily imposesadering in

the data, which is not true in real life. To apfihe negative selection algorithm we need numedeatd.”

We agree with the authors that a numerical reptasen of categorical data is not a good approaxtigducing
an arbitrary order in the data. However, it doesfallow that the best solution is to ignore categal data and
use only numerical data. Rather, intuitively a &ettpproach is to use a hybrid numerical/categomaesenta-
tion. As pointed out by [Freitas & Timmis 2003]jstpossible to use an affinity function that hasdtategorical
attributes without converting them into numericatibutes. A very simple way of doing that is tdfide the dis-
tance between two categorical values as O if tltevimues are the same or 1 if they are differehts 8@oes not
introduce any arbitrary order in the data andtiinres a numerical value that can be straightforlyanded in the
formula for any distance measure. A more sophigtit@approach to measure the numerical distanceebatw
two categorical attribute values (again, withodtaducing an artificial ordering in the data) catsiof using the
Value Difference Metric [Stanfill & Waltz 1986], [ao et al. 1998].

A common choice of representation in existing Ad® data mining consists of representing an antikesig
real-valued vector and, when matching an antibotlyam antigen, considering that the antigen isgeieed by
the antibody if the distance between them is sm#flen a given threshold. This defines, for eadibady, a
hyper-spherical recognition region centered acth@dinates of its real-valued data vector and véthius given
by the distance threshold. This kind of repres@rasometimes called “artificial recognition balls used in
several AIS mentioned in Table 1, namely the warf{®asgupta et al. 2004], [Gonzales et al. 20(23erey et
al. 2004], [Taylor & Corne 2003]n early AIS the radius was fixed, but more reeabme works proposed a
variable radius [Dasgupta et al. 2004], [Gonzatesl.2002]. The idea of a variable radius is apriovement,
intuitively making the antibodies more adaptablghe data being mined, but it should be pointed, thagen
when the length of the radius is variable, exis#ig still use the fixed representation of a hyppherical rec-
ognition ball, which has its own representatioriabland so is not suitable for all kinds of datapenined.

To see this point, consider for example the twqy sémple datasets shown in Figure 2(a) and 2(lg),leinthe
target task be clustering. In Figure 2, each dwtance is represented by a “x”. A hyper-spherigptesentation
is naturally suitable for the data of Figure 2@)t not suitable for the data of Figure 2(b), fdriet a hyper-

rectangular representation is more suitable.
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It should be noted that not all instance-basedesgmtations have a hyper-spherical recognitioronedn
particular, the work of [Anchor et al. 2002] propesa hyper-rectangular representation, where ttigoaly en-

codes a lower and an upper bound for the valuadi attribute.
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¢

>A1 > A

(a) suitability of hyper-spherical represeian (b) suitability of hyper-rectangulapresentation

Figure 2: Examples of datasets for which hyper-sphericéiyper-rectangular representations are suitable

There are also several works where an antibodg@grtion region is not explicitly defined as a peaty of
the antibody itself, but is rather implicitly defid by a competition between that antibody and adinébodies
[de Castro & von Zuben 2002b], [de Castro & von &ul2002a], [White & Garret 2003], [Watkins et &02].
In such AIS, when an antigen is presented to ttesy, the nearest antibody(ies) to that antigema¥deemed
to recognize that antigen, regardless of the aslak of the distance between the antibody(ied)tae antigen.
This avoids the need to specify a parameter sutheasadius of a hyper-sphere, although this adegnmight
be cancelled out if the system requires anothearpeter such as the number of nearest neighboibddies)
that should be considered as recognizing the cuargigen — and therefore are selected for cloning.

Almost all AIS mentioned in Table 1 use an instabased representation. The only exceptions are/tinks
of [Alves et al. 2004] and [Castro et al. 2005][Aives et al. 2004] an antibody represents a fudagsification
rule. In geometric terms, the rule-based repretientaorresponds to a hyper-rectangle in the daaéaes Inter-
estingly, both the work of [Alves et al. 2004] atfe work of [Anchor et al. 2002] use a hyper-regtarrepre-
sentation. The main differences between these tarisvare as follows. First, the work of [Anchorakt 2002]
uses an instance-based representation, where theeaftor contains a pair of values (lower and upnoeinds)
for every attribute of the data being mined. Bytcast, the work of [Alves et al. 2004] uses a foidesed repre-
sentation, where each rule typically contains valioe relatively few attributes, rather than attiautes. Hence,
in the latter representation an antibody tendset@dnsiderably shorter than an antibody in the &rrwvhich

makes the latter representation easier to intefprahe user. Second, the antibody representatseal in [An-
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chor et al. 2002] handles only numerical data, sthiie antibody representation used in [Alves .€2@D4] han-
dles both numerical and categorical data.

In [Castro et al. 2005] an antibody representst afskizzy classification rules, rather than justiagle rule.
From a geometrical point of view, each of the rdesoded in an antibody has the same hyper-redearghape
as the rule representation used in [Alves et &04PCEncoding a set of rules (rather than a simgle) into an
antibody has the advantage that the antibody sd&nevaluation directly takes into account theraatéons
among rules, but it has the disadvantage thatrtibaaly representation becomes more complex anditecof
the search space for the AIS becomes correspogdargler [Freitas 2002].

Both the instance-based representation of [Anchat. 2002] and the rule-based representationsleep et
al. 2004], [Castro et al. 2005] have the limitattbat they represent only hyper-rectangles whosadbaries are
defined by propositional-logic conditions such gE3'< Age < 30)", and not first-order logic (relational) condi
tions such as “(Income > Expenses)”. This point &l further discussed later.

Overall, considering the contents of Table 1 amrdptevious analysis, it should be noted that exgséilS are
not very flexible nor adaptive in their choice aftiaody representation. That is, in general eacthe$e AIS
uses a fixed kind of representation throughouttimeof the system, implicitly assuming that thairessentation
is suitable for the data being mined, an assumpkianis not usually justified.

With this important limitation of current AIS in md, it is now timely to turn to a discussion of tiody
representation” issues in tin@tural immune system (a much more flexible system), ireotd investigate the
possibility of identifying useful metaphors for tdesign of a more adaptive AIS. Indeed, work iteffey et
al. 2005] advocate the re-examination of the imnhagioal literature and to move away from simplistiews
of immunological operation, and seek to capturielzer (or appropriate level of metaphor) aspedtrohunol-

ogy that can be used in the development of AIS.

3.3 Antibody Diversity in the Natural Immune System

There are four main kinds of antibody accordingheir functional class, namely IgA, IgE, IgG, argM.
These kinds of antibody have different functionaperties, evolved to function in different envinents (dif-
ferent parts of the body) and mediate differentidgjizal responses following antigen binding [Sormaay
2003], [Alberts et al. 2002], [Mims 2000].

IgM is a relatively large antibody, and it is thesf kind of antibody secreted into the blood ie tarly stages

of a primary immune response. As the immune respdaselops, IgM antibodies are replaced by othaikbf
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antibodies, mainly 1gG ones. The logic behind the af IgM as a “first antibody” is that in the gastage of an
infection IgM antibodies are more effective thaslgnes, because IgM antibodies are considerabterbat
“fixing complement” — i.e., activating the complemiecascade. Furthermore, IgM antibodies are vendgpt
binding to viruses and preventing them from attagho cells that they could infect. Due to theigkasize, IgM
antibodies cannot easily pass through blood vegsid, so they stay mainly in the blood.

IgG is the most abundant kind of antibody in theobl. 1gG is produced in large quantities duringeosidary
immune response. There are several different ssdmdaof IgG antibodies, with different functiongr -
stance, IgG1 is very good at opsonizing invadees, preparing them to be ingested by phagocytek as
macrophages; whereas IgG3 is the subclass whidHikes complement. IgG antibodies are good atibigdo
viruses and preventing them from attaching to a¢bbs they could infect.

IgA antibodies are very good at clumping pathogeresting clumps that are large enough to be sougpof
the body with the mucus. IgA is the most abundamd lof antibody in the body. They are not so nurasrm
the blood (where IgG predominate), but there avers large number of them in the mucosal surfadethe
body. IgA is sometimes called a secretory antibadyg it is the main kind of antibody in secretionstsas sa-
liva, tears, respiratory and intestinal secreti@mg] it is also secreted into the milk of nursingtimers. Although
IgA antibodies are very good in the fight againstcosal invaders, they are useless at fixing comghm

IgE antibodies are present in relatively small antsin the body (by comparison with other kindswfibod-
ies), and they are produced by B cells lying juedbly the respiratory and intestinal surfaces. IgiEl®with un-
usually high affinity to special cells such as nmadts, which protect us against parasitic infetdiorhen, when
the IgE antibody binds an antigen, it triggersriest cell to secrete substances that kill the fiaras

Interestingly, the immune system is quite cleveusing these different kinds of antibodies, becauBecell
can switch the kind of antibody that it producesdsh‘on demand”. As mentioned earlier, when B casfirst
activated they secrete mainly IgM antibodies. latar stage of the immune response, many B celisgd the
kind of antibody that they are producing (to IgGElor IgA), based on the combination of antigemslinig to
the B cell and cytokines secreted by helper T cElis instance, if a B cell detects an abundanagtokines IL-
4 and IL-5 in its environment, it tends to swittieit kind of antibody from IgM to IgE — ideal faighting para-
sitic worms. By contrast, if a B cell detects T@GHt tends to change its kind of antibody from IgMIgA —

ideal for the common cold.

3.4 Lessons To Be Taken From Natural Antibody Divedity for Designing More Adaptive AIS



1€

First of all, recall that, in AIS, an antibody iandidate solution to the target problem. At anHeyel of ab-
straction, there are two main lessons that we &lam from the antibody diversity in the natural adegpimmune
system, in order to identify generic principles €@signing more adaptive AIS than the AIS curreathilable
in the literature.

The first lesson is that there is a considerablerdity of natural antibodies. They come into salvéunc-
tional classes and subclasses. Each of those slasek subclasses is particularly suitable for ptotg us
against one kind of invader. Each of the functiariabses of natural antibodies can be thought af kisd of
“antibody representation”, having a role concepyuahalogous (as a metaphor) to a knowledge reptatsen
of an artificial antibody in an AIS. In terms ofversity of representations, AIS lag considerabliibe their
natural counterpart. As discussed earlier, in gdiS use only one kind of antibody representation

The motivation for designing an AIS that consideisre than one kind of knowledge representatioreiarc
in the context of data mining, where different tbof the data being mined may be better coveyatifferent
kinds of knowledge representation. A very simplaragle of this point is shown in Figure 3, whictbased on
the same geometrical perspective of knowledge septations (and the same notation) as used ind-RjuCon-
sider first the six positive training instanceshaitthe box in the lower-right part of the datacp@ Figure 3.
These instances are naturally covered by the eeesented by that box, i.e. the rule: F<(; < t;) AND (A,
< tz) THEN (class = “+"). Borrowing terminology fronmé field of Logic, this kind of rule is called agmosi-
tional rule. The majority of rule induction algdmihs discover rules in this representation. Thisesgntation is
not suitable, however, to cover the many positixa@ngples above the diagonal line in Figure 3. Treosamples
are ideally covered by a more sophisticated kindulef, viz. the rule: IF (A> A;) THEN (class = “+”). This is a
first-order logic (or relational) rule representati whose antecedent is comparing the values ofativibutes,
rather than just comparing the value of an attebwith a given threshold value. On the other hdhete are
other training instances which apparently would betwell covered by a generic rule, and for whichira
stance-based representation seems more approfxateples are the two negative training instanbesathe
box and below the diagonal line in Figure 3. Thigife is a very simplified example, but it illugia the point.
The need for diverse knowledge representationgtively tends to grow stronger as larger and marmulex
datasets are mined. In other words, the abilitys® diverse knowledge representations is a desiciialracteris-
tic of AIS for scaling them up to large and compliztasets, a research direction very open in tiselifdrature.

Although the use of hybrid knowledge representatisnnot easy and is not the main approach in machi

learning and data mining, there is evidence thdk-designed systems with hybrid knowledge represtioms



17

are effective. To quote just five examples, [Tirip4] used a hybrid decision tree and instance-bkseding
representation; [Lopes and Jorge 2000] and [Donsirig@®5] used a hybrid rule and instance-based septa-
tion; [Quinlan 1993] used a hybrid system involvingtance-based learning and three different fayfrmaodel-
based learning; and [Carvalho & Freitas 2004] wshglbrid decision tree and rule representation a/ttes rules
are evolved by a genetic algorithm. In generaldr®stems have been shown to obtain a high presliaticu-

racy, and they often obtained better results thanrtdividual base algorithms which they combined.
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Figure 3: Example of Data Requiring Diversity of KnowledgefResentations
The second lesson about representation to be fek@nthe natural immune system is that B cellsaatap-
tive enough to switch the class of antibody that/throduce as necessary, depending on the kimtvafier that
is currently attacking the body. Again, AlS lag siferably behind their natural counterpart in #irsl of adap-
tivity, since in general they do not allow the kioidknowledge representation to be changed as négeas are

found —i.e., as a new region of the search saerglored.

4 Affinity Issues

4.1 A Review of the Importance of Affinity Functiors in Artificial Immune Systems

Any kind of affinity function used to decide whiemtibodies will be cloned (and how many cloneshein
will be produced) is, in more general data miniegrts, an evaluation function that guides the sefmchetter
models of the data; and any evaluation functioa urce of inductive bias. Therefore, one shohlubse or
design an affinity function whose bias is suitaolethe data being mined [Freitas & Timmis 2003].

Since most AIS use an instance-based representatiatiscussed in Section 3, it is natural thattrAtS use
an affinity function that is specified in termsaflistance function, i.e., the smaller the distdreteveen an anti-
body and an antigen, the higher the affinity betw#iem, and so the more stimulated the antibody is.

To illustrate the importance of the choice of aatise function, consider the following example, dd
from [Freitas & Timmis 2003]. The first column ofble 2 shows the coordinates — in a two-dimensidatd

space — of three data instances, namely antigemd/faatibodies B and C. Which of the two antibodisyr C,
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is nearest to antigen A? This is the sort of qoedtat has to be continuously answered withinettecution of
an AIS such as CLONALG or aiNet, where theearest antibodies to an antigen are chosen ttohed; and
within the execution of AIRS, where the nearesglfest affinity) memory cell is chosen to generae rartifi-

cial recognition balls. Interestingly, differenstlince measures might give quite different restihigs is shown
in the second and third columns of Table 2, whepopular distance measures are considered: Mantatd
Euclidean distance [Liao et al. 1998]. As showithia table, according to the Manhattan distancedisiance
between A and B is 8, whilst the distance betweeané C is 7, which suggests that C is the neanditoaly to
A. However, according to the Euclidean distances e nearest antibody to A.

This significant difference in the results happbasause the Manhattan and the Euclidean distanveedifa
ferent inductive biases. The Euclidean distancdgén amplify the importance of a large differebetween the
values of a single attribute (coordinate) between data instances. Intuitively, this makes the Eeen dis-
tance more sensitive to noise in a single attritthd@ the Manhattan distance, because in the kattge differ-
ence between two values of an attribute will hass impact than in the Euclidean distance.

The example of Table 2 is very simple, but is shtivespoint: the choice of a particular distance snea is
important and affects the results of the AIS alfponi There is no such thing as the “best” distameasure in
general. This means that, in order to maximizepddormance of an algorithm in a given dataset, sivld
carefully study the dataset in detail in a pre-pesing phase of the knowledge discovery procesisthem se-
lect the distance measure whose inductive biasoist suitable for that particular dataset. This ast pf the
problem-oriented approach advocated in this pafete that this is in contrast with the conventiotebo-
rithm-oriented” approach of specifying the distameeasure of the algorithm in a way independenhefdata
being mined. This pre-specification of a fixed digte measure might be appropriate for academiciexgets
where the algorithm is evaluated across a numbdatafsets, in order to show the algorithm’s robestnHow-
ever, if the goal is to maximize the performancehef algorithm in an important real-world datasdgtere the
results of the algorithm will be actually used f@cision making in the real-world, then a more ftAr@nd justi-

fied choice of the distance function, tailoredthoe data being mined, should be made.

Table 2: Example of the influence of choice of distance snea in the results of an AIS

Data instances’ coordinates  Manhattan Distance toFuclidean distance to A
Antigen A: (0,0) N/A N/A
Antibody B: (4,4) 8 5.7
Antibody C: (6,1) 7 6.1

The importance of choosing a suitable affinity filmre (or distance measure) has also been emphaisitied

work of Hart investigating different geometricalagies of an antibody’s recognition area [Hart 20(3&rt &
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Ross 2004] — an investigation performed in the ednbtf immune network-based AIS. One result of thies-
tigation was that [Hart 2005] (p. 41)The results clearly show that the dynamics and gizee emergent net-
works are heavily influenced by the recognitionioagshape, and that the networks show varying tghiidi tol-
erate antigens over different ranges of recognitadius’’

However, it should be noted that the results oft'Blanvestigation were produced by considering plee-
formance of an immune network algorithm with rantiogenerated data. Hence, this investigation candoe
sidered as an algorithm-oriented one, rather thamptoblem-oriented approach advocated in thisrpape
4.2 A Critical Review of Affinity Issues in a Numbe of Existing Artificial Immune Systems

Table 3 compares the distance or affinity functiohs number of AIS. Out of all works quoted in TaB,
only the works of [Bezerra et al. 2004] and [Dadgugt al. 1999] have proposed an affinity funcipamticularly
tailored for the data being mined. [Bezerra eR@D4] used an affinity function based on the catieh coeffi-
cient, rather than on Euclidean distance. Thisagheias justified by the fact that the data beingediwas a
gene expression data set, consisting of expressimts measured across a number of different exeeatial
conditions. The goal was to cluster genes accoridirtigeir similarity with respect to expressiondéss Note that
in this case the use of Euclidean distance woulihdygpropriate, because it would be based on tigimale of
the differences in expression levels of two geroesss different experimental conditions. Differenae magni-
tude are not important; what matters is the caticelaTwo genes are considered to have similaresgion pat-
terns — and so should be assigned to the samerchysthe AIS clustering algorithm — to the exttvt they are
correlated in the sense that, the higher (lowex)etkpression level of the first gene in an expentalecondition,
the higher (lower) the expression level of the sdagene on the same experimental condition.

[Dasgupta et al. 1999] used a data representatimrena light spectrum was represented by a birtangs
where each bit was assigned a weight based orothesponding spectroscopic band, and the affinitycfion
was a bit-weighted one. Therefore, the affinitydiion exploited background knowledge about liglecipa.

Hence, these two works provide good examples of t@ichoice of the affinity function should be dietd
by the application domain and the nature of tha daing mined.

The IFRAIS algorithm [Alves et al. 2004] uses afindfy function partially tailored for the targetgblem, as
follows. An important point about this work is thiatises both an affinity function and a fitnessdtion. The af-
finity function measures the degree of fuzzy matghietween an antibody (fuzzy classification raledl an an-
tigen (training data instance). A data instanaesmed to satisfy a rule if the degree of fuzzycimag between

the instance and the rule is greater than or dquat affinity threshold.
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Table 3: A Summary of Affinity Issues in a Number of Artifal Immune Systems

AIS Kind of application or task| Distance or AffipiEFunction Is the affinity func
tion tailored for the
data or application?

[Dasgupta et al} Fault detection/ Euclidean distance No

2004] classification

[Gonzales et all Anomaly detection / Euclidean distance, affinity No

2002] classification threshold based on median djs-

tance of k-neighbors

[Cserey et al. 2004]| Real-time processing Hamming distance with “don’t No.

of image sequences for | care” elements
surveillance

[Dasgupta &| Anomaly detection / r-contiguous bits rule No.

Majumdar 2002] classification

[Sarafijanovic Misbehaviour detection in Antibody must have “1” in every No

& Le Boudec 2004] | mobile ad-hoc networks | position where antigen has “1”

[Balthrop et al.| Network intrusion r-contiguous bit rule and a varj-No

2002] detection / classification | ant (r-chunks)

[Anchor et al. 2002]| Network intrusion At least 1 antigen must matchNo

detection / classification | hypervolume of antibody

[Hofmeyr & Forrest| Network intrusion r-contiguous bits rule No

1999] detection / classification

[Taylor & Corne| Fault detection/ classificd-Compared Euclidean and [No (but used repre-

2003] tion in time series contiguous rules sentation tailored for
time series)

[Dasgupta et al} Spectra recognition Hamming distance witNes

1999] weighted bits

[Bezerra et al. 2004] Clustering of gene Correlation coefficient Yes

expression data

[Timmis et al. 1999]| Clustering Euclidean distance No

[de Castro & von Clustering Euclidean distance No

Zuben 2001 ; 2002b]

[de Castro & von| Digit recognition / Hamming distance No

Zuben 20004a;2002a] classification

[White & Garret| Digit recognition / Hamming distance No

2003] classification

[Watkins et al.| Classification Euclidean distance No

2004], [wWatkins &

Boggess 2002a]

[Sahan et al. 2005] Medical diagnosis / Euclidean distance with attributePartially (due to use

classification weights of data-driven
attribute weights)

[Alves et al. 2004] Classification Affinity basedh duzzy match-| Partially (due to data-

ing and fitness based specific fodriven adaptation of
classification affinity threshold)

[Secker at al 2003] Classification Antibody mustéa number of| No

similar words to antigen
[Ayara et al 2005] Error detection / Antibody and antigen mustPartially (takes into
Classification match inr-contiguous bits account time-based
ordering of states)

In IFRAIS the fitness of an antibody is computedabgertain formula that measures the predictivelraoy
of its rule, and that formula computes a global snea of the affinity of the antibody with respezll antigens,

rather than with respect to just one antigen. Tdriswula is tailored for the classification taskdafta mining, but
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it is not tailored for the dataset being mined. ldwer, the computation of the affinity (and so tiieeiss) is par-
tially adapted to the dataset being mined in anraatic fashion. This is done by using an adaptia¢a-driven
procedure to adjust the affinity threshold. Thif ks the limitation that the basic structuretioé affinity and

fithess functions are the same for all datasetd irsthe experiments — different datasets might vegjuire dif-

ferent affinity/fithess functions for optimal perfoance of the algorithm — but at least the adaptaif the affin-
ity threshold for each dataset is a step in thection of making the algorithm more adaptable odhta being
mined.

The basic idea of an affinity threshold that vaaesording to the data being mined can also bedfa@uther
AIS, although in somewhat simplified forms. The ARlgorithm [Watkins et al. 2004] also computesatim-
ity threshold value which is specific for the datialseing mined, since the value of that threshelgiven by the
average affinity value over all pairs of antigetraifing data instances). In this case, howeverytdiue of that
threshold is computed once in the initializatiooqadure and kept fixed during the run of the atbani whilst
in the IFRAIS algorithm the value of the affinityreshold is dynamically adapted during the rurthin AIS of
[Gonzales et al. 2002] the affinity threshold igegi by the median distance among the distancdse&friearest
neighbors of an antibody, which also makes thasthold dynamically variable during the run, ashie tFRAIS
algorithm. However, in IFRAIS the affinity thresklovalue is adapted in a way that directly maximitresfit-
ness of the antibody, which is not the case inAtti8of [Gonzales et al. 2002] and in AIRS.

As a brief aside, work in [Neal 2003] proposes mmune network algorithm that dynamically adjusts th
size (and connectivity, thus affinity threshold)tbé network in a data driven manner. However, wosk was
not included in Table 3 because it involves immneagvorks, which is out of the focus of this paper.

In any case, with the exception of the works of@ea et al. 2004] and [Alves et al. 2004], thecotivorks
mentioned in Table 3 have in general used affifuityctions which are popular in the AIS literatusach as the
Hamming distance, the Euclidean distance or thentiguous bits rule. The fact that a work has wsednven-
tional affinity function — rather than one tailortat the data being mined — is not necessarilygatiee charac-
teristic of that work. It is possible that a contienal affinity function be suitable — though naaessarily the
ideal function — for the data being mined. Foranse, if the data being mined consists of binaxglpiin a pat-
tern recognition application, it may be the case thsimple Hamming distance is a satisfactoryigyfifunction,
since there is no apparent higher-level structurm@aning in the data that could be exploited tsigtea tai-
lored affinity function. In this sense the Hammufigtance used by [De Castro & von Zuben 2000a],{2stro

& von Zuben 2002a], [White & Garret 2003] may beadisfactory affinity function, since these workieess
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the problem of digit recognition where the predictributes are binary pixels. In any case, dl& interesting
to consider variations of a conventional Hammirgfatice, e.g. [Cserey et al. 2004] has used a raddifind of
Hamming distance which also takes into account ‘tdeare” elements. In addition, even when workinighva
low-level data representation, it might be posstblexploit domain knowledge in order to designadimity
function tailored for the problem at hand. An ex#&mis the previously-mentioned work of [Dasguptaakt
1999], where the bit weights are based on spedpisbands.

In the case of works using the Euclidean distaitds,important to remark that almost all the worken-
tioned in Table 3 are using an unweighted distaneasure, assuming that all attributes have the sagight. A
notable exception is the work of [Sahan et al. 20B88hough this work is a step in the right direct, the at-
tribute-weighting method used in this work is quitmple and it could be improved. In particularyasognised
by the authors, the method computes weights fdbates individually, ignoring attribute interaatis; and it as-
sumes that, if the standard deviation of the vabfes predictor attribute within a class of instasiés low, that
attribute is relevant for predicting that classisTéissumption seems unlikely to be true in mangsis.

The choice of an unweighted distance measure édylito be a suboptimal choice in many application d
mains. This is particularly the case in the classifon task, where the goal is to predict thelaka data in-
stance. In this context, it is well-established ihatance-based learning algorithms tend to bg sensitive to
irrelevant attributes [Aha 1998], and it is normathe case that different attributes should havéemint
weights, because they have different degrees eVaatce for the prediction of the class of an instafror in-
stance, if we are trying to predict whether or attank customer should have a high credit, intligithe attrib-
ute salary of the customer should have a muchereatight than the attribute gender. There is gelditerature
on intelligent methods for automatically computiatjribute weights in the instance-based learninggigm
[Aha 1998], [Wettschereck et al. 1997], includinglkitionary methods [Freitas 2002], and it is & pitat these
kinds of methods are typically ignored in the AitSrature.

Another important remark is that several works nogr@d in Table 3 have used an affinity functiondzhen
the r-contiguous bits rule, which has a strong sl bias [Freitas & Timmis 2003]. This kind ofab occurs
due to a combination of two factors. First, whempating the degree of affinity between an antibadg an an-
tigen according to the r-contiguous bits rule, ithfeience of the matching of one bit on the computelue of
affinity depends on the position of that bit in thieary strings representing the antibody and titegan. Sec-
ond, although the attributes of the data being thare encoded in a linear string representing &hay or an-

tigen in a certain order (from left to right), trescoding order is arbitrary and irrelevant frordaga mining
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point of view. In general, in data mining applicas the set of attributes describing the data tmined is a set
in the mathematical sense of a set, i.e., a caledf elements with no ordering and no duplicatiblence, in
principle the affinity function should interpretettantibodies and antigens as sets of attributescampute a
degree of affinity independent on the arbitraryifas of the attributes in the strings representing antibod-
ies/antigens — unless specific characteristichefdata being mined suggest that a positionalibidgsirable,
such as in the work of [Ayara et al 2005], involyia kind of time series data.

As an example of positional bias, in [Hofmeyr & Femt 1999] each antibody or antigen is a binaiggtrep-
resenting three attributes, each of them repreddntex certain number of bits, and the binary regméations of
those attributes is concatenated to produce arliieary string. The r-contiguous bits rule is ugedhis work.
The number of possible orderings of the threemaiteis in a linear string is 3! = 6. The choice & garticular
attribute ordering to be used to compose the atjitamtigen strings is arbitrary in the target pesblof network
intrusion detection, where the attributes are therce IP address, the destination IP address anddtvice
(port) by which two computers communicate. The gadfi affinity computed by the r-contiguous bitserule-
pends on the arbitrarily chosen ordering of thekattes in the antibody/antigen encoding, and sorésult of
the algorithm will depend on which of the six ptsiattribute orderings was chosen. This charaesiihe po-
sitional bias of the system. Another example oAdB using the r-contiguous bits rule, with its esponding
positional bias, is found in [Balthrop et al. 200R]should be pointed out, though, that in thesegets the AIS
also used the mechanism of permutation masks, wgtarle different permutations of the bits reprasgnthe
antibody. This mechanism helps to alleviate thetiposl bias of the r-contiguous bits rule [Gare®05], since
different bit permutations will cause the r-contigs bits rule to produce different results, discmgedifferent
correlations among the bits in the antibody. In eage, if one does not want a positional biasjtinély a sim-
pler (and effective) solution would be to replabe t-contiguous bits rule by another affinity fuoaotwhich
does not have a positional bias.

It should be noted that in general the choice odntiguous bits rule as the affinity function, wite posi-
tional bias, is not well justified in the works ngithis function quoted in Table 3. In other wondisne of those
works argued that such a strong positional bias suétable for the data being mined or the targebi@m, so
that it is quite possible that the strong positldrias of the r-contiguous bits rule is unsuitafae the kind of
data mined in those works, again noting the posskteption of [Ayara et al 2005].

Note that the r-contiguous bits rule is based enesaphor with ghysicalprinciple — the antibody-antigen

matching in the natural immune system occurs itnysigal 3D-space, where physical proximity is intpat.
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Physical principles are not in general a good soafcmetaphors for AlS, because the latter worka wirtual

space, free from physical properties. Logical pples are in general a better source of metaplooralfS.

5 Immune Processes for AIS: Clonal Selection and Native Selection

[de Castro & Timmis 2002] identify several majon#ts of immune processes, inspired by their bioklgic
counterparts, which have been used in the designSfnamely: bone marrow models, negative selactosi-
tive selection, clonal selection and immune netwmdcesses. Out of these, we focus on the clotedtss and

the negative selection processes, which have kmshextensively in AlS for data mining.

5.1 Clonal Selection

In the natural immune system, the basic idea otkheal selection theory is as follows. When a B'santi-
bodies recognize an antigen with at least a cedagree of affinity, that B-cell is cloned in orderproduce
more antibodies with high affinity to that antigdburing its reproduction, the B-cell's clones atbject to a
high rate of mutation, creating variations in thed|'s antibodies. Due to a strong selective pressthe new
clones with higher affinity to the antigen will piferate more than clones with lower affinity, st this selec-
tive process usually results in B-cells having lzodies with a very high affinity to the antigen. @wnportant
properties of the biological clonal selection piscare: (a) the rate of cloning of each B-cellrigpprtional to
the affinity to the antigen; (b) the rate of mutatiof each B-cell during its reproduction is invaysproportional
to the affinity to the antigen. Both properties &vgical properties, independent of physical details, ary th
have been extensively used in the design of AlS.

In the context of AIS, a core issue in the usehefdlonal selection principle is to decide whictitzody(ies)
should be cloned. This is related to the affindisuies discussed in Section 4, since in generalntileodies with
highest affinity to an antigen are selected fontig. However, in this subsection we analyze thebj@m of
choosing which antibodies should be cloned fromicader perspective, going beyond affinity functissues.
In particular, we consider important criteria toused in order to choose the antibodies to be dldRegardless
of how the affinity between an antibody and angettiis computed, should the decision to clone @bady be
based on its affinity to a single antigen or bagedts affinity with a number of antigens? Shouidttdecision
be based on just the antibody’s affinity (to onerare antigens) or should some other addition&rmon be

used? These two questions are the topic of thetmexBubsections.
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5.1.1 The Clustering of Receptors for Activating Inmune Cells and Its Significance for AIS

In the natural immune system, in general, one @fsignals necessary to activate a B cell is thegmition of
its cognate antigen. This recognition is perforrbgdB cell receptors (BCRs) on the surface of theeB. In
general the activation of the B cell requires thhanyBCRs be brought close together on the B cell sarfdds
involves a “clustering” or “crosslinking” of BCRSpmpayrac 2003]. This clustering of BCRs can belpred
when BCRs bind to an epitope that is repeated rtimm®s on a single antigen or when BCRs bind tcopei on
antigens that are clumped together.

Although there are exceptions to this requiremém@R clustering, the principle is important enougtde-
serve our attention here. In particular, it is impot to abstract the logical principle behind fgysical issues
associated with such clustering. The lesson t@kentfrom this immune principle, from a logical ipoaf view,
is that the activation of an immune cell requiresibstantial number of epitopes to be matched tivétcell re-
ceptors, rather than a single epitope. In termAlSf this suggests that the activation of an aitficell should
likewise require many data items (artificial antigeor epitopes) to be matched to that cell. Intelgi, this
makes sense from a statistical point of view, aa.artificial cell should not be activated by atching to a sin-
gle antigen or epitope, because that antigen/epitopld easily represent some noisy data or sooméosig rela-
tionship in the data. By requiring that a B celltalemany antigens/epitopes before it is activatadjtively we
would be making the AIS more robust, less sensttiveoisy data. It should be noted that our disoas this
paper is focused on clonal selection and negatlexted-based systems. By contrast, works suchiasnis
and Neal 2001], [de Castro and Von Zuben 20023a]Ne003] and [Hart 2005] have extracted varioypeets
of the immune network theory that have led to teeetbpment of ‘clustering type’ applications. |Irdwt within
the immune network idea is that BCRs will interaith other BCRs that have a similar affinity (irdetion is
via idiotopes located on the BCR). In additiorg #rtificial B Cells contained within an immunewetk do re-
quire many interactions with different antigengtomote survival. However, our focus is not orsthanmune

network models here, but an interested reader amndult the references provided.

5.1.2 The Two-Signal Mechanism for Activating Immur Cells and Its Significance for AIS
The natural immune system has several kinds of ¢elit need to be activated in order to help thhtfi
against invader pathogens. This activation oftemlires a two-signal mechanism. The basic princgdl¢his

mechanism is quite generic, being used to actseweral different kinds of immune cells. This gatigr makes
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the principle of two-signal activation intuitivettractive as a logical principle to be used, asetaphor, in the
design of AIS.

Let us first review, briefly, the mechanism of twiginal activation in four kinds of cells.

a) B cell activation —There are two kinds of B-cell activation, namelgélt dependent activation and T-cell
independent activation. In the former, the firginsil required for activation is the recognitioncofinate antigen
by the B cell receptors (BCRs) on the surface Bfeell. This is called a specific signal, becauss provided
specifically by the kind of antigen that the B aedin recognize — different B cells recognize ddfdgrantigens.
The second signal is a non-specific (independerth@fantigen) co-stimulatory signal provided byedpbr T
cell. Typically this involves a contact betweenratgin called CD40L on a helper T cell and anothetein
called CD40 on the B cell. In T-cell independentivation, the first signal involves the recognitioh special
kinds of antigens — typically, microbial polysacdtas — by the BCRs. In this case the activatiothefB cell
does not require the co-stimulatory signal providgéd helper T cell. Once the first signal is reedi the B cell
proliferates. However, unlike T-cell dependent\ation, after proliferation the B cell cannot seerantibodies
yet. This will happen only after the B cell receive@ second signal, which is a cytokine like I¥Nnterferon
gamma) generated by the innate immune system.

b) T cell activation —The first signal required for T cell activationtie recognition of cognate antigen by the
T cell receptors (TCRs) on the surface of a T @dlis is a specific signal, conceptually similaidythe first sig-
nal for B cell activation. Unlike B cells, howevér,cells only recognize an antigen when it is pnése by an
Antigen Presenting Cell (APC). The basic idea & the antigen is first chewed up into small piezated pep-
tides, which are then presented to T cells by spha@edlecules on the surface of APCs called Majmtdtiom-
patibility Complex (MHC) molecules — “histo” meatissue. Hence, a TCR recognizes a “MHC-peptide com-
plex”, rather than just the antigen. There areghmain kinds of APCs, namely dendritic cells, mpbiages and
activated B cells. The second signal required farell activation is a non-specific co-stimulatoiigral pro-
vided by APCs, e.g. B7 proteins on the surfacdefAPC, which bind to CD28 proteins on the surfaicthe T
cell. In addition, APCs secrete cytokine molecutest contribute to the co-stimulation of T celldieTbasic
principle of this two-signal activation mechanissuised for activating both killer T cells (cytotoxympho-
cytes) and helper T cells, but important details/ar those two types of T cells. Killer T cellgreost always
recognize class | MHC molecules. These moleculasbeathought of as “billboards” that present, om shrface
of the cell, fragments of proteins (peptides) #ua being made inside the cell. Hence, class | Mitzcules

present to T cells a “sampling” of endogenous pmstegiving T cells a chance to detect viral orestintra-
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cellular infections. By contrast, helper T cellsnakt always recognize class Il MHC molecules. Thasée-

cules can be thought of as billboards that presetna-cellular peptides, representing a samplinthefenviron-

ment around the cell. This gives T cells a chanagetect extra-cellular pathogens.

¢) Macrophage activation -Macrophages can be activated in several waystheopurposes of this subsec-

tion, it is enough to mention their activation yotsignals provided by Th1, a kind of helper T tledlt activates

macrophages [Alberts et al. 2002]. The first sigmsd by a Thl cell to activate a macrophage isyFMhich

binds to IFNy receptors on the surface of the macrophage. T¢wndesignal is a co-stimulatory protein called

CD40 ligand on the Th1 cell, which binds to CD40tlb@ macrophage.

d) Natural killer (NK) “activation” —

In order for a NK cell to kill its target cell, twsignhals seem to be

necessary. The first one is a “kill” signal, whiekems to involve interactions between proteinsherstirface of

the NK cell and carbohydrates on the surface ofdahget cell. The second signal, which is a “ddxilt signal,

seems to be the expression of class | MHC moleaniete surface of the target. Hence, NK cellsthiir tar-

gets only if the latter do not have class | MHC aolles on their surface.

Table 4: A Summary of Two-Signal Activation in Different Kdis of Immune Cells

Kind of cell to be activated

Signals requir

ed for activation

First signal

Second (co-stimulatory) signal

B cell (T cell-dependent activation

Recognitioraatigen by BCR

Binding between proteins on
B cell and on the helper T cell

B cell (T cell-independent

Recognition of antigen by BCR

a cytokine such as IFM- gener-

the

m

n

nd

e

activation) ated by the innate immune syste

T cell Recognition, by TCR, of the Mainly binding between protein
MHC-peptide complex presented on the T cell and on the APC, a
by Antigen Presenting Cellsalso cytokines secreted by APCg
(APCs)

Macrophage IFN-y secreted by helper T cgliBinding between proteins on tH
Thl Th1 cell and on the macrophage

Natural killer Interactions between proteins jpAbsence of class | MHC molg

the NK and carbohydrates on t

heules on the surface of the targ

et

target

cell

A summary of the previous discussion is shown ibl@d. It is clear that, although the details vdepending

on the kind of cell being activated, the principfawo-signal activation is generic enough to hbeen adopted

in nature for the activation of several differemtds of cells of the immune system. Hence, it ipantant to un-

derstand the logic behind this principle. The tigral activation principle is a “fail-safe” mechami. By using

this principle, in general the decision to activateimmune cell is not made by a single cell naeeon a sin-

gle signal. Rather, two signals are necessarydtivaion, and in general at least one of the digjisaprovided

by a kind of immune cell different from the onettigato be activated. An exception is the activaid natural
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killer cells, where the second signal is not predidy an immune cell, since it involves the abserice mole-
cule on the target cell. However, even in this cse second signal is very different in naturerfriine first sig-
nal, which characterizes the “fail-safe” naturetloit activation mechanism. This logical principlekas the

two-signal activation mechanism attractive as aegerprinciple to be used in the design of AlS aildpns.

5.1.3 A Critical Review of the Use of Natural Immuie Cell Activation Principles in Existing AIS

Table 5 compares several AlS with respect to whietheot they follow two logical principles used tye
natural immune system for cell activation in a givdonal selection-based AIS. More precisely, facte AIS
Table 5 mentions: (a) the kind of application esktaddressed by the AIS; (b) the main kinds of imenproc-
esses used by the AIS; and (c) whether the AIS (isgdicitly or explicitly) the previously-discusdeprinciples
of antigen clustering or two-signal activation agquirement for cloning an artificial immune cell.

All AIS mentioned in Table 5 use the clonal selattprocess. This was a pre-requisite for inclu@ngAlS
in that table, since the last two columns of tH#etanake sense particularly for clonal selectiogeloAlS. In
Table 5 the term “clonal selection” is being usedibroad sense to refer to any kind of algorithmene the fit-
test artificial immune cells tend to be selecteddioning, regardless of whether or not mutatiothva rate in-
versely proportional to fitness is applied to tthenes. Mutation issues are irrelevant for our dis@n in this
subsection, as here we focus only on the critesed uo decide whether or not an artificial immuge# should
be cloned. This has allowed us to include in thetaome works which are predominantly based oathegse-
lection, but where the fittest cells are clonedhsas the work of [Dasgupta et al. 2004].

Let us start with the analysis of how (if at alkisting AIS use the principle of two-signal actiet. Recall
the previously-described rationale for this prifeips a “fail-safe” mechanism for the activatior atoning of
an immune cell. Only four of the AIS mentioned iable 5 — namely, the works of [Sarafijanovic & LeuBlec
2004], [Kim & Bentley 2002], [Secker et al 2003]dajAyara et al 2005] — use the principle of tworsbacti-
vation. We will examine two of these. In [Kim & Bigy 2002] the second signal is manually providgdHe
user, whilst in [Sarafijanovic & Le Boudec 2004gthecond signal is generated in an automatic fasfarafi-
janovic & Le Boudec 2004] have proposed a virthghtus that includes not only the popular negatetection
process, but also more sophisticated conceptsasitie use of a danger signal and a short timatifes pres-
entation in the thymus. The danger theory metapbems very appropriate for the target applicatmmain of
misbehaviour detection in mobile ad-hoc networksgekd, in this work the danger signal has a spatmaporal

nature, related to a loss of a packet in the nétwarany case, the fact that just a minority & &S mentioned
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in Table 5 use the principle of two-signal activatisuggests that the potential of this principle been under-

explored in the AIS literature.

Table 5: A Summary of Whether or Not AIS Follow Two Immuhespired Principles for Deciding Whether or

Not to Clone an Artificial Immune Cell

AIS Kind of applica-| Immune Process Antigen Two-signal
tion or task clustering? | activation ?
[Sarafijanovic Misbehaviour de{ Thymus model Yes, Yes
& Le Boudec 2004] | tection in mobile| (including negative | explicitly (danger signal)
ad-hoc networks | selection),
clonal selection
[Kim & Bentley | Network intru-| Negative selection, | Yes, Yes
2002] sion detection / | clonal selection implicitly (manual signal)
classification
[Dasgupta et al. 2004] Fault detection |/ Negative selection, | Yes, No
classification clonal selection implicitly
[Sahan et al. 2005] Medical diagnp<Clonal selection No No
sis / classification
[de Castro & von Zuq Digit recognition | Clonal selection No No
ben 2000a; 2002a] | / classification
[White & Garret| Digit recognition| Clonal selection No No
2003] / classification
[de Castro & von| Clustering Clonal selection, No No
Zuben 2000b; 2001 immune network
2002b]
[Watkins et al. 2004]| Classification Clonal selection No No
[Watkings & Boggess
2002a]
[Alves et al. 2004] Classification Clonal selection Yes, No
implicitly
[Secker et al 2003] Classification Clonal selection No Yes
(manual signal)
[Ayara et al 2005] Classification Clonal selection No Yes
(semi-automated)

Let us now turn to a detailed discussion on theqiple of antigen clustering. An AlS based on thigciple
is described in [Sarafijanovic & Le Boudec 2004heTauthors explicitly emphasize the metaphor wittigan
clustering in the natural immune system. The ppiecbf antigen clustering is also used in [Kim &rifley
2002], [Dasgupta et al. 2004], and [Alves et aD4although in these works the principle was ussglicitly.
That is, these works did not emphasize the metapitbrantigen clustering in the natural immune sgst but
the cloning of antibodies does depend on the dinesfgmatching with a number of (not just one) getis.

It should be noted that the principle of antigemsttring is not followed in several well-known cidiselec-
tion-based AIS such as CLONALG [de Castro & von &ut?000a; 2002a], aiNet [de Castro & von Zuben

2000b; 2001; 2002b], and AIRS [Watkins et al. 20QwWatkings & Boggess 2002a]. Let us analyse why ith
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the case. First of all, it should be noted thahb@t ONALG and AIRS perform a classification taskhilst
AiNet performs a clustering task — here we arerrigfg to the versions of CLONALG and aiNet perfongithe
tasks of pattern recognition/classification andstdung, respectively, and not their versions faltimodal op-
timisation [de Castro & von Zuben 2002a], [de Gagr Timmis 2002b]. AIRS was designed specificalby f
classification, whilst CLONALG seems to have beesigned as a more generic kind of AIS — and indieleals

a variant for optimisation, unlike AIRS. Despitesie important differences, it is striking that CLEING, AIRS
and aiNet share a very important design feature. dibnal selection principle is incorporated withire pseu-
docode of these AIS in essentially the same waghasvn by the excerpt of pseudocode in Algorithnatla
high level of abstraction. That excerpt of pseudiecdescribes particularly well the corresponding pathe
pseudocodes of CLONALG and aiNet. In the case &3\la more precise description would be to replhee
line “Selectn highest affinity antibodies” with the line “Selette highest affinity memory cell belonging to the
same class as the antigen”. However, this is divelp small difference for the purposes of ourcdission here,
and of course can be set to 1, so we opted for representingpiuatof the pseudocode of these three AIS in a

single Algorithm, for the sake of simplicity.

FOR EACH antigen
FOR EACH antibody
Compute affinity between antigen and antibody
END FOR EACH antibody
Selech highest affinity antibodies
Clone tha selected antibodies

END FOR EACH antigen

Algorithm 1: Excerpt of pseudocode of CLONALG, aiNet and AlRBa high level of abstraction

We emphasize that the excerpt of pseudocode showkigbrithm 1 is meant just to show that these ghre
AIS loop over the antigens and the antibodies (@mary cells) in order to choose the highest affiaittibodies
to be cloned, and not to show other aspects oAtBewhich are irrelevant for the current discussibiote that
in the original description of these AIS the loopthe antibodies is not shown explicitly, buteatimplicitly
in an instruction like “present the antigen to aitibodies” or “find the (n) antibodies closestthe antigen”.
Showing this loop explicitly, as in Algorithm 1, lps to highlight the important point that this exuteof pseu-
docode performs aexternalloop over the antigens, and emternal loop over the antibodies. As a result, the af-

finity of an antibody is computed with respectustoneantigen.
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From the viewpoint of a metaphor with the naturaimune system, this means that the principle ofyanti
clustering is not followed. From a problem-orientéewpoint, this means that the computation of atibady’s
affinity is based on a single data instance. Ifgbal of computing the affinity is to decide whetloe not the
current antibody should be cloned, as it is the aasCLONALG, AIRS and AiNet, computing affinity bad on
a single antigen seems a somewhat risky stratéme there is very little statistical support foich a decision.
By contrast, if the system computed the antibod§fmity with respect to a number of antigens, ttiea princi-
ple of antigen clustering would be followed, andnare statistically sound decision could be madeutbo
whether or not the current antibody should be dofidat decision would be more statistically sobedause it
would be based on the global value of the antibmayfinity with respect to all antigens. This glbbéfinity
value will be here referred to as simply the “f@ge&of an antibody, by analogy with the common afsthe term
in evolutionary algorithms — where usually the digs of an individual is computed with respect tadata in-
stances [Freitas 2002]. Such distinction betweeardibody’s affinity to a single antigen and théilaody’s fit-
ness with respect to all training antigens is foumdFRAIS [Alves et al. 2004], an AIS that, likdRS, was spe-
cifically designed for classification.

Note that one way of computing the fitness of atibady in CLONALG, AIRS and aiNet could be obtained
by simply swapping the order of the loops overgeris and antibodies in the excerpt of pseudocoo\rsim
Algorithm 1, which would produce the new excerppstudocode shown in Algorithm 2. However, this ldou
require, of course, significant modifications ihet parts of the pseudocode of these AIS. Such fioatibns
would not guarantee an improvement in the perfooaasf these AlIS, but they seem worth trying, cossid)
the previously-discussed rationale for the prireipi antigen clustering.

Actually, there is one more motivation to desigd amaluate variants of CLONALG, AIRS and aiNet ol
ing the excerpt of pseudocode shown in Algorithriifds is a data mining-oriented motivation, anis ithe fact
that, in the current version of these AIS, follogithe excerpt of pseudocode shown in Algorithmhg, results
produced by these AIS tend to vary according toottder in which antigens (data instances) are us#te ex-
ternal loop. After all, in théh iteration of the external loop, when fitle antigen is presented to the current anti-
body population, the antibodies included in thapydation have been produced as the result of atutmo
guided by the antigens presented at iterations ,1,—~.1. This dependency of the results in the ordevsingres-
entation of data instances is a kind of “instanaiedng bias”, and is not necessarily a bad thing,it does in-
troduce one more source of non-determinism in tt& Avithout any clear advantage. Note that instavased

learning or rule induction algorithms usually tréaa training instances as an unordered set afrinss.
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FOR EACH antibody
FOR EACH antigen
Compute affinity between antigen and antibody

Compute antibody’s fitness based on total affimitth respect to all antigeng

END FOR EACH antibody

END FOR EACH antigen

Algorithm 2: Excerpt of pseudocode modifying CLONALG, AIRS, atNo use the antigen clustering principle

5.2 Negative Selection

In the natural immune system, negative selectica figocess that occurs in the thymus, the organmentie
cells mature. T-cells that match self are elimiddiefore they mature in the thymus. Hence, in gériee ma-
ture T-cells leaving the thymus will not match salid will therefore match only non-self.

The basic idea of the negative selection processed in AlS is shown in the pseudocode of AlgaritB.
Given a set of “normal” data instances —$lef— as input, the system performs a loop whereaett @eration, it
randomly generates immature immune cells (detécsodg tries to match each cell with all the insemnim the
self. If that immune cell matches at least oneaimst in the self it is discarded, otherwise itriznpoted to a ma-
ture cell and is output by the algorithm. Thisatére process is repeated until almost all the selfispace has
been covered by the generated immune cells, ohangtopping criterion is met. From a data miniogpof
view, this phase is a kind of “training phase”, whaoal is to generate a set of mature immune tbeltsshould
be able to detect non-self data instances onlyt,Nxing the “test phase”, if a given test instameatches a

mature immune cell, that instance is classified@sself (anomaly); otherwise it is classified e gormal).

Input: a set of “normal” data instances, called self(S)
Output: a set of “mature” immune cells that do mattch any instance &
REPEAT
Randomly generate an “immature” immune cell
Measure the affinity (similarity) between tiismune cell and each instanceSn
IF the affinity between the immune cell andeaist one instance fis greater than a user-defined threshold
THEN discard this immune cell
ELSE output this immune cell as a “matumafnune cell

UNTIL stopping criterion

Algorithm 3: Pseudocode of the Negative Selection Process
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Since the pioneering work of [Forrest et al. 19%4gre has been an extensive research on negataaticn-
based AIS, most of them applied to the “anomalgctain” task, according to the terminology usedhia AIS
literature. Recall however, that the use of thistés somewhat misleading in the context of dataimgj, as ex-
plained in Section 2. In other words, several osthnegative selection-based works are effectiwetforming a
task which is similar to the conventional classifion task, as explained in that section. In tloistext, the use
of a negative selection-based AIS is problematies@nting disadvantages such as [Freitas & TimoOSP

(a) Immune cells (detectors) are randomly genertitemlighout the pseudocode of Algorithm 3, a method
which is not adaptive and does not use any infaoman the set of self instances to guide the $garc

(b) The lack of mechanisms to minimize overfitting;

(c) The evaluation of the negative selection-ba&ksl for “anomaly detection” is often based on staod
benchmarks for evaluating classification algorithinsparticular, some negative selection-based #d#e been
evaluated in a test set containing instances d¢f bairmal” and “anomalous” classes, but a trairset) contain-
ing only instances of the normal class — in ordealtow the application of negative selection pescavhich is
trained with normal instances only — as discusse®libsection 2.3.

The latter item is essentially a criticism of thgpkcation of a negative selection-based AlS tacenario
where both normal and anomalous classes were hleitathe original dataset as a whole and so blatkses
could be included in the training set, but only tieemal class was included in order to justify tlee of the
negative selection algorithm. That is, an algoribmented approach, rather than the problem-orieatgroach
has been adopted.

It should be noted that there is a counter-argurnteeiite latter criticism. The counter-argumenthiattthere
are problems where indeed just the normal claasafable in the training set, and so a standaadsdication
algorithm — trained with more than one class -oisdirectly applicable. At first glance, this coilddem a natu-
ral scenario for a negative selection-based Al myits ability in training with just one class.

There are two replies to this counter-argumenstFit is important to evaluate the negative seeebased
AIS on real-world problems where indeed the orifinaining set contains only instances of the clagsnal,
rather than artificially remove the anomalous cfassn the training set. Second, even limiting tftening set to
have just one class, it is not clear that a negag@lection-based AIS would perform well by comgami with
other machine learning or data mining techniquses &hined on just one class. Actually, in receotknevaluat-
ing a negative selection-based AIS [Stibor et @03, the performance of that algorithm was shoawbé infe-

rior to the performance of two statistical data imjntechniques in a problem where all methods vei@ed
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with a single class only. In this paper, the awthased a real-valued negative selection algorithinarjd Das-
gupta 2004] and compared it to a one-class suppotor machine and a Parzen Window algorithm. Edi¢che
algorithms was tested on a subset of the well-knE®D Cup data from 1999. Results found that the-olass
support vector machine was significantly betteidentifying intrusions; in fact the negative selestapproach
averaged only around 3% detection rate, comparditetone-class support vector machines 98% deterdie
[Stibor et al. 2005].

Concerning the performance of negative selecti@ethalS for classification and related problemsiehsas
the kind of “anomaly detection” problem addressedhie AIS literature — the general conclusion o&ffiH&

Timmis 2005] (p. 488) still seems to hold:

“... at present it is not clear from the literature thhe immune approach [negative selection-based 41S]
fers anything. It is necessary to use two clas$etata to train and tune the system, a high falgsitjive rate
seems to blight systems and the computational exitplof generating detectors seems prohibitiviaiige di-

mensional data sefs

Does that mean that the metaphor with the natomaluine system’s process of negative selection sebess
metaphor for designing an AIS? No. The problemoisthe metaphor per se, but the way the metaptobéan
used. In the natural immune system, the proceaggstive selection is just one out of many prosegséng on
at the same time in the organism. Even within th&fined region of the thymus, T-cells are subjesttanly to
negative selection but also to positive selectidter leaving the thymus, a T-cell still needs tlaborate with
other immune cells in order to have a useful effethe organism. In other words, the negativediiele process
per se is simply not adaptive. It is, however, mpartant process in the context of a bigger picttive immune
system as a whole, due to the interaction of thosgss with several other processes in the organism

The realization that the negative selection propessse is not adaptive and is essentially a kinciodom
search should not be viewed as negating the usslsilof that process. An analogy with evolutiondgg@hms
is appropriate. Taken in isolation, mutation isaclg a non-adaptiveandomsearch like operator; and a conven-
tional crossoverandomlymixes the contents of two individuals. However lationary algorithms using these
operators in general work fine, because these tisrare not used in isolation. They are used mjucaction
with a selection operator, which introduces sekecpressure in the solutions randomly produced btation
and crossover. It is the combination of selectiontation and crossover that makes an evolutioniggrithm

work well.
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To summarize, negative selection, per se, is a &gfmdndom search procedure. In order to desigptada
intelligent AIS using the negative selection prpiej that principle should not be used in stand@lmode, but
should rather be combined with more adaptive psmEssActually, this research direction is beindofeed in
some works in the AIS literature, see e.g. [Kim &nlley 2002], [Kim et al. 2003], [Gonzales & Dastup
2002], [Anchor et al. 2002], [Gonzales et al. 20@&)wever, it is difficult to evaluate the resubifsthese works,
since most of them do not compare the result opteposed AIS with the result of a conventionabdaining
algorithm. An exception is the aforementioned wofkStibor et al. 2005]. In any case, much moreagsh is
required comparing the aforementioned works withvemtional data mining techniques in challengingl-re
world datasets. A similar comment has also recedrglgn made by [Garret 2005 6mparison [of negative se-

lection] with many more techniques is requiret

6 Conclusions and Future Research

This paper has advocated the use of a problemtedespproach for designing an AIS for data minimg,
contrast with the kind of algorithm-oriented apmiozoften followed in the AIS literature. This alghm-
oriented approach is perfectly reasonable in sarapagios, particularly in academic research. Howeuesce-
narios where the goal is to develop an AIS thatiteast competitive with state-of-the-art dataingntech-
nigues in an important real-world application, alpem-oriented approach is necessary. In such sosnae
need to tailor the design of the AIS for the dagang mined or the application domain, because edésyfor
data mining — like every other kind of data minadgorithm — has an inductive bias, and it is a vesthblished
fact that every inductive bias is suitable for sodatasets or application domains and unsuitableofioers
[Schaffer 1994], [Rao et al. 1995], [Michie et #094], [Lim et al. 2000].

In order to design an AIS with an inductive biaftahle for the target data, it is of course cruetalinder-
stand the inductive biases of the major componehén AIS, such as its representation(s), affifutiyction(s)
and immune process(es). This is a hard task, wheh started with our preliminary work on this tqpile-
scribed in [Freitas & Timmis 2003]. This paper isnajor extension of that preliminary work, and hotig it
represents a significant contribution towards thellenging goal of understanding the inductive &sasf AlS.
Another contribution of this paper was a discussibout several important lessons that can be tikemthe
natural immune system to help us to design morpta@sAlS.

These two kinds of contribution can be summarizgdiefly listing some important conclusions of tha-

per. Let us do this by listing a set of limitatiofuaind in existing AIS for data mining and the esponding



3€

suggestions for future research in ord

er to migighat limitation. These limitations and correspgogdsugges-

tions are listed in Table 6. We stress that théditions and suggested research directions memtionthe table

refer only to AIS for data mining, and not for attkénds of application such as optimization andtomn

The 10 suggested research directions in Tableysoarsiderably in the degree of difficulty, andisdhe de-

gree of rewarding too. Overall the mo

st challengingnd also very rewarding — research directiomsee be

the development of the first AIS with hybrid knodtge representations and capable of dynamicallytexpihe

knowledge representations to the data during its+a very open research area at the present.

Table 6: A Summary of Limitations of

AIS for Data Mining drCorresponding Suggested Research Directions

Limitations in Existing AIS
for Data Mining

Suggested Research Direction

Most AIS use a data representati
consisting of numerical data only

oBevelop more AIS with representations for categiritata, as wel
as hybrid numerical/categorical data, tailoring #i8 representatior
for the data, rather than ignoring non-numericaéhda

N

Most AIS use the instance-based r¢
resentation: a single and fixed rep
sentation

eievelop more AIS with alternative knowledge reprgatons, such
eas rule-based representation (including first-ordejic representar
tions) or probability-based representations (eayeBian networks)
Develop the first AIS with hybrid knowledge repretions and cat
pable of dynamically adapting the knowledge reprtg®ns to the
data during their run

Most AIS use standard affinity fung
tions, mainly for binary or numerica
data

t-Develop more AIS with affinity function tailored rfahe data being
almined, rather than just using a standard affinityction
In AIS with instance-based representation for thasdgification task
develop affinity function considering attribute \gbts
Avoid using the r-contiguous bits rule or anothepresentation with
positional bias, unless it is clear this is suiafdr the data bein
mined

Several AIS based on the process
clonal selection do not follow the prix
ciple of antigen clustering and have
“instance-ordering” bias

dodify the corresponding AIS to follow the prinagpdf antigen clus
1-tering; hopefully making them more robust to naista and removt
amg their instance-ordering bias

Several AIS based on the process
clonal selection do not follow the prix
ciple of two-signal activation

dodify the corresponding AIS to follow the prinogpbf two-signal
1-activation, so implementing a fail-safe mechanismtloe artificial
clonal selection process

Several AIS based on the process
negative selection use that procg
only, which is a kind of random searg

&ixtend the corresponding AIS to combine the negatelection
pqEocess with other immune processes or with comwealtdata min-
hing algorithms

Most AIS are evaluated in either artit
cial data or public domain datase
which are not very challenging

i-Evaluate AIS in many more challenging real-worldadats, e.g
ptlatasets on which conventional data mining algoertido not obtain
a high classification accuracy, or very high dinienal datasets
(with hundreds of attributes); and perform much enoomparisong
with conventional data mining algorithms

D

D

The motivation for hybrid representations is twdfoTl'he first motivation is an analogy with the matum-

mune system, which certainly uses m

any kinds ofumencell (corresponding to many different kindseyre-

sentation) to achieve a high level of robustnessaataptability. Second, there are several exangflesaccess-

ful machine learning and data mining

systems ubirtgid representations (see Section 3.4). Howemespme

works discussed in Section 3.4, e.g. [Ting 1994] @arvalho & Freitas 2004], the decision aboutakhirain-
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ing instances are better covered by which kincepfesentation (decision tree or instance-basedl®y is made
in a simple way, by using the result of a run afegision tree algorithm. The design of a hybridrespntation
system that decides which representation shouldskd to cover which training instance in a muchery-
namic way, continuously making these decisionsmdyits run, is more challenging, but there are rimeclearn-
ing systems with this flexibility. One example fetRISE algorithm [Domingos 1995], which dynamigalk-
cides whether to use an instance-based or ruledlvapeesentation to cover training instances.

Another suggested research direction mentionedailnlelT6 that is worth highlighting here is the nded
evaluating AlS in many more challenging real-watltasets and performing much more comparisonsowith
ventional data mining algorithms. This is very impot, because artificial datasets and public domatasets
have obvious limitations. Even if public domainaks#ts are derived from real-world data, sometimess data-
sets have been already carefully preprocessedding a selection of attributes particularly usdéulthe target
data mining task, which makes them less challentfiag true real-world applications where prepathe data
for data mining purposes is a major part of thdlehge of knowledge discovery. As examples of datiaing
application areas where such challenging datasetbe found relatively easy, one can quote bioinédics and

text mining, two very active research areas in datang.
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