
Knowledge Discovery with Artificial Immune Systems for
Hierarchical Multi-label Classification of Protein Functions

R. T. Alves, M. R. Delgado and A. A. Freitas

Abstract— This work presents a system for knowledge dis-
covery from protein databases, based on an Artificial Immune
System. The discovered rules have the advantage of representing
comprehensible knowledge to biologist users. This task leads
to a very challenging problem since a protein can be assigned
multiple classes (functions or Gene Ontology (GO) terms) across
several levels of the GO’s term hierarchy. To solve this problem
we present two versions of an algorithm called MHC-AIS
(Multi-label Hierarchical Classification with an Artificial Im-
mune System), which is a sophisticated classification algorithm
tailored to both multi-label and hierarchical classification. The
first version of MHC-AIS builds a global classifier to predict all
classes in the dataset, whilst the second version builds a local
classifier to predict each class. The proposed versions and an
algorithm chosen for comparison are evaluated on a protein
dataset, and the results show that MHC-AIS outperformed the
compared algorithm in general.

I. INTRODUCTION

The field of data mining has attracted the attention of
researchers in different areas [1], [2]. This is due to the
fact that the volume of data stored in databases continues
to become larger and larger. Hence, the manual analysis
of such databases is in general infeasible, and data mining
methods are often necessary to extract knowledge from data
in a (partially-)automated fashion. The need for data mining
is clear in biology, where the amount of data available
in biological databases (such as protein databases) keeps
increasing very fast.

Arguably, the main goal of data mining is to extract
knowledge from data in order to support some human
decision-making process. Among the several tasks (types
of problems) addressed by data mining, this paper focuses
on the classification task. This task essentially consists of
using algorithms - usually derived from machine learning
or multivariate statistics - to build classification models that
are able to predict the class of an example (data instance,
record) based on the values of predictor attributes describ-
ing that example. The criterion most used to evaluate the
performance of a classification algorithm is its predictive
accuracy, i.e. a measure of its generalization ability. However,

R. T. Alves is with Instituto Federal de Educação, Ciência e Tecnologia
do Paraná, Campus Paranaguá, Laboratório de Computação, IFPR, Rua
Antonio Carlos Rodrigues, 453, Porto Seguro, CEP: 83215-750, Paranaguá,
PR, Brazil (e-mail: roberto.t.alves@gmail.com).

M. R. Delgado is with Programa de Pós-Graduação em Engenharia
Elétrica e Informática Industrial, UFTPR , Av. Sete de Setembro, 3165,
CEP: 80230-901, Curitiba, PR, Brazil (corresponding author phone: +55 41
33104688; fax: +55 41 33104683; e-mail: myriamdelg@utfpr.edu.br).

A. A. Freitas is with the Computing Laboratory and Centre for BioMed-
ical Informatics, University of Kent , CT2 7NF, Canterbury, U.K (e-mail:
A.A.Freitas@kent.ac.uk).

another important criterion in many applications, including
the bioinformatics application addressed in this paper (to
be described below) is the simplicity, or comprehensibility,
of the discovered knowledge [3]. In other words, it is
desirable that the classification model be expressed in a
representation easily interpretable by the user. One type of
representation which usually can be intuitively interpreted
by the user consists of rules of the form: IF (antecedent)
THEN (consequent), where the antecedent typically consists
of a conjunction of conditions on attribute values and the
consequent consists of a class(es) to be predicted for the
examples that satisfy the rule’s antecedent.

This paper presents a new classification algorithm based
on the paradigm of Artificial Immune System (AIS). The
immune system as a biological complex adaptive system
has provided inspiration for a range of innovative problem
solving techniques [4], including techniques for classification
[5]. The proposed AIS algorithm combines the adaptive
global search of the AIS paradigm with advanced concepts
and methods of data mining (hierarchical and multi-label
classification), in order to solve a challenging bioinformat-
ics problem (protein function prediction). By hierarchical
classification it is meant that the classes to be predicted
are arranged into a hierarchy (unlike the conventional flat
classification problem), and by multi-label it is meant that
multiple classes can be assigned to a single example (unlike
the conventional single-label classification problem).

Bioinformatics is an inter-disciplinary field, involving the
areas of computer science, mathematics, biology, etc [6].
Among many bioinformatics problems, this paper focuses on
the prediction of protein functions from information associ-
ated with the protein’s primary sequence (i.e., its sequence
of amino acids). As proteins often have multiple functions
which are described hierarchically, the use of multi-label
hierarchical techniques for the induction of classification
models in Bioinformatics is a promising research area. At
present, the biological functions that can be performed by
proteins are defined in a structured, standardized dictionary
of terms called the Gene Ontology (GO) [7]. The GO consists
of a dictionary that defines gene products independent from
species. GO actually consists of 3 separate ”domains” (very
different types of GO terms): molecular function, biological
process and cellular component. The GO is structurally
organized in the form of a direct acyclic graph (DAG), where
each GO term represents a node of the hierarchical structure.

The proposed AIS discovers classification rules for a
hierarchical and multi-label classification problem, in the
context of protein function prediction, where the classes to

be predicted are hierarchically-related GO terms and multiple
GO terms can be assigned to a single protein (example, data
instance). The use of AIS to discover classification rules
was previously investigated by the authors in [8]. In that
work we used an AIS to discover a set of rules for non-
hierarchical single-label classification problems. The reason
why the fuzzy theory was not considered here is that the
tackled multi-label classification data set consists of only two
continuous features and 38 binary ones.

The AIS presented in this paper is based on our previous
work [9], but it extends that work with several new pro-
cedures (described in Section II). In addition, it discovers
knowledge interpretable by the user, in the aforementioned
form of IF-THEN classification rules, unlike many other
methods proposed in the literature, whose classification
model is typically a ”black box” which normally does not
provide any insight to the user about interesting hidden
relationships in the data [1]. The proposed AIS is evaluated
mainly with respect to predictive accuracy, but the discovered
rules are also evaluated with respect to their simplicity (size
of the rule set built by the algorithm).

II. MULTI-LABEL HIERARCHICAL CLASSIFICATION WITH
AN ARTIFICIAL IMMUNE SYSTEM

The AIS algorithm used in this paper is called Multi-label
Hierarchical Classification with an Artificial Immune System
(MHC-AIS). As discussed in [9], MHC-AIS is based on the
following natural immunology principles: clonal selection,
immune network and somatic hypermutation [10], [11].

The training phase of MHC-AIS is performed by two
major procedures, called Sequential Covering (SC) and Rule
Evolution (RE) procedures, which will be detailed in the
next sections. MHC-AIS can be considered the first AIS
algorithm for multi-label hierarchical classification using
such procedure.

Two versions of MHC-AIS are being proposed: the first
version of the MHC-AIS builds a global classifier to predict
all classes in the application domain, whilst the second
version builds a local classifier to predict each class. The
next Sections detail each version of the algorithm.

A. Global Version

Each antibody abj in the MHC-AIS represents an IF-
THEN rule. The IF part is composed by a set given by:

zj = 〈zj1, zj2, · · · , zjd, · · · , zj|D|〉, for 1 ≤ d ≤ |D|;

where d is the d-th condition encoded in abj and each d is
associated with a predictive attribute of the domain D. Every
condition is composed by a triple zjd = 〈OP jd , V

j
d , B

j
d〉, with

OPd: (=) or (6=) for categorical attributes and (≥) or (<)
for continuous attributes; Vd is a possible valuer for attribute
d ∈ D; Bd = 0 or Bd = 1, indicating if the condition will
or will not be used by the rule to classify the examples. The
inclusion of Bd is to turn inactive the condition whenever it
is necessary.

The rule consequent in the global MHC-AIS is by the
following set:

Yj = {y1
j , y

2
j , · · · , y

q
j , · · · , y

m
j }, for Yj ⊆ C;

where C is the class domain to be predicted and m is the
total number of classes that can be represented in the rule
consequent (see IV-A.1 for details). Recall that, in the
multi-label classification process being proposed, the rule
consequent classes mean Gene Ontology (GO) terms.

As discussed before, the training phase of MHC-AIS
is performed by two major procedures, called Sequential
Covering (SC) and Rule Evolution (RE) procedures. The
high-level description of the SC procedure is shown in
Pseudo-code 1.

Input: full protein training set;
Output: set of discovered rules;
DiscoveredRuleSet = ∅
TS = set of all protein training examples;
TS’ = HierarchicalStructure(TS)
TrainSet = TS’;
WHILE |TrainSet| > MaxUncovExamp;

BestRule = RULE-EVOLUTION(TrainSet, AIS);
DiscovRuleSet = DiscovRuleSet ∪ BestRule;
updateCoveredClasses(TrainSet, BestRule)
TrainSet = remvExWithAllClassesCovered(TrainSet);

END WHILE
Computefitnes(DiscovRuleSetFinal,TS’);
Eliminate, from all rule consequents,
classes with fitness < δFT

Pseudo-Code 1: Sequential Covering (SC) procedure

First, SC procedure initializes the set of discovered rules with
an empty set and initializes the training set with the set of all
original training examples. Next, each example in the training
set is extended to contain both the original class and all its
ancestral classes in the GO hierarchy (see Appendix - part A
- for more details). Thereafter, the algorithm starts a WHILE
loop which, at each iteration, calls the Rule Evolution (RE)
procedure. The latter receives, as parameters, the current
training set and uses AIS algorithm to discover classification
rules. The RE procedure returns the best classification rule
discovered by the AIS for the current training set. Then
the SC procedure adds that rule to the discovered rule set
and removes the training examples covered by that rule.
The process of removing examples from the training set is
discussed in Appendix - part B.

The process is repeated until the size of Training Set drops
below a given threshold(MaxUncovExamp), indicating too
few examples in the set. This stop criterion is used to prevent
the algorithm from discovering too specific rules (i. e. rules
covering too few examples). At the end, the fitness of all
the rules are recomputed considering the original training set
(with all the proteins) and the classes with fitness lower than
a given threshold (δFT) are eliminated from all consequents
(the ”THEN parts”) of all discovered rules. Computational
experiments have shown that these two steps represent an
improvement from the original work proposed in [9] since
better results concerning accuracy and simplicity of the
discovered rules have been achieved.

The high-level description of the RE procedure used to
evolve each rule by means of an AIS algorithm is shown in
Pseudo-code 2.

Input: current TrainSet;
Output: the best evolved rule;
AG = current TrainSet;
ABt=0 = Create initial population of
antibodies at random;

ComputeFitness (ABt=0,AG);
CL = ProduceClones(ABt = 0);
CL∗ = MutateClones(CL);
ABt=1 = ABt=0 ∪ CL∗

FOR t = 1 to Number of Generations
Computefitness(ABt,AG);
Elitism(ABt);
Pruning(ABt);
LocalSearch(ABt);
Suppresion(ABt);
CL = ProduceClones(ABt);
CL∗ = MutateClones(CL);
ABt+1 = ABt ∪ CL∗

END FOR;
Return the antibody with the best fitness
among all antibodies produced
in all generations;

Pseudo-Code 2: Rule Evolution (RE) procedure based on AIS.

First, the set of antigens (AG) is defined according to
the current training set received as a parameter. The initial
population of antibodies (candidate IF-THEN classification
rules) ABt=0 is randomly created, where the consequent
of each rule contains all GO classes in the data being
mined. After creation of the population AB, the global
fitness (quality measure) of each antibody abt=0

j of the initial
population is calculated on the training set (AG), according
to Equation 1 (see next subsection) where each example
represents an antigen agi.

Next, the population AB is submitted to a clonal ex-
pansion process giving rise to a population of clones CL.
The population of clones undergoes a process of somatic
hypermutation just on the IF part of the rule. As will be
discussed latter, the mutation rate applied to each clone cl is
inversely proportional to the fitness of the antibody ab from
which the clone was produced. The population CL∗, which
is formed only by clones that underwent some mutation, is
then inserted in the population AB.

Thereafter, the AIS starts to evolve the population of
antibodies. Once the global fitness of the rule has been
calculated for each abj in the population, the algorithm
executes other procedures: elitism, pruning, local search
and suppression of antibodies. Elitism, a mechanism quite
common in evolutionary algorithms [12], selects the antibody
with the best fitness to be included in the next-iteration
population ABt+1. The procedures pruning and local search
are applied to the best rule found so far with the objective
of producing some improvements concerning simplicity and
precision. These procedures represent another improvement
(observed in computational experiments) of the proposed new
versions of the algorithm, by comparison with the origi-
nal algorithm proposed in [9]. The suppression procedure,

characteristic of AIS based on the immune network theory,
removes from ABt similar antibodies. These processes will
also be detailed later.

1) Computing the fitness of an antibody (rule): The
global fitness of abj is computed according to this equation:

Fitness(abj) =
1
nt

∑
q

FitY(yqj) ≥ δFT ; (1)

where nt specifies the number of terms yqj whose value
of fitness FitY(yqj) ≥ δFT . Hence, the value of Fitness(abj)
represents the average fitness of the terms yqj whose fitness
be greater or equal than threshold δFT ∈ [0, 1].

Note that the global fitness of a rule depends on the
individual values of FitY(yqj) for each class present in the
rule consequent, where this individual fitness value is given
by the F-measure, combining precision (P) and recall (R)
values as follows:

FitY(yqj) =
(β2
FT + 1)× P ×R
β2
FT × P +R

, βFT ∈ [0,∞];

where

P =
V Pyq

j

V Pyq
j

+ FPyq
j

and

R =
V Pyq

j

V Pyq
j

+ FNyq
j

Hence, the values of P and R had to be adapted to the
context of the hierarchical and multi-label classification task,
and these values depend on the confusion matrix computed
for each class, indicating the number of correct and wrong
classifications associated with the term yqj [2], as illustrated
in Table I.

TABLE I
CONFUSION MATRIX FOR yq

j ∈ Yj IN THE ANTIBODY abj .

Real Classes
yq

j ¬yq
j

Predicted Classes yq
j TP a FP b

¬yq
j FN c TNd

a True Positive: Aff(abj , agi) ≥ δAF and li[q] = 1;
b False Positive: Aff(abj , agi) ≥ δAF and li[q] = 0;
c False Negative: Aff(abj , agi) < δAF and li[q] = 1.
d True Negative: Aff(abj , a′i) < δAF and li[q] = 0;

In Table I the affinity Aff(abj , agi) is calculated as:

Aff(abj , agi) =
#SatCondij∑
∀d∈D

Bjd
;

where #SatCondij measures the total of activated conditions
in abj that were satisfied by the predictive attributes of agi.
The threshold δAF ∈ [0, 1] is an user-specified parameter.
The term li[q] is defined by Equation 5 in IV-A.1.

MHC-AIS maintains a set of consistent hierarchical clas-
sifications during the construction of the global classifier.
Hence, if the fitness of some ancestral class yq∗j is smaller
than the fitness of its descendant class, then the fitness of yqj
is assigned to its ancestral class yq∗j .

2) Cloning and Hypermutating the antibodies: In the
cloning process, each antibody abj produces #Clj clones of
itself, where #Clj is proportional to the fitness of abj . The
number of clones to be produced for each abj is defined as
#Clj = Int(Fitness(abj)×#MaxCl×ClRate),#Clj ≥ 1,
where #MaxCl represents the maximum number of clones
which can be generated from abj and ClRate is a parameter
whose value is calculated at each generation in order to
control the size of population AB, stimulating or not the
clones generation. The value ClRate is calculated as:

ClRate =

HyperClRate if |AB| < nIP
0 if |AB| > nMaxP

1−
(
|AB| − nIP

nMaxP − nIP

)
otherwise

where HyperClRate, nIP and nMaxP are specified in
the beginning of the execution of the algorithm and indicate,
respectively, clonal hyper-expansion rate, initial antibody
population size and maximum antibody population size. It
is important to emphasize that the parameter nMaxP does
not represent the maximum size that the antibody population
AB can take during the evolution. Rather, it indicates that,
if the size of AB is greater than the value of that parameter,
the generation of clones proportional to antibody fitness is
dissimulated.

As discussed before, the process of somatic hypermutation
is applied just to the antecedent of the rule. A mutation rate
applied to each clone cl is inversely proportional to the fitness
of the antibody ab from which the clone was produced. Such
rate is determined by :

MtRtcl = MtMin+(MtMax−MtMin)(1−Fitness(cl));

where MtMin and MtMax indicate, respectively, the min-
imum and maximum mutation rates to be applied to a clone
cl; and the function Fitness(cl) is presented in Equation
1. The MtRtcl represents the probability that each gene
(rule condition in the antecedent) of clone cl will undergo
mutation.

3) Suppressing Antibodies: The suppression procedure
removes from the population, antibodies that are similar to
each other. This mechanism aims at maintaining the diversity
of the immune repertoire. The similarity between antibodies
is computed as follows:

Similarity(abj , abj′) =
#CondIg

#MaxCondAtα
, for all abj 6= abj′ ;

where #MaxCondAtα = max

[∑
∀d∈D

Bjd,
∑
∀d∈D

Bj
′

d

]
, and

• #MaxCondAtα – the maximum of two values, namely
the number of active conditions in abj and in abj′ ;

• #CondIg – the number of active conditions that are
equal in abj and abj′ ;

• Bd – a binary flag indicating whether the d-th condition
is active or not.

If Similarity(abj , abj′) > δSIM ∈ [0, 1], then either abj
or abj′ must be suppressed (removed) from the population,

where δSIM is a user-defined similarity threshold. The ab to
be removed (out of two similar antibodies) is the one with
smaller fitness - ties are broken at random.

4) Pruning and Local Search: In general, the antibody
of ABt with best fitness is selected to undergo pruning -
i.e., having its irrelevant rule conditions (if any) removed.
The selected antibody abj can undergo pruning only if it
has at least two active conditions. Once this constraint is
satisfied, active conditions are randomly selected from abj
for the pruning procedure. For each of those conditions, the
condition is tentatively removed from the rule antecedent and
the fitness of the rule is recalculated. If the new fitness value
(without the condition) is greater than or equal to the previous
value (with the condition), then the condition is effectively
removed from the rule - by changing the value of its flag
to inactive. The loop choosing active conditions for potential
pruning is repeated while the trials is less than two and the
number of active conditions is greater than 1.

If the fitness after the tentative removal of a rule condition
is worse than the previous fitness (with the rule condition),
another active condition is randomly selected for potential
pruning. If the fitness of the rule does not improve after
two successive choices of active conditions, then the prun-
ing process is terminated. It should be emphasized that a
rule condition is removed only if this does not reduce the
fitness of the antibody. A de-activated (pruned) condition can
become active again only through the somatic hypermutation
mechanism.

The local search procedure (an improvement of the MHC-
AIS presented here) aims at performing a fine tuning of
the rule antecedent, in order to improve the fitness of the
rule. The local search used here is similar to a conventional
hill climbing algorithm, which has no memory of previously
generated candidate solutions [13]. The local search pro-
cedure works as follows. First, it selects the best antibody
abb in the current population. Next, an active condition of
abb is randomly chosen to undergo local search, and the
current attribute value in that condition is replaced by a
randomly chosen value (among the values in the domain of
the attribute). Then the fitness of abb is re-computed. This
process is iteratively performed for other randomly chosen
attribute values, again re-computing the fitness of abb with
each new value. When the fitness does not improve after
two consecutive changes of attribute value, the local search
process for this condition is terminated, and a new rule
condition is randomly chosen to undergo local search as
described above. When the fitness does not improve after
local search has been applied to two consecutively chosen
rule conditions, the local search for abb is terminated.

B. Local Version
The antibody of the local version is similar to the anti-

body of global version described in section II-A. The only
difference occurs in the consequent. In the local MHC-AIS
the consequent is represented by:

ylj =
{

1 if the rule predicts the class l
0 otherwise ;

where l represents the class for which the local classifier was
trained to predict.

Like the global MHC-AIS, the local MHC-AIS consists of
the SC (see Pseudo-code 1) and RE procedures (see Pseudo-
code 2) described in Section II-A, but with some differences.

In the local version, a classifier is trained for each node
(class) of the GO’s DAG. So, the SC procedure re-labels
for each class the training examples as positive or negative.
Positive examples represent examples associated with the
class of the current node of the GO’s DAG, denoted class Y ,
whilst examples that do not have the class Y are labeled as
negative examples. MHC-AIS is an algorithm for construct-
ing hierarchical classifiers, and therefore the hierarchical
structure has to be coped with like in the global version.
Hence, all training examples labeled with any descendant
class of the current class Y are labeled as positive class.

In this local version, MHC-AIS first discovers as many
classification rules as necessary in order to cover the positive
examples. Next, the algorithm discovers as many rules as
necessary to cover the negative examples. Every time that a
given rule is discovered, all the examples correctly covered
by that rule (i.e. examples satisfying the conditions in the rule
antecedent and having the class predicted by the rule con-
sequent) are removed from the current training set, as usual
in rule induction algorithms. This iterative process of rule
discovery and removal of training examples is repeated until
the number of examples in the current training set becomes
smaller than a user-defined threshold MaxUncovExamp.
The other procedures of the local MHC-AIS are the same as
in the global version of the algorithm, described in II-A.

III. EXPERIMENTS AND RESULTS

This section describes the experiments performed to com-
pare the two proposed versions of MHC-AIS with a tradi-
tional method to solve classification problems.

A. Compared Methods

The two versions of the MHC-AIS are compared with
the PART1 algorithm. The Partial Decision Tree algorithm
(PART) was proposed by Frank and Witten [14] and it builds
classifiers consisting of rules of the form IF <antecedent>
THEN <consequent> from “partial” decision trees – see
[14] for details. In the context of this work PART, builds
local (binary) classifiers, so that a classifier is generated for
each class (GO term).

Table II presents the values used in the experiments for
each parameter of MHC-AIS in the global and local versions.

B. The Protein Data Base Considered

All the compared methods (MHC-AIS - local and global,
and Part) were evaluated on a dataset of proteins created
from information extracted from the well-known UNIPROT
database [15]. This dataset contains two protein families:

1The PART algorithm is a well-known rule induction algorithm
included in the freely available data mining tool WEKA:
http://www.cs.waikato.ac.nz/ml/weka/.

TABLE II
PARAMETERS USED BY THE TWO MHC-AIS VERSIONS.

Parameter Definition Global Local
δAF matching threshold {0.8, 0.9, 1.0}
δFT fitness threshold 0.9 -
δSIM Similarity for ab’s 0.7 0.7
βFT parameter of f-measure 0.05 1
MaxUncovExamp number of non-covered

examples in the train. set
10 10

HyperClRate hypermutation rate 2.0 2.0
MtMin min of mutation rate 0.01 0.01
MtMax max of mutation rate 0.5 0.5
#MaxCl max of number of clones 10 10
#MaxIter itert per evolut period 50 50
nIP size of initial pop 100 100
nMaxP max size of pop 500 500

DNA-binding proteins (which are involved in gene expres-
sion as transcription activators) and ATPase proteins (which
are enzymes that catalyze the hydrolysis of ATP and as a
result release energy that is used by the cell) [16]. Both types
of protein families consist of a large number of proteins, with
a correspondingly large number of associated classes (GO
terms), leading to challenging hierarchical and multi-label
classification problems. The dataset used in the experiments
contains 7877 proteins, where each protein (example) is de-
scribed by 40 predictor attributes, 38 of which are PROSITE1
patterns (a well-known type of protein motif or signature) and
2 of which are continuous attributes (molecular weight and
the number of amino acids in the primary sequence). Each of
the 38 attributes representing PROSITE1 patterns are binary
attributes, indicating whether or not the protein contains
the corresponding pattern. In total, the dataset contains 214
classes (GO terms) to be predicted.

C. Predictive Accuracy and Simplicity in the Test Set

As previously discussed, in data mining the discovered
knowledge should be not only accurate, but also compre-
hensible to the user [1], [2]. In this spirit, the results can
be evaluated according to two criteria, viz. the predictive
accuracy and simplicity of the discovered rule set. In this
paper, simplicity will be measured in terms of the size of
the discovered rule set, an approach which is not ideal but
is still used in the literature. The predictive accuracy is
evaluated by the F-measure (adapted to the scenario of multi-
label hierarchical classification), which involves computing
the precision and recall of the discovered rule set on the test
set (unseen during training).

In the global version, the set of GO terms predicted for a
test example t, denoted PredGO(t), consists of the union of
all GO terms in the consequent of all rules covering t - i.e.
all rules abj whose conditions are satisfied by t’s attribute
values (Aff(abj , t) ≥ δAF).

In the local version of MHC-AIS, each test example t
is submitted to the |TH | trained classifiers (TH is given
by Equation 4). Each classifier consists of a set of dis-
covered rules. The class predicted by each classifier is the
class represented in the consequent of the rule with the
greatest fitness value (computed during training) out of all

rules discovered by that classifier that cover the example t.
Hence, PredGO(t) consists of all GO terms whose trained
classifiers predicted their corresponding positive class for the
example t.

In both cases (local and global), if no discovered rule
covers the example t, the latter is classified by the default
rule, which predicts the majority class in the training set.

MHC-AIS computes the hierarchical multi-label Precision
and Recall for a test example t - denoted P (t) and R(t),
respectively - as per Equations 2 and 3, where TrueGO(t)
is the set of true GO terms for example t.

P (t) = |PredGO(t) ∩ TrueGO(t)|/PredGO(t) (2)

R(t) = |PredGO(t) ∩ TrueGO(t)|/TrueGO(t) (3)

Thus, precision is the proportion of true classes among all
predicted classes, whilst recall is the proportion of predicted
classes among all true classes. The hierarchical multi-label
F-measure for a test example t is given by the harmonic
mean of P (t) and R(t) as:

F (t) = (2× P (t)×R(t))/(1 + P (t) +R(t))

Finally, once P (t) and R(t) have been computed for each
test example t, the system computes the overall F-measure
over the entire test set T as

Predictive Accuracy = F (T) =

(∑
t∈T

F (t)

)
/|T|

where |T| denotes the cardinality of the test set T.

D. Results

Table III shows the predictive accuracy (precision, recall
and F-measure) for the proposed MHC-AIS algorithm (global
and local versions) compared with the PART algorithm.

TABLE III
PREDICTIVE ACCURACY OF MHC-AIS VERSUS PART.

MHC-AIS Global
δAF Precision Recall F-Measure
0.8 95.36± 0.3 79.89± 0.4 83.93± 0.4
0.9 96.58± 0.4 77.86± 0.3 83.41± 0.3
1.0 96.17± 0.2 77.44± 0.2 82.92± 0.1

MHC-AIS Local
0.8 90.91± 0.2 87.32± 0.3 87.96± 0.2
0.9 89.69± 0.3 87.13± 0.4 87.27± 0.3
1.0 84.64± 0.2 87.09± 0.4 84.63± 0.5

PART - Weka
- 83.08± 0.6 81.85± 0.6 82.78± 0.5

In Table III, the numbers after the ± symbol represent
the standard deviations associated with a well-known 10-fold
cross-validation procedure [2]. In the column F-measure, the
best result (out of all methods being compared) is shown in
bold. Table III shows results for different affinity (matching)
threshold δAF values for both versions of MHC-AIS, to
evaluate the predictive performance of the algorithms using
partial matching (δAF < 1.0) or total matching (δAF = 1.0).

Table III shows that the local MHC-AIS obtained the best
results for F-measure with all affinity threshold values. Note

that, in both versions of MHC-AIS, as the value of the affinity
threshold δAF increases the value of F-measure is reduced,
showing a disadvantage in the use of total matching. These
results show that both versions of MHC-AIS outperformed
PART in terms of F-measure value, for all values of the
δAF threshold. The result of the Wilcoxon signed rank test
(a non-parametric statistical test often used in data mining
research) confirmed that the differences in the F-measure
values of the local version of MHC-AIS and of PART
are statistically significant (with 95% of confidence) for all
values of δAF . When comparing the global version of MHC-
AIS with PART, the differences in F-measure values are
statistically significant (again, with 95% confidence using
the Wilcoxon signed rank test) for δAF = 0.8, but not for
δAF = 0.9 and δAF = 1.0. These results confirm that the
proposed MHC-AIS is a good alternative to solve our target
hierarchical multi-label classification problems.

Table IV shows the results with respect to the simplicity
of the discovered rule set. This simplicity was measured by
the number of discovered rules and total number of rule
conditions (in all rules) – whose values are shown in the
first and second columns in the table, respectively. Recall
the values reported in Table IV are average values computed
by a 10-fold cross-validation procedure.

TABLE IV
RULE SET SIMPLICITY (SIZE) OF MHC-AIS VERSUS PART.

MHC-AIS Global
δAF #Rules #TCond
0.8 104.3± 3.6 909.9± 24.2
0.9 64.7± 2.2 409.6± 17.6
1.0 46.9± 1.0 122.6± 5.46

MHC-AIS Local
0.8 738.3± 4.4 8394.7± 59.8
0.9 752.5± 4.4 7165.3± 82.9
1.0 734.9± 7.3 4610.3± 51.2

PART - Weka
4759.3± 12.6 1820.6± 6.8

Note that, as shown in Table IV the global MHC-AIS
obtained much better results concerning rule set simplicity
(i.e. much smaller rule sets) than the local MHC-AIS and
PART, in all experiments. This advantage of the global MHC-
AIS is due to the fact that it builds a single set of rules
predicting all classes in a single run of the algorithm. This
allows the classifier to capture some relationships among
classes, leading to a more compact classification model. In
contrast, local MHC-AIS and PART have to build a rule
set for each class, and the size of the entire classification
model is given by the union of the rule sets built by all the
classifiers, leading to much larger models, probably involving
considerable redundancy between rules built by different
but related classifiers (e.g. parent and child classifiers).
When comparing local MHC-AIS with PART, the former
discovered fewer rules, whilst the latter built rule sets with
fewer rule conditions. The considerably smaller number of
rule conditions discovered by PART is due to the fact that, in
many of the local rule sets discovered by PART, the only rule

produced by the algorithm was a default rule, i.e, a rule with
no conditions in its antecedent, and simply predicting the
majority class in the training set for all examples in the test
set covered by the rule. This is the reason why the number
of rules discovered by PART is greater than the total number
of conditions in all the discovered rules.

Table IV also shows that, for each of the two versions
of MHC-AIS, the simplest (smallest) rule set is built when
δAF = 1.0. Hence, considering the results shown in Tables
III and IV, in summary the use of partial matching leads to
higher predictive accuracy, whilst the use of total matching
leads to the discovery of a simpler rule set.

An example of a rule discovered by global MHC-AIS in
the aforementioned protein data set is presented below:

IF (PS00636 == 1) AND (MOLECULAR-WEIGHT <
54885) THEN (5488, 5515, 31072)

The biological interpretation of this rule is: if a pro-
tein presents the Prosite pattern “SJ-protein family domains
signature and profiles”and “molecular weight is less than
54885” then the predicted classes (biological functions) are:
“binding” (GO term 5488) and “protein binding” (GO term
5515) and “heat shock protein binding” (31072). Note that
the GO hierarchy was considered, i.e. the true hierarchical
path is 5488 - 5515 - 31072 (from shallower to deeper nodes).

IV. CONCLUSION

This work presented a new artificial immune system
(MHC-AIS) for the difficult problem of hierarchical multi-
label classification in data mining, in the context of protein
function prediction – where the classes to be predicted are
protein functions corresponding to terms in the Gene Ontol-
ogy (GO). Two versions of the MHC-AIS were proposed,
a global version, where a single global classifier is built
predicting all classes of the application domain; and a local
version, where a local classifier is built for each node of the
hierarchical GO classes. Both versions have the advantage of
discovering IF-THEN classification rules, constituting a type
of knowledge representation that can, in principle, be easily
interpretable by biologist users.

The local and global versions were compared with a
traditional classification method - the PART algorithm. The
results showed that overall the proposed algorithm outper-
formed PART in the two evaluation criteria considered:
predictive accuracy (F-measure) and simplicity (size) of the
discovered classification model (rule set). More precisely,
in all 3 experiments (with different parameter values for
local MHC-AIS) comparing the local MHC-AIS with PART,
the local MHC-AIS achieved significantly higher predictive
accuracy and significantly fewer rules than PART, although
PART discovered significantly smaller rules. Also, in all 3 ex-
periments (with different parameter values for global MHC-
AIS) comparing the global MHC-AIS with PART, global
MHC-AIS discovered significantly fewer and smaller rules
than PART; and in one of those 3 experiments the predictive
accuracy obtained by MHC-AIS was significantly higher
than the accuracy obtained by PART (with no statistically
significant difference in the other two cases). These results

suggest that both versions of MHC-AIS are very competitive
with PART.

Future work will involve: (a) analyzing the biological
relevance of the discovered rules; (b) evaluating the proposed
MHC-AIS in datasets of other protein families and with other
types of predictor attributes; and (c) comparing the results
with other approaches, e.g. CLUS algorithm proposed in
[17].

APPENDIX

A. Applying GO Hierarchical Structure to the Set AG

In biological databases a protein is annotated only with
its most specific GO term. Given the semantics of the GO’s
functional hierarchy, this implicitly means the protein also
contains all the functional classes of its ancestral GO terms
in the GO’s DAG. Hence, in a data preprocessing step, MHC-
AIS explicitly assigns to each antigen (protein) both its most
specific class(es) (GO term(s)) and all its ancestral classes.

Hence, the hierarchical structure H of the terms (classes)
of the GO is also provided as input to the algorithm. The GO
structure is defined as H = 〈C,�〉, where C represents the
set of terms defined in the GO and the relation � determines
the hierarchical structure of the GO graph (where each GO
term is a node in the graph) in the form of a partially-ordered
set of terms.

The total set of classes to be predicted by the classifier is
defined by Equation 4.

TH =

⋃
∀agi

Li

⋃
 ⋃

∀lik∈Li
∀agi

Ancestors(lik)

 ; (4)

where Li represents the set of classes directly annotated for
(associated with) the i-th antigen of the data set, lik ∈ Li the
k-th class associated with agi and Ancestors(lik) the set of
terms (classes) which are ancestors of lik with the exception
of the root node.

1) MHC-AIS Global: The set of classes associated with
the examples agi considering the hierarchical structure H is
defined as

THi
= Li

⋃(⋃
∀lik∈Li

Ancestors(lik)

)
;

These classes are represented by a binary vector li of
length m = |TH |, where each of those m vector components
indicates whether or not the corresponding class is associated
with agi, as given in Equation 5.

li[q] =
{

1 if lq ∈ THi

0 otherwise ; (5)

where lq represents the label associated with the q-th element
of TH .

So, MHC-AIS also considers the semantics of the GO’s
functional hierarchy when creating classification rules - i.e.,
it guarantees that, if a rule predicts a given GO term, all its
ancestral GO terms are also predicted by the rule.

2) MHC-AIS Local: Classifiers are built for each GO term
(class) l ∈ TH of the set of classes to be predicted and its
ancestors (Ancestors(l)).

Usually, in order to build local classifiers, hierarchical and
multi-label classification problems are transformed into flat
single-label ones. In this latter case, each example in the
dataset is associated to just one class, but the class hierarchy
must be considered in some way. MHC-AIS represents the
class hierarchy as follows:

li =
{

1 if lik ≡ l ∨ lik ∈ Descendants(l)
0 else ;

where l represents the class which the classifier will created
for predicting and lik ∈ Li is the k-th class annotated in
the i-th example of the dataset. Therefore, when building a
classifier to predict a given class l, positive examples are
those annotated with class l or their descendants; the other
examples are considered negative examples.

B. Removing Examples from the Training Set

In a single-label classification process based on a proce-
dure for sequentially discovering rules from data [2], the
removal of examples from the dataset is very simple, as
follows. If an example is classified (matching partial or total)
by the best rule discovered in iteration t and the example’s
class is the same as the class present in the rule consequent,
then the example is removed from the training set. In multi-
label classification based on a procedure for sequentially
discovering rules, the process is more complicated, because
a discovered rule can predict just some (rather than all) of
the classes associated with an example, so that the example
cannot be removed based just on that rule.

In the global version of MHC-AIS, every agi ∈ AG is
associated with a binary vector qi that indicates the classes
predicted by the candidate rule set CR up to the current
iteration t. The vector qi has the same number m of elements
as li.

Initially, in t = 0, the values of the components of li
(Equation 5) are assigned to qi, since no class was predicted
yet for agi. Hence, qt0i [q] = li[q], q | q = 1, . . . ,m. For each
discovered rule(BestRule) in t, qi is updated for the next
iteration t + 1. This updating is done only for the agi that
are correctly classified by BestRule. An example is said to
be correctly classified by a rule if the example satisfies the
conditions in the rule antecedent and the example has the
class(es) predicted by the rule. This updating is performed
as follows:

qt+1
i [q] =

{
0 if FitY(yqb) ≥ δFT ∧ li[q] = 1
qti[q] otherwise ,

for Affinity(abb, agi) ≥ δAF ; .
(6)

where abb = BestRule and yqb is the qth class in the
consequent of abb.

Once qi has been updated, the examples for which all
classes have been predicted by CR are removed from AG.

The elimination of an example fromAG depends on the total
of non-covered classes it has in the consequent, which is
calculated as:

NcovClass(agi) =
m∑
q=1

qt+1
i [q].

If NcovClass(agi) = 0, all classes of agi have been covered
by CR, and so that example must be removed from AG.

The examples that must remain in the training set AG for
the next iteration t are obtained as follows:

AGt+1 = {agi ∈ AGt | NcovClass(agi) > 0}

where NcovClass(agi) > 0 indicates that there are classes
still not covered by the classifier.

ACKNOWLEDGMENT

This work was supported in part by the CNPq under
grant 307735/2008-7 and Fundação Araucária under grant
no.233/8331.

REFERENCES

[1] A. A. Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Springer-Verlag, 2002.

[2] , I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2nd edition. 2005.

[3] A. A. Freitas and J. D.C. Wieser and R. Apweiler. “On the importance of
comprehensible classification models for protein function prediction”.
IEEE/ACM Trans. on Computational Biology and Bioinformatics, vol.
7(1), 2010, pp. 172-182.

[4] L. N. De Castro and J. Timmis Artificial Immune Systems: A New
Computational Intelligence Approach. Springer-Verlag, 2002.

[5] A. A. Freitas and J. Timmis. “Revisiting the foundations of artificial
immune systems for data mining”. IEEE Trans. on Evolutionary Com-
putation, vol. 11(4), 2007, pp. 521–540.

[6] G. B. Fogel and D. W. Corne. Evolutionary Computation in Bioinfor-
matics. Morgan Kaufmann Publishers, 2003.

[7] . The Gene Ontology Consortium. “The Gene Ontology (GO) Database
and Informatics Resource”. Nucleic Acids Research, vol 32(1), 2004,
pp. 258–261.

[8] R. T. Alves and M. R. Delgado and H. S. Lopes and A. A. Freitas “An
Artificial Immune System for Fuzzy-Rule Induction in Data Mining”.
Lecture Notes in Computer Science, vol. 3242, 2004, pp. 1011-1020.

[9] R. T. Alves and M. R. Delgado and A. A. Freitas “Multi-Label
Hierarchical Classification of Protein Functions with Artificial Immune
Systems”. Proc. 3rd Brazilian symposium on Bioinformatics: Advances
in Bioinformatics and Computational Biology, 2008, pp. 1–12.

[10] G. A. Ada and G. V. Nossal. “The Clonal Selection Theory”.Scientific
American, vol 257, 1987, pp 50–57.

[11] N. K. Jerne. “Towards a Network Theory of Immune System”. Ann.
Immunol. (Inst. Pasteur), vol 125C, 1974, pp. 373–389.

[12] D. E. Goldberg. Genetic Algorithms in Search Optimization and
Machine Learning, Addison-Wesley Reading, 1989.

[13] , S. J. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach. Prentice Hall, 2003.

[14] E. Frank and I. H. Witten, “Generating Accurate Rule Sets Without
Global Optimization”. Proc. Proceedings of the 15th International
Conference on Machine Learning, 1998, pp. 144–151.

[15] . The UniProt Consortium. “The Universal Protein Resource
(UniProt)”. Nucleic Acids Res., vol. 35, 2007, pp D193–D197.

[16] B. Alberts and A. Johnson L. Lewis and M. Raff and K Roberts and
P. Water. Molecular Biology of the Cell. Garland Science, 4th Edition,
2002.

[17] C. Vens and J. Struyf and L. Schietgat and S. Derovski, “Decision trees
for hierarchical multi-label classification”, Machine Learning, vol. 73,
2008, pp. 185-214.

