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Evolutionary Design of Decision-Tree Algorithms
Tailored to Microarray Gene Expression Data Sets
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Abstract—Decision-tree induction algorithms are widely used
in machine learning applications in which the goal is to extract
knowledge from data and present it in a graphically intuitive
way. The most successful strategy for inducing decision trees
is the greedy top-down recursive approach, which has been
continuously improved by researchers over the past 40 years.
In this paper, we propose a paradigm shift in the research of
decision trees: instead of proposing a new manually designed
method for inducing decision trees, we propose automatically
designing decision-tree induction algorithms tailored to a specific
type of classification data set (or application domain). Follow-
ing recent breakthroughs in the automatic design of machine
learning algorithms, we propose a hyper-heuristic evolutionary
algorithm called hyper-heuristic evolutionary algorithm for de-
signing decision-tree algorithms (HEAD-DT) that evolves design
components of top-down decision-tree induction algorithms. By
the end of the evolution, we expect HEAD-DT to generate a new
and possibly better decision-tree algorithm for a given application
domain. We perform extensive experiments in 35 real-world
microarray gene expression data sets to assess the performance
of HEAD-DT, and compare it with very well known decision-
tree algorithms such as C4.5, CART, and REPTree. Results
show that HEAD-DT is capable of generating algorithms that
significantly outperform the baseline manually designed decision-
tree algorithms regarding predictive accuracy and F-measure.

Index Terms—Automatic algorithm design, classification,
decision trees, evolutionary algorithms, hyper-heuristics, machine
learning.

I. INTRODUCTION

CLASSIFICATION is a machine learning task that aims at
building class distribution models by taking into account

a set of instances characterized by predictive attributes. The
outcome of such a model is used for assigning class labels
to new instances that are described only by the values of
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their predictive attributes. The set of instances whose class
distribution is known is called the training set. A classification
algorithm usually performs two steps: induction and deduction
[1]. In the induction step, it makes use of the training set to
induce a model—abstract knowledge representation—which
is, in turn, employed for classifying instances whose class
information is unknown (deduction step).

Among the most well known classifiers are artificial neural
networks, support vector machines (SVMs), decision rules,
and decision trees. Decision trees, in particular, are widely
used as a comprehensible classification model, since they can
be easily represented in a graphical form and can also be
represented as a set of classification rules, which generally can
be expressed in natural language in the form of IF-THEN rules.
They are often the preferred method in application domains
in which understanding the reasons that lead to a certain
prediction is equally or more important than the prediction
itself. Examples of such domains include medical diagnostics
[2] and protein function prediction [3].

Finding a (near)-optimal decision tree for a given data set
is a challenging problem because the number of possible trees
for a given data set grows exponentially with the number of
attributes. It has been shown that constructing a decision tree
with a minimal number of tests for classifying a new instance
is an NP-complete problem [4]. It has also been proved that
finding a minimal decision tree consistent with the training set
is NP-hard [5], which is also the case for the task of finding
the minimal decision tree equivalent to a given decision tree
[6] and of building the optimal decision tree from decision
tables [7]. The aforementioned studies indicate that finding
the optimal decision tree for a given data set (using a brute-
force approach that evaluates all possible decision trees) is
feasible only for very simple problems. Therefore, heuristic
procedures are necessary for finding a near-optimal decision
tree in difficult problems.

Many different types of heuristic procedures have been
proposed in the literature for building decision trees, such as
hill-climbing bottom-up induction [8], hybrid induction [9],
evolutionary induction [10]–[13], and ensemble of decision
trees [14], to name just a few. In practice, the most used
strategy, by far, is the heuristic greedy top-down induction
strategy. This strategy has a low computational cost and often
produces decision trees with a good tradeoff between accuracy
and size, facilitating their interpretation by users.

In essence, a greedy top-down decision-tree induction al-
gorithm starts by considering all instances at the root node,
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and then it recursively decides whether the set of instances
in the current node should be split into subsets, or if no
further splitting of the current set of instances is needed. This
decision is made by greedily optimizing the value of a heuristic
splitting criterion and also taking into account a stopping
criterion, for deciding when tree growth should halt. Further
improvements over this basic strategy include pruning tree
nodes for enhancing the decision tree’s capability of dealing
with noisy data, and strategies for dealing with missing values.

A great number of approaches were proposed in the liter-
ature for implementing each of these design components of
greedy top-down decision-tree algorithms. For instance, many
different heuristic splitting criteria were proposed, as well
as many different strategies for selecting multiple attributes
for composing a tree node’s test and for pruning a decision
tree [15], [16]. It is clear that by improving these design
components, we can obtain more robust top-down decision-
tree induction algorithms.

This paper innovates in proposing a paradigm shift. Instead
of manually improving the design components of a decision-
tree algorithm as it has been done for the past 40 years,
we propose making use of a hyper-heuristic evolutionary
algorithm for optimally combining design components from
decision-tree algorithms. By doing so, the hyper-heuristic
automatically designs new decision-tree algorithms, which
can be tailored to a particular type of data set, associated
with a given application domain. We believe a hyper-heuristic
is capable of providing a faster less-tedious—and at least
equally effective—strategy for improving decision-tree
algorithms for particular application domains, as suggested
by the computational results of our experiments.

In this paper, we focus on the application domain of
microarray gene expression data sets, but the basic idea of
our approach is, of course, generic enough to be applicable to
any other specific type of application domain. Microarray gene
expression data sets contain data about the levels of expression
of many thousands of genes, measured using high-throughput
technology. This type of data set is an important and popular
application of machine learning and data mining methods for
at least two reasons. First, such data sets are believed to contain
valuable hidden patterns that can be discovered by classifica-
tion algorithms in order to help biomedical researchers better
understand relationships between gene expression levels and
diseases (such as cancer, the type of disease with which the
data sets used in this paper are associated). Second, microarray
gene expression data sets, in general, have a number of
attributes (genes) much larger than the number of instances
(samples of biological tissues), which constitutes a significant
and interesting challenge for classification algorithms.

Note that this paper is a thorough extension of a previous
conference paper [17], in which we first presented hyper-
heuristic evolutionary algorithm for designing decision-tree
algorithms (HEAD-DT). In terms of the functionality of
HEAD-DT, the main difference between this paper and our
previous conference is as follows. In [17], HEAD-DT searched
for the best decision-tree algorithm for a single target data set.
Hence, HEAD-DT’s fitness function was a measure of a candi-
date decision-tree algorithm’s accuracy on a single data subset,

part of the original target data set. After a HEAD-DT run
was over, the evolved decision-tree algorithm had its predictive
accuracy evaluated on a separate hold-out subset of the same
target data set. That is, the goal was to evolve a decision-tree
algorithm, very specifically tailored to a single target data set.
In contrast, in this paper, HEAD-DT has a different, and intu-
itively more difficult goal, namely evolving the best decision-
tree algorithm for a type of data set associated with a given
application domain (which includes many different data sets
with similar structural or statistical characteristics). Hence, in
this paper, HEAD-DT’s fitness function is, in general, an over-
all measure of a candidate decision-tree algorithms’s accuracy
across a number of different data sets. After a HEAD-DT run is
over, the evolved decision-tree algorithm has its predictive per-
formance evaluated on a separate different set of data sets (of
the same type as the data sets used during the HEAD-DT run).

In summary, in this paper, the decision-tree algorithm
evolved by HEAD-DT is expected to have good generalization
ability across many different data sets of a given type (the
data set type in which a given user is interested), unlike our
previous work in [17], where such generalization across data
sets was not needed. In addition to this important difference,
this paper also extends our previous conference paper in three
ways.

1) It performs a more extensive set of computational ex-
periments to evaluate HEAD-DT using 35 real-world
microarray gene-expression data sets [18].

2) It extends the time complexity analysis of HEAD-DT
with a discussion on the cost-effectiveness of automated
versus manual algorithm design.

3) It reports the decision-tree components that were most
frequently selected by HEAD-DT in order to cre-
ate decision-tree algorithms customized to microarray
data sets.

This paper is organized as follows. We present HEAD-DT
in detail in Section II. In Section III, we perform a thorough
experimental analysis, comparing the algorithms evolved by
HEAD-DT with three well known top-down decision-tree
induction algorithms, namely, C4.5 [19], classification and
regression trees (CART) [20], and REPTree [21]. We discuss
related work in Section IV, and present our conclusions and
future work directions in Section V.

II. HEAD-DT

HEAD-DT is a hyper-heuristic designed for automatically
designing complete top-down decision-tree induction algo-
rithms, providing an alternative to the manual design of such
algorithms that is the current approach in the decision tree
literature.

According to the definition in [22], a hyper-heuristic is an
automated methodology for selecting or generating heuristics
to solve hard computational search problems. Indeed, hyper-
heuristics can automatically generate new heuristics that are
tailored to a given problem or type of problem. This is done by
combining, through an evolutionary algorithm, components or
building-blocks of human-designed heuristics. The motivation
behind hyper-heuristics is to raise the level of generality at
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Fig. 1. HEAD-DT evolutionary scheme.

which search methodologies can operate. In the context of
decision trees, instead of having an evolutionary algorithm
searching for the best decision tree to a given problem (a reg-
ular meta-heuristic approach, e.g., [13], [23]), the generality
level is raised by having an evolutionary algorithm searching
for the best decision-tree induction algorithm that may be
effectively applied to several different classification problems
(a hyper-heuristic approach).

HEAD-DT can be seen as a regular generational evolution-
ary algorithm in which individuals are collections of building
blocks of top-down decision-tree induction algorithms. In
Fig. 1, we present its evolutionary scheme. We employ typical
operators from evolutionary algorithms, such as tournament
selection, mutually exclusive genetic operators (reproduction,
crossover, and mutation), and a typical stopping criterion that
halts evolution after a predefined number of generations.

Each individual in HEAD-DT is encoded as an integer
vector (see Fig. 2), and each gene can take on a value in a
predefined range of values. We divided the set of genes in four
categories that represent the major types of building blocks
(design components) of a top-down decision-tree induction
algorithm, namely: 1) split genes; 2) stopping criteria genes;
3) missing value genes; and 4) pruning genes.

A. Split Genes

The linear genome that encodes individuals in HEAD-DT
holds two genes for the split component of decision trees.
These genes represent the design component that is responsible
for selecting the attribute to split the data in the current node
of the decision tree. Based on the selected attribute, a decision
rule is generated for filtering the input data in subsets (each
subset being assigned to a new child node), and the process
continues recursively.

To model this design component, we used two different
genes. The first one, criterion, is an integer that indexes one
of the 15 splitting criteria that we implemented: information
gain [24], Gini index [20], global mutual information [25],
G statistics [26], Mantaras criterion [27], hypergeometric
distribution [28], Chandra–Varghese criterion [29], DCSM
[30], χ2 [31], mean posterior improvement [32], normalized
gain [33], orthogonal criterion [34], twoing [20], CAIR [35],
and gain ratio [19].

The most widely used criteria are based on Shannon’s
entropy [36], a concept well known in information theory.

Fig. 2. Linear-genome for evolving decision-tree algorithms.

Entropy has the interesting property of being a unique function
that satisfies the four axioms of uncertainty. In essence, it
represents the average amount of information when coding
each class into a codeword with ideal length according to its
probability. Examples of splitting criteria that are based on
entropy are the global mutual information [25] and information
gain [24]. The latter is employed by Quinlan in his ID3 system
[24]. However, Quinlan points out that information gain is
biased toward attributes with many values, and thus proposes
a solution called gain ratio [19]. Gain ratio normalizes the
information gain by the entropy of the attribute being tested.
Several variations of the gain ratio have been proposed, such
as the normalized gain [33].

A different type of split criteria are distance-based measures,
which evaluate separability, divergency, or discrimination be-
tween classes. Such measures include the Gini index [20], the
twoing criterion [20], and the orthogonality criterion [34]. We
also implemented as options for HEAD-DT less popular split
criteria such as CAIR [35] and mean posterior improvement
[32], and the more recent Chandra–Varghese [29] and DCSM
[30], to improve the flexibility of HEAD-DT, providing the
system with a greater diversity of candidate methods for
generating splits in a decision tree.

The second gene that controls the split component of a
decision-tree algorithm is binary split. This is a binary gene
that indicates whether the splits of a decision tree will be
binary or multiway. In a binary tree, every parent node is
split into two child nodes, which means that, in the case
of nominal attributes with many categorical values, those
values are divided into two subsets. In a multiway tree, the
set of values of a nominal attribute is divided according to
that set’s cardinality—i.e., one child node is created for each
categorical value of the selected attribute. Numeric attributes
always partition the tree into two subsets, represented by tests
att ≤ � and att > �, where att is the selected split attribute
and � is a threshold automatically determined by the decision-
tree algorithm.

B. Stopping Criteria Genes

The top-down induction of decision trees is recursively
executed until a stopping criterion is satisfied. The linear
genome in HEAD-DT holds two genes for representing this
design component: criterion and parameter.

The first gene, criterion, chooses one out of five different
strategies for stopping the tree growth, namely the following.

1) Reaching class homogeneity: when all instances that
reach a given tree node have the same class label, there is



876 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 6, DECEMBER 2014

no reason to split the instances in that node any further.
This can be the only stopping criterion used by the
decision-tree algorithm, or it can be combined with the
next four stopping criteria.

2) Reaching the maximum tree depth: a parameter tree
depth can be specified to avoid that trees become too
deep. Very deep trees are difficult to be interpreted by
users, and they increase the degree of data fragmentation,
possibly leading to overfitting. Range: [2, 10] levels.

3) Reaching the minimum number of instances for a non-
terminal node: a parameter specifying such a minimum
number can be used to mitigate the data fragmentation
problem in decision trees. Range: [1, 20] instances.

4) Reaching the minimum percentage of instances for a
nonterminal node: this parameter is conceptually similar
to the previous one, but it specifies a percentage (rather
than the actual number) of instances. Range: [1%, 10%]
of the total number of instances in the training set.

5) Reaching an accuracy threshold within a node: a pa-
rameter accuracy reached can be specified so that the
set of instances in a node is not split any further. In this
strategy, the current node is declared a terminal node
when the local accuracy is greater than or equal to a
given accuracy threshold. By local accuracy we mean
the relative frequency of the most frequent class among
the instances belonging to that particular node. Range:
{70%, 75%, 80%, 85%, 90%, 95%, 99%} accuracy.

The gene parameter dynamically adjusts a value in the
range [0, 100] to the corresponding strategy. For example,
if the strategy selected by the gene criterion is reaching
the maximum tree depth, the following mapping function is
executed:

param = (value mod 9) + 2. (1)

This function maps from [0, 100] (variable value) to [2, 10]
(variable param), which is the desired range of values for
the parameter of strategy reaching the maximum tree depth.
Similar mapping functions are executed dynamically to adjust
the ranges of gene parameter.

C. Missing Values Genes

The next design component of decision trees that is rep-
resented in the linear genome of HEAD-DT is the missing
value treatment. Missing values can be a significant prob-
lem during the process of decision-tree induction and when
using the induced tree to classify new instances. We make
use of three genes to represent missing value strategies in
different moments of the induction/deduction process. During
tree induction, there are two moments in which we need to
deal with missing values: splitting criterion evaluation (split
gene), and instances distribution (distribution gene). During
tree deduction (classification), we may also have to deal with
missing values in the test set (classification gene).

The following strategies were implemented as possible so-
lutions for the case of missing values during the split criterion
evaluation in node t based on attribute ai.

1) ignoring all instances whose value of ai is missing [20],
[37];

2) replacing all missing value symbols occurring in in-
stances in node t with the mode (for nominal attributes)
or the mean/median (for numeric attributes) [38];

3) similar to the previous item, but computing the mode or
the mean/median only among the instances in t whose
class attribute is the same as the instance whose ai

missing value is being replaced [39];
4) weighting the splitting criterion value (for ai in t) by the

proportion of missing values [40].

In order to decide which child node training instance xj

should be assigned to, for a split in node t based on ai, we
implemented the options:

1) ignoring instance xj [24];
2) assigning to xj the most common value of ai (mode or

mean), regardless of the class [40];
3) assigning to xj the most common value of ai (mode or

mean) considering the instances that belong to the same
class as xj;

4) assigning xj to all child nodes [37];
5) assigning xj to the child node with the largest number

of instances [40];
6) weighting xj according to the partition probability [19],

[41];
7) assigning instance xj to the most probable partition,

considering the class of xj [39].

Finally, for classifying an unseen test instance xj, consider-
ing a split in node t over ai, we implemented the options:

1) exploring all branches of t and combining the results
[42];

2) taking the route to the most probable partition (largest
subset of instances);

3) halting the classification process and assigning instance
xj to the most frequent class among instances in node t
[40].

D. Pruning Genes

Pruning is important to improve decision tree accuracy in
many noisy data sets [20], [24], [43]. It helps avoid over-fitting
to the training set and reduce the size of a decision tree (which
can make it simpler to be interpreted by users).

HEAD-DT holds two genes for this design component.
The first gene, method, indexes one of the five well known
approaches for pruning a decision tree shown below and the
option of not pruning at all:

1) reduced error pruning (REP) [43];
2) pessimistic error pruning (PEP) [43];
3) minimum error pruning (MEP) [44], [45];
4) cost-complexity pruning (CCP) [20];
5) error-based pruning (EBP) [19].

The second gene, parameter, is in the range [0, 100] and its
value is again dynamically mapped by a function according to
the pruning method selected.

REP differs from the other methods mainly in using a
pruning set (a subset of the original training set) to evaluate the
quality of a given subtree. PEP, MEP, and EBP use different
approaches to compute an estimate of the classification error
associated with a given subtree. CCP differs from the other
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Fig. 3. Fitness evaluation schemes. (a) Fitness evaluation from one data set
in the meta-training set. (b) Fitness evaluation from multiple data sets in the
meta-training set.

methods in using a pruning criterion that is based on finding
a good trade-off between the classification error of a given
subtree and its size. For details, the reader is referred to the
original references cited above.

E. Fitness Evaluation

In order to compute the fitness of each individual (candidate
decision-tree induction algorithm) during the evolutionary
process, HEAD-DT employs a meta-training set. In contrast,
the meta-test set is used to assess the quality of the evolved
decision-tree induction algorithm, which is the best individual
produced by HEAD-DT, as shown in Fig. 1. Note that there
is no overlapping of instances between the meta-training and
meta-test sets, which allows us to measure the generalization
ability of the evolved decision-tree induction algorithm, as
usual in machine learning. Broadly speaking, there are two
distinct approaches for creating the meta-training and test sets,
namely:

1) evolving a decision-tree induction algorithm tailored to
only one specific data set (the specific approach);

2) evolving a decision-tree induction algorithm from mul-
tiple data sets (the general approach).

The specific approach was explored in our previous work
[17]. In this approach, the meta-training and meta-test sets are
the conventional training and test data obtained from a given
data set for machine learning experiments [see Fig. 3(a)]. Note
that, in this case, the training and test sets are subsets of the
same original data set. More precisely, the training and test sets
are described by exactly the same set of predictor attributes,
but they have different sets of instances (with no overlapping,
as mentioned earlier).

In the general approach, which is addressed for the first
time in this paper, we have multiple data sets comprising

the meta-training set, and possibly multiple (but different)
data sets comprising the meta-test set [see Fig. 3(b)]. In this
approach, each data set is described by a different set of
predictive attributes, so each data set corresponds to a different
classification problem. This approach can be employed with
two different purposes.

The first approach is automatically designing a decision-tree
algorithm that performs reasonably well in a wide variety of
data set types. In other words, the evolved algorithm will be
applied to data sets with very different structural characteristics
(i.e., very different numbers and types of predictor attributes)
and/or from very distinct application domains (e.g., data sets
from medicine, finance, marketing, etc.). For this scenario,
the user chooses these distinct data sets that will be part of
the meta-training set, in the hope that evolution is capable of
generating an algorithm that performs well in a wide range
of data sets. Pappa [46] calls this strategy evolving robust
algorithms. Note that this is the strategy normally used in the
manual design of decision-tree algorithms by human machine
learning researchers.

The second approach is designing a decision-tree algorithm
that is tailored to a particular application domain or to a
specific data distribution profile describing a well defined
type of data set. In this scenario, which is the new scenario
addressed in this paper, the meta-training set is comprised of
data sets that share similarities, and so the evolved decision-
tree algorithm will be tailored to solving a specific type of
classification problem. Unlike the previous strategy, in this
case, we have to define a similarity criterion for creating
specialized algorithms, which is not trivial. We highlight here
some possible similarity criteria: 1) choosing data sets that
share the same application domain (e.g., gene expression data);
2) choosing data sets with provenance resemblance (e.g., data
sets generated from data collected by a specific sensor or set of
sensors); and 3) choosing data sets with structural resemblance
(e.g., data sets with statistically similar features and/or with
similar geometrical complexity [47], [48]).

In Fig. 3(b), we can observe how the fitness evaluation of
a decision-tree induction algorithm constructed from multiple
data sets occurs. First, a given individual is mapped into its
corresponding decision-tree induction algorithm. Next, each
data set from the meta-training set is partitioned into a training
set and a validation set—typical values are 70% for training
and 30% for validation [21]. The term validation set is used
here instead of test set to avoid confusion with the meta-test
set, and also due to the fact that we are using the measure
of accuracy of a candidate decision-tree induction algorithm
on those validation sets to guide the evolutionary search for
a better decision-tree algorithm. The same cannot be done
with test sets, which are exclusively used for assessing the
predictive performance of an evolved decision-tree algorithm
(which is output as the result of an entire run of HEAD-DT).

After dividing each data set from the meta-training set
into training and validation, we induce a decision tree for
each training set available. For evaluating the predictive per-
formance of these decision trees, we use the corresponding
validation sets. Statistics regarding the predictive performance
and the size of each decision tree are recorded (e.g., accuracy,
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F-measure, precision, recall, total number of nodes/leaves),
and can be used individually or combined as the fitness
function of HEAD-DT. The simple average is probably the
most intuitive way of combining the values per data set, but
other possible solutions are the median of the values or the
harmonic mean. Depending on the data sets used in the meta-
training set, the user may decide to give greater weight of
importance to a more difficult-to-solve data set than to an
easier one, and hence a weighted scheme may be a good
solution when combining the data set values. Finally, one may
think of any multiobjective optimization strategy for dealing
with all values simultaneously [49] (e.g., Pareto dominance or
lexicographic analysis).

In this paper, we use as a fitness function the average
F-measure of the decision trees generated by a given individual
for each data set in the meta-training set. The well known
F-measure (also known as F-score or F1 score) is the harmonic
mean of precision and recall, as

accuracy =
tp + tn

tp + tn + f p + f n
(2)

precision =
tp

tp + f p
(3)

recall =
tp

tp + f n
(4)

f measure = 2 × precision × recall

precision + recall
(5)

Fitness =
1

n

n∑

i=1

f measurei (6)

where tp (tn) is the numbers of true positives (negatives) in
the validation set, f p ( f n) is the numbers of false positives
(negatives) in the validation set, f measurei is the F-measure
obtained in data set i, and n is the total number of data sets
in the meta-training set.

These equations are directly applicable in the case of binary
classification problems, i.e., the case where a data set has only
two classes: positive and negative. Nevertheless, they can be
trivially extended to multiclass problems. For instance, we can
compute the value of a measure for each class—assuming
each class to be the positive class in turn, and considering
all the other classes as the negative class—and then compute
a (weighted) average of the per-class measure.

Although the accuracy measure (2) is still a very popular
measure of predictive performance, it is important to notice
that accuracy tends to be a misleading measure in data
sets with a very unbalanced class distribution. For instance,
suppose we are classifying a data set whose class distribution
is very skewed: 10% of the instances belong to the positive
class and 90% to the negative class. An algorithm that always
classifies instances as belonging to the negative class would
achieve 90% of accuracy, even though it never predicts the
positive class. In this case, assuming that the positive class
is equally important to (or even more so than) the negative
class, we would prefer an algorithm with a somewhat lower
accuracy measure, but which correctly predict some instances
as belonging to the rare positive class.

Having in mind that most data sets used in our experi-
ments have very unbalanced class distributions, the average
F-measure is a more suitable fitness function than, say, the
average accuracy, since it is well known that the F-measure
copes much better with unbalanced class-distribution problems
than the accuracy measure.

III. EXPERIMENTAL ANALYSIS

In this section, we present a thorough experimen-
tal analysis for assessing the relative performance of
the algorithms designed by HEAD-DT. In Section III-A,
we present the baseline algorithms that will be compared
with HEAD-DT. Section III-B details the 35 real-world gene
expression data sets employed in the analysis. Section III-C
describes the methodology used for selecting the meta-training
and meta-test sets. Section III-D introduces the statistical tests
that will be used for analyzing whether there are signifi-
cant differences among the performance of the algorithms.
Section III-E shows our strategy for optimizing the evolution-
ary parameters of HEAD-DT, as well as the selected parame-
ters. Sections III-F and III-G present the results and a discus-
sion of the experimental analysis respectively. Section III-I
comments on the theoretic and empirical time complexity
of HEAD-DT, and it also discusses the cost-effectiveness of
automated algorithm design. Finally, Section III-J depicts an
example of automatically designed decision-tree algorithm.

A. Baseline Algorithms

The most well known and employed top-down algorithms
for decision-tree induction are CART [20] and C4.5 [19].
CART was developed in [20]. It generates binary trees that
are recursively created, and the worth of a split is measured
by either the Gini index or the twoing criterion. It performs
cost-complexity pruning, and further allows the creation of
oblique decision splits. C4.5 was developed by Quinlan as
an evolution of his prior work, ID3 [24]. It allows multiway
splits instead of the typical binary strategy, and employs the
gain ratio criterion for splitting nodes. It performs error-based
pruning and has robust strategies for dealing with missing
values. Its commercial version, C5.0, offers improvements
such as multithread computation and tree ensemble generation
(which are beyond the scope of this paper).

In this paper, we make use of both CART and C4.5
as the baseline algorithms in the experimental analysis. We
employ their java versions available from the Weka machine
learning toolkit [21] under the names of SimpleCART and
J48. Moreover, we also compare HEAD-DT with the REPTree
algorithm, which is a variation of C4.5 that employs reduced-
error pruning, also available from the Weka toolkit.

For all baseline algorithms, we employ their default param-
eters, since they were carefully optimized by their respective
authors throughout several years. Note that, in the supervised
machine learning literature, the common approach is to find
the optimal parameters for being used in a variety of distinct
data sets, instead of optimizing the algorithm for each specific
data set. Therefore, this is the approach we also take for
HEAD-DT, as it will be presented in Section III-E.
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TABLE I

SUMMARY OF THE 35 GENE EXPRESSION DATA SETS. FOR EACH DATA

SET, WE PRESENT TYPE OF MICROARRAY CHIP, THE TOTAL NUMBER OF

INSTANCES, TOTAL NUMBER OF ATTRIBUTES, IMBALANCED-CLASS

RATIO (RATE BETWEEN OVER- AND UNDER-REPRESENTED CLASS), AND

TOTAL NUMBER OF CLASSES

B. Data Sets

To assess the relative performance of the algorithms auto-
matically designed by HEAD-DT, we use a set of 35 publicly
available data sets from microarray gene expression data,
described in [18].1 Microarray technology enables expression
level measurement for thousands of genes in parallel, given
a biological tissue of interest. The data sets employed here
are related to different types or subtypes of cancer. The clas-
sification task refers to labeling different samples (instances)
according to their gene (attribute) expression levels. The main
structural characteristics of the 35 data sets are summarized
in Table I.

Microarray technology is generally available in two dif-
ferent types of platforms: single-channel microarrays (e.g.,
Affymetrix) or double-channel microarrays (e.g., cDNA). The
type of microarray chip from each data set is in the second
column of Table I. Measurements of Affymetrix arrays are
estimates on the number of RNA copies found in the cell
sample, whereas cDNA microarrays values are ratios of the
number of copies in relation to a control cell sample. As
in [18], all genes with expression level below 10 are set
to a minimum threshold of 10 in the Affymetrix data. The
maximum threshold is set at 16 000. This is because values
below or above these thresholds are often said to be unreliable

1Data sets available at http://algorithmics.molgen.mpg.de/Static/
Supplements/CompCancer/datasets.htm

[50]. Still for the case of Affymetrix data, the following
procedure is applied in order to remove uninformative genes:
for each gene j (attribute), compute the mean mj among the
samples (instances). In order to get rid of extreme values,
the first 10% largest and smallest values are discarded. Based
on such a mean, every value xij of gene i and sample j is
transformed as follows: yij = log2(xij/mj). We then selected
genes with expression levels differing by at least l-fold in at
least c samples from their mean expression level across the
samples. With few exceptions, the parameters l and c were
selected in order to produce a filtered data set with at least
10% of the original number of genes.2 It should be noticed
that the transformed data is only used in the filtering step. A
similar filtering procedure was applied for the cDNA data,
but without the log transformation. In the case of cDNA
microarray data sets, genes with more than 10% of missing
values were discarded. The remaining genes that still presented
missing values had them replaced by its respective mean value.

Finally, note that we randomly divided the 35 data sets
into two groups: parameter optimization and experiments. The
14 data sets in the parameter optimization group are used
for tuning the evolutionary parameters of HEAD-DT. The
remaining 21 data sets from the experiments group are used
for evaluating the performance of the algorithms automatically
designed by HEAD-DT.

C. Building the Meta-Training and Meta-Test Sets

For selecting which data sets will be part of the meta-
training and meta-test sets, we have adopted the following
methodology. Randomly choose 1 data set from the available
set of data sets to be part of the meta-training set. Then,
execute HEAD-DT with the selected data set in the meta-
training set and the remaining data sets in the meta-test set.
For the next experiment, select two additional data sets that
were previously part of the meta-test set, and move them to
the meta-training set, which now will be comprised of three
data sets. This procedure is repeated until we have nine data
sets being part of the meta-training set.

Following this methodology, the 14 parameter optimization
data sets are arranged in five different experimental configura-
tions {#training sets, #test sets}: {1 x 13}, {3 x 11}, {5 x 9},
{7 x 7}, and {9 x 5}. Similarly, the 21 data sets in the exper-
iments group are arranged in also five different experimental
configurations {#training sets, #test sets}: {1 x 20}, {3 x 18},
{5 x 16}, {7 x 14}, and {9 x 12}. Table II presents the
randomly selected data sets according to the configurations
detailed above.

D. Statistical Analysis

In order to provide some reassurance about the validity
and nonrandomness of the obtained results, we present the
results of statistical tests by following the approach proposed
in [51]. This approach seeks to compare multiple algorithms
on multiple data sets, and it is based on the use of the Friedman
test with a corresponding post-hoc test. If the null hypothesis
of similar performances is rejected, the Nemenyi post-hoc test

2The values of l and c for each data set can be found at http://algorithmics.
molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
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TABLE II

META-TRAINING AND META-TEST CONFIGURATIONS. DATA SETS WERE RANDOMLY SELECTED ACCORDING TO THE

METHODOLOGY PRESENTED IN SECTION III-C

for pairwise comparisons is executed. The performance of
two classifiers is significantly different if their corresponding
average ranks differ by at least the critical difference given by
the Nemenyi test.

E. Parameter Optimization

Considering that HEAD-DT is a regular generational EA
(as depicted in Fig. 1), the following parameters have to be
chosen prior to evolution: 1) population size; 2) maximum
number of generations; 3) tournament selection size; 4) elitism
rate; 5) reproduction probability; 6) crossover probability; and
7) mutation probability.

For parameters 1–4, we have defined values commonly
used in the literature of evolutionary algorithms for decision-
tree induction [23], namely, 100 individuals, 100 generations,
tournament between two individuals, and 5% of elitism. For
the remaining parameters, since the selected individuals will
undergo either reproduction, crossover, or mutation (mutually
exclusive operators), we have created a single parameter p that
works as follows. We have fixed the reproduction rate in 5%,
and set the crossover rate as p and mutation as 1 − p − 0.05.
Hence, p = 0.9 means a 90% crossover probability and 5%
mutation probability.

We have performed a tuning experiment varying p within
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For that, we have
employed the 14 gene expression data sets belonging to the
parameter optimization group to evaluate the best value of
p. Note that the aim of this experiment is not to optimize

the parameters for a particular data set; it is rather to find
robust values that work well across the 14 tuning data sets. We
then use the robust value of p found in this experiment in the
different set of 21 data sets used in our experimental analysis.
This evaluates the generalization ability of p across new data
sets, unused for parameter tuning, as usual in supervised
machine learning research.

In this tuning experiment, we followed the methodology
presented in Section III-C, in which we vary the number of
data sets in the meta-training set within {1, 3, 5, 7, 9}, resulting
in the following configurations: {1 x 13}, {3 x 11}, {5 x 9},
{7 x 7}, and {9 x 5}. The exact data sets in each of these
configurations are presented at the top of Table II.

The fitness function employed by HEAD-DT, as already
mentioned, is the average F-measure (6) assessed on the
validation sets of the data sets belonging to the meta-training
set. To evaluate the predictive performance of the best algo-
rithm evolved by HEAD-DT, we performed a ten-fold cross-
validation procedure in each data set belonging to the meta-
test set, recording the accuracy and F-measure achieved by
each of the corresponding decision trees. Also, to mitigate
the randomness effect of evolutionary algorithms, we aver-
age the results of five different runs of HEAD-DT, with a
different random seed used to initialize the population in
each run.

Table III presents the results of the parameter-tuning ex-
periments. We present the average ranking of each version
of HEAD-DT (HEAD-p) in the corresponding experimental
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TABLE III

RESULTS OF THE TUNING EXPERIMENTS. HEAD-DT IS EXECUTED WITH DIFFERENT VALUES OF PARAMETER p (HEAD- p). VALUES ARE THE

AVERAGE PERFORMANCE (RANK) OF EACH HEAD-DT VERSION IN THE CORRESPONDING META-TEST SET OF TUNING DATA SETS,

ACCORDING TO EITHER ACCURACY OR F-MEASURE. THE LOWER THE RANK, THE BETTER THE PERFORMANCE

TABLE IV

RESULTS OF THE {1 X 20} CONFIGURATION. AVERAGE ± STANDARD DEVIATION

configuration. For instance, when HEAD-0.1 makes use of a
single data set for evolving the optimal algorithm ({1 x 13}),
its performance in the remaining 13 data sets gives HEAD-0.1
the average rank position of 5.73 regarding the accuracy of its
corresponding decision trees, and 6.15 regarding F-measure.

The Friedman and Nemenyi tests did not indicate any
statistically significant differences among the nine distinct ver-
sions of HEAD-DT, either considering accuracy or F-measure,
for any of the experimental configurations. Such a lack of
significant differences indicates that HEAD-DT is robust to
different values of p. For selecting the best value of p to
employ in the experimental analysis, we decided to average the
results across the different configurations, and also between the
two different evaluation measures, accuracy and F-measure.
Hence, we calculated the average of the average ranks for
each HEAD-p version across the distinct configurations and
evaluation measures, and the results are presented at the
bottom of Table III. Notice how marginal are the differences
among values of p ≥ 0.6. HEAD-0.6 was then selected
as the HEAD-DT version with the best p value, bearing in

mind that it presented the lowest average of the average ranks
(4.38).

In the next section, we present the results of the experimen-
tal analysis performed over the 21 data sets in the experiments
group, in which we compare HEAD-0.6 (hereafter called
simply HEAD-DT) with the baseline algorithms.

F. Results

Tables IV–VIII show average values of accuracy and
F-measure achieved by HEAD-DT, CART, C4.5, and REPTree
in configurations {1 x 20}, {3 x 18}, {5 x 16}, {7 x 14}, and
{9 x 12}. At the bottom of each table, we present the average
rank position (the average of the rank position in each data
set) of each method. The lower the ranking, the better the
method. For instance, a method capable of outperforming any
other method in every data set would have an average rank
position of 1.00 (first place).

The first experiment is regarding configuration {1 x 20}.
Table IV shows the result for this configuration considering
accuracy [see Table IV(a)] and F-measure [see Table IV(b)].
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TABLE V

RESULTS OF THE {3 X 18} CONFIGURATION. AVERAGE ± STANDARD DEVIATION

TABLE VI

RESULTS OF THE {5 X 16} CONFIGURATION. AVERAGE ± STANDARD DEVIATION

Note that HEAD-DT is the best performing method with
respect to both accuracy and F-measure, reaching an average
rank of 1.75 and 1.55, respectively. HEAD-DT is followed
by CART (2.45 and 2.50) and C4.5 (2.70 and 2.65), whose
performances are quite evenly matched. REPTree is the worst-
ranked method for either accuracy (3.10) or F-measure (3.35).

Table V presents the results for configuration {3 x 18}. In
this experiment, HEAD-DT’s average rank is again the lowest
of the experiment: 1.61 for both accuracy and F-measure. That
means HEAD-DT is often the best performing method (first
place) in the group of 18 test data sets. CART and C4.5
once again present very similar average rank values, which
is not surprising bearing in mind they are both considered the
state-of-the-art top-down decision-tree induction algorithms.
REPTree is again the worst-performing method among the four
algorithms.

Table VI presents the results for configuration {5 x 16}.
The scenario is quite similar to the previous configurations,
with HEAD-DT leading the ranking, with average rank values
of 1.44 (accuracy) and 1.31 (F-measure). These are the lowest
rank values obtained by a method in any experimental con-
figuration conducted in this analysis. HEAD-DT is followed

by CART (2.69 and 2.69) and C4.5 (2.69 and 2.63), which
once again present very similar performances. REPTree is
at the bottom of the ranking, with 3.19 (accuracy) and 3.38
(F-measure).

Results for configuration {7 x 14} show a different picture
for the first time. Table VII(a), which depicts the accuracy
values of each method, indicates that HEAD-DT is outper-
formed by both CART and C4.5, although their average rank
values are very similar: 2.14, 2.21, versus 2.36 for HEAD-DT.
REPTree keeps its position as worst-performing method, with
an average rank value of 3.29. However, Table VII(b) returns
to the same scenario presented in configurations {1 x 20},
{3 x 18}, and {5 x 16}: HEAD-DT outperforming the baseline
methods, with CART and C4.5 tied in the second place and
REPTree in the last position.

The effect seen in Table VII(a), in which HEAD-DT did
not outperform the baseline methods, has a straightforward
explanation: HEAD-DT optimizes its generated algorithms ac-
cording to the F-measure evaluation measure. Since accuracy
may be a misleading measure (it is not suitable for data sets
with unbalanced class distributions), and several of the gene-
expression data sets are unbalanced (i.e., they have a large
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TABLE VII

RESULTS OF THE {7 X 14} CONFIGURATION. AVERAGE ± STANDARD DEVIATION

TABLE VIII

RESULTS OF THE {9 X 12} CONFIGURATION. AVERAGE ± STANDARD DEVIATION

difference in the relative frequency of the most frequent and
the least frequent classes in the data set), it seems fair to
say that HEAD-DT also outperformed the baseline methods
in configuration {7 x 14}, given that it generated algorithms
whose F-measure values are better than the values achieved
by CART, C4.5, and REPTree.

Table VIII shows the results for configuration {9 x 12}. Re-
sults are consistent with the previous configurations, in which
HEAD-DT has the edge over the baseline methods, presenting
the lowest average rank for both accuracy and F-measure (1.58
and 1.42). C4.5 and CART presented similar ranks, whereas
REPTree occupied the last position in the ranking.

Finally, Fig. 4 presents the fitness evolution in HEAD-DT
across a full evolutionary cycle of 100 generations. We
present both mean and best fitness of the population at each
generation, for all experimental configurations. Some interest-
ing observations can be extracted from Fig. 4. For instance,
note that when the meta-training set is comprised of a single
data set [see Fig. 4(a)], HEAD-DT is capable of continuously
increasing the fitness function value, and at the same time the
population is reasonably heterogeneous (mean fitness value
oscillates considerably). In the other extreme, when the meta-
training set is comprised of nine data sets [see Fig. 4(e)],
HEAD-DT has a harder time in optimizing the fitness values,
and the population is reasonably homogeneous (mean fitness
value does not oscillate so much). The explanation for such

a behavior is that by increasing the number of data sets in
the meta-training set, HEAD-DT has to find algorithms with
a good performance trade-off within the meta-training set. In
practice, modifications in the design of the algorithm that favor
a given data set may very well harm another, and hence, it is
intuitively harder to design an algorithm that improves the
performance of the generated decision trees in several data
sets than in a single one. Conversely, it is also intuitive to
believe that a larger meta-training set leads to the design of a
better all-around algorithm, i.e., an algorithm that is robust to
the peculiarities of the data sets from the application domain.

G. Discussion

The experimental analysis conducted in the previous section
aimed at comparing the algorithms designed by HEAD-DT
with three baseline algorithms: CART, C4.5, and REPTree.
We measured the predictive performance of each algorithm
according to accuracy and F-measure, which are the most
well known criteria for evaluating classification algorithms.
In order to verify whether the number of data sets used
in the meta-training set had an impact on the evolution
of algorithms, we employed a consistent methodology that
incrementally added two data sets, randomly chosen from the
set of available data sets, to the meta-training set, generating
five experimental configurations with different numbers of
data sets in the meta-training and meta-test sets {#meta-
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Fig. 4. Fitness evolution in HEAD-DT. Both the mean fitness and the best fitness of the population in a given generation are presented.

training sets, #meta-test sets}: {1 x 20}, {3 x 18}, {5 x 16},
{7 x 14}, and {9 x 12}. By analyzing the average rank
obtained by each method in the previously mentioned con-
figurations, we conclude the following.

1) HEAD-DT is consistently the best-performing method,
nearly always presenting the lowest (best) average rank
values among the four algorithms employed in the
experimental analysis.

2) C4.5 and CART performances are quite similar, which
is consistent with the fact that both algorithms are

still the state-of-the-art top-down decision-tree induction
algorithms.

3) REPTree, which is a variation of C4.5 that employs
the reduced-error pruning strategy for simplifying the
generated decision trees, is the worst-performing method
of the lot. Its disappointing results seem to indicate
that the reduced-error pruning strategy is not particularly
suited to the gene-expression data sets, probably because
it requires a separated validation set. Recall that the
gene-expression data sets have very few instances when
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Fig. 5. Critical diagrams. (a) Accuracy rank for {1 x 20}. (b) F-measure rank for {1 x 20}. (c) Accuracy rank for {3 x 18}. (d) F-measure rank for
{3 x 18}. (e) Accuracy rank for {5 x 16}. (f) F-measure rank for {5 x 16}. (g) Accuracy rank for {7 x 14}. (h) F-measure rank for {7 x 14}. (i) Accuracy
rank for {9 x 12}. (j) F-measure rank for {9 x 12}.

compared to the currently very large databases from
distinct application domains, and reducing their training
set size for producing a validation set has certainly
harmed REPTree’s overall performance.

For summarizing the average rank values obtained by each
method in every experimental configuration, we gathered
the rank values from Tables IV–VIII in Table IX. Values
in bold indicate the best performing method according to
the corresponding evaluation measure. Note how consistently
HEAD-DT presents the lowest average rank.

The next step of this empirical analysis is to verify whether
the differences in rank values are statistically significant. For
this particular analysis, we employ the graphical representation
suggested in [51], the so-called critical diagrams. In this
diagram, a horizontal line represents the axis on which we plot
the average rank values of the methods. The axis is turned so
that the lowest (best) ranks are to the right since we perceive
the methods on the right side as better. When comparing all
the algorithms against each other, we connect the groups of
algorithms that are not significantly different through a bold
horizontal line. We also show the critical difference given by
the Nemenyi test above the graph.

Fig. 5 shows the critical diagrams for all experimental
configurations. Note that HEAD-DT outperforms C4.5, CART,
and REPTree with statistical significance in configuration
{5 x 16} for both accuracy [Fig. 5(e)] and F-measure
[Fig. 5(f)]. The only scenario in which there were no statisti-
cally significant differences among all methods was regarding
the accuracy measure in configuration {7 x 14} [Fig. 5(g)].
The straightforward explanation for this case is that HEAD-DT
optimizes its solutions according to the F-measure, even at the
expense of accuracy. In the remaining scenarios, HEAD-DT al-
ways outperforms REPTree with statistical significance, which
is not the case of CART and C4.5. In fact, CART and C4.5 are
only able to outperform REPTree with statistical significance
in configuration {7 x 14} [Fig. 5(h)], suggesting once again
that HEAD-DT should be preferred over any of the baseline
methods.

Considering the results of the four algorithms for all the ten
combinations of experimental configurations and performance
measures as a whole, as summarized in Table IX, the decision-
tree algorithm designed by HEAD-DT obtained the best rank
among the four algorithms in nine out of the ten rows
of Table IX. Clearly, if the four algorithms had the same
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TABLE IX

RESULTS OF THE EXPERIMENTAL ANALYSIS. HEAD-DT IS EXECUTED WITH p = 0.6. VALUES ARE THE AVERAGE PERFORMANCE (RANK)

OF EACH ALGORITHM IN THE CORRESPONDING META-TEST SET, ACCORDING TO EITHER ACCURACY OR F-MEASURE.

THE LOWER THE RANK, THE BETTER THE PERFORMANCE

predictive performance (so that each algorithm would have
a 25% probability of being the winner), the probability that
the algorithm designed by HEAD-DT would be the winner
in nine out of ten cases would be extremely small, so we
can be confident that the results obtained by HEAD-DT are
statistically valid as a whole.

Finally, bearing in mind that when evaluating an algorithm
only in terms of predictive performance (ignoring the inter-
pretability of the classification model), support vector ma-
chines (SVM) are usually considered the state-of-the-art clas-
sification algorithm for gene expression data, we compare
the best HEAD-DT configuration ({5 x 16}) with the SVM
implementation of Weka toolkit [21]—the SMO algorithm
with default parameters. Note that decision trees and SVMs
are very different types of algorithms, and the goal of this
comparison is not to directly evaluate the effectiveness of
HEAD-DT as a method to generate decision-tree algorithms—
that evaluation is better performed by comparing the decision-
tree algorithms automatically designed by HEAD-DT with
state-of-the-art manually -designed decision tree algorithms, as
reported in Section III-H. Rather, we report here a comparison
of the HEAD-DT results with SVM results in order to give
an idea about the level of predictive performance that could
be obtained for the gene expression data sets used in our
experiments. Table X presents the accuracy and F-measure
results obtained from this comparison. Note that, as expected,
SVM has the edge over decision trees in the gene expression
data sets in terms of predictive performance. SVM outperforms
HEAD-DT’s automatically designed algorithm in 13 (12) out
of 16 data sets regarding accuracy (F-measure). Nevertheless,
recall that the classification models built by SVM have the
disadvantage of being a black box that can be hardly in-
terpreted by users, and in the context of bioinformatics this
tends to be an important disadvantage [3], by comparison with
interpretable decision-tree models.

H. General Algorithms Versus Specific Algorithms

In the experimental analysis presented in the previous
sections, we evaluated for the first time the so-called gen-

eral approach, in which HEAD-DT evolves a decision-tree
induction algorithm from multiple data sets. In this section,
we investigate whether the general approach [Fig. 3(b)] is
more effective than the specific approach [Fig. 3(a)], in which
HEAD-DT designs one algorithm per data set [17].

We employed the Wilcoxon signed-ranks test [52] for eval-
uating the statistical significance of the results. The Wilcoxon
signed-ranks test is the recommended statistical test to evaluate
two classifiers in multiple data sets [51].

Tables XI–XV present the comparison results of the five
configurations of the general approach with the corresponding
data sets in the specific approach, both regarding accuracy and
F-measure values. Below each table, we present the number
of victories for each method (ties are omitted), and also
the p-value returned by the Wilcoxon test. For rejecting the
null hypothesis of performance equivalency between the two
algorithms, the p-values should be smaller than the desired
significance level α.

By careful inspection of Tables XI–XV, note that the general
approach obtained a statistically significantly better predictive
performance (at the 95% confidence level) than the specific ap-
proach in eight out of ten groups of results (five configurations
times two predictive performance measures). The only case in
which the general approach did not outperform the specific ap-
proach with statistical significance was configuration {7 x 14}
(Table XIV), although it still presents a greater number of
victories (8 x 5 regarding accuracy and 8 x 4 regarding
F-measure). Recall that configuration {7 x 14} was the only
configuration in which HEAD-DT did not have a clear advan-
tage over the baseline algorithms (C4.5, CART, and REPTree).

We identified three data sets in which the specific approach
outperforms the general approach across different configu-
rations: armstrong-2002-v1, bittner-2000, and risinger-2003.
This fact may indicate that these data sets have slightly dif-
ferent structural characteristics than the other data sets, which
was not captured by the automatically designed algorithm.

The results presented in this section indicate that the general
approach, when applied to data sets from the same application
domain, has an advantage over designing specific algorithms
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TABLE X

HEAD-DT: CONFIGURATION {5 X 16} VERSUS SVM. AVERAGE ± STANDARD DEVIATION

TABLE XI

GENERAL APPROACH: {1 X 20} CONFIGURATION VERSUS SPECIFIC APPROACH. AVERAGE ± STANDARD DEVIATION

per data set. Since it does not use any subset of the test data
sets during evolution, it seems the general approach is less-
prone to data overfitting. In addition, it has the clear advantage
of designing a single algorithm that later can be applied to
several data sets, avoiding multiple executions of the costly
evolutionary cycle.

I. Algorithmic Time Complexity and the Cost-Effectiveness of
Automated Versus Manual Algorithm Design

The issue of time complexity of the proposed HEAD-DT
can be analyzed from different perspectives, as follows. First,
let us consider the conventional perspective for analyzing the
time taken by a search algorithm. Regarding execution time,
HEAD-DT is clearly slower than C4.5, CART, or REPTree.
Considering that there are 100 individuals executed for
100 generations, there is a maximum (worst case) of 10 000 fit-
ness evaluations of decision trees. We recorded the execution
time of both breeding operations and fitness evaluation (one

thread was used for breeding and other for evaluation). All
experiments were executed in an Intel Xeon hexa-core E5645,
2.4 GHz, 48 GB RAM. Total time of breeding is absolutely
negligible (a few milliseconds in a full evolutionary cycle),
regardless of the data sets being used in the meta-training
set, since breeding does not require access to the data sets.
The bottleneck of HEAD-DT is fitness evaluation. The most
time-consuming configuration, {9 x 12}, takes 11.62 h to be
fully executed (one full evolutionary cycle of 100 generations).
The faster configuration, {1 x 20}, takes only 5.60 min to
be fully executed. Thus, the fitness evaluation time can vary
quite a lot according to the number and type of data sets
in the meta-training set. The computational complexity of
algorithms such as C4.5 and CART is O(m × n log n) (m is
the number of attributes and n the data set size), plus a
term regarding the specific pruning method. Considering that
breeding takes negligible time, HEAD-DT time complexity is
O(i × g × m × n log n), where i is the number of individuals
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TABLE XII

GENERAL APPROACH: {3 X 18} CONFIGURATION VERSUS SPECIFIC APPROACH. AVERAGE ± STANDARD DEVIATION

TABLE XIII

GENERAL APPROACH: {5 X 16} CONFIGURATION VERSUS SPECIFIC APPROACH. AVERAGE ± STANDARD DEVIATION

and g is the number of generations. In practice, the number
of evaluations is much smaller than i × g, since repeated
individuals are not reevaluated. In addition, individuals se-
lected by elitism and reproduction (instead of crossover) are
also not reevaluated, saving computational time.

It should be noted, however, that the aforementioned con-
ventional perspective for analyzing HEAD-DT is misleading
in one way: it assumes that HEAD-DT is a conventional
search algorithm, searching for an optimal solution to a
single data set, which is not the case. In reality, as discussed
earlier, HEAD-DT is a hyper-heuristic that outputs a complete
decision-tree induction algorithm. The decision-tree algorithm
automatically designed by HEAD-DT, as well as the manually
designed decision tree algorithms C4.5, CART, and REPTree,
are all complete decision-tree algorithms that can be reused
over and over again to extract knowledge from different data
sets. It seems reasonable to assume that the time taken by
a single human researcher to design and implement a new

decision-tree induction algorithm is on the order of at least
several months. In this context, since HEAD-DT is effectively
replacing the manual design of decision-tree algorithms with
an automated approach for such a design, even if HEAD-DT
took a couple of days to produce a decision-tree algorithm,
that time would still be much smaller than the corresponding
manual design time. That is, HEADT-DT is a much faster
algorithm-design method than the manual design of decision-
tree algorithms.

Playing the role of devil’s advocate, one could perhaps
present the following counter-argument: the previous discus-
sion ignores the fact that HEAD-DT was itself designed by
human researchers, a design process that also took several
months! This is true, but even taking this into account, it can
be argued that HEAD-DT is still much more cost-effective
than the human design of decision-tree algorithms, as follows.
First, now that HEAD-DT has been manually designed, it
can be reused over and over again to automatically create
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decision-tree algorithms tailored to any particular type of data
set (or application domain) in which a given user is interested.
In this paper, we focused on gene expression data sets, but
HEAD-DT can be reused to create decision-tree algorithms
tailored to, say, a specific type of financial data set or a specific
type of medical data set, to mention just a few examples of
application domains. Once HEAD-DT has been created, the
cost associated with using HEAD-DT in any other application
domain is very small, it is essentially the cost associated with
the time to run HEAD-DT in a new application domain (say,
a couple of days of a desktop computer’s processing time).

In contrast, what would be the cost of manually creating a
new decision-tree algorithm tailored to a particular type of data
set or application domain? First, note that this kind of manual
design is hardly found in the literature. This is presumably
because few human researchers are experts on both decision-
tree algorithms and the target application domain. Just for
the sake of argument, though, let us make the (unrealistic)
assumption that there are many application domains for which
there is a researcher who is an expert in both that application
domain and decision-tree induction algorithms. For each such
application domain, it seems safe to assume again that the
human expert in question would need on the order of several
months to design a new decision-tree algorithm that is effective
and really tailored to that application domain. In contrast,
HEAD-DT could perform that algorithm design automatically
in a couple of days.

In summary, given the very large diversity of application
domains to which decision-tree algorithms can be applied,
HEAD-DT’s automated approach offers a much more cost-
effective approach for designing decision-tree algorithms than
the conventional manual design approach that is nearly always
used in machine learning research. In this sense, HEAD-DT
paves the way for the large-scale and cost-effective production
of decision-tree algorithms that are tailored to any specific
application domain or type of classification data set in which
any given user is interested.

J. Example of an Evolved Algorithm

For illustrating a novel algorithm designed by HEAD-DT,
let us consider the {5 x 16} configuration, in which HEAD-DT
managed to significantly outperform C4.5, CART, and REP-
Tree for both accuracy and F-measure. The algorithm designed
by HEAD-DT is presented in Fig. 6. It is indeed novel, since
no algorithm in the literature combines components such as
the DCSM criterion with PEP pruning. The main advantage
of HEAD-DT is that it automatically searches for the most
suitable combination of algorithmic components (with their
own biases) that is tailored to the data set being investigated.
It is hard to believe that a researcher would combine such
a distinct set of components such as those in Fig. 6 to
obtain better performance than traditional algorithms such as
C4.5 and CART in the specific application domain of gene
expression data sets.

The algorithm presented in Fig. 6 is one of the 25 algorithms
automatically designed by HEAD-DT in the experimental
analysis (five configurations executed five times each). Never-
theless, by close inspection of the 25 automatically generated

Fig. 6. Algorithm designed by HEAD-DT for the {5 x 16} configuration of
data sets.

algorithms, we observed that the algorithm in Fig. 6 is com-
prised of building blocks that were consistently favored regard-
ing the gene expression application domain. For instance, the
DCSM and Chandra-Varghese criteria—both created recently
by the same authors [29], [30]—were selected as the best
split criterion in 44% (11/25) of the algorithms designed by
HEAD-DT. Similarly, the minimum number of instances stop
criterion was selected in 68% (17/25) of the algorithms, with
either six or seven instances as its parameter value. Finally, the
PEP pruning was the favored pruning strategy in 56% (14/25)
of the algorithms, with a very large advantage over the default
strategies used by C4.5 (EBP pruning, selected in 8% (2/25)
of the algorithms) and CART (CCP pruning, not selected by
any of the automatically designed algorithms). This is evidence
that the best components of decision-tree induction algorithms
customized to microarray data sets are quite different from the
default components of the traditional decision-tree algorithms,
which justifies the idea of automatically designing a decision-
tree algorithm for microarray data sets.

IV. RELATED WORK

To the best of our knowledge, no work to date attempts
to automatically design complete decision-tree induction al-
gorithms, with the exception of our previous conference paper
[17], which has been significantly extended in this current
paper (as discussed in the introduction), and of the biology-
focused work in [53].

In this paper, we presented for the first time the novel
strategy of designing a decision-tree algorithm from multiple
data sets, and then apply the evolved algorithm in other data
sets, though from the same type (the data set type in which a
given user is interested), unlike our previous work in [17],
where generalization across data sets was not needed. In
addition to this important difference, this paper also extends
[17] in three ways.

1) It performs a more extensive set of computational ex-
periments to evaluate HEAD-DT.

2) It extends the time complexity analysis of HEAD-DT
with a discussion on the cost-effectiveness of automated
versus manual algorithm design.

3) It reports the decision-tree components that were most
frequently selected by HEAD-DT in order to create
decision-tree algorithms customized to microarray data
sets. Furthermore, our work in [53] is focused on the
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practical consequences of knowledge discovered by a
HEAD-DT algorithm that was tailored to individual data
sets from a particular application domain in biology
(flexible-receptor molecular docking data), while the
work described in this paper is focused on computer
science issues.

The most related approach to this paper by other au-
thors is hyper-heuristic decision tree [54]. It proposes an
EA for evolving heuristic rules in order to determine the
best splitting criterion to be used in nonterminal nodes of
a decision tree. While this approach is a first step toward
automating the design of decision-tree induction algorithms,
it evolves a single component of the algorithm (the choice
of splitting criterion), and thus should be further extended in
order to be able to generate complete decision-tree induction
algorithms.

Finally, a somewhat related approach is the one presented in
[55]. Delibasic et al. [55] proposed a framework for combining
decision-tree components, and test 80 different combinations
of design components on 15 benchmark data sets. This ap-
proach is not a hyper-heuristic, since it does not present a
heuristic to choose among different heuristics. It simply selects
a fixed number of component combinations and tests them

all against traditional decision-tree algorithms. We believe
our strategy is more robust, since by using an evolutionary
algorithm, we can search for solutions in a much larger
search space. Currently, HEAD-DT’s search space consists
of more than 127 million different decision-tree induction
algorithms.

V. CONCLUSION

In this paper, we presented HEAD-DT, a hyper-heuristic
algorithm that automatically designs top-down decision-tree
induction algorithms. These algorithms have been manually
improved over the last 40 years, resulting in a great number
of approaches for each of their design components. Since the
human manual approach for testing all possible modifications
in the design components of decision-tree algorithms would be
unfeasible, we believe the evolutionary search of HEAD-DT
constitutes a robust and effective solution to that problem.

We performed a thorough experimental analysis in which
the algorithms automatically designed by HEAD-DT were
compared with the state-of-the-art decision-tree induction al-
gorithms CART [20] and C4.5 [19], and also to a variation
of C4.5 called REPTree [21], in 35 real-world microarray



BARROS et al.: EVOLUTIONARY DESIGN OF DECISION-TREE ALGORITHMS TAILORED TO MICROARRAY GENE EXPRESSION DATA SETS 891

gene expression data sets. We assessed the performance of
HEAD-DT through two different predictive performance mea-
sures, accuracy, and F-measure. The experimental analysis has
shown that HEAD-DT automatically generated decision-tree
induction algorithms that outperformed the three (manually
designed) baseline methods in nine out of ten experiments.
In terms of statistical significance, HEAD-DT obtained sig-
nificantly higher predictive performance than all three base-
line methods in two experiments, while HEAD-DT never
obtained a significantly lower predictive accuracy than any of
the three baseline methods in any experiment. Furthermore,
HEAD-DT’s automated approach can be considered a much
more cost-effective approach to the design of decision-tree
algorithms tailored to a given type of data set (or appli-
cation domain) than the manual algorithm design approach
currently used in machine learning, as discussed earlier. Hence,
HEAD-DT seems to arise as an effective hyper-heuristic
method for future applications of decision trees.

As future work, we plan to develop a more sophisti-
cated search system such as grammar-based genetic program-
ming, and investigate whether it can outperform our current
HEAD-DT implementation.
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