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Abstract

This paper focuses on the discovery of surprisimgxpected patterns,
based on a data mining method that consists ottiegeinstances of
Simpson’s paradox. By its very nature, instancesisfParadox tend to be
surprising to the user. Previous work in the litera has proposed an
algorithm for discovering instances of that pargdax it addressed only
“flat” data stored in a single relation. This wgrtoposes a novel algorithm
that considerably extends that previous work, Isgalering instances of
Simpson’s paradox in hierarchical multidimensiothata — the kind of data
typically found in data warehouse and OLAP envirents. Hence, the
proposed algorithm can be regarded as integratimgiteas of data mining
and data warehousing, by using an adapted datagni@chnique to discover

surprising patterns from data warehouse and OLAftr@mments.
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INTRODUCTION

In general data mining consists of discoveringregéng hidden patterns
or previously unknown relationships in data. Howetee question of what
properties the discovered patterns should haverder to be considered
“interesting”, is still an open problem.

The majority of data mining algorithms focus on thigcovery of accurate
patterns. This is particularly the case in thedhdata mining tasks most
investigated in the literature, namely classifieaficlustering and association
(Fayyad et al., 1996).

Another criterion that is also used quite oftervaluate discovered
patterns (though not nearly so often as accuraog®mprehensibility. Pattern
comprehensibility is important in order to allovethser to validate and
interpret discovered patterns, giving the usemaight that can be effectively
used to make intelligent decisions.

There is, however, another criterion to evaluaseaered patterns that
has been relatively less explored in the literatneenely thesurprisingness
of discovered patterns. First of all, it shouldria¢ed that accuracy and
comprehensibility do not imply surprisingness, distovering surprising
patterns seems more difficult than discovering eateuand comprehensible
patterns. As a simple, classic example of thistpansider the following
rule, which could be discovered from a hypothetinalical database: “IF
(patient is pregnant) THEN (patient is female).g&tly, this rule is highly
accurate. It is also highly comprehensible — ités, very short and simple,
easy to be interpreted, referring to attribute galwhose meaning are very
well-known. However, this rule is not surprisingadlf representing an

obvious fact, and so it is useless to the user.



The challenge addressed in this paper is to discaugrising patterns in
data. There has been some work addressing thigebal mainly in the
context of the classification or association ta$ks & Hsu, 1996;
Silberschatz & Tuzhilin, 1996; Suzuki, 1997; Liuadt, 1997, Padmanabhan
& Tuzhilin, 1998; Suzuki & Kodratoff, 1998; Freitas998; Dong & Li,

1998; Sahar, 2002; Carvalho et al., 2003; Ohsadi. e2004; Romao et al.,
2004). However, there are two major differencesvben those projects and
the work presented in this paper.

First, this work does not address the classificatipassociation tasks.
Rather, it focuses on the detection of instance&&impson’s paradox, which
will be explained in section 2. In terms of thealatining tasks described in
(Fayyad et al., 1996), the detection of Simpsoai®@ox seems more closely
related to the task of deviation detection, althoitgliffers from most
deviation detection techniques in the sense tltids not require the
specification of what is a “normal” relationshipiin which deviations should
be found. Hence, when detecting instances of Sinipgmradox the system
has more autonomy. This is a significant differebpetveen this work and
typical projects on deviation detection, such asatfMus et al., 1996).

Second, instead of trying to select the most ssirggirules out of many
discovered rules — as it is done in most of theiptesly mentioned projects
on rule surprisingness — the system presentedsimpéper was designed
specifically for discovering only surprising patisr As will be argued in
Section 2, Simpson’s paradox is surprising becaugeneral the user cannot
find an explanation for the “paradox”. In other wsythe kind of pattern
represented by an instance of Simpson’s paradday iits very nature, a

surprisingpattern to most users.



There is a previous work alerting for the pitfallssociated with
Simpson’s paradox in the context of data mining/(@ur et al., 1997).
However, this paper follows a very different resbadirection consisting of
exploiting the surprisingness of that paradox, mgkhe detection of
Simpson’s paradox the central goal of a data miaiggrithm explicitly
designed to discover surprising patterns. Thisarededirection was
suggested by (Freitas, 1998), which proposed aritiigh for detecting
instances of Simpson’s paradox. However, that wdatknot implement the
proposed algorithm. Later the algorithm was impleted and evaluated in
public domain data sets by (Fabris & Freitas, 19B@wever, those two
projects involved only “flat” data sets, with neharchical dimensions, where
each data set was represented by a single relgboresponding to the
universal relation of a relational database system)

This work proposes a significant extension to tharswious projects, by
extending the previous Simpson’s paradox-discoaéggrithm to a very
different kind of data set, namely data cubes dtora star format with
hierarchical dimensions, as typically found in dataehouse (Kimball &
Ross, 2002) and OLAP environments (Thomsen, 2001).extended
algorithm is then evaluated in a real-world datbecwith 5 hierarchical
dimensions.

Hence, this work obtains amtegration between data mining and data
warehousein the sense that it proposes to adapt a datmgnmnethod for
discovering surprising patterns to the typical deé@aehouse/OLAP
environment of hierarchical multidimensional d&teom a data mining
viewpoint, this has the benefit of making the dataing method in question
more widely applicable, considering the increagingularity of hierarchical

multidimensional data. From an OLAP viewpoint, this the benefit of



extending the functionality and increasing the degsf autonomy of typical
OLAP tools.

The remainder of this paper is organized as folldyextion 2 presents a
review of Simpson’s paradox. Section 3 briefly dixws the above-
mentioned algorithm for detecting instances of Siomps paradox in “flat”
data stored in a single relation. Section 4 propdise above-mentioned novel
extension of that algorithm, designed for miningraichical
multidimensional data. Section 5 presents comprtatiresults. Finally,

Section 6 concludes the paper.

SIMPSON’'S PARADOX

This section presents a brief review of Simpsoasdox, based on
(Fabris & Freitas, 1999). See also (Wagner, 19&2y$bn, 1991) for further
discussions about this kind of paradox.

Let a population be partitioned into two mutualkckisive and
exhaustive populations, denoteédp, andPop,, according to the value of a
given binary attribute, denotddgtPartAtt(First Partitioning Attribute). Let
each of the populatiordop, andPop, be further partitioned, in parallel,
according to the values of a given categoricaibatte, denote@ndPartAtt
(Second Partitioning Attribute), wittm values in its domain. This will
partition Pop, andPop, into m subpopulations, denot&bp4,...Pop, and
Popy,...,Popm

Let G be a binary goal attribute, which takes on a vatde&ating whether
or not a given situation of interest has occurred population. We are
interested in analyzing the variation of the praligiof the situation of

interest across the above-mentioned partitions,ineestigating the



relationship between the values of the partitiorattgbutes and the
probability of the situation of interest. In orderdo this analysis, let us use
the following notation:

e G; andG; denote the attributé value representing the situation of
interest in each of the respective populatiBop, andPop,;

*  Pr(Gy) andPr(G,) denote the probability that the situation of
interest has occurred in populatidhsp, andPop,, respectively;

* G denotes the attribut® value representing the situation of interest
in the subpopulatioRop;, wherei is the id of the value of
1stPartAtt(i=1,2) and is the id of the value &ZndPartAtt
(=1,...m);

* Pr(G;j) denotes the probability that the situation ofiest has
occurred in the subpopulatiétop;, i=1,2 and=1,...m.

Formally, Simpson’s paradox (Simpson, 1951) ocuhen either of the
following two logical expressions is satisfied:

(@) Pr(Gy) > Pr(Gp) andPr(Gy)) < Pr(Gy) for j=1,...m;
(b) Pr(Gy) < Pr(cc)ar;) andPr(Gy) = Pr(Gy) for j=1,...m.

Expression (a) means that the paradox occurs velftiough the
probability of the situation of interest is highePop, than inPop, in each
of the categories produced BydPartAttthe probability of the situation of
interest inPop, is lower than or equal to its valueRop,. The paradox also
occurs in the dual situation represented by exjmegb).

One of the earliest real-life examples of this gdaraoccurred in a
comparison of tuberculosis deaths in New York @itgl Richmond, Virginia,
during the year 1910, as shown in Table 1, whezesittuation of interest

measured by attributd was theoccurrence of deathm a tuberculosis case;



the 1stPartAttwascity; and the2ndPartAttwasracial category As can be
observed in the table, overall the tuberculosistatity rate of New York was
lower than Richmond’s one. However, the opposits alaserved when the
data was further partitioned according to two Hacggegories: white and non-
white. In both the white and non-white categoriRishmond had a lower
mortality rate.

It should be noted that an instance of Simpsonagx has an
explanation. In the example of Table 1, this exatam is as follows. As
shown in the table, taking a look at the disaggestydata (partitioned by
both city and racial category), the mortality radésion-white people (0.56%
and 0.33%) were in general higher than the moytedites of white people
(0.18% and 0.16%) in both cities. The opposite micon is reached by
taking a look at the aggregated data (partitiondy by city) because the
proportion of non-white people in Richmond was 36.@16,733 / 127,682), a
value much larger than the proportion of non-wpiteple in New York,
which was only 1.9% (91,709 / 4,766,883). In otlwverds, the paradox
occurred because the two racial categories whidlenan-white had different
mortality rates and these two categories were pteseonsiderably different

proportions in the cities of New York and Richmond.

Table 1: Simpson’s paradox in data about tuberculosis deaths

New York Richmond
Total Population 4766883 127682
No. of deaths 8878 286
Percentage 0.19% 0.22%
New York Richmond
white non-w. white non-w.
Total Population 467517 91709 80895 46733
4
No. of deaths 8365 513 131 155
Percentage 0.18% 0.56% 0.16% 0.33%




The existence of such explanations, which are sterdi with the data,
have led some statisticians to point out that Samjgsparadox is not really a
paradox (De Groot & Schervish, 2002). This issuygetes, of course, on
how one defines a paradox. According to Resched1(R0... a paradox
arises when a set of individually plausible propiosis is collectively
inconsistent. And the inconsistency at issue nausedl rather than merely
seeminf (p. 6). In Table 1 the aggregated data is asttiaith the
proposition that the mortality rate was higher inHRond than in New York;
and the disaggregated data is associated withrépesgition that in both
racial categories the mortality rate was higheéd@&w York than in
Richmond. The inconsistency between these two iddally-plausible
propositions can be explained in a way that is isterst with the observed
data, as explained earlier, so that the incongigtenmerely seeming” rather
than real. This leads us to the conclusion thapSan’'s paradox is not really
a paradox, according to Rescher’s definition.

We emphasize, however, that although Simpson’slpare not really a
paradox in a strict technical sense, it is st8lgprising kind of pattern.
Furthermore, it does look like a paradox for magadniningusers who are
not trained statisticians or data analysts. Evatisticians who do not
consider Simpson’s paradox as a real paradox dHdatiit is a surprising
result for someone who has not studied it before @oot & Schervish,

2002).

DISCOVERING INSTANCES OF SIMPSON'S
PARADOX IN “FLAT”, SINGLE-RELATION

DATA



This section briefly describes an algorithm forcdigering instances of
Simpson’s paradox in “flat” data , stored in a $ngelation (corresponding to
the universal relation of a database system), wisitihe typical kind of data
mined by most data mining algorithms. The algoriirdescribed in the
pseudocode of Algorithm 1 — adapted from (Freit&98). The input for the
algorithm is a lisLg of user-defined binary goal attributes, each efith
indicating whether or not a given situation of et (to the user) has
occurred. The algorithm then identifies all thedsinattributes (potential
“first partitioning attributes”) in the data andtpuhem into the list;. It also
identifies all categorical attributes (potentiaétend partitioning attributes”)
in the data and puts them into the ligt The algorithm enforces the
constraint that any goal attribute included_gcannot be included ib; nor
in L.

The output of Algorithm 1 consists of all instancésSimpson’s paradox
found by the algorithm. These instances can beacitkdecreasing degree
of surprisingness to the user, so that a userlittithavailable time can focus
on the analyses of only the most surprising ingarut the paradox.
INPUT: list of user-defined goal attributes, denbtg
BEGIN
(1) identify attributes that can be used as 1$f®=and put them in list,

(2) identify attributes that can be used as 2n@#fzaind put them in list,

(3) FOR EACH goal attribut& in Lg
(4) FOR EACH first partitioning attributA in L,

(5) partition population int®éop, andPop, according to values &

(6) Pr(Gy) =Pr(G="yes"|A=1)

@) Pr(G,) = Pr(G="yes"|A=2)

(8) FOR EACH second partitioning attt#B in L, such thaB # A

9) FOR=1,2

(10) partitioRop into m new population®op; ... Popm,
according to the valoés8

(11) FOR1,..m

(12) Pr(G;j) = Pr(G="yes"|A=i,B=j)

(13) IF Pr(Gy) > Pr(Gz) AND Pr(Gy) < Pr(Gy), j=1,...m)

ORPRr(Gy) <Pr(Gz) AND Pr(Gy) 2 Pr(Gy), j=1,...m)



(14) OUTPUT the occurrencehef paradox to the user
END

Algorithm 1: Search for instances of Simpson’s paradox in fiaad

The degree of surprisingness of a given instant¢keoparadox is
estimated by a measure of the “magnitude” of thragax, as proposed by
(Fabris & Freitas, 1999). The basic idea is thatlénger the magnitude of the
paradox, the more the probability of the situatibimterest given the first
partitioning attribute differs from the probabilibf the situation of interest
given both the first and the second partitionirtglaites, and so the larger the
estimated degree of surprisingness for the user.

Formally, the “magnitudeM of an instance of the paradox is given by the
following formula:

M=(M1+M2)/2, (1)

whereM1 measures by how much the probability of the sibmadf interest
increases (decreases) frétap, to Pop, after the first partition of the data and
M2 measures by how much that probability decreasese@ses) frorRop,
to Pop, for each of the categories 2fidPartAttafter the second patrtition of
the data.

The measurelll andM2 are as defined in formulas (2) and (3), whare
is the number of values in the domairRoflPartAtt

M1 = Pr(Gy) —Pr(Gy)| / maxPr(Gy), Pr(Gy) @)

M2 :J;an (Pr(Gy)) —Pr(Gy)| / maxer(Gy),Pr(Gy)) ) /m 3

In formula (2) the numeratdPi(G;) —Pr(G,)| is simply the absolute value
of the difference between the probabilities of$iteation of interest iPop,
andPop,, after the first partitioning of the data. Simijarin formula (3) the

term Pr(Gy)) — Pr(Gy)| is the absolute value of the difference between t



probabilities of the situation of interestRop; andPopy;, considering th¢-th
value of2ndPartAtt In both formulas the probability difference terare
divided by the maximum value between the two c@wesing probabilities,
and in formula (3) the result of this division igegaged over thm values of
2ndPartAtt

The intuition behind the division of the probalyildifference terms by
their corresponding maximum value is twofold. Riisproduces a
normalized value between 0 and 1 for bigthandM2. As a result, the value
of M in formula (1) is also normalized between 0 antadilitating its
interpretation by the user. Second, it takes ictmant the relative value of
the differences between probabilities. To seephiat, consider two
scenarios in the comparison of two probabilitiethef situation of interest. In
the first scenario the probabilities are 0.01 ai@® Owhereas in the second
scenario the probabilities are 0.49 and 0.50. Tselate value of the
difference is 0.01 in both scenarios. Howeverhimfirst scenario the relative
difference between the two probabilities is lartpan in the second scenario
— since dividing these differences by the corredpapmaximum of the two
probabilities we get 0.5 in the first scenario &@D02 in the second
scenario. Therefore, the first scenario would I®eigsted with a larger
magnitude, reflecting the fact that the greateatiet difference in the
observed probabilities is estimated to be somewinaie surprising to the
user.

This kind of normalization —i.e., the division ¢iet probability difference
terms by their corresponding maximum value — isipalarly important when
analyzing data where the situation of interestriara event (i.e., it has a very
small probability of occurrence) and even a minabability difference can

still be surprising to the user, due to the striateggportance of the rare



situation of interest. This is the case, for instarin the data represented by
Table 1, where the number of deaths is a very dnaaition of the numbers
of individuals in the populations and even a midiffierence in the
probability of occurrence of this situation of irdet is potentially very
interesting to the user. In such cases, the justrieed normalization is very
useful in amplifying the degree of magnitude of plagadox, because without
such a normalization the paradox’s magnitude wbeldnduly very low.

This normalization avoids this problem by considgtihe relative (rather
than the absolute) value of the probability diffezes.

To see this point, and also as an example of ta@lfrmulas (1), (2)
and (3) to compute the magnitude of an instanc&irapson’s paradox, let us
consider the paradox instance shown in Table 1re€G,) = 0.0019,
Pr(G,) = 0.0022Pr(G;) = 0.0018Pr(G,;) = 0.0016 Pr(G,,) = 0.0056,
Pr(G,z) = 0.0033 anan = 2. Using formulas (2) and (3) we dé¢l = 0.1364
andM2 = 0.2609, and using formula (1) we finally get theasure of
magnitudeM = 0.1987. This indicates that this is a reasonabtprising
instance of the paradox. If we did not use thawabiescribed normalization
(i.e. if in formulas (2) and (3) the probabilityffdirences were not divided by
their maximum value), we would gitl = 0.0003M2 = 0.00155 andi! =
0.000775, which would be an extremely low valuetha magnitude of the
paradox — an undesirable result.

Finally, it should be noted that the magnituderfrestance of the
paradox is just a data-driven, objective estimétb® (ultimately subjective)
degree of surprisingness of that pattern to the ésprecise measure of that
degree of surprisingness would ideally take intmaat the user’s previous
knowledge, but this kind of user-driven, subjeciygroach would of course

considerably reduce the autonomy and generalitheproposed algorithm



for detecting instances of Simpson’s paradox. Tep@sed data-driven
approach for estimating the surprisingness of aqeat instance, although not
perfect, has the twofold advantage that it is \gageric and can be directly
applied without requiring the user to spend henfneious time to specify
her/his previous knowledge in the application domaivhich would be
difficult to formalize, anyway. In the proposed apgch the user just has to
specify the list of goal attributes with their aggponding situation of interest.
This task is much less time consuming and muchlsinipan capturing and

formalizing the user’s previous knowledge.

Analysis of the Computational Time Complexity of tle

Algorithm

Intuitively, Algorithm 1 seems a time consumingaithm, since it has
several nested loops. In order to formalize thigiiion and analyze how the
algorithm scales up to large data sets, we noweptem analysis of the
computational complexity of the algorithm.

The initialization steps of the algorithm — lindg &nd (2) — involve only
checking the data type of each attribute, to idgmbinary and categorical
attributes. Assuming this simple metadata infororais readily available in
the database — a safe assumption in general -oé#uhse two steps takes a
time on the order dk, denoted)(K), whereK is the number of attributes (or
“dimensions”) in the data being mined.

On the other hand, lines (3)—(13) are much more tonsuming,
involving the computation of conditional probabég. Lines (3), (4), (8), (9),
(11) represent just the beginning of an iteratiba BOR loop. At each

iteration of those loops, the corresponding lineairse takes oni@(1) to



initialize or update the value of the loop variafiie A, B, i, orj,
respectively). To be precise, line (8) includesdditional operation, the
comparisonB # A), but this also takes ju€i(1).

Lines (5), (6) and (7) can be performed in a sirsgien of all the tuples of
the data being mined. This involves updating, @nflyn counters for the
number of tuples (records) satisfying each of thaditions A = 1), (G =
“ves,A=1), (A=2), (G ="yes,A=2). These counters are, of course,
initialized with 0. Each time a tuple is read,vitdues for attribute®& andA
are checked and the appropriate counters are iecttech accordingly. For
instance, suppose the first tuple has valdes 1) and G = “no” ). After
reading this tuple, the counter for the conditidr=(1) would be incremented
to take the value 1, whereas the other three ccaumteuld remain with the
value 0. After reading all the tuples and perforgréti the appropriate counter
updates, the final values of those counters aeziljrused to compute the
conditional probabilities in steps (6) and (7). fidfere, recalling that the
conditional probabilities have to be computed facteiteration of the FOR
loops in lines (3) and (4), the computation of $ir{B), (6), (7) is performed in
time O(N x |Lg| X |L4|), whereN is the number of tuples in the data being
mined, Lg| is the cardinality of (number of attributes iisf Lg and L] is the
cardinality of listL,.

The computation of conditional probabilities asated with lines (10)
and (12) can be performed in a similar way, witbtaer single scan of all the
tuples of the data being mined. The main differdadhat now there are more
counters to be updated, i.e., the algorithm novdsé¢e keep track of counters
for the conditionsA=1,B=j), (G="yes, A=1B=),(A=2,B=), (G

="“yes,A =2,B =)); for all valueg (j = 1...m) of the attributeB, wheremis



the number of values &. (For now we assuma has the same value for all
attributes, for the sake of simplicity. We disctlss case whenmn varies

across attributes later.) Therefore, recalling thatconditional probabilities

of line (12) have to be computed for each iteratibthe FOR loops in lines
(3), (4), (8), (9) and (11), the computation okln(10) and (12) is performed
in time O(N x|Lg| x|Li| x|L,] xm). Note that the value 2 associated with the
two iterations of the FOR loop specified by ling {9wherei = 1,2 — does not
appear in this expression, since it is a constant.

Finally, lines (13) and (14) involve using the doeisly computed
conditional probabilities to detect instances &f plaradox and report them to
the user. Line (14) represents only the outpubefalgorithm, rather than its
processing, and therefore can be ignored in thiysiaaf the computational
complexity of the algorithm. Hence, we focus orl{i3). This line contains
an implicit FOR loop, associated with the exprassjo= 1,...m". (This loop
was not explicitly indicated in Algorithm 1 for tleake of simplicity in the
description of the pseudocode.) Hence, the timentddy each iteration of line
(13) isO(m). Recalling that this line has to be computedefach iteration of
the FOR loops in lines (3), (4) and (8), the comapiah of line (13) takes time
O(lkal * [Laf % [Lof x m).

Therefore, the computational time taken by the rélgm as a whole is
given by the summation of the following factors:

e O(K) for lines (1), (2);
e O(N % |Lg| x |L4]) for lines (5), (6), (7) of the FOR loops in InE3), (4);
e O(N % |Lg| x |Lq] % |Lo| x m) for lines (10), (12) of the FOR loops in lines
3,
4), (8), (9), (11);



e O(|Lg| % |L4| % |Lo| x M) for line (13) of the FOR loops in lines (3), (43).

The second and fourth above factors can be igreineg they are
dominated by the third one, so that the total caatpmnal time of the
algorithm is given byO(K + N x |Lg| % |L4| X |Lo| x m).

In practical applications the value Nf the number of tuples, tends to be
much larger than the value Kf the number of categorical attributes in the
data, so that this computational complexity casibeplified to:

O(N % |Lg| * [La| X |Lof x M) .

It is also useful to discuss how the cardinalitékg, L,, L, are related
with K. In the worst-case scenario, each of those tisesawould have a
number of attributes close K the maximum possible value for those
cardinalities. In this case the algorithm would éavime complexity of O\

x K3 x m). However, this is an unlikely scenario, becabselistLg includes
only goal attributes containing a situation of ret to the user and the Iist
can contain only binary attributes. Therefores ifjuite possible that the
cardinalitiesllg| and IL;| will be considerably smaller than the valu&of

In the best-case scenario where the user speaiiegall set of goal
attributes and the number of binary attributedds amall, Il s| and I.,| would
be small constants, and so the above formula #fithe complexity of the
algorithm would collapse t®(N x K x m).

To summarize, with respect kg the time complexity of Algorithm 1 can
vary from linear to cubic, depending on the siziejs g and IL,|. We stress
that the time complexity does not depend on the tatmber of attributes, but
rather just on the number of categorical attributes since continuous

attributes are ignored by the algorithm. In anyec#ise time complexity is



linear with respect tm, the number of values per categorical attribute, a
also linear with respect td, the number of tuples.

Finally, a couple of remarks must be made abouéattadysis carried out
to derive the above formula. First, this analysés\Wwased on a
straightforward implementation of the pseudocodsedled in Algorithm 1.
This implementation has the disadvantage that taosof all the tuples are
required, one scan to compute the conditional fitibas of lines (6), (7)
and another scan to compute the probabilitiesnef (12). This can be
improved by a somewhat more complex implementaifadhe algorithm,
which performs a single scan of all the tuples,atipg) all the counters
necessary to compute all those probabilities orilyhas each tuple is read.
This reduces the number of scans of all tuples tuflit does not change the
computational time complexity of the algorithm.

Second, the above analysis assumednth#éte number of values of a
categorical attribute, is constant for every attt@B in list L,. In practice this
is unlikely to be the case. In the most likely srémof m varying across
different attributes irh,, the above formula for computational time
complexity can be interpreted in two different wagspending on the value
assigned ton. If mis assigned thaveragenumber of values per attribute,
computed over all attributes in, the above formula can be interpreted as the
average-case time complexity of the algorithm. diléively, if mis assigned
thelargestnumber of values per attribute, out of all atttésuinL,, the above

formula can be interpreted as the worst-case tongptexity of the algorithm.



DISCOVERING INSTANCES OF SIMPSON'’S

PARADOX IN HIERARCHICAL MULTI-

DIMENSIONAL DATA

The discussion of the previous section assumedathattributes are
“flat”, i.e. they have no hierarchy. This is a coomsituation when mining
data extracted from a relational database. Inséision, however, we are
interested in mining a different kind of data, n&niéerarchical
multidimensional data (Kimball & Ross, 2002; Thoms2002). The
existence of hierarchical dimensions in data cumtesduces new
opportunities and requirements for modifying thecdivery and the
evaluation of the degree of surprisingness of imsta of Simpson’s paradox.

Suppose we are analyzing data about sales of agradvolving
combinations of values of two attributes, say aslslravith hierarchy store
city - state, and time, with hierarchy day month - year. Consider an
instance of the paradox involving a combinatiostates and years (highest
hierarchical level of both attributes). Should tlegree of surprisingness of
that instance be computed in the same way as déordmbinations of stores
and days (lowest hierarchical level of both attr@s)? What about
combinations of stores and years (mixed hierartlevals)?

In order to address this kind of question, we mothe original
computation of the degree of surprisingness oaims#s of the paradox
(discussed in the previous Section) to take intmant a correction factor
based on the hierarchical levels of the two attélualues being analyzed.

The first step of this modification consists of wing whether the

algorithm should favor the discovery of paradoxeslving attribute values



at higher or lower hierarchical levels of the atites being analyzed. We
have chosen to favor higher hierarchical levelsctvis a bias consistent with
one of the basic goals of data mining, namely ikeayery of
comprehensible patterns. In general, the highehigrarchical level of an
attribute, the higher its associated level of @uston and the smaller the
number of values belonging to the domain of thebaite at that level. A
smaller number of attribute values facilitatesititerpretation of an instance
of the paradox by the user, because there are fesilerin a table
representing an instance of the paradox.

An analogy can be made here with the discover{FofHHEN rules in the
classification task of data mining. It is a weltasished practice to favor the
discovery of shorter rules, having fewer attribvtdues in their antecedent,
because short rules are in general considered @asily interpretable by the
user than long rules (Witten & Frank, 2000; Quinla893).

In other words, both favoring shorter classificatioles and favoring
paradox instances at higher hierarchical levelsaithe same broad
objective, namely reducing the size of the discedgratterns, therefore
facilitating their interpretation by the user.

The above mentioned correction factor (hereaftaptbC), based on the
hierarchical levels of the two partitioning attriba characterizing the

paradox, is computed by formula (4):

A/ (OMwtud /Ms), (@)
wherenhy,a = max(nha, nhs) andhgyg = (ha + hg) / 2, wherenh, andnhg are
the numbers of hierarchical levels of attributeghe first partitioning
attribute) and (the second partitioning attribute), amgdandhg are the

indices of the hierarchical levels of attribufeandB characterizing the



paradox. For a given attribuge(B), its indexh, (hg) varies from 0 (the root
level) tonhy — 1 fhg — 1).

Finally, the degree of Surprisingne$s ¢f an instance of Simpson’s
paradox is computed by formula (5):

S=MxC, (5)

whereM is the magnitude of the paradox, computed by fdar(il), andC is
the correction factor taking into account the hiehnéal levels of the two
partitioning attributes characterizing the paradmmputed by formula (4).

One can see that formula (4) favors the discovépacadox instances at
higher hierarchical levels of attribut&sandB by considering the following
example. Suppose that attribufeandB have respectively 5 and 3
hierarchical levels — i.enh, = 5 andnhg = 3 — and that an instance of
Simpson’s paradox is characterized by the hiereathével 1 of attributé\
and by hierarchical level 1 of attribuBe- i.e.,ha=1 andhg =1 —i.e,
attribute values at a high hierarchical level (elts the root level). The@ =
0.89. Now suppose instead that another instantteeqfaradox is
characterized bii, = 4 andhg = 2 — i.e, attribute values at a low hierarchical
level. ThenC = 0.63. In other words, attribute values at lowierdrchical
levels are more penalized, since they have a smallee of the correction
factor, and so lead to a smaller valué&ah formula (5).

Note that formula (4) returns its maximum valueodly when the values
of attributesA andB associated with the paradox instances are abtite r
levels in their hierarchies, i.e., whbBg=hg = 0. This is an intuitive result,
sinceC = 1 means no penalty will be applied to attribuaéues at the root
level — which is the “best” hierarchical level metsense of having the

smallest number of attribute values among all nidniaal levels.



In any case, there is nothing magical about fornjjaThis formula was
chosen in this work because it is a simple formuith the desired effect of
favoring paradox instances at higher levels oftaibate hierarchy and it has
empirically performed well in our preliminary expeents. However, other
formulas that are biased towards favoring higheell@ierarchical values
could be used instead. Of course, it would alsedsy to use a very different
kind of formula implementing a different kind ofasi, if the user wished so,
since the issue of how the correction factor is pot®d is orthogonal to the
execution of the algorithm for detecting instancESimpson’s paradox.

Note that in formula (5), if we remove the abovsedissed correction
factor considering hierarchical levels, we obthia basic equatios = M.

The motivation for measuring the surprisingnesa paradox instance by its
magnitude was explained in section 3. FormulagSjmply extending that
basic equation to the more complex case of hiei@thultidimensional
data, introducing the correction factor to favar tliscovery of paradox
instances involving higher-level attribute valueshich tend to be paradox
instances more easily interpretable by the usatisgsissed earlier.

Our new algorithm for discovering instances of SSogs paradox in
hierarchical multidimensional data is presentedlgorithm 2. Similarly to
Algorithm 1, the input for the Algorithm 2 is atlisg of user-defined binary
goal attributes, each of them indicating whethenaira given situation of
interest has occurred. There are some basic testschat must be put on the
creation of the listg; andL,, as follows.

First, note that list; (the list of candidat&irst Partitioning Attribute$
contains pairs of the form&sh,>, standing for attribut@ and hierarchical
level h, of that attribute. A given pairAs hy> can be included in lidt; only

if the hierarchical levet, contains two categorical values, which can then be



used to divide the data into two populations. Sdcafi attributes ir., (the
list of candidatéSecond Partitioning Attributésnust be categorical, so that
they can be used to further divide the dataimsubpopulations. For each
attribute inL,, all of its hierarchical levels can be used t@oi®r instances
of Simpson’s paradox. In other words, listwill contain all pairs of the form
<B, hg> where attribut® is categorical, regardless of the number of

categorical values in hierarchical le¥g| as can be seen in Algorithm 2.

INPUT: list of user-defined goal attributes, denbtg

BEGIN

(1) identify all pairs <attribute, hierarchical/td> that can be used
aslstPartAttand put them in listy;

(2) identify attributes that can be useadPartAttand put all the
corresponding pairs <attribute, hierarchieaél> in listL;

(3) FOR EACH goal attribut& in Lg

(4) FOR EACH pair of attribut& and its corresponding

hierarchical levéd, in L;:
(5) partition population infop, andPop,, according
to values & in hierarchical levehy;
(6) Pr(G,) = Pr(G="yes"|A=1);
@) Pr(G,) = Pr(G="yes"|A=2);

(8) FOR EACH pair of attribui2and its corresponding
hierarchical levlk in L, such thaA # B

(9) FORi=1,2

(20) partitioRop into m new populations

Pop; ... Popn, according to the values
dB in hierarchical levehg;

(11) FOR=1,...m

(12) Pr(G;) = Pr(G="yes"|A=i,B=)) ;

(13) IF Pr(Gy) > Pr(G;) AND Pr(Gy)) sPr(Gy), j=1,...m)
ORPRr(G,) < Pr(G,) AND Pr(Gy) 2 Pr(Gy), j=1,...m)

(14) OUTPUT the instance of the paratiothe user;

END

Algorithm 2: Discovering instances of Simpson’s paradox in haiaal
multidimensional data
Analysis of Computational Time Complexity

The analysis of the computational time complexitAlgorithm 2 is
similar to the analysis of Algorithm 1, presentedlier. Hence, in the current

subsection we present a relatively summarized weisi this kind of



analysis, focusing on the parts of the pseudocodégorithm 2 that were not
present in the Algorithm 1, i.e, the parts refegria the handling of
hierarchical dimensions.

Line (1) of Algorithm 2 takes a time on the ord&QgK x nh,), since the
algorithm has to check, for each of Kattributes, whether or not each of its
nh, hierarchical levels contains just two categoricdlies. Line (2) takes
O(K x nhg) by a similar argument, since every possible pb#B, hg> has to
be putin L.

Lines (5), (6) and (7) can be performed in a sirsgien of all the tuples of
the data being mined by updating the appropriat@tass on the fly, as
discussed in the analysis of Algorithm 1. Hence,ttine complexity of lines
(5), (6), (7) is given by the formufa(N x |Lg| x [HL4[), whereN is the
number of tuples (records) in the data being mifiedljs the number of
attributesin list Lg and HL,| is the number ddttribute-value pairsn the
hierarchical list;.

The computation of conditional probabilities asated with lines (10)
and (12) of Algorithm 2 can also be performed usimysame approach as
described earlier for Algorithm 1. Therefore, tloenputation of lines (10)
and (12) of Algorithm 2 takes tim@(N x |Lg| x [HL4] x |HL;| x m), where
[HL;| is the number ddttribute-value pairsn the hierarchical list, andm s
the number of values of attribuBeat each hierarchical level. (For now we
assumen has the same value for all hierarchical levelstliersake of
simplicity. We discuss the case whene&aries across hierarchical levels

later.)



The analysis of the time taken by lines 13 andsl4gain, similar to the
analysis of the corresponding lines of Algorithrdidcussed earlier.1. Hence,
the time taken by these linesO¢|Lg| % [HL,| % [HL| X m).

Finally, doing the same simplifications that weomnd in the analysis of
Algorithm 1, the computational time taken by thgamithm as a whole is
given by:

O(N x |Lg| x [HLa| x [HLz| x m) .

Superficially, this computational time complexitysimilar to its
counterpart for Algorithm 1 derived earlier, V2N x |Lg| % |L4| % |Lo| X m).
An important difference is that the time complexfyAlgorithm 2 involves
[HL:] and HL,|, rather thari_}| and I, for Algorithm 1. Hence, it is useful to
re-express the former notation in terms of theetafor a direct comparison
between the time complexities of the two algorithfid&;| and HL,| can be
straightforwardly expressed Ry | x nhy and L,| x nhg, respectively. Hence,
the computational time complexity of Algorithm 2ncle expressed as:

O(N x |Lg| * [La| % nhy X |L;| x nhg x m)
which is clearly considerably higher than the ticoenplexity of Algorithm 1.

In the case of very large data sets, the computatiome taken by
Algorithm 2 can be significantly reduced by usiragglel processing.
However, this topic is beyond the scope of thisgpaand the interested
reader is referred to (Freitas & Lavington, 1998)d review of parallel data
mining techniques.

So far we have assumed that the number of hieideivelsnh, is the
same for every attribut& in L;, the number of hierarchical leveiss is the
same for every attribut® in L, and every categorical attribuBchas the same

number of valuean, in all of its hierarchical levels. In practicbgtvalues of



these three variables will vary across attributieEnce, the previous formula
for the time complexity of Algorithm 2 can be irpeeted in two different
ways. If these three variables are assigned tbeiespondingveragevalue

per attribute, the previous formula can be intagat@s the average-case time
complexity of the algorithm. Alternatively, if theshree variables are
assigned their corresponditaggestvalue per attribute, the previous formula

can be interpreted as the worst-case time complekihe algorithm.

COMPUTATIONAL RESULTS

Hereafter the algorithm described in the previagien will be called
HSPD (Hierarchical Simpson’s Paradox Discovery). Nsee applied the
HSPD algorithm to a real-world data cube containimsgirance data. The
original data was stored in a star-scheme formdisk, containing a fact
table with 51332 records and 9 dimension tablestt@purposes of our
experiments the data was loaded into main-memaoaysrto make the
execution of the algorithm more efficient.

For our experiments, we have manually selecteddinensions, which
seem to be the dimensions more promising for teeodiery of interesting
patterns. The selected dimensions were Claimamgi@d_ltem,
Event_Time, Insured_Party, and Policy. Figure nshdor each of these
dimensions, which were the attributes used in @peements. Attribute-
value hierarchies are indicated by nesting the savhéhe attribute levels.
For instance, the dimension Claimant has attribGsder, Claimant Type
and Age Group with just one hierarchical level eaetd an attribute with
three hierarchical levels: State Count - City. The number of the

hierarchical level shown between brackets rangems  for the root (highest)



level tonh— 1 for the deepest level, whetkeis the number of levels in the

hierarchy of the attribute.

CLAIMANT
|- Gender (level 0)
| State (level 0)
County (level 1)

I City (level 2)
[~ Claimant type (level 0)
— Age_Group (level 0)

COVERED_ITEM
— Covered_ltem_Type (level 0)
| Covered_Item_Description (level 0)

EVENT_TIME
- Week _Number (level 0)
L Year (level 0)
Quarter  (level 1)
F— Month_Name (level 2)
— Week_Day Name (level 0)
Fiscal _Year (level 0)
F— Fiscal_Quarter (level 1)

NSURED_PARTY
— Gender (level 0)
| State (level 0)
County (level 1)
F— cCity (level 2)
— Age_Group (level 0)

POLICY
l— Risk_Grade (level 0)

Figure 1: Description of the dimensions of the data cubeduse our
experiments

Mining the five dimensions shown in Figure 1, th8RD algorithm
discovered in total 15 instances of Simpson’s paxadith surprisingness
degrees — measured by formula (5) — varying frad8®to0 0.476. We report
the four most surprising instances of the Paraddbables 2 through 5. The
degree of surprisingness of these instances Viaoies0.426 to 0.476.

Table 2: 1stPartAttr = Claimant’s state; 2ndPartAttr =ured party’s district

Situation of Interest: (Claimantypé = third party)
Surprisingness degree: 0.461



Claimant’ state = PA

Claimant’ state = DE

Insured total claimant| % Insured total claimant | %
party’s pop. = third party’s pop. = third

district party district party

Bucks 9186 2532 27.6 Bucks 0 0 0
Philadel. 12476 3948 31.6 Philadel 0 0 0
NewCast. | 42 42 100.0 NewCas|. 3954 1320 33.4
Montgom | 11564 3456 29.9 Montgom. O 0 0
Delaware | 7458 2464 33.0 Delaware 0 0 0
Chester 6652 2328 35.0 Chester 0 0 0
TOTAL 47378 17770 31.2| TOTAL 3954 1320 33|14

Table 3: 1stPartAttr=Insured party’s gender; 2ndPartAtlei@ant’s gender

Surprisingness degree: 0.476

Situation of Interest: (Insured partstate = DE)

Insured party’s

ender = female

Insured partgsder = male

Claimant’ | total Insured | % Claimant’ | total Insured | %
s gender | pop. party’s s gender | pop. party’s

state= state=

DE DE
female 24774 2150 8.7 female 234 42 17.9
male 84 0 0 male 2624( 1804 6.9
TOTAL 24858 2150 8.6 TOTAL 26474 1846 7.0

Table 4: 1stPartAttr= Claimant’s state; 2ndPartAttrinsured party’s state

Situation of Interest: (Claimantypé = third party)
Surprisingness degree: 0.450

Claimant’ state = PA

Claimant’ state = DE

Insured total claimant | % Insured total claimant | %
party’s populati | = third party’s popula | = third

state on party state tion party

PA 47336 14728 31.1 PA 0 0 0
DE 42 42 100.0 DE 3954 1320 33/4
TOTAL 47378 14770 31.2 TOTAL 3954 1320 33/4

Table 5: 1stPartAttt = Insured party’s state; 2ndPartAtlaimant’s state

Situation of Interest: (Insured patex = male)
Surprisingness degree: 0.426

Insured party’s state = PA

Insured party’s stafgF=

Claimant’ | total Insured | % Claimant’ | total Insured | %
s state pop. party’s s state pop. party’s

sex = sex =

male male
PA 47336 24628 52.0 PA 42 42 100
DE 0 0 0.0 DE 3954 1804 45.6
TOTAL 47336 24628 52.0 TOTAL 3996 1846 46|2




In the title of each table we indicate the firsitii@ning attribute, the
second partitioning attribute, the situation otneist and the surprisingness
degree of the corresponding instance of the parddaddition, these tables
have the following structure. The first row indiesitthe two values of the
First Partitioning Attributeused to partition the data into subpopulatiBog,
andPop. Those two values divide the table into two pdtech of those
parts is further divided into four columns, whoseaming is as follows. The
first column indicates the values of tSecond Partitioning Attributdn this
column each row, starting from the third row of thble, specifies one value
of that attribute. In the second column each amitains the number of
records having the corresponding values ofRingt andSecond Partitioning
Attributesused to specify the position of the cell. In thiedltolumn each cell
contains the number of records that not only hheecbrresponding values of
First andSecond Partitioning Attributdsut also have the situation of interest
(value of the goal attribute) indicated in the hexaaf this column (in the
second row of the table). Finally, in the fourthuron each cell contains the
percentage of records with the situation of intefesthe corresponding
values offirst andSecond Partitioning Attributes

As shown in Tables 2 through 5, all the four maspssing discovered
instances of the paradox involved a combinatiopasfitioning attributes of
two dimensions, namely Claimant and Insured Pémtgddition, in three out
of those four tables, the partitioning attributesre the addresses of the
Claimant and the Insured Party, indicating thatehe a surprising
relationship between the addresses of these twasadehis surprising
relationship holds for two different situationsioterest, namely “Claimant
type = third party” (Tables 2 and 4), and “Insupadity’s sex = male” (Table

5). In Tables 2, 4 and 5, in general the instanféise paradox are associated



with the addresses of Claimant and Insured Pattyealierarchical level of
state. (The exception is that in Table 2 the addoéshe Insured Party is at
the hierarchical level of district. )

Note that the fact that instances of Simpson’sgmatavere discovered
from hierarchical multidimensional data offers theer a possibility that is not
available when instances of the paradox are disedvieom a single “flat”
relation. In the former case, the user can useattional OLAP operators,
such as drill-down, to further analyze the disceddnstances of the paradox,
observing the data at a lower level of abstradf@odeeper hierarchical level).
Actually, the result of a drill-down on an instarafeghe paradox might even
have been already reported to the user, if thedparalso occurred in the data
associated with the drill-down. For instance, Tdble actually a drill-down
of Table 4. Looking at Table 4, one can see thgeimeral the claimant’s state
is the same as the insured party’s state. How#wvere are some exceptions.
More precisely, there are 42 cases where the diisnstate is PA but the
insured party’'s state is DE. Observing the drilldvn data in Table 2 one
can see that all those 42 cases occur when theethparty’s district is New
Castle.

Hence, instances of the paradox discovered in foieical
multidimensional data not only represent surprigiagierns by themselves,
but also have the nice “side effect” of naturallggesting potentially-
interesting drill-down directions for the user -eté&fore, in some sense,

increasing the functionality of OLAP tools.

CONCLUSIONS AND FUTURE RESEARCH



Previous work in the literature introduced an altpon that discovers
surprising instances of Simpson’s paradox in datet on the relational
model, assuming that all the data was stored ingdesuniversal relation. In
this paper we have extended that algorithm to edggehierarchical
multidimensional data, stored in a star schemecklehis work obtains an
integration between data mining and data warehdDE&P, which is
beneficial for both areas.

We emphasize that the algorithm proposed in thiepavas designed
specifically for discovering surprising patterny. @ntrast, a number of data
mining algorithms in the literature were designedifitially discovering a
large number of patterns and then passing themghra filter, to try to
select the most surprising (or interesting) patelnis also important to
notice that many measures of “interestingness” @sed in the literature
focus on measuring some kind of statistical cofi@feor another predictive
accuracy-related criterion, without actually tryitagestimate theegree of
surprisingness of discovered patterns to the .uBkis is the case, for
instance, with the 21 measures of rule interesésgmliscussed by Tan et al.
(2002). There are, of course, several measuradesurprisingness
(mentioned in the Introduction), but this work fges on the discovery of a
very different kind of surprising pattern, as expdal in the Introduction.

We believe that Simpson’s paradox offers good opjpities for future
research in data mining, since the usefulnesssobdering Simpson’s
paradox instances has been underexplored in #natlite. Discovered
instances of the paradox are potentially usefuhfeping to solve other kinds
of data mining problems.

As one example, we can envisage the following apptin of Simpson’s

paradox discovery in prediction-rule discovery. €ider that hidden



instances of Simpson’s paradox can fool a greetly mianing algorithm,
making it to misinterpret a given relationship beém some attributes
(Glymour et al., 1997). E.g., greedy decision trekiction and rule induction
algorithms can select an attribute or attributeiedahat seems to have a
certain relationship with a given class, when #litg the true relationship —
taking into account attribute interactions (Frei@301) — is the reverse of the
apparent one. If instances of Simpson’s parador baen previously
discovered, in principle the decision tree or intfuction algorithm could be
given information about those discovered instanéeke paradox, in the
form of “background knowledge”. Once the algorithas been properly
modified to take into account this kind of backgrdiknowledge, it would
not be fooled by those instances of the paradoa.—ii would not choose the
wrong attribute or attribute value to add to a prigsh rule, because it would
know that the true relationship is the reversehefdapparent one. This seems
an interesting research direction.

Another research direction consists of devisingaredfficient algorithms
for discovering Simpson’s paradox instances, pertwgpexploiting

background knowledge to reduce the size of thechesrace.
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