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Abstract 

There are currently thousands of molecular descriptors that can be calculated to represent a 

chemical compound. Utilising all molecular descriptors in Quantitative Structure-Activity 

Relationships (QSAR) modelling can result in overfitting, decreased interpretability and thus 

reduced model performance. Feature selection methods can overcome some of these 

problems by drastically reducing the number of molecular descriptors and selecting the 

molecular descriptors relevant to the property being predicted. In particular, decision trees 

such as C&RT, although they have an embedded feature selection algorithm, can be 

inadequate since further down the tree there are fewer compounds available for descriptor 

selection and therefore descriptors may be selected which are not optimal. In this work we 

compare two broad approaches for feature selection: (1) a “two-stage” feature selection 

procedure, where a pre-processing feature selection method selects a subset of descriptors, 

and then classification and regression trees (C&RT) selects descriptors from this subset to 

build a decision tree; (2) a “one-stage” approach where C&RT is used as the only feature 

selection technique. These methods were applied in order to improve prediction accuracy of 

QSAR models for oral absorption. Additionally, this work utilises misclassification costs in 

model building to overcome the problem of the biased oral absorption datasets with more 

highly-absorbed than poorly-absorbed compounds. In most cases the two stage feature 

selection with pre-processing approach had higher model accuracy compared with the one 

stage approach. Using the top 20 molecular descriptors from random forest predictor 

importance method gave the most accurate C&RT classification model. The molecular 

descriptors selected by the five filter feature selection methods have been compared in 

relation to oral absorption. In conclusion, the use of filter pre-processing feature selection 

methods and misclassification costs produce models with better interpretability and 

predictability for the prediction of oral absorption. 
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1. Introduction 

The cost of bringing a drug to the market keeps on increasing 
1, 2

. The expense is likely to rise 

further with higher costs of everything from consumables to clinical studies and also tighter 

regulations governing acceptance of oral drugs on the market 
3
. Although there has been a 

successful effort to reduce compound attrition rates by incorporating pharmacokinetic (PK) 

assays in a high throughput manner earlier in drug discovery, compounds are now failing for 

other reasons as well as poor PK such as efficacy and toxicity 
4
. There is specific interest in 

predicting the intestinal absorption of new chemical entities (NCEs) as the oral route is the 

dominant route of drug delivery due to ease of administration and patient acceptance 
5, 6

. In 

silico modelling of intestinal absorption using QSAR (Quantitative Structure-Activity 

Relationships) can be used as a cost effective strategy to remove unsuitable compounds based 

on physicochemical properties and chemical structure alone. Moreover, in silico modelling 

can be used in tandem with high throughput assays in drug discovery and act as a guide to 

select appropriate assays that will help understand the mechanistic absorption properties of 

compounds 
7
.  

QSAR involves the mathematical relationships between a molecular structure and biological 

activity. However this relationship cannot be determined directly, therefore molecular 

descriptors that describe the chemical structure are calculated to derive relationships between 

the molecular descriptors and activity. Molecular descriptors are numerical representations of 

the chemical structure. Molecular descriptors can be classed as 0, 1, 2, 3 and 4D groups 
8
. 

Simple 0D descriptors are counts of atom and bonds in structure such as molecular weight 

and number of hydrogen atoms in a molecule. Molecular descriptors that count structural 

fragments, atomic properties or fingerprints are classed as 1D. Examples of 1D are number of 

hydrogen bond donors or acceptors. Topological descriptors based on the 2D structure of the 

molecule are predicted using graph theory, vectors and indices, and examples include the 

kappa shape, chi connectivity indices 
9
 and topological polar surface area 

10
. More 

complicated molecular descriptors such as 3D and 4D require the 3D coordinates of the 

structure. 3D descriptors are geometric descriptors and there are two types based on the 

internal or external orientation properties of the molecule. Good examples of 3D descriptors 

are energies relating to the orbitals of the atoms in the compound such as the lowest 

unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) 

energies. These molecular descriptors are derived from quantum chemistry theories and relate 
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to the reactivity of the compound. Finally 4D descriptors are based on the 3D structure but 

take into account the different flexibilities of the structure 
8
. 

In order to produce a model that is robust and high in predictive power, a wide choice of 

molecular descriptors is very important. Identifying the relevant descriptors correlating with 

intestinal absorption can be carried out using statistical feature selection methods although, 

additionally, educated assumptions can be made about physiological and physicochemical 

factors that influence the process of oral absorption to choose the useful descriptors 
11

.  

Feature selection is used frequently in QSAR and data mining to selectively minimise the 

number of independent variables (molecular descriptors) used to accurately describe the 

dependent variable – i.e., absorption 
12

. Feature selection is important for numerous reasons. 

Firstly, fewer molecular descriptors increase interpretability and understanding of resulting 

models 
13, 14

. Secondly feature selection can provide improved model performance for the 

prediction of new compounds 
15, 16

. Finally, it can reduce the risk of overfitting from noisy 

redundant molecular descriptors 
17

. 

Feature selection can be split into two broad categories: data pre-processing or embedded 

methods. Data pre-processing feature selection involves reduction of the number of molecular 

descriptors before model building, unlike embedded methods that incorporate the feature 

selection into the training and building of the model 
17, 18

. Data pre-processing techniques can 

be further split into filter and wrapper techniques. Filter techniques usually involve 

calculating a relative score of the molecular descriptors and ranking them in order of best 

score, and the descriptors that are at the top of the list are then used as input for classification. 

Examples of these are chi square and information gain. Wrapper techniques consider a 

number of subsets of molecular descriptors, evaluate each of these based on the predictive 

performance of a classification model built from that descriptor subset and eventually select 

the descriptor subset with the best predictive performance 
19

. In comparison of filter and 

wrapper methods, there are advantages and disadvantages. The choice of method depends on 

many things such as interpretability, predictability and computational cost.  

Filter methods offer a fast and simple way to select important descriptors. In addition, 

because they are independent of the classification algorithm, the score for each descriptor 

only needs to be calculated once, and the selected descriptors can be used as input for a 

variety of classification algorithms. A disadvantage of univariate filter methods is they fail to 

account for interactions between independent variables as most measure the correlation 



5 
 

between the dependent variable and each independent variable separately. This can be 

overcome by multivariate methods which take into account independent variable interactions.  

Wrapper techniques on the other hand are usually more computationally expensive, but 

unlike many univariate filter techniques, they take into account independent variable 

interactions 
17, 18

. In addition, hybrid filter and wrapper methods have also been developed as 

successful feature selection techniques 
20

 

Most oral absorption models in the literature have utilised feature selection methods either in 

pre-processing or in model development. There are many types of research in the literature 

that focus on different issues of oral absorption modelling; e.g. those that focus on obtaining 

a high predictive model with the feature selection not as the primary focus, but just as a part 

of the modelling process 
21

; and those that compare different feature selection techniques and 

compare the molecular descriptors chosen by the different techniques 
11, 20

. However, an 

underlying problem of oral absorption models in the literature is that they were developed 

using current oral absorption datasets in the literature which are highly biased towards the 

prediction of highly-absorbed compounds 
21-24

. This is due to availability of more data on 

marketed drugs which are mostly highly-absorbed in contrast with data on compound and 

drug candidates that never made into the market and failed during drug discovery. The 

models in this case may predict high absorption rate for poorly-absorbed compounds, i.e. 

false positives. This is not an ideal scenario as in drug discovery more compounds are now 

poorly-absorbed due to higher lipophilicity and poor aqueous solubility of current drug 

candidates 
25, 26

.  

Two methods have been studied previously to overcome the problem of biased oral datasets 

that show the effect of data distribution in the training sets for regression and classification. 

Firstly under-sampling the majority class, highly-absorbed compounds, to create a balanced 

training set with the same number of poorly and highly-absorbed compounds 
27

. The second 

technique utilises the whole biased dataset but applies misclassification costs to reduce false 

positives 
28

. The use of higher misclassification costs for model development should improve 

the predictive power of the model built with the molecular descriptor subsets chosen by 

appropriate feature selection methods.  

This work investigates five pre-processing filter feature selection techniques for selecting 

subsets of molecular descriptors. The comparison of these different feature selection 

techniques is anticipated to give an idea of the relative abilities of the different techniques 
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based on their prediction ability on the validation set. Furthermore, we compare two broad 

approaches for feature selection: (1) a “two-stage” feature selection procedure, where in the 

first stage a pre-processing feature selection method selects a subset of descriptors, and in the 

second stage classification and regression trees (C&RT), which is itself an embedded feature 

selection method, selects a subset of the descriptors selected by the filter technique to build a 

decision tree; (2) a “one-stage” approach where C&RT is used as the only feature selection 

technique, without using data pre-processing feature selection methods. A comparison 

between these two approaches could indicate the usefulness of pre-processing feature 

selection for C&RT analysis. Additionally, this work utilises misclassification costs in model 

building to overcome the problem of biased datasets. This work offers an investigation of 

feature selection techniques which reduces the number of molecular descriptors, increasing 

interpretability of resulting models and combined with this the use of misclassification costs 

in model development to increase model predictability when analyzing a biased dataset. 

Therefore this work offers a novel combination of pre-processing feature selection combined 

with misclassification costs to develop models for biased oral absorption datasets. 

2. Methods and Materials 

2.1 Dataset and Misclassification Costs  

The published dataset of Hou et al
21

 containing %HIA (Percent Human Intestinal Absorption) 

data for 645 drugs and drug-like compounds was utilised for development and optimisation 

of models. An additional set of data was collated from literature to serve as the external 

validation set. The %HIA values and references for the external validation set can be found in 

the Supporting Information. 

All the compounds in Hou et al’s data set were sorted by ascending %HIA values and then by 

logP values. The %HIA ascending values were put into groups of six then 5/6th of these 

compounds were placed randomly in the training set and the remaining into the parameter 

optimisation set (internal test set). The training set was used to train the model in C&RT; the 

parameter optimisation set was used to obtain the best parameters for the models. In addition, 

the external validation set was used to show the predictive ability of the models created with 

an unseen validation set. All compound sets had similar data distributions of highly and 

poorly-absorbed compounds to create a fairer more controlled validation of the models. The 
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exact number of compounds in the training, parameter optimisation and validation set are 

shown in Table 1. 

Table 1. Numbers of Compounds for training, parameter optimisation and validation sets 

Data Set 
Number of 

compounds (N) 

Training set 534 

Parameter optimisation set 107 

Validation set 48 

 

As stated previously the data set is highly skewed with many more highly-absorbed than 

poorly-absorbed compounds. Therefore any model generated using this biased dataset will be 

better at predicting highly-absorbed than poorly-absorbed compounds and there will be more 

misclassified poorly-absorbed compounds (false positives). To overcome this problem 

applying a higher misclassification cost to the poorly-absorbed misclassification (false 

positive) will reduce the number of false positives and increase overall prediction accuracy.  

In a previous investigation it was shown that applying misclassification costs to the 

prediction of poorly-absorbed compounds improved the predictive power especially for 

poorly-absorbed compounds by overcoming the distribution bias of the dataset 
28

. In this 

work, in order to assign an objective number for the overall misclassification cost, we have 

used the class distribution of the highly and poorly-absorbed compounds. Therefore we have 

used a misclassification factor of four to one, for low and high classes, respectively. 

2.2 Molecular descriptors 

A variety of different software packages were used to compute molecular descriptors; they 

include TSAR 3D v3.3 (Accelrys Inc.), MDL QSAR (Accelrys Inc.), MOE (Chemical 

Computing Group Inc.) v2010.10 and Advanced Chemistry Development ACD Labs/ LogD 

Suit v12. A total of 204 descriptors were initially used in this study before applying feature 

selection methods. 

2.3 Classification and Regression Trees (C&RT) 

Classification of the compounds using C&RT analysis was carried out using STATISTICA 

v11 (StatSoft Ltd). Compounds were placed into categorical classes of ‘high’ or ‘low’ 

according to the observed %HIA value in the dataset. The threshold for the classes was 50%; 

therefore any compounds with %HIA ≥ 50% was assigned to the ‘High’ class and any 

compound with a %HIA less than 50% was assigned to the ‘Low’ class. 
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C&RT analysis is a statistical technique that uses decision trees to solve regression and 

classification problems 
29

. For this work, the dependent variable (HIA Class) was categorical 

and classification trees were produced which classed compounds either ‘high’ or ‘low’ 

absorption. For this work the stopping factors were minimum number of compounds for 

splitting at 30 based on preliminary experiments. This enables pruning of the tree and 

prevents over-fitting of the decision tree 
29, 30

.  

For this work, HIA Class was set as the dependent categorical variable and either all 203 

molecular descriptors or a subset of these selected by various feature selection methods were 

selected as continuous independent variables. The analyses also included one categorical 

independent variable, N+ group, the indicator variable for presence or absence of quaternary 

ammonium. If there were any trees with only one compound in the terminal nodes, manual 

pruning was carried out to prevent this final split so that no terminal nodes contained only 

one compound. All other settings used were default setting defined by the software. 

It must be noted that C&RT performs embedded feature selection; therefore in this work we 

are also investigating the use of feature selection methods in a pre-processing phase, before 

inputting the descriptor subset into C&RT. By carrying out data pre-processing feature 

selection the methods can avoid C&RT’s drawback of ‘data fragmentation’. In other words, 

as the decision tree is built and compounds split into smaller nodes there are fewer 

compounds to split; therefore, the selection of descriptors in that local node becomes less 

statistically reliable. Figure 1 shows the work flow of this investigation and how the pre-

processing feature selection selects molecular descriptors as input for C&RT analysis 

compared to the embedded C&RT approach. 
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Figure 1: Workflow for molecular descriptor generation for pre-processing feature 

selection and embedded C&RT analysis 

2.4 Missing values 

Missing values for molecular descriptors can be a problem when building QSAR models. 

Depending on the software, procedures used to overcome the problems of missing values will 

vary 
20, 31

. For example, with general C&RT analysis in STATISTICA any compounds with 

missing values for certain molecular descriptors will be removed at the tree root. This means 

that there are fewer compounds used to build the C&RT models and the possibility of 

reducing the chemical coverage of the resulting QSAR model. In comparison, interactive 

trees will remove chemical compounds from the decision tree on a case by case basis, so only 

when that particular molecular descriptor is picked in the C&RT analysis will the chemical 

compounds be removed. Missing molecular descriptors values for compounds can identify 

patterns relating to certain functional groups or structural features that give rise to the missing 

values. In this work it was noted that compounds that contained a permanent quaternary 

ammonium ion had more missing descriptor values than other compounds in the dataset. 

Therefore, an indicator variable that described the permanent positive nitrogen (YES/NO) 

was calculated. Molecular descriptors that are difficult to compute and result in missing 

values may not be suitable to be used in resulting models as the molecular descriptors may 

not be able to be calculated for new compounds, leading to poor performance of the model 

for classification of these compounds. Therefore, we removed all molecular descriptors that 

had 10 or more missing values based on preliminary work, and therefore had a final number 

of 204 descriptors available for feature selection techniques.  

Dataset 

Feature selection 

Molecular descriptors 

C&RT 

Molecular descriptors 

Dataset 

C&RT 

Molecular 
descriptors 

Table 5  

Embedded C&RT  Pre-processing 
feature selection 
then embedded 

Table 6  Table 6  
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2.5 Feature Selection 

We used feature selection methods in pre-processing step to reduce the number of molecular 

descriptors to a smaller subset that accurately describes the dependent variable, in this case 

HIA Class. The software used for feature selection was STATISTICA v11 and WEKA v 3.6 

32
. The feature selection techniques to select molecular descriptors for the classification 

models of oral absorption are shown in Table 2. The descriptors selected by the feature 

selection techniques in Table 2 were used as input by C&RT which then performed further 

(embedded) feature selection (Figure 1).  

 

 

Table 2. Pre –processing feature selection methods utilised in this work 

 
Feature selection method 

Acronym used in 

this paper 

Software used   

1 Predictor importance using random forest RF STATISTICA   

2 Predictor importance using random forest with 

higher misclassification costs for false positives 

RF (MC) STATISTICA   

3 Chi-square CS STATISTICA   

4 Information gain ratio IGR WEKA   

5 Greedy stepwise GRD WEKA   

6 Genetic search GEN WEKA   

 

It is also important to define which parts of dataset were used for the different feature 

selection techniques. The training set is used by all methods; however, for the filter methods 

CS, IGR, GRD and GEN the parameter optimisation set was combined with the training set 

to carry out feature selection using these techniques. For random forest and C&RT 

(embedded feature selection) the training set was used to train the model and separately the 

parameter optimisation set was used to obtain optimal parameters for the method (Figure 2).  
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Figure 2. Compound sets were used for pre-processing and embedded feature selection. 

In this work for methods RF, CS, IGR the top 20 molecular descriptors were selected based 

on the highest values of the descriptor scoring function. Other numbers of selected molecular 

descriptors were tried; however, based on the C&RT analysis results on the parameter 

optimisation set, the top 20 descriptors gave the highest classification accuracy and was 

selected. 

2.5.1 Predictor importance ranking using Random forest (RF) 

Random forest generates a set of decision trees based on random subsets of compounds and 

descriptors in the training set. The ensemble of decision trees vote based on the individual 

tree results and then the majority vote for a particular compound determines the classification 

of that compound 
33, 34

. 

This method was carried out for the training set and the parameters of the analysis were 

optimised using the parameter optimisation set. The top 20 descriptors based on a ranking 

function called predictor importance in STATISTICA were obtained from the selected model. 

In STATISTICA software, for every molecular descriptor, the drop in each node impurity 

(delta) is summed for all nodes in the trees and expressed relative to the largest sum – i.e. the 

most significant descriptor. The delta is calculated for every descriptor (even if not used in 

the node for the splitting of the tree) and summed for every node and tree produced in the 

forest. The larger the delta the more significant the molecular descriptor is. The final summed 

delta value for every descriptor is normalized against the most important molecular descriptor 

 

 

 

Training 

Parameter 
optimisation 

Validation 

 

 

 

Filter methods CS, IGR, 
GRD and GEN used these 
sets combined to carry 
out feature selection 

C&RT and RF used the 
training to train the 
model and the parameter 
optimisation set to carry 
out method development 
separately 

For all methods to evaluate 
the predictive accuracy of 
models created 
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and therefore expressed relative to the molecular descriptors with the largest delta. This 

means that important molecular descriptors that may not have been picked to be in the trees 

may still appear in the final predictor importance table. 

Optimization of the random forest method was carried out based on the plot of 

misclassification error on the parameter optimisation set vs. the number of trees. The 

misclassification rate is the number of misclassified compounds divided by the total number 

of compounds. The lower the misclassification rate for the parameter optimisation set, the 

better the model. Based on the misclassification rate, the optimum number of trees was 

selected and used to repeat the analysis again with the new optimized value. The maximum 

number of levels for each tree was set to three. The software default value of eight was used 

for the number of molecular descriptors used in each tree. For random forest there was an 

option to apply misclassification costs, therefore two sets of molecular descriptors were 

selected using this technique: a descriptor set selected using equal misclassification costs 

(RF) and a descriptor set selected using a misclassification cost ratio of 4:1 for false 

positives: false negatives (RF (MC)). 

2.5.2 Chi Square (CS) 

In STATISTICA the CS function can be calculated and molecular descriptors ranked 

accordingly. CS is a statistical measure of the association (or dependence) between two 

categorical variables 
35

. The greater the CS value, the more statistically significant the 

molecular descriptor is in relation to the %HIA class, therefore allowing the most statistically 

important molecular descriptors to be ranked. The main drawback of using CS as well as 

many other filter techniques is that it is a univariate feature selection method; therefore it 

does not take into account interactions between the molecular descriptors. This could be a 

potential issue in relation to intestinal absorption, where there are many interlinking factors 

influencing absorption with many molecular descriptors describing them 
6, 36

. CS is an 

association measure for categorical descriptors, therefore there may be problems when 

continuous variables are used that contain a large spread of numerical values, since the 

conversion of numerical variables into categorical ones (required for the use of the chi square 

measure) may lose relevant information.  The software default number of bins (ten) was used 

for chi square discretizing of the molecular descriptors. 
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2.5.3 Information gain ratio (IGR) 

Information gain ratio is a normalised function of the information gain feature selection 

method developed by Quinlan
37

 as part of the ID3 (Iterative Dichotomiser) decision tree 

algorithm. This feature selection method is used to split the decision tree into nodes and 

identify molecular descriptors that are the best for the individual splits 
37

. Information gain 

works to minimise the information needed to classify compounds into resulting nodes. It is 

the difference between the original information (before the data is spilt) and the new 

information produced after using the molecular descriptor to split the training set data. This 

difference is the gain of information achieved by using a specific molecular descriptor, 

therefore the molecular descriptor with the highest gain is the one used for the split 
14

. 

Information gain ratio was first described by Quinlan
38

 in the context of the C4.5 algorithm, 

which superseded ID3. Information gain ratio overcomes the bias towards selecting those 

molecular descriptors with many numerical values by normalising the information gain. The 

higher the ratio value the better the molecular descriptor for the split. This feature selection 

technique was carried out using WEKA 3.6. 

2.5.4 Greedy Stepwise (GRD) 

The previous feature selection methods are based on ranking the molecular descriptors based 

on a certain criteria and do not take into account the interactions between the molecular 

descriptors. Therefore two additional feature selection methods were used that utilise a search 

method which takes molecular descriptor interaction into account as well as the correlation 

with HIA class. These methods seek to maximise the correlation between HIA and the 

molecular descriptors being tested, and minimise correlations between the molecular 

descriptors. 

The first of these methods is greedy stepwise, which is a forward stepwise feature selection 

method 
39

. This is a local search method that firstly considers all the molecular descriptors 

and picks the best one – i.e., the one that correlates with HIA class. It then starts again with 

all the remaining molecular descriptors, and picks the best molecular descriptor that pairs 

with the previously selected molecular descriptor in relation to HIA class. The iterations carry 

on until a local maximum is reached. Due to the nature of this technique only a local search 

can be carried out based on the molecular descriptor(s) selected in all the previous iterations, 

therefore the potential for a global search of all the different possible subsets is limited, and 

promising regions of molecular descriptor space can be missed 
15

. To guide the greedy search 

in the feature selection process, in the WEKA software an evaluator is used. The evaluator 
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function used was correlation-based feature selection subset evaluator (CfssubsetEval). This 

evaluator not only aims to maximise the correlation between the best molecular descriptors 

and HIA class, but also to minimise the correlation or redundancy between the descriptors for 

the search subsets generated.  

2.5.5 Genetic Search (GEN) 

GEN is a filter (rather than wrapper) version of the genetic algorithm 
40

. Genetic algorithm 

(GA) was first created by Holland
41

, although the concept of genetic algorithm was being 

researched before this. Now termed generally as an evolutionary algorithm, GA mimics the 

process of natural evolution. An initial population is created containing random candidate 

solutions. In the context of this work, a candidate solution is a molecular descriptor subset. 

Each candidate solution is evaluated in terms of its fitness (quality), and candidate solutions 

are then selected to be reproduced and to undergo modifications with a probability 

proportional to their fitness values. The process of selecting “parent” candidate solutions 

based on fitness and producing “offspring” solutions that are based on the parents is 

iteratively performed for a number of iterations, so that the population of candidate solutions 

gradually evolves towards better and better candidate solutions. 
41

. In this work we have 

utilised the genetic search feature selection method using WEKA software 
42

. This method 

carries out a global search in the ‘molecular descriptor space’ to find the best subset of 

molecular descriptors relating to HIA class, guided by a subset evaluator that generates a 

numerical value of ‘fitness’ (quality) of any given feature subset. Like with the greedy search 

technique, the evaluation function used for the genetic search method was ‘CfssubsetEval’.  

2.6 Statistical significance of the models 

Specificity (SP), sensitivity (SE), cost normalized misclassification index (CNMI), and SP × 

SE were used to show the predictive performance of classification models. Specificity is the 

fraction of poorly-absorbed compounds correctly classified by the model and is inversely 

proportional to the number of false positives (poorly-absorbed compounds wrongly classified 

as highly-absorbed compounds). Specificity is defined as SP = TN/(TN + FP), where TN is 

the number of true negatives (poorly-absorbed compounds correctly classified as poorly-

absorbed) and FP is the number of false positives. Sensitivity is the ratio of highly-absorbed 

compounds correctly classified by the model, and is inversely proportional to the number of 

false negatives. Sensitivity is defined as SE = TP/(TP + FN), where TP is the number of true 

positives (highly-absorbed compounds correctly classified as highly-absorbed) and FN is the 

number of false negatives (highly-absorbed compounds wrongly classified as poorly-
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absorbed compounds). The overall predictive performance of a model was measured by 

multiplying the specificity and sensitivity (SP x SE). This is an effective measure of a 

model’s predictive performance as it takes into account the effect of unbalanced class 

distribution. In contrast, the overall accuracy measure, usually defined by the ratio of the 

number of correct predictions made by the model over the total number of (correct or wrong) 

predictions, does not take into account the effect of unbalanced class distributions or 

misclassification costs. To take into account misclassification costs in the models, the cost 

normalised misclassification index (CNMI) was calculated. CNMI can be calculated by 

Equation 1 below. 

 

                                                                     Eq. 1           

CostFP and CostFN are the misclassification costs assigned for false positives and false 

negatives and Neg and Pos define the total number of negative and positive observations, 

respectively. The CNMI value will be between zero and one, zero showing no 

misclassification errors and as the number increases towards one the number of 

misclassifications increases. For a more detailed explanation of Equation 1, see reference 
28

 

3. Results 

A full list of molecular descriptors selected by each of the feature selection methods can be 

found in the supporting information (Supporting information). For GRD and GEN, as these 

are not ranking feature selection methods the number of descriptors picked by the method 

will depend on the technique. GRD selected a total of 21 descriptors and GEN selected 64. 

Tables 3 and 4 show the predictive performance measures from the classification trees using 

different sets of molecular descriptors from feature selection methods. In Table 3 equal 

misclassification costs have been applied to false positive and false negatives for C&RT 

analysis, while in Table 4 the ratio of misclassification costs is 4:1 for false positives: false 

negatives. In Table 3 and 4 the best models are those that have the highest SE, SP and SP x 

SE measures and the lowest CNMI. These have been highlighted in bold for the training (t), 

parameter optimisation (po) and validation (v) sets. For the random forest feature selection 

method there was an option to apply misclassification costs. Therefore the descriptor sets 

selected by RF with equal (models 1 and 8) and higher misclassification costs applied to false 
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positives (models 2 and 9) were used and also compared. All the C&RT decision trees from 

Tables 3 and 4 can be found in the Supporting Information. 

Table 3. The results of C&RT classification analysis using different feature selection 

methods with equal misclassification costs applied to the C&RT algorithm 

Model 

Feature 

selection 

Method 

dataset N SP x SE SE SP CNMI  

1 RF 

t 531 0.848 0.950 0.892 0.060 

po 107 0.709 0.930 0.762 0.103 

v 47 0.363 0.816 0.444 0.255 

2* RF (MC) 

t 531 0.884 0.945 0.935 0.056 

po 107 0.757 0.884 0.857 0.121 

v 47 0.453 0.816 0.556 0.234 

3 CS 

t 531 0.777 0.963 0.806 0.064 

po 107 0.576 0.930 0.619 0.131 

v 47 0.187 0.842 0.222 0.277 

4 IGR 

t 531 0.800 0.979 0.817 0.049 

po 107 0.664 0.930 0.714 0.112 

v 47 0.398 0.895 0.444 0.191 

5 GRD 

t 531 0.803 0.970 0.828 0.055 

po 107 0.628 0.942 0.667 0.112 

v 47 0.351 0.789 0.444 0.277 

6 GEN 

t 531 0.839 0.975 0.860 0.045 

po 107 0.673 0.942 0.714 0.103 

v 47 0.398 0.895 0.444 0.191 

7 C&RT 

t 531 0.784 0.959 0.817 0.066 

po 105 0.694 0.942 0.737 0.095 

v 47 0.281 0.842 0.333 0.255 
SE= Sensitivity, SP = Specificity; SP × SE = accuracy; CNMI = Cost normalised misclassification index, * misclassification 

costs applied to feature selection method 

Comparing models built with equal misclassification costs (Table 3); the best overall model 

to choose would be model 2. This model has the highest SP x SE, plus the highest specificity 

values for the training, parameter optimisation and validation sets. However, this model does 

not achieve the highest sensitivity values, with SE = 0.945, 0.884 and 0.816 for the training, 

parameter optimisation and validation set respectively. All other models have better SE than 

model 2 for the three data subsets; apart from model 1, which has the same SE for the 

validation set, and model 5 (GRD), with a lower SE of 0.789. If the aim of the model was to 
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achieve the best sensitivity then model 6, using genetic search feature selection, would be the 

best model to use as it achieved the best sensitivity for the parameter optimisation and the 

highest SE for the training set amongst the three selected models above, along with the lowest 

CNMI for the training set. Model 2 was able to classify correctly all the permanent 

ammonium-containing compounds used in the training and parameter optimisation set, and 

this reflected in the correct prediction of a permanent ammonium containing compounds in 

the validation set. The classification tree using the molecular descriptors from this model is 

shown in Figure 3. 

 

Figure 3. Tree graph for C&RT analysis using random forest predictor importance as feature 

selection method with equal misclassification costs applied to pre-processing C&RT (Model 

2 in Table 3) 

Table 4. The results of C&RT classification analysis using different feature selection 

methods with higher misclassification costs applied to false positives to the C&RT 

algorithm (misclassification cost ratio of FP: FN = 4:1) 

Model 

Feature 

selection 

Method 

dataset N SP x SE SE SP CNMI  

Tree graph for HIA CLASS

Num. of non-terminal nodes: 9,  Num. of terminal nodes: 10

Model: C&RT

ID=1 N=534
High

ID=2 N=104
Low

ID=4 N=61
High

ID=7 N=48
High

ID=8 N=30
High

ID=3 N=427
High

ID=13 N=419
High

ID=14 N=398
High

ID=16 N=30
High

ID=6 N=13
Low

ID=10 N=25
High

ID=11 N=5
Low

ID=9 N=18
Low

ID=5 N=43
Low

ID=12 N=8
Low

ID=18 N=27
High

ID=19 N=3
Low

ID=17 N=368
High

ID=15 N=21
Low

ACDLogD7.4

<= -1.635000 > -1.635000

O Atoms

<= 5.500000 > 5.500000

VAMP HOMO

<= -10.175500 > -10.175500

Heteroatoms

<= 7.500000 > 7.500000

SsOH_acnt

<= 2.500000 > 2.500000

VAMP Mean Polarizability

<= 2.652500 > 2.652500

ACD_PSA

<= 139.665000 > 139.665000

SsssCH

<= -1.345800 > -1.345800

VAMP Mean Polarizability

<= 56.363000 > 56.363000

High    

Low
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8 RF 

t 531 0.887 0.927 0.957 0.026 

po 107 0.725 0.895 0.810 0.068 

v 47 0.675 0.868 0.778 0.081 

9* RF (MC) 

t 531 0.879 0.909 0.968 0.028 

po 107 0.738 0.860 0.857 0.066 

v 47 0.635 0.816 0.778 0.093 

10 CS 

t 531 0.838 0.906 0.925 0.037 

po 107 0.687 0.849 0.810 0.079 

v 47 0.544 0.816 0.667 0.118 

11 IGR 

t 531 0.853 0.934 0.914 0.033 

po 107 0.673 0.884 0.762 0.082 

v 47 0.544 0.816 0.667 0.118 

12 GRD 

t 528 0.892 0.943 0.946 0.025 

po 106 0.654 0.872 0.750 0.085 

v 47 0.725 0.816 0.889 0.068 

13 GEN 

t 531 0.885 0.895 0.989 0.027 

po 107 0.640 0.895 0.714 0.090 

v 47 0.614 0.789 0.778 0.099 

14 C&RT 

t 531 0.911 0.932 0.978 0.020 

po 107 0.726 0.907 0.800 0.066 

v 47 0.544 0.816 0.667 0.118 
FP = False positive; FN = False negative; SE= Sensitivity, SP = Specificity; SP × SE = accuracy; CNMI = Cost normalised 

misclassification index, * misclassification costs applied to feature selection method 

For Table 4, based on the SP x SE for the external validation set the best model is model 12 

with a SP x SE value of 0.725 but this model also had one of the lowest SP x SE for the po 

set (0.654) which has a higher number of chemicals compared to the external validation set. 

In comparison, models 8 and 9 achieved higher SP x SE of 0.725 and 0.738 respectively, 

where the po set was not used for molecular descriptor selection and hence it was also an 

external set.  From models 8 and 9, model 9 had a similar balance of high estimation of SP 

and SE compared to model 8 which was slightly worse at predicting poorly-absorbed 

compounds for the po set. What was interesting to note about model 9 was the feature 

selection method using predictor importance from random forest, which allowed 

misclassification costs to be applied at the feature selection level. Then the resulting C&RT 

model (with misclassification costs) achieved high prediction accuracy for the unseen 

validation set as well as training and parameter optimisation sets. The C&RT tree for model 9 

is shown in Figure 4. 
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Figure 4. Tree graph for C&RT analysis using random forest predictor importance as feature 

selection method with higher misclassification costs applied to reduce false positives (model 

9 in Table 4) 

3.1 Interpretation of the selected models (models 2 and 9) 

Both models 2 and 9 have been developed using the 20 most significant molecular descriptors 

selected by random forest analysis. Although the top 20 molecular descriptors were given as 

input to the C&RT analysis, not all of the molecular descriptors were used to build the 

decision trees. The first split variable in both models is ACDLogD7.4, the logarithm of the 

apparent distribution coefficient between octanol and water, and a measure of hydrophobicity 

at pH 7.4. This molecular descriptor along with logP is used in numerous publications for 

oral absorption modelling, and has been found to have a positive effect for transcellular 

absorption 
43, 44

. For compounds to be split into the high absorption class, LogD7.4 has to be 

greater than -1.63 according to both models. For compounds with low logD7.4 (≤-1.63), if 

they contain more than five oxygen atoms they are classed as poorly-absorbed in this terminal 

node according to both models. This molecular descriptor is linked to the number of 

hydrogen bond acceptors, highlighted in Lipinski’s rule of five 
45

; which states that a 

molecule will be highly likely to be poorly-absorbed if two or more of the following rules are 

Tree graph for HIA CLASS

Num. of non-terminal nodes: 9,  Num. of terminal nodes: 10

Model: C&RT

ID=1 N=534
High

ID=2 N=104
Low

ID=4 N=61
Low

ID=7 N=48
Low

ID=9 N=35
Low

ID=3 N=427
High

ID=12 N=371
High

ID=13 N=56
Low

ID=16 N=36
High

ID=6 N=13
Low

ID=8 N=13
High

ID=10 N=5
High

ID=11 N=30
Low

ID=5 N=43
Low

ID=14 N=6
Low

ID=15 N=365
High

ID=18 N=18
Low

ID=19 N=18
High

ID=17 N=20
Low

ACDLogD7.4

<= -1.635000 > -1.635000

O Atoms

<= 5.500000 > 5.500000

VAMP HOMO

<= -10.175000 > -10.175000

xp6

<= 1.278550 > 1.278550

FiA7.4

<= 0.000005 > 0.000005

ACD_PSA

<= 114.185000 > 114.185000

VAMP Mean Polarizability

<= 2.652500 > 2.652500

ka1

<= 25.531500 > 25.531500

ACDLogD5.5

<= 0.275000 > 0.275000

High    

Low
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broken: if molecular weight >500 Da, sum of OH and NH hydrogen bond donors >5, 

calculated logP (C LogP) >5 and sum of N and O atoms as hydrogen bond acceptors >10. 

Examples of poorly-absorbed compounds classed in this node are ceftriaxone and raffinose. 

In both models, the next important descriptor selected for the partitioning of compounds with 

low logD7.4 and less than six oxygen atoms is VAMP HOMO. This molecular descriptor is 

the energy of the highest occupied molecular orbital calculated by AM1 semi-empirical 

method using the VAMP programme in TSAR 3D software. The higher the value (>-10.18 in 

the split in the trees) indicates higher absorption classification. Compounds with low HOMO 

values are in the low absorption terminal nodes; and correlates with previous research 
28

.  The 

majority of compounds with low HOMO energy (<-10.18) according to this split contain a 

permanent quaternary ion such as pralidoxime and bethanechol, which are small polar 

molecules mainly related to the neurotransmitter acetylcholine, or compounds such as 

fosmidomycin and fosfomycin, which contain phosphorus atoms. Compounds with a higher 

HOMO energy are further split with different molecular descriptors in the two trees.  

In Figure 3 compounds with more than seven heteroatoms are classed as poorly-absorbed. 

This corresponds to Lipinski’s rule of five, more precisely the number of hydrogen bond 

acceptors rule. In this node the majority of compounds are antibiotics such as meropenem and 

imipenem, which are both poorly-absorbed. There are also some misclassified antibiotics 

such as penicillin V and amoxicillin, which are highly-absorbed. However, both these 

compounds have been found to be substrates for the oligopeptide transporter, PEPT1 

(SLC15A1), influx transporter in the small intestine 
46

. The remaining 30 compounds are 

classed as highly-absorbed if they contain less than three OH groups (SsOH_Acnt).  

In Figure 4 however, compounds with low xp6 values are classed as highly-absorbed. The 

descriptor xp6 is the sixth order single path molecular connectivity index 
9
, which may be 

regarded as a size descriptor with some shape/connectivity elements.  Examples of 

compounds in this node are of a small, polar often peptide like nature with no permanent 

charge and mainly natural or semi-synthetic compounds such as phenylalanine and captopril 

which may have the possibility to be absorbed using oligopeptide transporters (Figure 4, 

Node ID=8).  The remaining 35 compounds are classed as poorly-absorbed if they have 

acidic groups with ionization fraction > 0.000005.  

Highly-absorbed compounds with logD value greater than -1.63 are split differently in 

Figures 3 and 4. Despite this, the best molecular descriptors for splitting of these 427 
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compounds in both trees are the same, namely polarizability (VAMP mean polarizability) and 

polar surface area (ACD_PSA). In both trees, compounds with polarizability values ≤ 2.65 

are poorly-absorbed. This molecular descriptor indicates the distortion of a compound’s 

electron cloud by an external electric field 
47

. Examples of compounds with ≤2.65 

polarizability values (Node ID = 12 in Figure 3 and 14 in Figure 4) are bephenium and 

vecuronium, both with low polarizability due to the permanent quaternary ion present in the 

molecules. Polar surface area (PSA) is a common molecular descriptor used in oral 

absorption models 
20, 28

. PSA is the area of the Van der Waals surface that arises from oxygen 

and nitrogen atoms or hydrogen atoms bound to these atoms. In both trees compounds with 

high PSA are poorly-absorbed. In Figure 3 a compound is poorly-absorbed if the PSA is 

greater than 139.67Å, which matches the literature threshold value where it was cited that a 

molecule will be poorly-absorbed (<10% FA) if the PSA is ≥140Å 
43, 48

. In Figure 4, a 

threshold value of 114.19 Da has been used but these high PSA compounds have been 

partitioned further and those with smaller molecular size as indicated by ka1, and higher 

logD5.5 values than 0.275 are classed as highly-absorbed. An interesting feature can be 

observed in Figure 3, where for the compounds with PSA values ≤139.67 and low >CH- 

groups (SsssCH ≤ -1.35), if polarizability is too high (VAMP mean polarizability >56.363) 

then oral absorption will be poor. Examples of these drugs are two pro-drug ACE inhibitors 

moexipril diacid and fosinopril plus the cardiac glycoside cymarin. 

3.2 Chemical space and repeating misclassifications in models 

There were a few compounds that were continually misclassified by most models. Within the 

validation set the compounds misclassified by all models was lovastatin, while frovatriptan 

was misclassified by the majority of models. These compounds are poorly-absorbed, but the 

models misclassified them as highly-absorbed. Lovastatin is a naturally occurring product 

used to reduce cholesterol; this compound has poor solubility issues in aqueous medium 
49

, 

plus it has been identified as heavily undergoing gut metabolism both of which could account 

for the misclassification 
50

. In addition, this compound has been identified as a potential 

substrate and inhibitor of the efflux transporter P-gp 
51

. Frovatriptan, according to the Varma 

et al (2010), has a fraction escaping gut metabolism of 69% meaning potentially, 30% could 

be metabolised by the gut, specifically UDP-glucuronosyltransferases (UGT’s) in the gut due 

to their substrate specificity of the indole group present in frovatriptan and the similarity of 

this compound to serotonin, a UGT substrate. However there is no direct evidence of this in 

the literature however this could explain the misclassification by our models 
52, 53

.  
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4.  Discussion 

Thousands of molecular descriptors can be calculated to represent molecular features or 

properties of the compounds. The use of feature selection to reduce the number of molecular 

descriptors is a common practice in QSAR as a part of pre-processing or embedded methods. 

Feature selection increases interpretability by reducing the number of molecular descriptors, 

it reduces overfitting associated with noisy or redundant descriptors and often improves 

predictability of resulting classification models.  

In this paper we used various filter feature selection methods for data pre-processing, to pick 

significant descriptors related to intestinal absorption. These descriptor sets were used as 

input for C&RT analysis, which has an embedded feature selection method, to classify 

compounds into high or low absorption in a biased dataset. The application of higher 

misclassification costs for false positives to the C&RT analysis was also investigated to 

overcome the problem of biased datasets (which contain many more highly-absorbed 

compounds than poorly-absorbed compounds) and to see if models with greater prediction 

accuracy could be achieved.  

The feature selection methods used in this work were predictor importance using random 

forest (RF), chi square (CS), information gain ratio (IGR), greedy search (GRD) and genetic 

search (GEN). The feature selection methods were compared based on the predicted ability of 

the C&RT algorithm. There were certain expectations of the feature selection methods based 

on how they work and their advantages and disadvantages. To begin, it was expected that the 

combination of a pre-processing feature selection method and C&RT, which has an 

embedded feature selection, to have higher prediction accuracy when compared to using 

C&RT with no pre-processing feature selection method. This was on the basis that when 

C&RT splits compounds, further down the tree there are fewer compounds in the deeper 

nodes, therefore less statistical support for an effective selection of the best descriptor 

especially when there are a larger number of molecular descriptors to choose from. Therefore 

as a result the C&RT algorithm could pick descriptors that may be less relevant to molecular 

descriptors higher up in the tree. However, C&RT is a successful technique in its own right 

with an embedded feature selection function which is used in model development for the 

prediction of oral absorption 
28, 54

. The benefits of using C&RT are that it can cope with noisy 

data (to some extent) of moderately sized biased datasets 
11

 and produces models (decision 
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trees) that in principle can be easily interpreted. In addition it is less time consuming than 

pre-processing the molecular descriptors first. 

The expectations of the feature selection methods themselves can be considered and 

compared to the obtained results in this work. The benefits of simple univariate filter 

techniques such as CS and IGR are that they are simple and fast to compute; however they 

fail to take into account molecular descriptor interactions 
18, 55

. This is in contrast to GRD and 

GEN, which take molecular descriptor interactions into account but are more computationally 

expensive. In a comparison of GRD and GEN, due to the way these feature selection methods 

work, GEN should achieve higher accuracy, as it performs a global search in the molecular 

descriptor space, whilst GRD performs a local search in the molecular descriptor space. 

Using the predictor importance in the random forest method is computationally expensive; 

however, there is the added advantage that misclassification costs can be applied using the 

software as well as being applied for the C&RT analysis. Finally, based on previous research, 

the application of higher misclassification costs to false positives will produce models with 

increased overall accuracy and reduced false positive misclassifications, therefore 

overcoming the problem of biased datasets compared with equal misclassification costs. 

Overall, one of the best feature selection methods according to the models produced in this 

work was predictor importance using random forest. This was expected for this method, as it 

was possible to apply higher misclassification costs to the feature selection technique itself as 

well as applied to the C&RT analysis. Even when misclassification costs were not applied to 

predictor importance, the produced models still had higher overall accuracies over most 

models. This is down to the ensemble nature of this method, which is known to perform 

better than single tree analysis 
56

. In comparison with C&RT where no pre-processing feature 

selection was utilised, the predictor importance feature selection method had higher overall 

accuracy for the validation set in all cases. The high classification accuracy on the training set 

but low prediction accuracy on the validation set could indicate overfitting of the models 

produced by C&RT. Models produced by other pre-processing feature selection techniques 

were better compared with models produced by C&RT with no pre-processing feature 

selection on the validation set, except for the models produced by CS feature selection. In the 

majority of the cases, using C&RT alone gave better prediction accuracy for the parameter 

optimisation set compared with IGR, GRD and GEN; however these latter methods had better 

overall prediction accuracy for the validation set. This shows that C&RT without pre-

processing can cope with redundant and meaningless molecular descriptors, however is prone 
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to overfitting (even with pruning of the trees) and can lack predictive accuracy for the 

prediction of the validation set. 

Comparing the expectations set out initially, it was found that comparing univariate methods 

such as CS and IGR with those that take into account molecular descriptor interactions (GEN 

and GRD) there is no clear pattern in the difference between their results. However, overall, 

when equal misclassification costs were applied to the C&RT analysis, GEN as expected had 

better or comparable predictor performance than CS and IGR. On the other hand, GRD had 

comparable performance with CS and weaker compared with IGR. When misclassification 

costs were applied to C&RT, GEN and GRD models were better than CS and IGR for the 

training and validation set, again it is difficult to state which method is better overall. This 

effect is also seen in the next example when comparing GEN and GRD feature selection 

methods based on the predictive accuracy of the C&RT analysis. GEN performs better than 

GRD when equal misclassification costs were used; this matches the predictions previously 

made. This is in some agreement with work using numerical regression analysis 
57

. However 

upon applying higher misclassification costs the molecular descriptors pre-processed by the 

GRD model outperformed the GEN model. This could be due to the correlation-based feature 

selection subset evaluator used by the GEN method not being suitable for use with C&RT 

and misclassification costs, and potentially highlight overfitting by the GEN based model. 

The effect of applying higher misclassification costs to either false positives or false 

negatives has been investigated in previous research 
28

. In this work the application of higher 

misclassification costs to false positives resulted in better overall accuracy and specificity as 

expected in the majority of cases. 

In this work we have shown that for most models using pre-processing feature selection does 

appear to improve classification accuracy compared to the control (C&RT using all molecular 

descriptors) based on prediction accuracy. This agrees with work carried out by Xue and co-

workers
16

 who considered three different datasets including prediction of oral absorption. 

They used recursive feature elimination for feature selection and SVM to classify 

compounds. They compared the results with and without the feature selection method and 

found that for oral absorption improved accuracy was obtained when the feature selection 

method was used. For one of the datasets, feature selection gave comparable predictive 

ability, which with a smaller descriptor subset will increase the interpretability of resulting 

models 
16

. However, a study by Suenderhauf
11

 carried out regression and classification for 

oral absorption using a variety of techniques including C&RT, Support Vector Machine 
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(SVM), and chi-squared automatic interactor detector (CHAID); and using these techniques 

they compared the feature selection methods of best first feature selection (BFS) using a 

greedy hill-climbing algorithm, linear correlation analysis and decision tree splitting criteria. 

Suenderhauf utilised the decision trees to pick smaller subsets of molecular descriptors used 

in the work as input for the model development, this is similar to our idea of a two stage pre-

processing feature selection. The best model was produced by CHAID using the entire set of 

original molecular descriptors, which contradicts our results that pre-processing feature 

selection gives better accuracy. However, it is interesting to note that, out of the feature 

selection methods that they used, the decision tree splitting criteria gave the best results. This 

research also showed that SVM had poor performance when feature selection methods were 

utilised, which could indicate that there are some feature selection methods that work better 

with certain techniques such as SVM 
11

.  

 

Although it is difficult to directly compare the different feature selection techniques that we 

used with the literature, the molecular descriptor subsets can be compared. Firstly it is 

interesting to compare in this work the molecular descriptors selected by the pre-processing 

feature selection methods (Supporting information). The top molecular descriptors picked 

by the feature selection methods can be found in Table 5. This table shows the top molecular 

descriptors that were picked by three or more feature selection methods. The molecular 

descriptors selected by the various feature selection methods were used as input for C&RT 

analysis, which in turn further selected a smaller subset of molecular descriptors to build 

decision trees. The top descriptors picked by firstly the pre-processing method and then by 

C&RT analysis are shown in Table 6. Table 6 also indicates the number of times a molecular 

descriptor was picked by C&RT with or without pre-processing feature selection. The 

individual descriptors picked by the C&RT models can be found in the supporting 

information. 

Table 5. Molecular descriptors selected by three or more pre-processing feature selection 

methods listed in Table 2 

Descriptor Feature selection method  Description 

ACDLogD7.4 RF, RF (MC), CS, IGR, GRD, GEN Apparent distribution coefficient at pH 7.4 calculated by ACD 

ACDLogD10 RF, CS, IGR, GRD, GEN Apparent distribution coefficient at pH 10 calculated by ACD 

ACDLogD5.5 RF, RF (MC), CS, GRD, GEN Apparent distribution coefficient at pH 5.5 calculated by ACD 

SHHBd CS, IGR, GRD, GEN 
Sum of the hydrogen atom level E-state values for all hydrogen atoms bonded 
to donating atoms 

O Atoms RF, RF (MC), CS, GRD Number of oxygen atoms in whole molecule 

ACD_PSA RF, RF (MC), CS, GRD Polar surface area 
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numHBa RF, RF (MC), CS, GEN Number of Hydrogen bond acceptors 

SsOH_acnt RF, RF (MC), CS, GEN Counts of atom-type E-state for hydroxyl groups 

VAMP Heat of Formation RF, RF (MC), GRD, GEN Enthalpy required to form 1 mole of compound at 298K calculated by VAMP 

ACD_LogP CS, GRD, GEN Octanol/water partition coefficient calculated by ACD 

ACDLogD6.5 RF, CS, GRD Apparent distribution coefficient at pH 6.5 calculated by ACD 

Heteroatoms RF (MC), CS, GEN Number of atoms that are not carbon or hydrogen e.g nitrogen, oxygen 

ka1 RF, RF (MC), GEN  First order kappa alpha shape index 

numHBd RF, CS, GEN Number of hydrogen bond donors 

SdsssP IGR, GRD, GEN 
Sum of atom-type E-state for phosphorous atoms with 3 single and one double 

bond 

Sum of E-State indices RF, IGR, GEN Sum of the E-State values for all the atoms in molecule 

VAMP HOMO RF (MC), GRD, GEN Energy of the highest occupied molecular orbital calculated by VAMP 

VAMP LUMO RF, GRD, GEN Energy of the lowest occupied molecular orbital calculated by VAMP 

 

Table 6. The top molecular descriptors selected by C&RT 
    Times used by C&RT 
Type of descriptor Descriptor Pre-processing No Pre-processing 

Hydrogen bonding ACD_PSA 8 1 

O Atoms 8 1 

SHHBd 8a  
Lipophilicity ACDLogD7.4 10 1 

ACD_LogP 6  

ACDLogD6.5 3 1 
Polarity/ Polarization VAMP LUMO 4a 2 

N+ 5a  

VAMP Mean Polarizability 5a  
Size/Shape VAMP totl Energy 5a  

ka1 3a  

SsssCH 3 1 
aOccurred more than once in a single tree model. 

 

The top molecular descriptor as picked by the majority of feature selection methods was the 

same as the top molecular descriptor then picked by the resulting C&RT analysis 

(ACDLogD7.4). Other studies have identified lipophilicity descriptors, in particular logD7.4 

as well as logD5.5, 6.5 and logP, as important for intestinal absorption as picked by various 

feature selection techniques 
11, 58, 59

. The next most frequently picked molecular descriptors 

are those relating to hydrogen bonding, in particular polar surface area. Polar surface area is a 

molecular descriptor commonly used in oral absorption models and it has a negative 

correlation with intestinal absorption 
43, 48

. This descriptor was also utilised in other studies 

that focussed on feature selection techniques as well as oral absorption modelling 
11, 20, 59

. The 

other top hydrogen bonding descriptors highly ranked are the number of oxygen atoms and 

SHHBd, which is related to the number hydrogen bond donors in a molecule. Both these 

descriptors were picked by the feature selection models and utilised in the C&RT analysis 

high up near the tree root indicating the importance of these descriptors. Descriptors relating 

to hydrogen bonding capacity are important in oral absorption modelling and are used in the 



27 
 

widely accepted filter, Lipinski’s rule of five 
45

. Overall the top descriptors picked by the 

feature selection methods and then utilised by C&RT are very similar. Also, the majority of 

molecular descriptors used by C&RT without any pre-processing feature selection match 

those picked by the pre-processing feature selection methods, with a few exceptions. The top 

descriptors in Table 6 are in line with the literature where among these molecular descriptors 

related to absorption are those that describe lipophilicity, molecular size/shape, polar surface 

area, hydrogen bonding, and similar parameters. 

5. Conclusion 

Feature selection is important in its many forms as a way to increase interpretability and 

predictability but reduce over-fitting of QSAR models. This work has shown that pre-

processing filter feature selection methods can greatly improve QSAR models using C&RT 

analysis. C&RT can be used as an embedded feature selection method, however it can be 

inadequate since further down the tree there are fewer compounds available for descriptor 

selection and therefore descriptors may be selected which are not optimal. Here we have used 

several pre-processing feature selection methods prior to C&RT and have produced more 

accurate QSAR models for the estimation of oral absorption class as shown by the external 

sets of compounds. However, examination of the literature reveals that different feature 

selection methods utilised with different classification methods should be tried and evaluated 

for one dataset. Similar molecular descriptors were picked by the different feature selection 

methods; and those descriptors relate to lipophilicity, hydrogen bonding, polarity, size and 

shape. Higher misclassification costs applied to reduce false positives yielded models with 

better overall predictability of highly and poorly-absorbed compounds. The use of filter pre-

processing feature selection methods and misclassification costs produce models with better 

interpretability and predictability that overcome the problem of a biased dataset with many 

more highly-absorbed compounds than poorly-absorbed compounds and shows the 

importance of feature selection in QSAR model development. 

Supporting Information 

The supporting information contains a list of the 47 compounds in the external validation set 

and their HIA% values (S1), a list of molecular descriptors picked by the feature selection 

methods (S2), full list of all the molecular descriptors picked by C&RT analysis (S3) and 

finally all the C&RT decision trees produced from this work (S4). This information is 

available free of charge via the Internet at http://pubs.acs.org. 

http://pubs.acs.org/
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