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Abstract 

This study presents regression and classification models to predict human intestinal 

absorption of 645 drug and drug like compounds using percentage human intestinal values 

from the published dataset by Hou et al (2007c). The problem with this dataset and other 

datasets in the literature is there are more highly than poorly absorbed compounds. Any 

models developed using these datasets will be biased towards highly absorbed compounds 

and not applicable for use in industry where now more compounds are likely to be poorly 

absorbed. The study compared two training sets, TS1, a balanced (50:50) distribution of 

highly and poorly absorbed compounds created by under-sampling the majority high 

absorption compounds, with TS2, a randomly selected training set with biased distribution 

towards highly absorbed compounds. The regression results indicate that the best models 

were those developed using the balanced dataset (TS1). Also for classification, TS1 led to the 

most accurate models and the highest specificity value of 0.949. In comparison, TS2 led to 

the highest sensitivity with a value of 0.939. Thus, under-sampling the majority class of the 

highly absorbed compounds leads to a balanced training set (TS1) that can achieve more 

applicable in silico regression and classification models for the use in the industry. 

Keywords: Intestinal absorption, QSAR, oral absorption, training set, regression, 

classification 
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1. Introduction 

Drug discovery has changed from primarily focusing on efficacy and selectivity of new drug 

candidates to incorporating the testing of absorption, distribution, metabolism, elimination 

and toxicity (ADMET) properties with high throughput (HT) in vitro and in vivo assays 

(Davis et al. 2005; Gleeson et al. 2011). With the help of these assays plus the development 

of HT automation, drug candidates failing due to undesirable ADMET properties in Phase 1 

clinical trials have been reduced from ~40% in 1991 to ~10% in 2000 (Kennedy 1997; Kola 

and Landis 2004). 
 

In silico modelling of ADMET properties particularly absorption has become a focus for 

pharmaceutical companies due to the need to eliminate unsuitable compounds before too 

much resource has been spent (Boobis et al. 2002; Smith 2002; Tsaioun et al. 2009).  Reliable 

and robust in silico models would mean a cost effective way of predicting 

desirable/undesirable properties or act as a tool to help select the appropriate assays to 

perform based on chemical structure and physiochemical properties (Geerts and Heyden 

2011; van de Waterbeemd and Gifford 2003). 

Oral absorption in particular is a primary focus for in silico modelling because it is the easiest 

and most convenient route for administration that achieves patient acceptance, rather than 

other routes that cause discomfort or inconvenience (Ashford 2007; Hou et al. 2009). In silico 

modelling can be used to predict intestinal absorption (percentage human intestinal 

absorption - %HIA or fraction absorbed - FA) and/or oral bioavailability (F). Confusion can 

sometimes be caused by these terms and acronyms as they are sometimes used 

interchangeably and are often coupled together (Burton et al. 2002; Zhao et al. 2001). 

Intestinal absorption has been defined as the amount of drug that passes through the intestinal 

tissue and enters the portal vein (Hou et al. 2009; Sinko 1999). This contrasts with 

bioavailability, which is described as the fraction of drug dose that reaches the systemic 

circulation unchanged after first pass metabolism (Kwon 2002; Zhu et al. 2011). Hou et al 

(2009) found that the bioavailability of 64% of compounds they analysed were governed by 

absorption, therefore accurate predictions of intestinal absorption are required as this is the 

prerequisite to predicting oral bioavailability with accuracy and precision. Bioavailability is 

complex and dependant on many other variables, therefore making it a challenge to predict 

with any model (Zhu et al. 2011). 
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For a drug to be orally absorbed it needs to cross the intestinal membrane. The predominant 

route for most drugs is passive diffusion, mainly transcellular. However, some small polar 

compounds can exit through the interstitial space between cells; this is known as paracellular 

diffusion. Both are driven by concentration gradients (Kay 2011). Recently, the mechanisms 

of drug transport through biological membranes have been re-evaluated as a result of 

discoveries made in the area of human genome mapping and identification of a vast number 

of proteins involved in transporting drugs across membranes (Al-Awqati 1999). These 

transporters can either increase the movement of the drug into the cell, known as active 

transport, or enhance movement of drugs out of cell, known as efflux. Each will affect 

absorption of the drug by increasing or decreasing it respectively (Giacomini et al. 2010; 

Kerns and Di 2008). 

There are various published papers using simple predictions based on Quantitative Structure- 

Activity Relationships/Quantitative Structure-Property Relationships (QSAR/QSPR) for 

predicting intestinal absorption. Lipinski‟s „Rule of five‟ is the most commonly known 

method used in drug discovery settings (Lipinski et al. 1997).  Lipinski states that if two of 

the rules are breached then poor absorption is highly likely; these are if molecular weight 

>500 Da, sum of OH and NH hydrogen bond donors >5, calculated logP (C LogP) >5 and 

sum of N and O atoms as hydrogen bond acceptors >10. Although these rules are for 

qualitative purposes and have been criticised, the descriptors can be used to generate 

quantitative predictions (Hou et al. 2007b; Lagorce et al. 2011; Macheras and Iliadis 2006). 

Zhao et al (2002) and Veber et al (2002) both have used simple predictive models. The basis 

of these simple models are physiochemical properties of the compounds that are 

physiologically related to intestinal absorption, for example polar surface area (PSA) and 

logD have been referenced to be important descriptors (van de Waterbeemd and Gifford 

2003). PSA is the area of the Van der Waals surface that arises from oxygen and nitrogen 

atoms or hydrogen atoms bound to these atoms, and is also related to size and has a negative 

correlation with intestinal absorption. LogD is the logarithm of apparent distribution 

coefficient between octanol and water, and a measure of hydrophobicity at a specific pH. In 

order to be absorbed the compound must be hydrophobic enough to permeate the cell 

membrane. There are also more sophisticated models to improve these predictions. Models 

produced by data analysis methods such as Genetic Algorithms (GA), Artificial Neural 

Networks (ANN) and Support Vector Machines (SVM) are being developed due to increase 

in demand for improved accuracy of predictions (Hou et al. 2007a; Tian et al. 2011).  The 
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problem with the currently available models is that they are based on training sets with 

unbalanced data distribution due to the greater number of highly absorbed compounds present 

in the datasets. This creates biased models which have better ability at predicting highly 

absorbed compounds than poorly absorbed compounds (Wessel et al. 1998; Zhao et al. 2002). 

In order for a better more applicable well balanced dataset to be achieved, more compounds 

in the low/medium absorption range will need to be added (Gleeson et al. 2011; Oprea et al. 

2007; Yan et al. 2008). 

In this paper, in silico models that focus on predicting passive intestinal absorption using 

classification and regression methods for relating the absorption to the physiochemical and 

structural properties of drugs are developed and evaluated. The dataset used is taken from 

Hou et al (2007c). This paper addresses the problem of unbalanced data distribution by 

creating a balanced training set through under-sampling the highly absorbed compounds. In 

doing so, this paper seeks to achieve a more applicable model with a better prediction 

capacity of poorly absorbed compounds without jeopardizing the prediction accuracy for the 

highly absorbed drugs.  

2. Methods & Materials 

2.1 Datasets of Intestinal Absorption in Humans  

The dataset used consisted of Human Intestinal Absorption (%HIA) data for 647 drugs and 

drug-like compounds extracted from SDF format from the supporting information of the 

paper, which is freely available on the internet (http://cadd.suda.edu.cn/admet/) and is the 

largest compilation of data for those drugs to date (Hou et al. 2009).  This dataset contains 

intestinal absorption (%HIA) of 647 passively absorbed drugs with a wide variety of 

pharmacological and chemical classes. It was found that 2 compounds (Sulfamethazine & 

Glycine) were duplicated in the initial set so the duplicates were removed, giving a first initial 

total of 645 compounds. From the 645 drugs, in the dataset Hou et al (2007c) excluded 95 

compounds. 43 were absorbed via carrier mediated transporters, 24 had poor solubility 

problems, 26 contained ammonium groups, and for 2, logD could not be calculated. The 

significance of the quaternary ammonium group is that complications may arise due to 

different levels of ion pairing which may be affected by the formulation and stomach content, 

although there has been ambiguity regarding the effectiveness of ion-pair related absorption 

levels (Miller et al. 2010). In this study, the 26 compounds containing ammonium groups 

were excluded entirely to avoid the added complications. The remaining 619 compounds 

http://cadd.suda.edu.cn/admet/
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were used in the analyses. “Upon exclusion of the 95 compounds” means the exclusion of the 

remaining 69 compounds, as the 26 compounds containing quaternary compounds have 

already been removed. 

The dataset was split into two groups, a training set and a validation set. The training set is 

used to build the classification and regression models and the validation set is used to 

measure the accuracy of the models and then select the best model. From the same original 

dataset, different training sets were created that had different numbers of compounds and the 

remaining compounds or a selection of the remaining compounds were used as the validation 

sets. Table 1 is a summary of the compound numbers assigned to the training and validation 

sets for the different splits of the datasets. The next section describes the rationale behind 

partitioning the dataset into training and validation sets. 

Table 1 Datasets of intestinal absorption and numbers of compounds in each set (N) 

Training 

Set Name 

Validati

on Set 

Name 

N Training 

Set 

N 

Validati

on set 

N Total 

TS1 VS1 94 502 596 

TS2 
 VS2 496 100 596 

TS1 or TS2 VS3 94 or 496 89 183 or 585 

 

TS1-VS1 

As the dataset contains a majority of highly absorbed compounds, a randomly selected 

training set could be biased towards this type of drugs. To overcome this problem, a balanced 

training set was devised. The compounds were sorted according to %HIA and then logP 

values. 10 categories of %HIA, which contained about 10 drugs in each 10% range of %HIA 

was attempted and selected randomly for the training set. In the original dataset there are 

more examples of the highly absorbed compounds in the ranges of 80-100% HIA than poorly 

absorbed compounds in the lower ranges. By taking 10 samples from each %HIA range 

under-sampling the majority class is achieved due to the larger number of highly absorbed 

compounds being removed and not used compared with the poorly absorbed class. The 

remaining compounds were used as the validation set (VS1). Under-sampling the majority 

class (high absorption compounds) gave a more balanced training set with similar numbers of 

low and high absorption drugs in the training set. 
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TS2-VS2 

The dataset was initially sorted based on ascending %HIA and then logP values. Then from 

each group of six consecutive compounds, five were assigned to the training set, and one 

compound was allocated to the validation set randomly. This ensured similar distribution of 

%HIA values in the training and validation sets. The training set contained 496 and the 

validation set contained 100 compounds. This dataset is unbalanced and not under-sampled 

and is more like the %HIA distribution of the original dataset with a higher proportion of 

highly absorbed compounds in the training and validation sets. 

Exclusion of outliers 

The removal of the 95 compounds as highlighted by Hou et al (2007c) from the dataset 

reduced the number of compounds in the training and validation sets. The final numbers left 

in the training and validation sets after these 95 compounds were removed was for TS1, 73 

and 477 and for TS2, 458 and 92 respectively. Removing the outliers did not affect the 

balance of high to low absorption compounds significantly for VS1, VS2, VS3 or TS2. For 

TS1 the balance changed towards highly absorbed compounds from the initial 50:50 split to 

33:67.  

VS3 – New balanced validation set with 89 compounds 

Comparing the models that are developed using TS1 and TS2 training sets would not be a fair 

comparison if validation sets are not similar. In particular for the dataset TS1 the initial 

validation set, VS1, (of 502 compounds) consisted of all the remaining compounds not used 

in the training set, therefore a drawback is recognised that the training and validation sets 

have different %HIA distributions. In other words, not only the validation sets of TS1 and 

TS2 are very different in terms of the number of the compounds, for TS1, the validation set is 

not a correct representation of the training set as the %HIA distributions are very different.  

As such, a new validation set, VS3, containing 89 compounds was selected as follows. After 

selection of TS1, from the remaining 502 compounds (VS1), 89 compounds were selected 

randomly by under-sampling the highly absorbed compounds (VS3). It was ensured that none 

of the TS2 compounds were included in this validation set.  This new validation set had a 

similar %HIA distribution to the TS1 training set, i.e. roughly similar number of compounds 

within each 10% band of %HIA, therefore making direct comparisons between all the models 

comprehensible when using the results from the validation set VS3. 
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2.2 Molecular Descriptors 

A total of 215 descriptors were used in this study. A variety of different software packages 

were used to compute these descriptors, they include TSAR 3D (Accelrys Inc), MDL QSAR 

(Symyx Inc.), Kowwin (U.S. EPA) and Advanced Chemistry Development ACD Labs/ LogD 

Suit. Due to software restraints some molecular descriptors could not be calculated for some 

compounds in the dataset. 

2.3 Selection of Molecular Descriptors for Models 

Several regression and classification models were developed using molecular descriptors of 

the compounds. The descriptors used in these models were:  

1. Descriptors selected by stepwise regression analysis. 

2. Descriptors selected by stepwise discriminant analysis.    

3. Lipinski‟s rule of five descriptors plus the number of rotatable bonds.  

Stepwise regression analysis was performed on the training sets using MINITAB Statistical 

Software (version 15.1.0.0) to select descriptors which had significant linear relationships 

with %HIA. %HIA was set as the dependant variable and the calculated molecular 

descriptors of the compounds set as independent variables. In order to minimise the risk of 

chance correlations, the maximum number of descriptors allowed in the models was 

restricted to eight. The descriptors selected by stepwise regression analysis were used in the 

models developed by regression and discriminant analysis. There were a significant number 

of compounds that had missing values for descriptors such as ACD_Density, therefore 

stepwise regression was carried out again excluding these descriptors and a second model 

was developed for the training sets. 

 

Stepwise discriminant analysis was carried out using TSAR 3D. The selected descriptor set 

was solely used for the classification of the compounds into highly absorbed (%HIA ≥ 50%) 

or poorly absorbed groups (%HIA < 50%) and not for prediction of precise %HIA values 

using regression analysis. 

Lipinski‟s „rule of five‟ is a popular rapid screen to identify compounds that are poorly 

absorbed (Lipinski et al. 1997).  The descriptors proposed by Lipinski are: molecular weight, 

number of hydrogen bonding donor and acceptor groups and logP. Number of rotatable bonds 

was also added, as it has been suggested to help predict oral bioavailability and hence oral 
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absorption (Zakeri-Milani et al. 2006).  This set of descriptors was used in regression and 

classification analysis. 

2.4 Multiple Regression Analysis 

Regression analyses on the descriptor sets selected using stepwise regression and the rule of 

five descriptors mentioned previously were carried using MINITAB statistical software. 

%HIA was set as the dependant variable and the descriptor sets as independent variables.  

For each regression analysis the following statistical criteria were obtained: N, the number of 

observations, r
2
, the squared correlation coefficient, S, the standard deviation, F, Fisher's 

criterion and p-value, the level of significance of the model. All the descriptors had a p-value 

of less than 0.05, indicating that they were all significant for the prediction of %HIA. From 

the predicted and observed %HIA data the RMSE (root mean squared error) was calculated 

for the training and validation sets separately. 

2.5 Discriminant Analysis 

Discriminant analysis is a statistical classification technique that examines the set of variables 

associated with a given subject and uses similarities and differences to assign the subject to a 

group or class. It is a classical statistical approach for classifying samples of unknown classes 

(validation set), based on samples from the training set with known classes. Discriminant 

analysis was carried out using MINITAB software to categorize drugs into classes of low or 

high absorption drugs. This analysis was done for the training set and then utilized to predict 

the absorption of drugs in the validation sets. Drugs with %HIA value greater than or equal to 

50 were graded 1 (HIA+), while those with %HIA less than 50 were graded as 0 (HIA-). In 

this manner, predictive models were developed using the observed %HIA class as the 

response, and each set of the descriptors selected by stepwise regression analysis, stepwise 

discriminant descriptors and the rule of five descriptors as the predictors. The ability of each 

model to predict the %HIA classes of the compounds in the validation set was explored.  

To assess and compare the models, the parameters of accuracy, specificity and sensitivity 

were calculated. Accuracy determines the overall % of correct classification of compounds 

using the model. Specificity highlights the correct classification of HIA- compounds, and 

sensitivity is equivalent to the correct classification of HIA+ compounds. 
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4. Results 

The molecular descriptors used in the models are shown in Table 2. A brief description of 

each descriptor is also included.  

Table 2 – Summary of descriptors used for models 1-5 

Descriptor Model Description 

aliphatic rings(5) 2 Number of 5 aliphatic rings 

aromatic rings(6) 5 Number of 6 aromatic rings 

ACD_LogP 4 Octanol/water partition coefficient calculated by ACD 

ACDLogD2 3 Apparent Distribution coefficient at PH 2 calculated by ACD 

ACDLogD5.5 1,3,5 Apparent Distribution coefficient at pH5.5 calculated by ACD 

ACDLogD7.4 2 Apparent Distribution coefficient at pH7.4 calculated by ACD 

ACD_Density 1 Mass per unit volume of a molecule calculated by dividing MW by MV calculated by ACD 

FiAB1 5 Fraction of drugs ionised as anions 

HBA 4 The total number of hydrogen bond acceptors of the whole molecule 

HBD 4 The total number of hydrogen bonds donors of the whole molecule 

Inertia moment 2 size 1 An estimate of an object resistance to changes in its rotation rate 

Ka3 2 Kappa alpha 3: atom count which quantifie the extent the heteroatom differs from the reference atom(carbon sp3) 

Mass 4 The total mass of the whole molecule 

NRo5 3 Number of violations of the rule of five 

PSA 2,3 Polar surface Area 

RB 4 The total number of rotatable bonds of the whole molecule 

SdsssP 3 Sum of atom-type E-state for phosphorous atoms with 3 single and one double bond 

SdsssP_acnt 5 Counts of atom-type E-state for phosphorus atoms with 3 single and one double bond. 

SHBint2 1,2 Sum of E-state descriptors for potent hydrogen bonds of path length 2 

SHBint2_Acnt 2 Counts of internal hydrogen bonds with 3 skeletal bonds between donor and acceptor 

SHBint3 2,5 Sum of E-state descriptors for potent hydrogen bonds of path length 3 

SHBint7 1,5 Sum of E-state descriptors for potent hydrogen bonds of path length 7 

SHBint9 3 Sum of E-state descriptors for potent H2 bonds of path length 9 

SHHBd 1,5 Sum of the hydrogen atom level E-state values for all hydrogen atoms bonded to donating atoms. 

SpcPolarizability 1,2 Molecular polarizability calculated on the basis of the addictive approach 

SsCH3 1 Sum of all (-CH3 -) E-state values in molecule 
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4.1 Regression Models 

Two regression models were developed for the training set TS1, which contained a similar 

number of drugs at each 10% range. These models were obtained using the descriptors 

selected by stepwise regression when all the descriptors were used in analysis (model 1) and 

when several descriptors with a high number of missing values (ACD density and logP) were 

excluded (model 2). 

Model 1 Stepwise Regression 1 TS1 

%HIA = 125 - 0.357 SHHBd - 0.627 SHBint2 + 4.71 ACDLogD5.5 - 0.00643 Inertia 

Moment 2 Size - 0.516 SHBint7 - 297 SpcPolarizability - 22.2 ACD_Density - 1.24 SsCH3 

 

n = 94  S = 15.7   R
2
 = 0.755  F = 32.7 

 

Model 2 Stepwise Regression 2 TS1 

%HIA = 101 - 0.0753 ACD_PSA + 4.02 ACDLogD7.4 - 2.72 ka3 - 0.272 SHBint2 - 6.16 

aliphatic rings(5) - 2.98 SHBint2_Acnt - 284 SpcPolarizability - 0.275 SHBint3 

 

n = 94  S = 16.1   R
2 

= 0.742   F = 30.5 

 

Using TS2, which is a randomly selected training set of 496 compounds, stepwise regression 

model 3 was obtained. Model 4 is the regression equation obtained for TS2 using Lipinski‟s 

„rule of five‟ parameters. 

 

Model 3 Stepwise Regression 3 TS2   

%HIA = 95.4 - 0.138 ACD_PSA - 12.9 ACD_Rule_Of_5 - 3.22 ACDLogD2 - 1.35 SHBint9 

+ 6.27 ACDLogD5.5 + 3.48 SdsssP 

 

n = 496  S = 16.1   R
2 

= 0.686  F = 178.2 

 

Model 4 – Ro5 Descriptors (Ro5) TS2 

%HIA = 98.5 + 0.0072 Mass - 1.08 Rotatable Bonds - 5.12 H-bond Donors - 2.40 H-bond 

Acceptors + 2.34 ACD_LogP 

 

n = 496  S = 20.2   R
2 

= 0.533   F = 112.0 
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There are 95 compounds in the dataset that were excluded by Hou et al (2007c) for a variety 

of reasons mentioned previously. The remaining outliers were removed from the dataset and 

regression analysis was performed again. When these compounds were excluded from the 

models above, the statistics were improved for both the training and validation sets. Table 3 

shows the statistical parameters of the equations obtained for the training sets before and after 

the exclusion of the outliers. It must be noted that only some of the 95 outliers fell within the 

training sets and the remaining belonged to the validation set. Table 3 also indicates the 

average prediction error (RMSE) for the validation sets. 

Table 3 Statistical parameters and prediction accuracies of regression models for 

training (t) and validation (v) sets 

Model 

Training 

set 

Name 

Validation 

set     

Name 

r
2
 F S 

RMSE N 

t v t v 

1 TS1 VS1 0.755 32.73 15.66 14.90 25.49 94 502 

2 TS1 VS1 0.742 30.51 16.08 15.29 26.11 94 502 

3 TS2 VS2 0.686 178.2 16.56 17.30 20.37 496 100 

4 TS2 VS2 0.533 111.1 20.17 20.37 23.24 496 100 

Common Validation set 

1 TS1 VS3 0.755 32.73 15.66 14.90 25.05 94 89 

2 TS1 VS3 0.742 30.51 16.08 15.29 24.45 94 89 

3 TS2 VS3 0.686 178.2 16.56 17.30 30.83 496 89 

4 TS2 VS3 0.533 111.1 20.17 20.37 38.64 496 89 

After exclusion of 95 compounds (Hou et al. 2007c) 

1 TS1 VS1 0.788 29.80 15.41 14.43 24.40 73 477 

2 TS1 VS1 0.785 29.25 15.52 14.54 23.84 73 477 

3 TS2 VS2 0.697 172.9 15.37 15.24 18.59 458 92 

4 TS2 VS2 0.540 106.0 18.91 18.79 22.38 458 92 
r2-correlation coefficient; F-Fisher's criterion; S-standard deviation; RMSE-root mean squared error; N-number of compounds, t-training set; 

v-validation set 

 

In order for a better comparison of the models, RMSE values were calculated for the new 

validation set, VS3, containing 89 compounds for all 4 models. The results in Table 3 show 

that models 1 and 2 had the lowest RMSE values for this representative validation set. 

 

4.2 Classification Models 

Stepwise discriminant analysis using TSAR 3D selected seven descriptors for the 

classification of %HIA class of TS1. The descriptors were number of six-membered aromatic 

rings, ACD LogD5.5, Fraction of drugs ionised at pH1, SdsssP_acnt, SHBint3, SHBint7 and 
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SHHBd . Following this, Discriminant analysis was performed using %HIA class as defined 

in the Methods section and molecular descriptors selected by the three stepwise regressions 

on TS1 or TS2, Lipinski‟s rule of five descriptors plus the number of rotatable bonds, and 

descriptors selected by stepwise discriminant analysis. Tables 4 and 5 show the measures of 

predictive accuracy (measured on the training and validation sets) of the discriminant models 

for TS1 and TS2, respectively.  

 

Table 4 Results of Discriminant Analysis Models using training set TS1 and measured 

by validation set VS1 

Model Set Accuracy Sensitivity Specificity Descriptor Set 

1 
t 0.872 0.943 0.780 

Stepwise Regression Model 1 
v 0.904 0.915 0.786 

2 
t 0.872 0.887 0.854 

Stepwise Regression Model 2 
v 0.876 0.878 0.857 

3 
t 0.798 0.906 0.659 

Stepwise Regression Model 3 
v 0.958 0.959 0.952 

4 
t 0.830 0.887 0.756 Lipinski Rule of 5 plus number of 

rotatable bonds v 0.898 0.904 0.833 

5 
t 0.912 0.962 0.846 

Stepwise Discriminant analysis 
v 0.864 0.871 0.786 

After exclusion of 95 compounds (Hou et al. 2007c) 

1 
t 0.877 0.918 0.792 

Stepwise Regression Model 1 
v 0.956 0.968 0.811 

2 
t 0.877 0.898 0.833 

Stepwise Regression Model 2 
v 0.910 0.925 0.730 

3 
t 0.849 0.939 0.667 

Stepwise Regression Model 3 
v 0.971 0.973 0.946 

4 
t 0.863 0.918 0.750 Lipinski Rule of 5 plus number of 

rotatable bonds v 0.950 0.959 0.838 

5 
t 0.863 0.918 0.750 

Stepwise Discriminant analysis 
v 0.923 0.932 0.811 

t-training; v-validation; Accuracy shows the correct overall classification and is calculated by number of correct divided by overall number 

of compounds; Sensitivity is equivalent to the number of correctly classified HIA+ compounds and is calculated using SE=(TP/(TP+FN)); 

Specificity is equivalent to the number of correctly classified HIA- compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; 

FN-False negative; TN-true negative; FP-false positive 

 

It must be noted from Table 4 that for some of the models the overall accuracy is higher for 

the validation set compared to the training set. This is due to the biased distribution of %HIA 

of the compounds and lack of poorly/moderately absorbed compounds represented in dataset. 
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Table 5 Results of Discriminant Analysis Models using training set TS2 and measured 

by validation set VS2 

Model Set Accuracy Sensitivity Specificity Descriptor Set 

1 
t 0.928 0.958 0.743 

Stepwise Regression Model 1 
v 0.890 0.942 0.571 

2 
t 0.913 0.937 0.771 

Stepwise Regression Model 2 
v 0.880 0.919 0.643 

3 
t 0.936 0.967 0.743 

Stepwise Regression Model 3 
v 0.890 0.930 0.643 

4 
t 0.932 0.958 0.771 Lipinski Rule of 5 plus number of 

rotatable bonds v 0.880 0.942 0.500 

5 
t 0.930 0.956 0.771 

Stepwise Discriminant analysis 
v 0.890 0.965 0.429 

After exclusion of 95 compounds (Hou et al. 2007c) 

1 
t 0.971 0.985 0.750 

Stepwise Regression Model 1 
v 0.935 0.988 0.545 

2 
t 0.971 0.985 0.750 

Stepwise Regression Model 2 
v 0.935 0.963 0.727 

3 
t 0.966 0.982 0.708 

Stepwise Regression Model 3 
v 0.913 0.951 0.636 

4 
t 0.964 0.982 0.667 Lipinski Rule of 5 plus number of 

rotatable bonds v 0.924 0.988 0.455 

5 
t 0.962 0.977 0.708 

Stepwise Discriminant analysis 
v 0.935 0.988 0.545 

t-training; v-validation; Accuracy shows the correct overall classification and is calculated by number of correct divided by overall number 

of compounds; Sensitivity is equivalent to the number of correctly classified HIA+ compounds and is calculated using SE=(TP/(TP+FN)); 

Specificity is equivalent to the number of correctly classified HIA- compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; 

FN-False negative; TN-true negative; FP-false positive 

  

In order to compare the models, the accuracy, sensitivity and sensitivity of discriminant 

analysis for the classification of the new validation set, VS3, (containing 89 compounds) for 

all 5 models was carried out and the results are in Tables 6 and 7 for TS1 and TS2.  

 

Table 6 Discriminant Analysis Results for new validation set (VS3) for TS1 

Model Set Accuracy  Sensitivity Specificity Descriptor Set 

1 v 0.831 0.880 0.769 Stepwise Regression Model 1 

2 v 0.798 0.760 0.846 Stepwise Regression Model 2 

3 v 0.899 0.860 0.949 Stepwise Regression Model 3 

4 v 0.809 0.800 0.821 
Lipinski Rule of 5 plus number of 

rotatable bonds 

5 v 0.741 0.717 0.769 Stepwise Discriminant analysis 
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v-validation; Accuracy shows the correct overall classification and is calculated by number of correct divided by overall number of 

compounds; Sensitivity is equivalent to the number of correctly classified HIA+ compounds and is calculated using SE=(TP/(TP+FN)); 

Specificity is equivalent to the number of correctly classified HIA- compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; 

FN-False negative; TN-true negative; FP-false positive 

 

Table 7 Discriminant Analysis Results for new validation set (VS3) for TS2 

Model Set Accuracy  Sensitivity Specificity Descriptor Set 

1 v 0.843 0.918 0.750 Stepwise Regression Model 1 

2 v 0.854 0.878 0.825 Stepwise Regression Model 2 

3 v 0.843 0.898 0.775 Stepwise Regression Model 3 

4 v 0.854 0.898 0.800 
Lipinski Rule of 5 plus number of 

rotatable bonds 

5 v 0.843 0.939 0.725 Stepwise Discriminant analysis 
v-validation; Accuracy shows the correct overall classification and is calculated by number of correct divided by overall number of 

compounds; Sensitivity is equivalent to the number of correctly classified HIA+ compounds and is calculated using SE=(TP/(TP+FN)); 

Specificity is equivalent to the number of correctly classified HIA- compounds and is calculated using SP=(TN/(TN+FP)); TP-true positive; 

FN-False negative; TN-true negative; FP-false positive 

5. Discussion 

The aim of this study was to create models that could predict %HIA values or classify 

compounds into highly and poorly absorbed (HIA+ and HIA-) classes with emphasis on 

using a balanced training set data distribution to see if there was an improvement in 

prediction and classification ability for poorly absorbed compounds. Data splitting techniques 

such as Kennard-Stone algorithm (1969), which is used for the training set selection based on 

the molecular descriptor values, would not be useful in this case since the highly absorbed 

compounds cover a much larger descriptor space (Tropsha 2010). For instance, it was 

observed in this data set that splitting the data based on the log P values, or based on the first 

or the second principal components from principle component analysis using all molecular 

descriptors will still select for the training set a majority of highly absorbed compounds 

(85%-86% highly absorbed). To overcome the well documented problem of highly biased 

training sets (towards the high absorbed compounds), a subset of the available data was 

selected with under-sampling of the majority group (highly absorbed compounds). The 

selected training set consisted of about ten compounds in each 10% %HIA ranges (94 in 

total). The models generated using this training set (TS1) were compared with the models 

generated for a randomly selected training set consisting 5/6 of the dataset entries (TS2). 

Regression analysis and classification analysis results are discussed highlighting the best 

model for each type of analysis. 
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5.1 Regression Models 

Regression models were generated using the randomly selected dataset (TS2) which contains 

many more highly absorbed compounds than compounds with intermediate or poor 

absorption and the balanced training set chosen by under-sampling the highly absorbed 

compounds (TS1). The most suitable equation based on the statistics for the training set was 

model 1 which used dataset TS1. Model 1 shows a slightly better fit to the training set than 

model 2 using the same training set.  

 

Although in this study model 3 and 4 (developed using TS2) appeared to have poorer 

statistics for the training sets, the RMSE for the validation set is better than models 1 and 2. 

However it must be noted that a direct comparison between models 1 and 2, with models 3 

and 4 at this point is not coherent. This is because models 1 and 2 were derived from a small 

training set of 94 compounds (TS1) and evaluated using VS1, a large validation set (N=502), 

with a different %HIA distribution to the training set; whereas models 3 and 4 were derived 

using a much larger training set (TS2) and were evaluated using VS2, a smaller validation set 

that was representative of the training set in terms of %HIA distribution. For a better 

comparison of the models with each other a new validation set of 89 compounds (VS3) was 

randomly selected from the original large validation set of TS1. This new validation set was 

assembled in a way that the %HIA distribution was similar to the TS1 training set i.e. similar 

number of compounds at the different %HIA ranges. 

 

RMSE values were calculated for the predicted %HIA values obtained from models 1-4 for 

the 89 compound in VS3, the new validation set. The results in Table 3 show that model 2 

has the lowest RMSE value of 24.45. Models 3 and 4 have much larger RMSE values for the 

new validation set indicating that these models work well for estimation of %HIA of highly 

absorbed compounds (as shown by the results in Table 3), but the estimation accuracy is 

dropped when the validation set consists of roughly equal proportion of highly and poorly 

absorbed compounds (as shown in Table 3), which may be true in real life drug-candidates. 

This is expectable due to the highly biased nature of the training set used for the development 

of these models (TS2). Therefore, it can be concluded that for the real life scenarios, where a 

newly discovered drug candidate maybe expected to have approximately equal probability of 

being a highly or poorly absorbable drug, Model 2 may be a more accurate estimate of 

%HIA. 
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In this study there is not much difference between the RMSE and r
2
 values of the models 

before and after the exclusion of the compounds that are believed to be absorbed actively or 

whose absorption are dissolution limited. This indicated that the effect of transporters does 

not have a significant effect on the goodness of fit of the regression models. This could be 

because for some compounds, although known to be absorbed via transporters, this process 

may not be the dominant one and the effect of the transporters is insignificant compared with 

passive diffusion of the compounds (Sugano et al. 2010). So in practice, leaving these 

compounds in may be more realistic and help build generic models with a variety of 

absorption mechanisms, rather than removing these compounds and possibly reducing the 

applicability of the model (Suenderhauf et al. 2011). 

Model 2 contained the following descriptors: PSA, log D7.4, Ka3, SHBint2, aliphatic rings(5), 

SHBint2_Acnt, SpcPolarizability & SHBint3. All of the descriptors above can be used in 

combination to correlate with intestinal absorption; however the correlation decreases 

significantly when the descriptors are used independently, highlighting that absorption is a 

complex process and is reliant and influenced by a number of different descriptors, not just 

one (Clark 1999, 2011; Stouch et al. 2003). 

 

PSA has been found to be the most popular descriptor used in prediction of intestinal 

absorption since its first use in relation to brain penetration (van de Waterbeemd and Kansy 

1992). It is a measure of the area of the Van der Waals surface that arises from oxygen and 

nitrogen atoms or hydrogen atoms bound to these atoms. PSA is related to hydrogen bonding 

capacity, which is one of the main influencers of passive drug absorption along with 

lipophilicity (Palm et al. 1996). PSA is used more frequently and is deemed more suitable 

than normal hydrogen bonding potential descriptors as it accounts for the 3D effects of the 

molecule, such as shielding of the polar functional groups by other atoms. It has been shown 

that if a molecule has a PSA of ≥ 140Å, it is likely to have poor absorption (<10% FA) and if 

the molecule has a PSA ≤60Å, %FA values >90% can be achieved (Clark 1999; Hou et al. 

2007c; Palm et al. 1997). This is in agreement with our results as PSA has a negative impact 

on absorption. Hydrogen bonding ability has been further characterised in model 2 by three 

topological descriptors of SHBint2_Acnt, SHBint2 and SHBint3, all of which have negative 

coefficients in agreement with the literature. 
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Hydrophobicity is another physiologically important parameter in intestinal absorption and 

descriptors relating to it, such as logP and logD, have a positive contribution to the 

predictions for passively absorbed compounds (Zakeri-Milani et al. 2006). An increase in 

hydrophobicity would increase the permeation of the compound into and through the cell 

membrane in the intestine. However, it has been suggested that the relationship is non linear, 

so if the drug is too hydrophobic with a very high logD value for example it may not 

penetrate the membrane at all and can also cause solubility issues (Comer 2003; Kerns and Di 

2008; Varma et al. 2010). If the compound has a low logD value this could also prevent 

absorption but, if the compound is small, with a molecular weight less than 200 Da it may be 

absorbed via the paracellular route (Martinez and Amidon 2002; Stenberg et al. 2000). In our 

equation logD7.4 has been used, which is the apparent octanol/water partition coefficient at pH 

7.4. This particular descriptor has been used in other studies, as well as other logD values at 

lower pH values (Hou et al. 2007b). It has been indicated that although logP is easier to 

calculate from structure, logD has a better prediction ability as it takes into account the pH 

and ionisation (Egan et al. 2000; Hou et al. 2007a). Studies have shown that a combination of 

PSA and logD have good prediction abilities for intestinal absorption, indicating that it is a 

combination of descriptors that influence predictions (Hou et al. 2009).  

 

Suenderhauf et al (2011) and Hou et al (2006) have compiled summary tables containing 

information regarding the results for the models from previously published work. This 

enables us to compare our results to previous studies. However, it must be emphasized that it 

is very difficult to compare these models due to the lack of compound information regarding 

data distribution for the training and validation sets and lack of consistency in validation 

techniques (Stouch et al. 2003; The et al. 2011; Zhao et al. 2001). The only way this possibly 

could be done would be to mimic the datasets used and compare the models on previous 

works‟ datasets (Davis and Brunea 2003).  

 

Taking our best regression model, which was model 2 using dataset TS1 with exclusions an r
2 

value of 0.785 was achieved with a RMSE for the training and validation set of 14.54 and 

23.84. Other studies that used regression analysis such as Wessel et al (1998), Zhao et al 

(2001) and Niwa et al (2003) are comparable to our model with regards to the training set. 

However, the RMSE for our validation set is slightly higher apart from Niwa et al (2003). 

Wessel et al (1998) achieved small RMSE values of 9.5% and 16% for the 76 and 10 

compounds used in the training and validation sets. Zhao et al (2001) with an r
2 

value of 0.83 
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achieved a RMSE of 14%. However, Zhao et al only had 131 and 38 compounds in the 

training and validation sets. The more recent study by Niwa et al (2003) showed that although 

a small RMSE value was achieved for the training set of 6.5% a much larger RMSE value 

was obtained for the validation set of 27.7. The numbers of compounds in the training and 

validation set were 67 and 9 compounds.  

 

The studies mentioned so far have used small datasets and so might not be comparable with 

this work. Moreover, the comparison of the validation set compounds and distribution of 

compounds in them is not known. In fact, Klopman et al (2002) who used a larger dataset 

with 417 and 50 compounds in training and validation sets, achieving a r
2
 value of 0.79, 

which is comparable to our model, highlighted that the dataset was limited and that it covered 

limited chemical space even with an increase in the number of compounds in the dataset. 

Therefore, comparing RMSE values without considering the number of compounds used is 

not appropriate as the chemical space of the training set and applicability of the models to a 

wider variety of chemicals are different. The models reported in these studies with small 

datasets may not be as applicable when the database expands further to include new 

structurally diverse compounds of the future. 

 

The more recent studies carried out by Hou et al (2007 and 2009) and Yan et al (2008) both 

use 647 compounds but then excluded the 95 outliers for their work. Yan et al (2008) created 

3 partial least squares (PLS) models using 380 and 172 compounds for the training and 

validation sets. The RMSE value of the best model in this study was 18.18. The best 

published method is by Hou et al (2007c), which achieved r
2
 values of 0.90 and 0.84 and 

RMSE values of 7.8% and 11.2% for the training and validation sets using genetic function 

approximation (GFA).  

5.2 Classification Analysis 

There are many advantages for the prediction of intestinal absorption. However, depending 

on the stage at which the prediction models are used, the need for precise values predicted by 

a regression method may be questionable, when classification methods can be used to define 

which drugs will be highly absorbed and likely to be administered orally and those which are 

not (Norinder et al. 1997; Suenderhauf et al. 2011). 

For the classification analysis, in order to classify which compounds would be grouped as 

HIA+ or HIA-, a cutoff of 50% of the %HIA value was defined (HIA+ denotes the high 
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absorbance class, where  %HIA is  ≥ 50%, and HIA– denotes the low absorbance class, 

where %HIA is < 50%). The choice of 50% was arbitrary although it has also been used in 

previous studies (Niwa 2003). There have been a number of different cutoffs used, from 10% 

(Palm et al. 1997) up to 70% (Xue et al. 2004), with no standard defined. 

 

Table 4, referring to models built from training set TS1, shows that for the classification of 

the validation set the best overall classification accuracy was 0.958 (481/502), the highest 

specificity value was 0.952 (441/460) and the best sensitivity was 0.959 (40/42), all using 

model 3. Model 3 also gives the best accuracy and specificity, and the second best sensitivity 

(after model 1) for VS1, the balanced validation set (see Table 6). However for this model, 

the overall accuracy and specificity are much lower for the training set compared with the 

validation set. In fact in most cases accuracy, specificity and sensitivity of many models are 

better for the validation set than for the training set. This can be due to the compound 

composition of the training and validation set with the training set containing, by random, 

more outlier compounds. Considering also the training set, the best model taking into account 

the overall accuracy, specificity and sensitivity values for the training and validation sets was 

model 1. However as there were many descriptor values missing (ACD_Density and logP) 

this model may not be appropriate in a real life setting as these descriptors maybe difficult to 

obtain for new compounds. From this perspective, the best applicable model considering the 

training and validation sets is model 2. This achieved an overall accuracy of 0.876 (522/596), 

and with specificity and sensitivity values of 0.879 (451/513) and 0.855 (71/83) respectively, 

when those measures are calculated over all compounds in the full dataset (merging the 

training and validation sets). Model 3 has better overall accuracy of 0.933 (556/596) when 

calculated this way; however models 1 and 2 have better overall accuracies for the training 

set than model 3 as mentioned previously. 

 

The classification results obtained for TS2 (Table 5) indicate that the classification of poorly 

absorbed drugs (specificity values) are less accurate than the highly absorbed compounds 

(sensitivity). Moreover, the specificity values of the models developed using TS2 are much 

less accurate than models developed using TS1 (compare Tables 6 and 5). This is due to the 

unbalanced training set used (TS2) with a lower number of poorly absorbed compounds 

compared to highly absorbed compounds. On the other hand, sensitivity is higher in most 

models obtained for TS2, compared with models developed with TS1, with exceptions being 

the validation set sensitivity of model 3 and model 5. 
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For both TS1 and TS2 the effect of removal of the excluded compounds as highlighted by 

Hou et al (2007c) increased overall accuracy, specificity and sensitivity values in the majority 

of cases, but there was not a significant increase. So, as stated before, in practice leaving 

these compounds in will achieve a more applicable model that will have better generalization 

for new compounds.  

 

Suenderhauf et al (2011) and Hou et al (2006) have compiled summary tables that detail the 

accuracy, specificity and sensitivity of previous classification work carried out by previous 

studies. Overall a similar pattern emerges that the overall accuracy and sensitivity values of 

previous studies are higher than the specificity values obtained. This could be due to the low 

ratio of HIA- compounds in the training sets. An exception to this pattern is the results 

obtained by Hou et al (2007c), where specificity values in the validation set were higher than 

the sensitivity values. For our work, the overall accuracy and sensitivity are comparable or 

higher than previous studies apart from Hou et al (2007c), who used the same dataset but 

excluded carrier mediated and poorly soluble compounds. They also included 26 compounds 

with positively charged nitrogen which are known to be poorly absorbed and predicted 

readily with a count of positively charged nitrogen atoms. This aids the statistics of their 

model by increasing the specificity. This is also the reason for the higher specificity 

compared with sensitivity in their model. We have not included these 26 compounds in our 

investigation. Also, it must be noted that in Hou‟s investigation, the more complex non-linear 

methods of recursive partitioning and genetic function approximation (GFA) have been used 

(Hou et al, 2007c). Again, as mentioned earlier it would be precarious to take results at face 

value without considering the real impact of this type of information such as number of 

compounds in each class in the training and validation sets. 

 

There is a lot of business emphasis on reducing the number of false negatives in drug 

discovery due to the potential of missing the next potential drug and therefore potential loss 

of revenue, which is very important with the increased cost of drug discovery and 

development (Malo et al. 2006). A reduction in the number of false negatives is favoured in 

most publications as in practice they are more difficult to assess and highlight, so a model 

with as low as possible false negative rate is preferred (Zhang et al. 2000). An example of 

this is Amlodipine, which was predicted to be poorly bioavailable by QSAR but in real life is 

highly bioavailable  (Beresford et al. 2004). However reducing the number of false positives 
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could be considered equally as important or more important for cost effectiveness reasons. If 

a drug is misclassified as highly absorbed when in fact it is poorly absorbed (false positive) 

more time, effort and money is invested to investigate and reveal the compounds true class 

with further tests. Although there are few publications indicating that false positives need to 

be decreased rather than the business need of reducing false negatives, with the spiralling cost 

of drug discovery it maybe a future consideration for many companies to reduce false 

positives and therefore become more cost and time effective (Cummings 2006; Oprea 2000).  

 

Comparing the sensitivity and specificity values reported in Tables 7 and 8 for the consistent 

validation set of 89 compounds (VS3), it can be seen that the best specificity is achieved for 

models developed using TS1 (Table 6) with the highest value obtained using model 3. On the 

other hand the best sensitivity values were obtained using models developed using TS2 

(Table 7). This shows that TS1, the balanced dataset has a better classification ability 

compared with TS2 (unbalanced dataset) for predicting poorly absorbed compounds whereas 

TS2 has a better classification ability for highly absorbed compounds due to the biased nature 

of the dataset. In relation to the reduction of false positives and false negatives and depending 

on the priority, the balanced TS1 dataset would aid to reduce false positives by the increasing 

specificity and TS2 would increase sensitivity and therefore reduce false negatives. In 

conclusion if reducing the number of false positives is the priority then under-sampling of the 

majority class of the highly absorbed compounds would lead to more accurate and applicable 

in silico models for use in industry. 

 

6. Conclusion 

The importance of a good dataset is reiterated in numerous publications (Hou et al. 2009; 

Hou et al. 2007a; Tian et al. 2011; Zhu et al. 2011). There is a lack of publically available 

data to try and improve models for predicting intestinal absorption, however, even with more 

compounds it is the quality of the data which will then be questioned (Stouch et al. 2003). 

How the data is obtained and how it is validated are important issues to consider (Kortagere 

and Ekins 2010). In this work the dataset of Hou et al (2007c) was used for the development 

and validation of the models. In order to improve the prediction accuracy for the poorly 

absorbed compounds, the training set was selected by under-sampling the highly absorbed 

compounds. Two types of linear methods were used for the development of the models: 

linear discriminant analysis for the classification and multiple linear regression for the 

regression type analysis.  
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In terms of the linear regression models, results were conclusive that using the balanced 

dataset with similar proportions of various %HIA ranges leads to more robust models with 

lower prediction error for the validation set. This is despite the lower number of compounds 

in this training set (N=94), in comparison with the randomly selected training set of 496 

compounds. It is interesting to note that the r
2 

values of this study
 
are comparable to some of 

the models obtained using a variety of more complex techniques such as SVM and GA 

feature selection, showing that simple regression can obtain just as good r
2
 and fit for the 

prediction of %HIA (Reynolds et al. 2009; Yan et al. 2008).  

 

The discriminant models for the classification of compounds into high and low absorption 

classes indicated that the use of the balanced training set significantly improves specificity of 

the models indicating the higher accuracy of the classification of poorly absorbed 

compounds. However the sensitivity of the models developed using the balanced training set 

was lower than the sensitivity of the models based on the randomly selected training set 

which is skewed towards the highly absorbed compounds. Therefore, it can be suggested that, 

for reducing the number of false positives, it is better to use the balanced training set, despite 

the smaller training set size due to the under-sampling of the majority class.  

 

To conclude, this work highlights that by creating a balanced training set the more improved 

models which are also applicable to real life scenarios can be achieved for both regression 

and classification type analyses. It is envisaged that this conclusion may be extended to 

models based on more complex statistical techniques such as non-linear methods to improve 

the prediction accuracy further. Another significant point that needs to be considered in 

training set selection, in future research, is the impact of solubility and the dataset distribution 

of solubility values. Taking this into account may lead to even more applicable models given 

the increasing number of the poorly water-soluble and high molecular weight New Chemical 

Entities. 

The need for in silico modeling for the prediction of absorption is still apparent. There are 

many mitigating factors that can affect the use of simple models, but they are still useful. 

Even though different models were developed in this work, there were particular descriptors 

that were in more than one model. These descriptors help and confirm the understanding and 

the process of oral absorption. Descriptors such as logD, PSA and those involving H bonding 
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are all known to have an impact, whether this is positively or negatively, on oral absorption. 

There is still a wide scope for improving the prediction of models as there are many 

influencing factors that contribute towards absorption and therefore eventually oral 

bioavailability.   
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