
Discovering Surprising Instances of
Simpson’s Paradox in Hierarchical
Multidimensional Data

 Carem C. Fabris Alex A. Freitas
 CPGEI, CEFET-PR Computing Laboratory
 Av. Sete de Setembro, 3165 University of Kent
 Curitiba-PR, 80215-901, Brazil Canterbury, CT2 7NF, UK
 caremf@uol.com.br A.A.Freitas@kent.ac.uk

Abstract

This paper focuses on the discovery of surprising, unexpected patterns,

based on a data mining method that consists of detecting instances of

Simpson’s paradox. By its very nature, instances of this Paradox tend to be

surprising to the user. Previous work in the literature has proposed an

algorithm for discovering instances of that paradox, but it addressed only

“flat” data stored in a single relation. This work proposes a novel algorithm

that considerably extends that previous work, by discovering instances of

Simpson’s paradox in hierarchical multidimensional data – the kind of data

typically found in data warehouse and OLAP environments. Hence, the

proposed algorithm can be regarded as integrating the areas of data mining

and data warehousing, by using an adapted data mining technique to discover

surprising patterns from data warehouse and OLAP environments.

Keywords: Simpson’s paradox, data mining, data warehouse, OLAP,

multidimensional data.

INTRODUCTION

In general data mining consists of discovering interesting hidden patterns

or previously unknown relationships in data. However, the question of what

properties the discovered patterns should have, in order to be considered

“interesting”, is still an open problem.

The majority of data mining algorithms focus on the discovery of accurate

patterns. This is particularly the case in the three data mining tasks most

investigated in the literature, namely classification, clustering and association

(Fayyad et al., 1996).

Another criterion that is also used quite often to evaluate discovered

patterns (though not nearly so often as accuracy) is comprehensibility. Pattern

comprehensibility is important in order to allow the user to validate and

interpret discovered patterns, giving the user an insight that can be effectively

used to make intelligent decisions.

There is, however, another criterion to evaluate discovered patterns that

has been relatively less explored in the literature, namely the surprisingness

of discovered patterns. First of all, it should be noted that accuracy and

comprehensibility do not imply surprisingness, and discovering surprising

patterns seems more difficult than discovering accurate and comprehensible

patterns. As a simple, classic example of this point, consider the following

rule, which could be discovered from a hypothetical medical database: “IF

(patient is pregnant) THEN (patient is female).” Clearly, this rule is highly

accurate. It is also highly comprehensible – i.e., it is very short and simple,

easy to be interpreted, referring to attribute values whose meaning are very

well-known. However, this rule is not surprising at all, representing an

obvious fact, and so it is useless to the user.

The challenge addressed in this paper is to discover surprising patterns in

data. There has been some work addressing this challenge, mainly in the

context of the classification or association tasks (Liu & Hsu, 1996;

Silberschatz & Tuzhilin, 1996; Suzuki, 1997; Liu et al., 1997; Padmanabhan

& Tuzhilin, 1998; Suzuki & Kodratoff, 1998; Freitas, 1998; Dong & Li,

1998; Sahar, 2002; Carvalho et al., 2003; Ohsaki et al., 2004; Romao et al.,

2004). However, there are two major differences between those projects and

the work presented in this paper.

First, this work does not address the classification or association tasks.

Rather, it focuses on the detection of instances of Simpson’s paradox, which

will be explained in section 2. In terms of the data mining tasks described in

(Fayyad et al., 1996), the detection of Simpson’s paradox seems more closely

related to the task of deviation detection, although it differs from most

deviation detection techniques in the sense that it does not require the

specification of what is a “normal” relationship from which deviations should

be found. Hence, when detecting instances of Simpson’s paradox the system

has more autonomy. This is a significant difference between this work and

typical projects on deviation detection, such as (Matheus et al., 1996).

Second, instead of trying to select the most surprising rules out of many

discovered rules – as it is done in most of the previously mentioned projects

on rule surprisingness – the system presented in this paper was designed

specifically for discovering only surprising patterns. As will be argued in

Section 2, Simpson’s paradox is surprising because in general the user cannot

find an explanation for the “paradox”. In other words, the kind of pattern

represented by an instance of Simpson’s paradox is, by its very nature, a

surprising pattern to most users.

There is a previous work alerting for the pitfalls associated with

Simpson’s paradox in the context of data mining (Glymour et al., 1997).

However, this paper follows a very different research direction consisting of

exploiting the surprisingness of that paradox, making the detection of

Simpson’s paradox the central goal of a data mining algorithm explicitly

designed to discover surprising patterns. This research direction was

suggested by (Freitas, 1998), which proposed an algorithm for detecting

instances of Simpson’s paradox. However, that work did not implement the

proposed algorithm. Later the algorithm was implemented and evaluated in

public domain data sets by (Fabris & Freitas, 1999). However, those two

projects involved only “flat” data sets, with no hierarchical dimensions, where

each data set was represented by a single relation (corresponding to the

universal relation of a relational database system).

This work proposes a significant extension to those previous projects, by

extending the previous Simpson’s paradox-discovery algorithm to a very

different kind of data set, namely data cubes stored in a star format with

hierarchical dimensions, as typically found in data warehouse (Kimball &

Ross, 2002) and OLAP environments (Thomsen, 2002). The extended

algorithm is then evaluated in a real-world data cube with 5 hierarchical

dimensions.

Hence, this work obtains an integration between data mining and data

warehouse, in the sense that it proposes to adapt a data mining method for

discovering surprising patterns to the typical data warehouse/OLAP

environment of hierarchical multidimensional data. From a data mining

viewpoint, this has the benefit of making the data mining method in question

more widely applicable, considering the increasing popularity of hierarchical

multidimensional data. From an OLAP viewpoint, this has the benefit of

extending the functionality and increasing the degree of autonomy of typical

OLAP tools.

The remainder of this paper is organized as follows. Section 2 presents a

review of Simpson’s paradox. Section 3 briefly describes the above-

mentioned algorithm for detecting instances of Simpson’s paradox in “flat”

data stored in a single relation. Section 4 proposes the above-mentioned novel

extension of that algorithm, designed for mining hierarchical

multidimensional data. Section 5 presents computational results. Finally,

Section 6 concludes the paper.

SIMPSON’S PARADOX

This section presents a brief review of Simpson’s paradox, based on

(Fabris & Freitas, 1999). See also (Wagner, 1982; Newson, 1991) for further

discussions about this kind of paradox.

Let a population be partitioned into two mutually exclusive and

exhaustive populations, denoted Pop1 and Pop2, according to the value of a

given binary attribute, denoted 1stPartAtt (First Partitioning Attribute). Let

each of the populations Pop1 and Pop2 be further partitioned, in parallel,

according to the values of a given categorical attribute, denoted 2ndPartAtt

(Second Partitioning Attribute), with m values in its domain. This will

partition Pop1 and Pop2 into m subpopulations, denoted Pop11,…Pop1m and

Pop21,…,Pop2m.

Let G be a binary goal attribute, which takes on a value indicating whether

or not a given situation of interest has occurred in a population. We are

interested in analyzing the variation of the probability of the situation of

interest across the above-mentioned partitions, i.e., investigating the

relationship between the values of the partitioning attributes and the

probability of the situation of interest. In order to do this analysis, let us use

the following notation:

• G1 and G2 denote the attribute G value representing the situation of

interest in each of the respective populations Pop1 and Pop2;

• Pr(G1) and Pr(G2) denote the probability that the situation of

interest has occurred in populations Pop1 and Pop2, respectively;

• Gij denotes the attribute G value representing the situation of interest

in the subpopulation Popij, where i is the id of the value of

1stPartAtt (i=1,2) and j is the id of the value of 2ndPartAtt

(j=1,...,m);

• Pr(Gij) denotes the probability that the situation of interest has

occurred in the subpopulation Popij, i=1,2 and j=1,...,m.

Formally, Simpson’s paradox (Simpson, 1951) occurs when either of the

following two logical expressions is satisfied:

(a) Pr(G1) > Pr(G2) and Pr(G1j) ≤ Pr(G2j) for j=1,...,m;
 or,
(b) Pr(G1) < Pr(G2) and Pr(G1j) ≥ Pr(G2j) for j=1,...,m.

Expression (a) means that the paradox occurs when, although the

probability of the situation of interest is higher in Pop1 than in Pop2, in each

of the categories produced by 2ndPartAtt the probability of the situation of

interest in Pop1 is lower than or equal to its value in Pop2. The paradox also

occurs in the dual situation represented by expression (b).

One of the earliest real-life examples of this paradox occurred in a

comparison of tuberculosis deaths in New York City and Richmond, Virginia,

during the year 1910, as shown in Table 1, where the situation of interest

measured by attribute G was the occurrence of death in a tuberculosis case;

the 1stPartAtt was city; and the 2ndPartAtt was racial category. As can be

observed in the table, overall the tuberculosis mortality rate of New York was

lower than Richmond’s one. However, the opposite was observed when the

data was further partitioned according to two racial categories: white and non-

white. In both the white and non-white categories, Richmond had a lower

mortality rate.

It should be noted that an instance of Simpson’s paradox has an

explanation. In the example of Table 1, this explanation is as follows. As

shown in the table, taking a look at the disaggregated data (partitioned by

both city and racial category), the mortality rates of non-white people (0.56%

and 0.33%) were in general higher than the mortality rates of white people

(0.18% and 0.16%) in both cities. The opposite conclusion is reached by

taking a look at the aggregated data (partitioned only by city) because the

proportion of non-white people in Richmond was 36.6% (46,733 / 127,682), a

value much larger than the proportion of non-white people in New York,

which was only 1.9% (91,709 / 4,766,883). In other words, the paradox

occurred because the two racial categories white and non-white had different

mortality rates and these two categories were present in considerably different

proportions in the cities of New York and Richmond.

Table 1: Simpson’s paradox in data about tuberculosis deaths.

 New York Richmond
Total Population 4766883 127682
No. of deaths 8878 286
Percentage 0.19% 0.22%
 New York Richmond
 white non-w. white non-w.
Total Population 467517

4
91709 80895 46733

No. of deaths 8365 513 131 155
Percentage 0.18% 0.56% 0.16% 0.33%

The existence of such explanations, which are consistent with the data,

have led some statisticians to point out that Simpson’s paradox is not really a

paradox (De Groot & Schervish, 2002). This issue depends, of course, on

how one defines a paradox. According to Rescher (2001): “... a paradox

arises when a set of individually plausible propositions is collectively

inconsistent. And the inconsistency at issue must be real rather than merely

seeming" (p. 6). In Table 1 the aggregated data is associated with the

proposition that the mortality rate was higher in Richmond than in New York;

and the disaggregated data is associated with the proposition that in both

racial categories the mortality rate was higher in New York than in

Richmond. The inconsistency between these two individually-plausible

propositions can be explained in a way that is consistent with the observed

data, as explained earlier, so that the inconsistency is “merely seeming” rather

than real. This leads us to the conclusion that Simpson’s paradox is not really

a paradox, according to Rescher’s definition.

We emphasize, however, that although Simpson’s paradox is not really a

paradox in a strict technical sense, it is still a surprising kind of pattern.

Furthermore, it does look like a paradox for most data mining users, who are

not trained statisticians or data analysts. Even statisticians who do not

consider Simpson’s paradox as a real paradox admit that it is a surprising

result for someone who has not studied it before (De Groot & Schervish,

2002).

DISCOVERING INSTANCES OF SIMPSON’S

PARADOX IN “FLAT”, SINGLE-RELATION

DATA

This section briefly describes an algorithm for discovering instances of

Simpson’s paradox in “flat” data , stored in a single relation (corresponding to

the universal relation of a database system), which is the typical kind of data

mined by most data mining algorithms. The algorithm is described in the

pseudocode of Algorithm 1 – adapted from (Freitas, 1998). The input for the

algorithm is a list LG of user-defined binary goal attributes, each of them

indicating whether or not a given situation of interest (to the user) has

occurred. The algorithm then identifies all the binary attributes (potential

“first partitioning attributes”) in the data and puts them into the list L1. It also

identifies all categorical attributes (potential “second partitioning attributes”)

in the data and puts them into the list L2. The algorithm enforces the

constraint that any goal attribute included in LG cannot be included in L1 nor

in L2.

The output of Algorithm 1 consists of all instances of Simpson’s paradox

found by the algorithm. These instances can be ranked in decreasing degree

of surprisingness to the user, so that a user with little available time can focus

on the analyses of only the most surprising instances of the paradox.

INPUT: list of user-defined goal attributes, denoted LG
BEGIN
(1) identify attributes that can be used as 1stPartAtt and put them in list L1
(2) identify attributes that can be used as 2ndPartAtt and put them in list L2
(3) FOR EACH goal attribute G in LG

(4) FOR EACH first partitioning attribute A in L1
(5) partition population into Pop1 and Pop2 according to values of A
(6) Pr(G1) = Pr(G=“yes”|A=1)
(7) Pr(G2) = Pr(G=“yes”|A=2)
(8) FOR EACH second partitioning attribute B in L2 such that B ≠ A
(9) FOR i=1,2
(10) partition Popi into m new populations Popi1 ... Popim,
 according to the values of B
(11) FOR j=1,...,m
(12) Pr(Gij) = Pr(G=“yes”|A=i,B=j)
(13) IF (Pr(G1) > Pr(G2) AND Pr(G1j) ≤ Pr(G2j), j=1,...,m)
 OR (Pr(G1) < Pr(G2) AND Pr(G1j) ≥ Pr(G2j), j=1,...,m)

(14) OUTPUT the occurrence of the paradox to the user
END

Algorithm 1: Search for instances of Simpson’s paradox in flat data

The degree of surprisingness of a given instance of the paradox is

estimated by a measure of the “magnitude” of the paradox, as proposed by

(Fabris & Freitas, 1999). The basic idea is that the larger the magnitude of the

paradox, the more the probability of the situation of interest given the first

partitioning attribute differs from the probability of the situation of interest

given both the first and the second partitioning attributes, and so the larger the

estimated degree of surprisingness for the user.

Formally, the “magnitude” M of an instance of the paradox is given by the

following formula:

M = (M1 + M2) / 2, (1)

where M1 measures by how much the probability of the situation of interest

increases (decreases) from Pop1 to Pop2 after the first partition of the data and

M2 measures by how much that probability decreases (increases) from Pop1

to Pop2 for each of the categories of 2ndPartAtt after the second partition of

the data.

The measures M1 and M2 are as defined in formulas (2) and (3), where m

is the number of values in the domain of 2ndPartAtt.

 M1 = |Pr(G1) – Pr(G2)| / max(Pr(G1), Pr(G2)) (2)

 m

 M2 = Σ (|Pr(G1j) – Pr(G2j)| / max(Pr(G1j),Pr(G2j))) / m (3)
 j=1

In formula (2) the numerator |Pr(G1) – Pr(G2)| is simply the absolute value

of the difference between the probabilities of the situation of interest in Pop1

and Pop2, after the first partitioning of the data. Similarly, in formula (3) the

term |Pr(G1j) – Pr(G2j)| is the absolute value of the difference between the

probabilities of the situation of interest in Pop1j and Pop2j, considering the j-th

value of 2ndPartAtt. In both formulas the probability difference terms are

divided by the maximum value between the two corresponding probabilities,

and in formula (3) the result of this division is averaged over the m values of

2ndPartAtt.

The intuition behind the division of the probability difference terms by

their corresponding maximum value is twofold. First, it produces a

normalized value between 0 and 1 for both M1 and M2. As a result, the value

of M in formula (1) is also normalized between 0 and 1, facilitating its

interpretation by the user. Second, it takes into account the relative value of

the differences between probabilities. To see this point, consider two

scenarios in the comparison of two probabilities of the situation of interest. In

the first scenario the probabilities are 0.01 and 0.02, whereas in the second

scenario the probabilities are 0.49 and 0.50. The absolute value of the

difference is 0.01 in both scenarios. However, in the first scenario the relative

difference between the two probabilities is larger than in the second scenario

– since dividing these differences by the corresponding maximum of the two

probabilities we get 0.5 in the first scenario and 0.0002 in the second

scenario. Therefore, the first scenario would be associated with a larger

magnitude, reflecting the fact that the greater relative difference in the

observed probabilities is estimated to be somewhat more surprising to the

user.

This kind of normalization –i.e., the division of the probability difference

terms by their corresponding maximum value – is particularly important when

analyzing data where the situation of interest is a rare event (i.e., it has a very

small probability of occurrence) and even a minor probability difference can

still be surprising to the user, due to the strategic importance of the rare

situation of interest. This is the case, for instance, in the data represented by

Table 1, where the number of deaths is a very small fraction of the numbers

of individuals in the populations and even a minor difference in the

probability of occurrence of this situation of interest is potentially very

interesting to the user. In such cases, the just-described normalization is very

useful in amplifying the degree of magnitude of the paradox, because without

such a normalization the paradox’s magnitude would be unduly very low.

This normalization avoids this problem by considering the relative (rather

than the absolute) value of the probability differences.

To see this point, and also as an example of the use of formulas (1), (2)

and (3) to compute the magnitude of an instance of Simpson’s paradox, let us

consider the paradox instance shown in Table 1, where Pr(G1) = 0.0019,

Pr(G2) = 0.0022, Pr(G11) = 0.0018, Pr(G21) = 0.0016, Pr(G12) = 0.0056,

Pr(G22) = 0.0033 and m = 2. Using formulas (2) and (3) we get M1 = 0.1364

and M2 = 0.2609, and using formula (1) we finally get the measure of

magnitude M = 0.1987. This indicates that this is a reasonably surprising

instance of the paradox. If we did not use that above-described normalization

(i.e. if in formulas (2) and (3) the probability differences were not divided by

their maximum value), we would get M1 = 0.0003, M2 = 0.00155 and M =

0.000775, which would be an extremely low value for the magnitude of the

paradox – an undesirable result.

Finally, it should be noted that the magnitude of an instance of the

paradox is just a data-driven, objective estimate of the (ultimately subjective)

degree of surprisingness of that pattern to the user. A precise measure of that

degree of surprisingness would ideally take into account the user’s previous

knowledge, but this kind of user-driven, subjective approach would of course

considerably reduce the autonomy and generality of the proposed algorithm

for detecting instances of Simpson’s paradox. The proposed data-driven

approach for estimating the surprisingness of a paradox instance, although not

perfect, has the twofold advantage that it is very generic and can be directly

applied without requiring the user to spend her/his precious time to specify

her/his previous knowledge in the application domain – which would be

difficult to formalize, anyway. In the proposed approach the user just has to

specify the list of goal attributes with their corresponding situation of interest.

This task is much less time consuming and much simpler than capturing and

formalizing the user’s previous knowledge.

Analysis of the Computational Time Complexity of the

Algorithm

Intuitively, Algorithm 1 seems a time consuming algorithm, since it has

several nested loops. In order to formalize this intuition and analyze how the

algorithm scales up to large data sets, we now present an analysis of the

computational complexity of the algorithm.

The initialization steps of the algorithm – lines (1) and (2) – involve only

checking the data type of each attribute, to identify binary and categorical

attributes. Assuming this simple metadata information is readily available in

the database – a safe assumption in general – each of those two steps takes a

time on the order of K, denoted O(K), where K is the number of attributes (or

“dimensions”) in the data being mined.

On the other hand, lines (3)–(13) are much more time consuming,

involving the computation of conditional probabilities. Lines (3), (4), (8), (9),

(11) represent just the beginning of an iteration of a FOR loop. At each

iteration of those loops, the corresponding line of course takes only O(1) to

initialize or update the value of the loop variable (G, A, B, i, or j,

respectively). To be precise, line (8) includes an additional operation, the

comparison (B ≠ A), but this also takes just O(1).

Lines (5), (6) and (7) can be performed in a single scan of all the tuples of

the data being mined. This involves updating, on the fly, counters for the

number of tuples (records) satisfying each of the conditions (A = 1), (G =

“yes”,A = 1), (A = 2), (G = “yes”,A = 2). These counters are, of course,

initialized with 0. Each time a tuple is read, its values for attributes G and A

are checked and the appropriate counters are incremented accordingly. For

instance, suppose the first tuple has values (A = 1) and (G = “no”). After

reading this tuple, the counter for the condition (A = 1) would be incremented

to take the value 1, whereas the other three counters would remain with the

value 0. After reading all the tuples and performing all the appropriate counter

updates, the final values of those counters are directly used to compute the

conditional probabilities in steps (6) and (7). Therefore, recalling that the

conditional probabilities have to be computed for each iteration of the FOR

loops in lines (3) and (4), the computation of lines (5), (6), (7) is performed in

time O(N × |LG| × |L1|), where N is the number of tuples in the data being

mined, |LG| is the cardinality of (number of attributes in) list LG and |L1| is the

cardinality of list L1.

The computation of conditional probabilities associated with lines (10)

and (12) can be performed in a similar way, with another single scan of all the

tuples of the data being mined. The main difference is that now there are more

counters to be updated, i.e., the algorithm now needs to keep track of counters

for the conditions (A = 1, B = j), (G = “yes”,A = 1,B = j), (A = 2, B = j), (G

= “yes”,A = 2,B = j); for all values j (j = 1…m) of the attribute B, where m is

the number of values of B. (For now we assume m has the same value for all

attributes, for the sake of simplicity. We discuss the case where m varies

across attributes later.) Therefore, recalling that the conditional probabilities

of line (12) have to be computed for each iteration of the FOR loops in lines

(3), (4), (8), (9) and (11), the computation of lines (10) and (12) is performed

in time O(N × |LG| × |L1| × |L2| × m). Note that the value 2 associated with the

two iterations of the FOR loop specified by line (9) – where i = 1,2 – does not

appear in this expression, since it is a constant.

Finally, lines (13) and (14) involve using the previously computed

conditional probabilities to detect instances of the paradox and report them to

the user. Line (14) represents only the output of the algorithm, rather than its

processing, and therefore can be ignored in the analysis of the computational

complexity of the algorithm. Hence, we focus on line (13). This line contains

an implicit FOR loop, associated with the expression “j = 1,…,m”. (This loop

was not explicitly indicated in Algorithm 1 for the sake of simplicity in the

description of the pseudocode.) Hence, the time taken by each iteration of line

(13) is O(m). Recalling that this line has to be computed for each iteration of

the FOR loops in lines (3), (4) and (8), the computation of line (13) takes time

O(|LG| × |L1| × |L2| × m).

Therefore, the computational time taken by the algorithm as a whole is

given by the summation of the following factors:

• O(K) for lines (1), (2);

• O(N × |LG| × |L1|) for lines (5), (6), (7) of the FOR loops in lines (3), (4);

• O(N × |LG| × |L1| × |L2| × m) for lines (10), (12) of the FOR loops in lines

(3),

 (4), (8), (9), (11);

• O(|LG| × |L1| × |L2| × m) for line (13) of the FOR loops in lines (3), (4), (8).

The second and fourth above factors can be ignored since they are

dominated by the third one, so that the total computational time of the

algorithm is given by: O(K + N × |LG| × |L1| × |L2| × m).

In practical applications the value of N, the number of tuples, tends to be

much larger than the value of K, the number of categorical attributes in the

data, so that this computational complexity can be simplified to:

O(N × |LG| × |L1| × |L2| × m) .

It is also useful to discuss how the cardinalities of LG, L1, L2 are related

with K. In the worst-case scenario, each of those three lists would have a

number of attributes close to K, the maximum possible value for those

cardinalities. In this case the algorithm would have a time complexity of O(N

× K3 × m). However, this is an unlikely scenario, because the list LG includes

only goal attributes containing a situation of interest to the user and the list L1

can contain only binary attributes. Therefore, it is quite possible that the

cardinalities |LG| and |L1| will be considerably smaller than the value of K.

In the best-case scenario where the user specifies a small set of goal

attributes and the number of binary attributes is also small, |LG| and |L1| would

be small constants, and so the above formula for the time complexity of the

algorithm would collapse to O(N × K × m).

To summarize, with respect to K, the time complexity of Algorithm 1 can

vary from linear to cubic, depending on the sizes of |LG| and |L1|. We stress

that the time complexity does not depend on the total number of attributes, but

rather just on the number of categorical attributes, K – since continuous

attributes are ignored by the algorithm. In any case, the time complexity is

linear with respect to m, the number of values per categorical attribute, and

also linear with respect to N, the number of tuples.

Finally, a couple of remarks must be made about the analysis carried out

to derive the above formula. First, this analysis was based on a

straightforward implementation of the pseudocode described in Algorithm 1.

This implementation has the disadvantage that two scans of all the tuples are

required, one scan to compute the conditional probabilities of lines (6), (7)

and another scan to compute the probabilities of line (12). This can be

improved by a somewhat more complex implementation of the algorithm,

which performs a single scan of all the tuples, updating all the counters

necessary to compute all those probabilities on the fly, as each tuple is read.

This reduces the number of scans of all tuples to 1, but it does not change the

computational time complexity of the algorithm.

Second, the above analysis assumed that m, the number of values of a

categorical attribute, is constant for every attribute B in list L2. In practice this

is unlikely to be the case. In the most likely scenario of m varying across

different attributes in L2, the above formula for computational time

complexity can be interpreted in two different ways, depending on the value

assigned to m. If m is assigned the average number of values per attribute,

computed over all attributes in L2, the above formula can be interpreted as the

average-case time complexity of the algorithm. Alternatively, if m is assigned

the largest number of values per attribute, out of all attributes in L2, the above

formula can be interpreted as the worst-case time complexity of the algorithm.

DISCOVERING INSTANCES OF SIMPSON’S

PARADOX IN HIERARCHICAL MULTI-

DIMENSIONAL DATA

The discussion of the previous section assumed that all attributes are

“flat”, i.e. they have no hierarchy. This is a common situation when mining

data extracted from a relational database. In this section, however, we are

interested in mining a different kind of data, namely hierarchical

multidimensional data (Kimball & Ross, 2002; Thomsen, 2002). The

existence of hierarchical dimensions in data cubes introduces new

opportunities and requirements for modifying the discovery and the

evaluation of the degree of surprisingness of instances of Simpson’s paradox.

Suppose we are analyzing data about sales of a product, involving

combinations of values of two attributes, say address, with hierarchy store →

city → state, and time, with hierarchy day → month → year. Consider an

instance of the paradox involving a combination of states and years (highest

hierarchical level of both attributes). Should the degree of surprisingness of

that instance be computed in the same way as for the combinations of stores

and days (lowest hierarchical level of both attributes)? What about

combinations of stores and years (mixed hierarchical levels)?

In order to address this kind of question, we modify the original

computation of the degree of surprisingness of instances of the paradox

(discussed in the previous Section) to take into account a correction factor

based on the hierarchical levels of the two attribute values being analyzed.

The first step of this modification consists of deciding whether the

algorithm should favor the discovery of paradoxes involving attribute values

at higher or lower hierarchical levels of the attributes being analyzed. We

have chosen to favor higher hierarchical levels, which is a bias consistent with

one of the basic goals of data mining, namely the discovery of

comprehensible patterns. In general, the higher the hierarchical level of an

attribute, the higher its associated level of abstraction and the smaller the

number of values belonging to the domain of the attribute at that level. A

smaller number of attribute values facilitates the interpretation of an instance

of the paradox by the user, because there are fewer cells in a table

representing an instance of the paradox.

An analogy can be made here with the discovery of IF-THEN rules in the

classification task of data mining. It is a well-established practice to favor the

discovery of shorter rules, having fewer attribute values in their antecedent,

because short rules are in general considered more easily interpretable by the

user than long rules (Witten & Frank, 2000; Quinlan, 1993).

In other words, both favoring shorter classification rules and favoring

paradox instances at higher hierarchical levels aim at the same broad

objective, namely reducing the size of the discovered patterns, therefore

facilitating their interpretation by the user.

The above mentioned correction factor (hereafter denoted C), based on the

hierarchical levels of the two partitioning attributes characterizing the

paradox, is computed by formula (4):

 C = ((nhmax – havg) / hmax), (4)

where nhmax = max(nhA, nhB) and havg = (hA + hB) / 2, where nhA and nhB are

the numbers of hierarchical levels of attributes A (the first partitioning

attribute) and B (the second partitioning attribute), and hA and hB are the

indices of the hierarchical levels of attributes A and B characterizing the

paradox. For a given attribute A (B), its index hA (hB) varies from 0 (the root

level) to nhA – 1 (nhB – 1).

Finally, the degree of Surprisingness (S) of an instance of Simpson’s

paradox is computed by formula (5):

S = M x C, (5)

where M is the magnitude of the paradox, computed by formula (1), and C is

the correction factor taking into account the hierarchical levels of the two

partitioning attributes characterizing the paradox, computed by formula (4).

One can see that formula (4) favors the discovery of paradox instances at

higher hierarchical levels of attributes A and B by considering the following

example. Suppose that attributes A and B have respectively 5 and 3

hierarchical levels – i.e., nhA = 5 and nhB = 3 – and that an instance of

Simpson’s paradox is characterized by the hierarchical level 1 of attribute A

and by hierarchical level 1 of attribute B – i.e., hA = 1 and hB = 1 – i.e,

attribute values at a high hierarchical level (close to the root level). Then C =

0.89. Now suppose instead that another instance of the paradox is

characterized by hA = 4 and hB = 2 – i.e, attribute values at a low hierarchical

level. Then C = 0.63. In other words, attribute values at lower hierarchical

levels are more penalized, since they have a smaller value of the correction

factor, and so lead to a smaller value of S in formula (5).

Note that formula (4) returns its maximum value, 1, only when the values

of attributes A and B associated with the paradox instances are at the root

levels in their hierarchies, i.e., when hA = hB = 0. This is an intuitive result,

since C = 1 means no penalty will be applied to attribute values at the root

level – which is the “best” hierarchical level in the sense of having the

smallest number of attribute values among all hierarchical levels.

In any case, there is nothing magical about formula (4). This formula was

chosen in this work because it is a simple formula with the desired effect of

favoring paradox instances at higher levels of an attribute hierarchy and it has

empirically performed well in our preliminary experiments. However, other

formulas that are biased towards favoring higher-level hierarchical values

could be used instead. Of course, it would also be easy to use a very different

kind of formula implementing a different kind of bias, if the user wished so,

since the issue of how the correction factor is computed is orthogonal to the

execution of the algorithm for detecting instances of Simpson’s paradox.

Note that in formula (5), if we remove the above-discussed correction

factor considering hierarchical levels, we obtain the basic equation S = M.

The motivation for measuring the surprisingness of a paradox instance by its

magnitude was explained in section 3. Formula (5) is simply extending that

basic equation to the more complex case of hierarchical multidimensional

data, introducing the correction factor to favor the discovery of paradox

instances involving higher-level attribute values – which tend to be paradox

instances more easily interpretable by the user, as discussed earlier.

Our new algorithm for discovering instances of Simpson’s paradox in

hierarchical multidimensional data is presented in Algorithm 2. Similarly to

Algorithm 1, the input for the Algorithm 2 is a list LG of user-defined binary

goal attributes, each of them indicating whether or not a given situation of

interest has occurred. There are some basic restrictions that must be put on the

creation of the lists L1 and L2, as follows.

First, note that list L1 (the list of candidate First Partitioning Attributes)

contains pairs of the form <A, hA>, standing for attribute A and hierarchical

level hA of that attribute. A given pair <A, hA> can be included in list L1 only

if the hierarchical level hA contains two categorical values, which can then be

used to divide the data into two populations. Second, all attributes in L2 (the

list of candidate Second Partitioning Attributes) must be categorical, so that

they can be used to further divide the data into m subpopulations. For each

attribute in L2, all of its hierarchical levels can be used to discover instances

of Simpson’s paradox. In other words, list L2 will contain all pairs of the form

<B, hB> where attribute B is categorical, regardless of the number of

categorical values in hierarchical level hB, as can be seen in Algorithm 2.

INPUT: list of user-defined goal attributes, denoted LG
BEGIN
(1) identify all pairs <attribute, hierarchical level> that can be used
 as 1stPartAtt and put them in list L1;
(2) identify attributes that can be used as 2ndPartAtt and put all the
 corresponding pairs <attribute, hierarchical level> in list L2;
(3) FOR EACH goal attribute G in LG
(4) FOR EACH pair of attribute A and its corresponding
 hierarchical level hA in L1:
(5) partition population into Pop1 and Pop2, according
 to values of A in hierarchical level hA;
(6) Pr(G1) = Pr(G=“yes”|A=1) ;
(7) Pr(G2) = Pr(G=“yes”|A=2) ;
(8) FOR EACH pair of attribute B and its corresponding
 hierarchical level hB in L2 such that A ≠ B
(9) FOR i=1,2
(10) partition Popi into m new populations
 Popi1 ... Popim, according to the values
 of B in hierarchical level hB;
(11) FOR j=1,...,m
(12) Pr(Gij) = Pr(G=“yes”|A=i,B=j) ;
(13) IF (Pr(G1) > Pr(G2) AND Pr(G1j) ≤ Pr(G2j), j=1,...,m)
 OR (Pr(G1) < Pr(G2) AND Pr(G1j) ≥ Pr(G2j), j=1,...,m)
(14) OUTPUT the instance of the paradox to the user;
END

Algorithm 2: Discovering instances of Simpson’s paradox in hierarchical
multidimensional data

Analysis of Computational Time Complexity

The analysis of the computational time complexity of Algorithm 2 is

similar to the analysis of Algorithm 1, presented earlier. Hence, in the current

subsection we present a relatively summarized version of this kind of

analysis, focusing on the parts of the pseudocode in Algorithm 2 that were not

present in the Algorithm 1, i.e, the parts referring to the handling of

hierarchical dimensions.

Line (1) of Algorithm 2 takes a time on the order of O(K × nhA), since the

algorithm has to check, for each of the K attributes, whether or not each of its

nhA hierarchical levels contains just two categorical values. Line (2) takes

O(K × nhB) by a similar argument, since every possible pair of <B, hB> has to

be put in L2.

Lines (5), (6) and (7) can be performed in a single scan of all the tuples of

the data being mined by updating the appropriate counters on the fly, as

discussed in the analysis of Algorithm 1. Hence, the time complexity of lines

(5), (6), (7) is given by the formula O(N × |LG| × |HL1|), where N is the

number of tuples (records) in the data being mined, |LG| is the number of

attributes in list LG and |HL1| is the number of attribute-value pairs in the

hierarchical list L1.

The computation of conditional probabilities associated with lines (10)

and (12) of Algorithm 2 can also be performed using the same approach as

described earlier for Algorithm 1. Therefore, the computation of lines (10)

and (12) of Algorithm 2 takes time O(N × |LG| × |HL1| × |HL2| × m), where

|HL2| is the number of attribute-value pairs in the hierarchical list L2 and m is

the number of values of attribute B at each hierarchical level. (For now we

assume m has the same value for all hierarchical levels, for the sake of

simplicity. We discuss the case where m varies across hierarchical levels

later.)

The analysis of the time taken by lines 13 and 14 is, again, similar to the

analysis of the corresponding lines of Algorithm 1 discussed earlier.1. Hence,

the time taken by these lines is O(|LG| × |HL1| × |HL2| × m).

Finally, doing the same simplifications that were done in the analysis of

Algorithm 1, the computational time taken by the algorithm as a whole is

given by:

O(N × |LG| × |HL1| × |HL2| × m) .

Superficially, this computational time complexity is similar to its

counterpart for Algorithm 1 derived earlier, viz: O(N × |LG| × |L1| × |L2| × m).

An important difference is that the time complexity of Algorithm 2 involves

|HL1| and |HL2|, rather than |L1| and |L2| for Algorithm 1. Hence, it is useful to

re-express the former notation in terms of the latter, for a direct comparison

between the time complexities of the two algorithms. |HL1| and |HL2| can be

straightforwardly expressed by |L1| × nhA and |L2| × nhB, respectively. Hence,

the computational time complexity of Algorithm 2 can be expressed as:

O(N × |LG| × |L1| × nhA × |L2| × nhB × m)

which is clearly considerably higher than the time complexity of Algorithm 1.

In the case of very large data sets, the computational time taken by

Algorithm 2 can be significantly reduced by using parallel processing.

However, this topic is beyond the scope of this paper, and the interested

reader is referred to (Freitas & Lavington, 1998) for a review of parallel data

mining techniques.

So far we have assumed that the number of hierarchical levels nhA is the

same for every attribute A in L1, the number of hierarchical levels nhB is the

same for every attribute B in L2 and every categorical attribute B has the same

number of values, m, in all of its hierarchical levels. In practice, the values of

these three variables will vary across attributes. Hence, the previous formula

for the time complexity of Algorithm 2 can be interpreted in two different

ways. If these three variables are assigned their corresponding average value

per attribute, the previous formula can be interpreted as the average-case time

complexity of the algorithm. Alternatively, if these three variables are

assigned their corresponding largest value per attribute, the previous formula

can be interpreted as the worst-case time complexity of the algorithm.

COMPUTATIONAL RESULTS

Hereafter the algorithm described in the previous section will be called

HSPD (Hierarchical Simpson’s Paradox Discovery). We have applied the

HSPD algorithm to a real-world data cube containing insurance data. The

original data was stored in a star-scheme format in disk, containing a fact

table with 51332 records and 9 dimension tables. For the purposes of our

experiments the data was loaded into main-memory arrays, to make the

execution of the algorithm more efficient.

For our experiments, we have manually selected five dimensions, which

seem to be the dimensions more promising for the discovery of interesting

patterns. The selected dimensions were Claimant, Covered_Item,

Event_Time, Insured_Party, and Policy. Figure 1 shows, for each of these

dimensions, which were the attributes used in our experiments. Attribute-

value hierarchies are indicated by nesting the names of the attribute levels.

For instance, the dimension Claimant has attributes Gender, Claimant Type

and Age Group with just one hierarchical level each, and an attribute with

three hierarchical levels: State → Count → City. The number of the

hierarchical level shown between brackets ranges from 0 for the root (highest)

level to nh – 1 for the deepest level, where nh is the number of levels in the

hierarchy of the attribute.

CLAIMANT
 Gender (level 0)
 State (level 0)
 County (level 1)
 City (level 2)
 Claimant type (level 0)
 Age_Group (level 0)

COVERED_ITEM
 Covered_Item_Type (level 0)
 Covered_Item_Description (level 0)

EVENT_TIME
 Week_Number (level 0)
 Year (level 0)
 Quarter (level 1)
 Month_Name (level 2)
 Week_Day_Name (level 0)
 Fiscal_Year (level 0)
 Fiscal_Quarter (level 1)

INSURED_PARTY
 Gender (level 0)
 State (level 0)
 County (level 1)
 City (level 2)
 Age_Group (level 0)

POLICY
 Risk_Grade (level 0)

Figure 1: Description of the dimensions of the data cube used in our
experiments

Mining the five dimensions shown in Figure 1, the HSPD algorithm

discovered in total 15 instances of Simpson’s paradox, with surprisingness

degrees – measured by formula (5) – varying from 0.036 to 0.476. We report

the four most surprising instances of the Paradox in Tables 2 through 5. The

degree of surprisingness of these instances varies from 0.426 to 0.476.

Table 2: 1stPartAttr = Claimant’s state; 2ndPartAttr = Insured party’s district
 Situation of Interest: (Claimant’s type = third party)
 Surprisingness degree: 0.461

Claimant’ state = PA Claimant’ state = DE
Insured
party’s
district

total
pop.

claimant
= third
 party

 % Insured
party’s
district

total
pop.

claimant
= third
 party

%

Bucks 9186 2532 27.6 Bucks 0 0 0
Philadel. 12476 3948 31.6 Philadel. 0 0 0
NewCast. 42 42 100.0 NewCast. 3954 1320 33.4
Montgom 11564 3456 29.9 Montgom. 0 0 0
Delaware 7458 2464 33.0 Delaware 0 0 0
Chester 6652 2328 35.0 Chester 0 0 0
TOTAL 47378 17770 31.2 TOTAL 3954 1320 33.4

Table 3: 1stPartAttr=Insured party’s gender; 2ndPartAttr=Claimant’s gender
 Situation of Interest: (Insured party’s state = DE)
 Surprisingness degree: 0.476

Insured party’s gender = female Insured party’s gender = male
Claimant’
s gender

total
pop.

Insured
party’s
state=
DE

% Claimant’
s gender

total
pop.

Insured
party’s
state=
DE

%

female 24774 2150 8.7 female 234 42 17.9
male 84 0 0 male 26240 1804 6.9
TOTAL 24858 2150 8.6 TOTAL 26474 1846 7.0

Table 4: 1stPartAttr = Claimant’s state; 2ndPartAttr = Insured party’s state
 Situation of Interest: (Claimant’s type = third party)
 Surprisingness degree: 0.450

Claimant’ state = PA Claimant’ state = DE
Insured
party’s
state

total
populati
on

claimant
= third
 party

% Insured
party’s
state

total
popula
tion

claimant
= third
 party

%

PA 47336 14728 31.1 PA 0 0 0
DE 42 42 100.0 DE 3954 1320 33.4
TOTAL 47378 14770 31.2 TOTAL 3954 1320 33.4

Table 5: 1stPartAttt = Insured party’s state; 2ndPartAttr = Claimant’s state
 Situation of Interest: (Insured party’s sex = male)
 Surprisingness degree: 0.426

Insured party’s state = PA Insured party’s state = DE
Claimant’
s state

total
pop.

Insured
party’s
sex =
male

% Claimant’
s state

total
pop.

Insured
party’s
sex =
male

%

PA 47336 24628 52.0 PA 42 42 100
DE 0 0 0.0 DE 3954 1804 45.6
TOTAL 47336 24628 52.0 TOTAL 3996 1846 46.2

In the title of each table we indicate the first partitioning attribute, the

second partitioning attribute, the situation of interest and the surprisingness

degree of the corresponding instance of the paradox. In addition, these tables

have the following structure. The first row indicates the two values of the

First Partitioning Attribute used to partition the data into subpopulations Pop1

and Pop2. Those two values divide the table into two parts. Each of those

parts is further divided into four columns, whose meaning is as follows. The

first column indicates the values of the Second Partitioning Attribute. In this

column each row, starting from the third row of the table, specifies one value

of that attribute. In the second column each cell contains the number of

records having the corresponding values of the First and Second Partitioning

Attributes used to specify the position of the cell. In the third column each cell

contains the number of records that not only have the corresponding values of

First and Second Partitioning Attributes but also have the situation of interest

(value of the goal attribute) indicated in the header of this column (in the

second row of the table). Finally, in the fourth column each cell contains the

percentage of records with the situation of interest for the corresponding

values of First and Second Partitioning Attributes.

As shown in Tables 2 through 5, all the four most surprising discovered

instances of the paradox involved a combination of partitioning attributes of

two dimensions, namely Claimant and Insured Party. In addition, in three out

of those four tables, the partitioning attributes were the addresses of the

Claimant and the Insured Party, indicating that there is a surprising

relationship between the addresses of these two agents. This surprising

relationship holds for two different situations of interest, namely “Claimant

type = third party” (Tables 2 and 4), and “Insured party’s sex = male” (Table

5). In Tables 2, 4 and 5, in general the instances of the paradox are associated

with the addresses of Claimant and Insured Party at the hierarchical level of

state. (The exception is that in Table 2 the address of the Insured Party is at

the hierarchical level of district.)

Note that the fact that instances of Simpson’s paradox were discovered

from hierarchical multidimensional data offers the user a possibility that is not

available when instances of the paradox are discovered from a single “flat”

relation. In the former case, the user can use conventional OLAP operators,

such as drill-down, to further analyze the discovered instances of the paradox,

observing the data at a lower level of abstraction (a deeper hierarchical level).

Actually, the result of a drill-down on an instance of the paradox might even

have been already reported to the user, if the paradox also occurred in the data

associated with the drill-down. For instance, Table 2 is actually a drill-down

of Table 4. Looking at Table 4, one can see that in general the claimant’s state

is the same as the insured party’s state. However, there are some exceptions.

More precisely, there are 42 cases where the claimant’s state is PA but the

insured party’s state is DE. Observing the drilled-down data in Table 2 one

can see that all those 42 cases occur when the insured party’s district is New

Castle.

Hence, instances of the paradox discovered in hierarchical

multidimensional data not only represent surprising patterns by themselves,

but also have the nice “side effect” of naturally suggesting potentially-

interesting drill-down directions for the user – therefore, in some sense,

increasing the functionality of OLAP tools.

CONCLUSIONS AND FUTURE RESEARCH

Previous work in the literature introduced an algorithm that discovers

surprising instances of Simpson’s paradox in data based on the relational

model, assuming that all the data was stored in a single universal relation. In

this paper we have extended that algorithm to cope with hierarchical

multidimensional data, stored in a star scheme. Hence, this work obtains an

integration between data mining and data warehouse/OLAP, which is

beneficial for both areas.

We emphasize that the algorithm proposed in this paper was designed

specifically for discovering surprising patterns. By contrast, a number of data

mining algorithms in the literature were designed for initially discovering a

large number of patterns and then passing them through a filter, to try to

select the most surprising (or interesting) patterns. It is also important to

notice that many measures of “interestingness” proposed in the literature

focus on measuring some kind of statistical correlation or another predictive

accuracy-related criterion, without actually trying to estimate the degree of

surprisingness of discovered patterns to the user. This is the case, for

instance, with the 21 measures of rule interestingness discussed by Tan et al.

(2002). There are, of course, several measures of rule surprisingness

(mentioned in the Introduction), but this work focuses on the discovery of a

very different kind of surprising pattern, as explained in the Introduction.

We believe that Simpson’s paradox offers good opportunities for future

research in data mining, since the usefulness of discovering Simpson’s

paradox instances has been underexplored in the literature. Discovered

instances of the paradox are potentially useful for helping to solve other kinds

of data mining problems.

As one example, we can envisage the following application of Simpson’s

paradox discovery in prediction-rule discovery. Consider that hidden

instances of Simpson’s paradox can fool a greedy data mining algorithm,

making it to misinterpret a given relationship between some attributes

(Glymour et al., 1997). E.g., greedy decision tree induction and rule induction

algorithms can select an attribute or attribute value that seems to have a

certain relationship with a given class, when in reality the true relationship –

taking into account attribute interactions (Freitas, 2001) – is the reverse of the

apparent one. If instances of Simpson’s paradox have been previously

discovered, in principle the decision tree or rule induction algorithm could be

given information about those discovered instances of the paradox, in the

form of “background knowledge”. Once the algorithm has been properly

modified to take into account this kind of background knowledge, it would

not be fooled by those instances of the paradox – i.e., it would not choose the

wrong attribute or attribute value to add to a prediction rule, because it would

know that the true relationship is the reverse of the apparent one. This seems

an interesting research direction.

Another research direction consists of devising more efficient algorithms

for discovering Simpson’s paradox instances, perhaps by exploiting

background knowledge to reduce the size of the search space.

ACKNOWLEDGMENT

We are very grateful to Kurt E. Allebach for making available to us the

hierarchical multi-dimensional data set used in our experiments. We also

thank the anonymous reviewers for their valuable comments, which

significantly contributed to the final, improved version of this paper.

REFERENCES

Carvalho, D.R., Freitas, A.A. and Ebecken, N.F.F. (2003). A critical review

of rule surprisingness measures. In: N.F.F. Ebecken, C.A. Brebbia, A.

Zanasi (Eds.) Proceedings of Data Mining IV (4th International

Conference on Data Mining), pp. 545-555. Southampton, UK: WIT Press.

De Groot, M.H. and Schervish, M.J. (2002). Probability and Statistics. 3rd

Ed. New York: Addison-Wesley.

Dong, G. and Li, J. (1998). Interestingness of discovered association rules in

terms of neighborhood-based unexpectedness. Research and Development

in Knowledge Discovery & Data Mining (Proceedings of the 2nd Pacific-

Asian Conference, PAKDD-98). Lecture Notes in Artificial Intelligence

1394, pp. 72-86. Berlin: Springer-Verlag.

Fabris, C.C. and Freitas, A.A (1999). Discovering surprising patterns by

detecting instances of Simpson’s paradox. In: M. Bramer, A. Macintosh,

and F. Coenen (Eds.) Research and Development in Intelligent Systems

XVI (Proceedings of ES-99, the 19th International Conference on

Knowledge Based Systems and Applied Artificial Intelligence), pp. 148-

160. Berlin: Springer-Verlag.

Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. (1996). From data mining

to knowledge discovery: an overview. In: Fayyad, U.M. et al (Eds.)

Advances in Knowledge Discovery and Data Mining, pp. 1-34. Menlo

Park, CA, USA: AAAI/MIT.

Freitas, A.A. (1998). On objective measures of rule surprisingness. Principles

of Data Mining and Knowledge Discovery: Proceedings of the 2nd

European Symposium (PKDD’98). Lecture Notes in Artificial Intelligence

1510, pp. 1-9. Berlin: Springer-Verlag.

Freitas, A.A. (2001). Understanding the crucial role of attribute interaction in

data mining. Artificial Intelligence Review 16(3), pp. 177-199.

Freitas, A.A. and Lavington, S.H. (1998). Mining Very Large Databases with

Parallel Processing. Amsterdam: Kluwer.

Glymour, C., Madigan, D., Pregibon, D. and Smyth, P. (1997). Statistical

themes and lessons for data mining. Data Mining and Knowledge

Discovery 1(1), pp. 11-28.

Kimball, R. and Ross, M. (2002). The Datawarehouse Toolkit: the complete

guide to multidimensional modeling. 2nd Ed. New York: John Wiley &

Sons.

Liu, B. and Hsu, W. (1996). Post-analysis of learned rules. Proceedings of the

1996 National Conference of the American Association for Artificial

Intelligence (AAAI-96), pp. 828-834. Menlo Park, CA, USA: AAAI Press.

Liu, B., Hsu, W. and Chen, S. (1997). Using general impressions to analyze

discovered classification rules. Proceedings of the 3rd International

Conference on Knowledge Discovery & Data Mining, pp. 31-36. Menlo

Park, CA, USA: AAAI Press.

Matheus, C.J.; Piatetsky-Shapiro, G. and McNeil, D. (1996). Selecting and

reporting what is interesting: the KEFIR application to health data. In:

Fayyad, U.M. et al. (Eds.) Advances in Knowledge Discovery and Data

Mining, pp. 495-516. Menlo Park, CA, USA: AAAI/MIT Press.

Newson, G. (1991). Simpson´s paradox revisited. The Mathematical Gazette

75(473), pp. 290-293.

Ohsaki, M., Kitaguchi, S., Okamoto, K., Yokoi, H., and Yamaguchi, T.

(2004). Evaluation of rule interestingness measures with a clinical dataset

on hepatitis. Knowledge Discovery in Databases: Proceedings of PKDD-

2004, Lecture Notes in Artificial Intelligence 3202, pp. 362-373. Berlin:

Springer-Verlag.

Padmanabhan, B. and Tuzhilin, A. (1998) A belief-driven method for

discovering unexpected patterns. Proceedings of the 4th International

Conference on Knowledge Discovery & Data Mining (KDD-98), pp. 94-

100. Menlo Park, CA, USA: AAAI Press.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Francisco,

CA, USA: Morgan Kaufmann.

Rescher, N. (2001). Paradoxes: their roots, range and resolution. New York:

Open Court.

Romao, W., Freitas, A.A. and Gimenes, I.M.S. (2004). Discovering

interesting knowledge from a science and technology database with a

genetic algorithm. Applied Soft Computing 4(2), pp. 121-137.

Sahar, S. (2002). On incorporating subjective interestingness into the mining

process. Proc. 2002 IEEE International Conference on Data Mining. New

York: IEEE Press.

Silberschatz, A. and Tuzhilin, A. (1996). What makes patterns interesting in

knowledge discovery systems. IEEE Transactions on Knowledge & Data

Engineering, 8(6), pp. 970-974.

Simpson, E.H. (1951). The interpretation of interaction in contingency tables.

Journal of the Royal Statistical Society, Series B, 13, pp. 238-241.

Suzuki, E. (1997). Autonomous discovery of reliable exception rules.

Proceedings of the 3rd International Conference on Knowledge Discovery

& Data Mining, pp. 259-262. Menlo Park, CA, USA: AAAI Press.

Suzuki, E. and Kodratoff, Y. (1998). Discovery of surprising exception rules

based on intensity of implication. Proceedings of the 2nd European

Symposium on Principles of Data Mining and Knowledge Discovery

(PKDD’98). Lecture Notes in Artificial Intelligence, 1510, pp. 10-18.

Berlin: Springer-Verlag.

Tan, P.N., Kumar, V. and Srivastava, J. (2002). Selecting the right

interestingness measure for association patterns. Proceedings of the ACM

SIGKDD 2002 International Conference on Knowledge Discovery and

Data Mining (KDD-2002). New York: ACM Press.

Thomsen, E. (2002). OLAP Solutions : building multi-dimensional systems,

2nd Ed. New York: Wiley.

Wagner, C.H. (1982). Simpson’s paradox in real life. The American

Statistician, 36(1), pp. 46-48.

Witten, I.H. and Frank, E. (2000). Data Mining: practical machine learning

tools with Java implementations. San Francisco, CA, USA: Morgan

Kaufmann.

