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Abstract 

Class imbalance occurs frequently in drug discovery datasets. In oral absorption datasets, in 

the literature, there are considerably more of highly-absorbed compounds compared with 

poorly-absorbed compounds. This produces models that are biased towards highly-absorbed 

compounds which lack generalization to industry settings where more early stage drug 

candidates are poorly-absorbed. This paper presents two strategies to cope with unbalanced 

class datasets: Under-sampling the majority high absorption class and misclassification costs 

using classification decision trees. The published dataset by Hou et al (2007), which 

contained percentage human intestinal absorption of 645 drug and drug-like compounds, was 

used for the development and validation of classification trees using C&RT analysis. The 

results indicate that under-sampling the majority class, highly-absorbed compounds, leads to 

a balanced distribution (50:50) training set which can achieve better accuracies for poorly-

absorbed compounds, whereas the biased training set achieved higher accuracies for highly-

absorbed compounds. The use of misclassification costs resulted in improved class 

predictions, when applied to reduce false positives or false negatives. Moreover, it was shown 

that the classical overall accuracy measure used in many publications is particularly 

misleading in the case of unbalanced datasets and more appropriate measures presented here 

may be used for a more realistic assessment of the classification models’ performance. Thus, 

these strategies offer improvements to cope with unbalanced class datasets to obtain 

classification models applicable in industry.  
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1. Introduction 

Good intestinal absorption is important for oral administration of many drugs in the 

pharmaceutical industry due to ease of administration and convenience for the patient. The 

effort to reduce costs and animal testing has resulted in numerous minimisations of assays to 

become high-throughput
1, 2

. In tandem with these or as an alternative for high-throughput 

screening assays in early drug discovery, in silico modelling using QSAR (Quantitative 

Structure-Activity Relationships) has been successfully utilised for the prediction of ADMET 

(absorption, distribution, metabolism, elimination and toxicity) properties, particularly 

intestinal absorption
3, 4

. QSAR models can act as a tool to filter and highlight undesirable 

compounds or be used as guidance to help select appropriate assays for the next stage of the 

drug discovery cascade based on chemical structure and physiochemical properties alone 
5, 6

. 

 

Datasets in the literature used to predict or classify intestinal absorption are highly biased 

towards highly-absorbed compounds. This is due to the larger numbers of highly-absorbed 

compounds amongst the marketed drugs that constitute the datasets
7, 8

. The largest publically 

available database complied by Hou et al (2007) contains over 80% of compounds with 

human intestinal absorption values of over 50%. There are a number of reasons for this: the 

vast majority of percentage human intestinal absorption (%HIA) data is obtained from 

clinical trials where it is expected for compounds to have good absorption in order to have 

reached this stage, and the lack of published data representing poorly-moderately absorbed 

compounds
2, 9, 10

. These biased datasets are not representative of a true industry scenario at 

present, where there are more drug candidates with poor absorption. With advances of 

technology, many of the drugs designed today are bigger and more lipophillic, leading to 

compounds with low absorption due to solubility issues
11

. Imbalanced datasets are a problem 

for modelling. Any QSAR model produced from a biased dataset will in turn be biased itself 

to the prediction of the majority class (in this case high absorption class) and will be poorly 

predictive for the poorly-absorbed compounds.  

In order to resolve this, a number of techniques can be carried out to cope with the class 

imbalance of the dataset. The first technique is to under-sample the majority class (highly-

absorbed compounds) in the training set. The problem with this method is the reduction in 

data utilised for model building, therefore there could be a problem with generalization to 

new compound sets. This could be resolved by using a bootstrapping technique or bagging
12

. 

These methods are often used to improve the statistical accuracy and robustness of 
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predictions, regardless of whether or not the dataset shows class imbalance. However, using a 

specific version of these methods that under-samples the majority class at all the sampling 

steps, they may be used to overcome the imbalanced data distribution problem. Ensemble 

methods such as random forest
13

 provide consensus predictions which may have improved 

accuracy. The problem with bootstrapping and ensemble methods in relation to our work is 

that they use multiple training sets and therefore multiple decision trees (or classification 

trees) will be produced, which will increase the complexity and reduce interpretability of the 

models. Hence, in this work we focus on producing classification models that consist of a 

single decision tree, to facilitate the interpretability of the model.  

Another problem with under-sampling is that in order to assess the predictability of the 

balanced training set fairly, the validation set will also have to be adjusted to mirror the 

training set in terms of distribution of the data, but again this reduces the dataset size in the 

validation set and increases the variability of the results
14

. However the models built using 

this equal distribution should be better models to predict both poorly and highly-absorbed 

compounds if a big enough dataset is used.  

The second technique applicable to unbalanced class datasets is to increase the cost of 

misclassification of the minority class. In binary classification there are two types of 

misclassification, which can be summarised using Figure 1.  

  Observed class 

  HIGH LOW 

Predicted 

class 

HIGH 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

LOW 

False 

Negative 

(FN) 

True 

Negative 

(TN) 

 

Figure 1.  Possible outcomes of a binary classification 

A poorly-absorbed compound misclassified into the highly-absorbed class would be a false 

positive, and a highly-absorbed compound misclassified into a poorly-absorbed class would 

be a false negative. Misclassification costs may be defined by the user in the algorithm in 

order to predict classes that maximise the misclassification cost for false positive or false 

negatives. An example of this can be shown graphically in Figure 2. 
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  Observed class 

  HIGH LOW 

Predicted 

class 

HIGH NO COST 2 

LOW 1 NO COST 

 

Figure 2.  A classification matrix showing higher misclassification cost assigned to false 

positives 

According to Figure 2, if the algorithm attempts to misclassify the poorly-absorbed 

compound into the highly-absorbed class, there will be a higher cost associated with this 

misclassification in comparison with the misclassification of a highly-absorbed drug into a 

poor absorption group. By increasing the cost for misclassification in this example to two the 

number of false positives should be reduced. The cost assigned to the misclassification can be 

subjective. However, to assign a number objectively, the class distribution of the high and 

poorly-absorbed compounds of the training set should be considered by giving a higher cost 

to the misclassification of poorly-absorbed compounds, the minority class. 

In drug discovery there has been a lot of debate on what error to reduce, as both false 

positives and false negatives have a detrimental effect. The reduction of either one of these 

errors will depend on the nature of the problem and the intended outcomes, whether this be 

dependent on business or scientific needs. However, careful consideration on which one to 

focus on is needed at the start of the project
15

. False negatives give rise to missed 

opportunities of potential new blockbuster drugs. A potential drug could be dismissed in early 

library screens as having low absorption when in fact it has high absorption, which is ideal 

for oral administration
3
. Amlodipine is an example of this, using QSAR it was predicted to 

have poor bioavailability however it has high observed oral bioavailability
16

. Even if an 

active compound like Amlodipine is missed and predicted incorrectly, it is less problematic if 

there are similar compounds in the compound library that are predicted as active and carried 

through; but problems arise when unique novel chemicals with no similar compounds are 

missed completely. Despite this, as emphasised by Klopman (2002) care should be taken with 

the prediction models to avoid overlooking false negatives for the advantage of  shortening 

the drug discovery process 
17

. Reducing the number of false positives could be considered 
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equally as important or more important for cost-effectiveness reasons. If a drug is 

misclassified as highly-absorbed when in fact it is poorly-absorbed, more time, effort and 

money is invested to investigate and reveal the compound’s true class with further tests. 

Although there are few publications indicating that false positives need to be decreased rather 

than false negatives, with the spiralling cost of drug discovery it may be a future 

consideration for many companies to become more cost-effective. To conclude, although 

Cummings (2006)
18

 states that the trend is to reduce the number of false positives and to put 

up with the number of false negatives
15

, a suitable balance depending on the context of the 

problem and the intended outcomes may be the answer to reduce time and money testing 

unsuitable drugs compared with reducing the potential for missed opportunities of new drug 

candidates, as long as there are still a high number of true positives being discovered
15, 19

. 

The aim of this work was to use methods specifically designed for coping with unbalanced 

class datasets in order to improve the classification accuracy of %HIA into high and low 

classes and finding the best classification model using the Classification & Regression Trees 

(C&RT) method.  

The main dataset used for this work consisted of %HIA data of 645 drugs and drug-like 

compounds
20

. As stated previously this dataset is biased towards the number of highly-

absorbed compounds. In this work two different training sets were randomly selected from 

this initial dataset, the balanced training set 1 (TS1) contained roughly a 50:50 ratio of highly 

and poorly-absorbed compounds and the unbalanced training set 2 (TS2) contained roughly 

an 85:15 ratio of highly and poorly-absorbed compounds respectively.  

TS1, having an equal balance of high and poor absorption compounds will be used to show 

the effects of under-sampling the majority class compared with TS2, the unbalanced dataset. 

TS1 will also be used to compare the effects of various misclassification cost ratios for 

reducing either false positives or false negatives. As the TS1 dataset is balanced there is no 

bias towards reducing either one of these errors, so the effects of misclassification costs will 

be shown. As shown with the previous discussion regarding which error to reduce, either 

false positives or false negatives, there is no general consensus,  so applying misclassification 

costs to reduce either error and seeing the results is justified. TS2, containing a higher 

proportion of highly-absorbed compounds is already biased towards reducing the number of 

false negatives, so misclassification costs should be assigned to reduce the number of false 

positives only (by assigning a higher cost to FPs). 
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2. Methods and Materials 

2.1 Dataset 

The dataset used consisted of %HIA data for 645 drugs and drug-like compounds extracted 

from SDF format from the supporting information provided 
20

. In this research the 26 

compounds containing a quaternary ammonium were removed entirely due to a number of 

missing molecular descriptors significant to absorption, such as logD, for these compounds; 

and STATISTICA software would automatically remove compounds with any missing data.
20, 

21
. 

Two training sets and corresponding validation sets were selected from this dataset; training 

set 1 (TS1) containing roughly a 50:50 ratio, and training set 2 (TS2) containing roughly an 

85:15 ratio of highly and poorly-absorbed compounds. The same class distribution for the 

corresponding validation sets was applied to create a fairer more controlled validation for the 

models. The exact compound numbers and class distributions are shown in Table 1. 

Table 1. Compound numbers and class distribution for both training set scenarios 

  

Number of 

Compounds 

Class Distribution           

(Ratio of High/Low 

absorption compounds) 

Dataset 
Training 

set 

Validation 

set 
Training set Validation set 

TS1 94 89 50:50 50:50 

TS2 517 102 85:15 85:15 

 

TS1 is the balanced training set containing about 10 drugs in each 10% range of %HIA. The 

training set was selected randomly by under-sampling the majority class (highly-absorbed 

compounds). For the validation set, the remaining compounds were also under-sampled to 

mimic the data distribution of the training set. 

TS2 is the unbalanced training set selected randomly after compounds were sorted by 

ascending %HIA values and then by logP values. The ascending %HIA values were put into 

groups of six, then 5/6
th

 of these compounds were placed in the training set and the remaining 

into the validation set. This set is unbalanced as it contains a higher number of the high 

absorption class.  

2.2 Molecular descriptors 
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A variety of different software packages were used to compute molecular descriptors; they 

include TSAR 3D v3.3 (Accelrys Inc), MDL QSAR (Accelrys Inc.) and Advanced Chemistry 

Development ACD Labs/ LogD Suite v12. Due to software limitations some molecular 

descriptors could not be calculated for some compounds in the dataset. A total of 215 

descriptors were used in this study. 

2.3 Classification and Regression Trees (C&RT) 

STATISTICA v11 (StatSoft Ltd) software was used for classification of compounds using 

C&RT analysis. According to observed %HIA values in the dataset, compounds were placed 

into either the ‘High’ class if %HIA was equal to or greater than 50% or the ‘Low’ class, 

if %HIA was less than 50%.  

C&RT analysis is a statistical technique that uses decision trees to solve regression and 

classification problems developed by Breinman et al (1984). If the dependant variable is 

categorical then a classification tree is made (e.g. predicting low or high absorption classes) 

and if the dependant variable is continuous then a regression tree is produced resulting in the 

prediction of numeric %HIA values for all compounds
22, 23

.  

The binary C&RT analysis starts building the decision tree at the ‘tree root’ using molecular 

descriptors. The algorithm in C&RT will choose the most appropriate (statistically significant) 

molecular descriptor to split the tree and the threshold value to define the split. A parent node 

splits into two child nodes and then these become the parent groups for the next split. The 

splitting of the tree continues until it can be no longer split due to stopping factors being 

applied to prune the tree to prevent over-fitting. The nodes which cannot be split anymore are 

termed terminal nodes
23, 24

, and they contain the predicted classes. 

For this work, HIA Class was set as the dependant categorical variable and all 215 molecular 

descriptors were selected as continuous independent variables. Furthermore, pre-selected 

subsets of descriptors were used in the analysis. Molecular descriptors were: 1) those chosen 

by linear stepwise regression and 2) descriptors of Lipinski’s rule of five including number of 

rotatable bonds. Using MINITAB Statistical Software (version 15.1.0.0) linear stepwise 

regression analysis was performed using the training set TS1 to obtain descriptor sets 1 and 2 

and using the training set TS2 to obtain descriptor set 3. During CART analysis, models were 

created using descriptor sets 1 and 2 for TS1 and descriptor set 3 for TS2. This ensured that 

the validation set was never used at any stage of model development and remained intact for 
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the validation of the models. Moreover, Lipinski’s ‘rule of five descriptors’ were used in 

CART analysis using both TS1 and TS2. 

Stopping factors defined in the software will not split a parent node into child nodes if there 

are less than 10 or 40 compounds in the parent node for TS1 and TS2, respectively. The 

selection of these stopping factors was based on the statistical performance of the models for 

the training set as defined by sensitivity (SE), specificity (SP) and SP × SE (defined below). 

If there was only one compound in a terminal node of a tree, manual pruning was carried out 

to prevent this final split so that no terminal nodes contained only one compound. In order to 

cope with missing values in C&RT analysis, STATISTICA can find the next best split 

variable (molecular descriptor) which is used when the split variable has missing values. The 

next best split variable (‘surrogate’) that is chosen is the one that correlates the most with the 

original one. In this case the optional setting of two surrogates was selected; so if the original 

variable is missing then the first surrogate variable was used and if this was also missing then 

the second surrogate variable was used for splitting
25

. If the original variable plus the two 

surrogates are missing then the compound is removed from the tree. All other settings used 

were default setting defined by the software. 

2.4 Misclassification costs  

The aim of a decision tree building algorithm is to create the best model with the lowest total 

misclassification cost over all compounds in the validation set. By applying varying costs to 

certain misclassifications (either false positives or false negatives) it is possible to reduce the 

number of misclassifications due to the higher cost. This study compared the use of the same 

costing with higher costing to reduce either false positives or false negatives. 

For TS1, the balanced dataset, a misclassification cost of two was applied to either reduce 

false positives or false negatives. As TS2 is unbalanced due to the class distribution of the 

dataset towards the highly-absorbed compounds (85:15), a misclassification cost ratio of 4:1 

was applied to false positive:false negatives. It must be noted that due to the class 

distributions for TS2 the dataset is already biased towards reducing false negatives, as there 

are more highly-absorbed compounds than poorly-absorbed. 

2.5 Statistical significance of the models 
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The predictive performance of classification was measured using Specificity (SP), Sensitivity 

(SE), the cost normalised misclassification index (CNMI) and SP × SE. These terms have 

been defined below.  

Specificity is the ratio of correct classifications of poorly-absorbed compounds (SP = 

TN/(TN+FP)). In this equation TN is the number of true negatives and FP is the number of 

false positives. Specificity is inversely proportional to the number of false positives. 

Sensitivity indicates the correct number of classifications for the highly-absorbed compound 

class (SE = TP/(TP+FN)), where TP is the number of true positives and FN is the number of 

false negatives. Sensitivity is inversely proportional to the number of false negatives. Overall 

accuracy is often defined as the number of correct predictions (true positives and true 

negatives) divided by the total number of compounds in the validation set. However, this 

calculation is not suitable to use for this work when the dataset is highly biased. In this case 

the overall accuracy will be unduly influenced by the classification accuracy of the majority 

class, the highly absorbed compounds (SE). In this work, in order to represent the overall 

predictive performance, specificity multiplied by sensitivity was used (SP × SE). SP × SE, 

although not a very common measure in QSAR, is useful in this case since the data is highly 

biased. 

The cost normalised misclassification index (CNMI) was calculated using Equation 1. The 

numerator of this equation is calculated by first multiplying the number of each type of 

misclassifications (false positives and false negatives) by the corresponding misclassification 

cost and then adding those two products. The denominator (normalization factor) is 

calculated by first multiplying the total number of compounds in each class – i.e. number of 

negatives (poorly-absorbed compounds) and number of positives (highly-absorbed 

compounds) – by the corresponding misclassification costs and then adding those two 

products. 

     
(           ) (           )

(            ) (            )
                                                                                    Eq. 1           

CostFP and CostFN are the misclassification cost assigned for false positives or false negatives 

and Neg is the total number of poorly-absorbed compounds and Pos is the total number of 

highly-absorbed compounds. Note that the numerator of Equation 1 is the total 

misclassification cost obtained by using a classification model to classify compounds in the 

validation set, whilst the denominator is the maximum misclassification cost that could in 
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principle be achieved (if all compounds in the validation set were misclassified). Hence, the 

calculated value will be between zero and one, with zero representing no misclassification 

errors, as the number increases to one then the misclassifications of the model increase.  

3. Results 

Predictive models for classification of drug candidates into high and poor absorption groups 

are very useful in drug discovery. Unbalanced distribution of data in the available datasets 

has been a drawback which has traditionally complicated the model development activities. 

In this work two different training sets with different data distributions and various 

misclassification costs were used to develop classification trees using the C&RT routine in 

STATISTICA software. In all result tables the highest SP, SE, SP × SE and the lowest CNMI 

for the validation sets are highlighted in bold. When comparing the models it must be noted 

that the most significant molecular descriptors selected for splitting the data by the C&RT 

algorithm will be affected by the class distribution of the training sets, so for TS1 and TS2 

with different class distributions different significant descriptors could be picked. Moreover, 

when comparing models developed using the same training set CNMI maybe a more suitable 

performance measure since it is normalised for the cost ratios of false positives and false 

negatives. 

3.1. C&RT classification analysis for TS1 

Classification using C&RT analysis was carried with the same or different misclassification 

costs to reduce either false positives or false negatives. Initially all 215 molecular descriptors 

were set as independent variables and HIA class was set as the dependant categorical variable. 

In this way C&RT algorithm selects the most significant descriptor out of all 215 for each 

split. These trees were compared with C&RT trees created by using smaller descriptor sets 

selected previously by stepwise linear regression using TS1 (descriptor sets 1 and 2), TS2 

(descriptor set 3) or descriptors related to Lipinski’s rule of five plus number of rotatable 

bonds
26

 (descriptor set 4). The preselected descriptor sets are shown in the Supporting 

Information. 

Table 2 shows the predictive performance measures of the classification trees for TS1 

obtained with different misclassification costs using all descriptors and descriptor sets 1-4 in 

the supporting information. Recall that SE, SP and SP × SE measures should be maximized, 

whilst the CNMI measure should be minimized. 
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Table 2. The results of C&RT Classification analysis using different descriptor sets and 

misclassification costs ratios for TS1 

Model 
Cost           

FP:FN 

Descriptor 

Set 
Set 

N 

validation 

set 

SP × SE SE SP CNMI 

1 

1:1 

ALL 
t 

83 
0.899 0.981 0.917 0.045 

v 0.598 0.733 0.816 0.229 

2 1 
t 

89 
0.939 0.962 0.976 0.032 

v 0.625 0.714 0.875 0.213 

3 2 
t 

89 
0.951 1.000 0.951 0.021 

v 0.657 0.796 0.825 0.191 

4 4 
t 

89 
0.828 0.943 0.878 0.085 

v 0.300 0.857 0.350 0.371 

5 

2:1 

ALL 
t 

83 
0.962 0.962 1.000 0.014 

v 0.404 0.667 0.605 0.352 

6 1 
t 

89 
0.939 0.962 0.976 0.027 

v 0.547 0.592 0.925 0.188 

7 2 
t 

89 
0.981 0.981 1.000 0.007 

v 0.604 0.755 0.800 0.203 

8 4 
t 

89 
0.920 0.943 0.976 0.034 

v 0.597 0.796 0.750 0.217 

9 

1:2 

ALL 
t 

83 
0.872 0.981 0.889 0.048 

v 0.635 0.778 0.816 0.223 

10 1 
t 

89 
0.885 0.981 0.902 0.044 

v 0.686 0.857 0.800 0.165 

11 2 
t 

89 
0.951 1.000 0.951 0.015 

v 0.657 0.796 0.825 0.209 

12 4 
t 

89 
0.829 1.000 0.829 0.052 

v 0.438 0.796 0.550 0.295 

FP = False positive; FN = False negative; SE= Sensitivity, SP = Specificity; CNMI = Cost normalised 

misclassification index; N validation is the number of validation set compounds that was predicted by the model 

In Table 2, a cost ratio of 2:1 for FP:FN indicates that a double misclassification cost has 

been applied for the misclassification of poorly-absorbed compounds compared with the 

misclassification of highly-absorbed compounds and so forth. Therefore, in this case, the 

expectation is a reduction in the number of false positives (increased specificity). 

In order to see the effect of cost ratios, one should compare the performance measure values 

of the models generated using the same descriptor set. It can be seen in Table 2 that when all 

descriptors were used in the analysis (models 1, 5 and 9) better predictive accuracy is 

obtained when misclassification costs are adjusted to reduce false negatives (model 9). In this 

case the SP × SE increased from 0.598 in model 1 to 0.635 in model 9 and the sensitivity was 
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the highest at 0.778. The CNMI also decreased from 0.229 (model 1) to 0.223 (model 9). 

This indicates that by applying costs to reduce false negatives a more accurate C&RT model 

has resulted. The decrease in false negatives (higher sensitivity value) was expected as 

misclassification costs were to improve the class prediction of highly-absorbed compounds; 

however the specificity decreased.  The classification tree (model 9) has been presented in 

Figure 3. The C&RT trees presented in this paper show on the tree where manual pruning 

has been carried out. In Figure 3, tree manual pruning was not needed. 

 

Figure 3. Tree graph for the best C&RT model selecting all molecular descriptors using TS1 

training set with misclassification costs applied to reduce false negatives (Model 9) 

Furthermore, the molecular descriptors chosen by linear stepwise regression for the 

estimation of %HIA
26

 (descriptors sets 1 and 2) and descriptors of Lipinski’s rule of five 

including number of rotatable bonds (descriptor set 4) were also used in C&RT analysis. 

Table 2 shows that the model obtained using descriptor set 1 is the best model (model 10). 

The fact that most models that are obtained using a pre-selected descriptor sets have better 

Tree graph for HIA CLASS

Num. of non-terminal nodes: 7,  Num. of terminal nodes: 8

Model: C&RT

ID=1 N=94
High

ID=2 N=64
High

ID=4 N=60
High

ID=10 N=56
High

ID=12 N=50
High

ID=3 N=30
Low

ID=7 N=12
High

ID=14 N=48
High

ID=15 N=2
Low

ID=13 N=6
High

ID=11 N=4
Low

ID=5 N=4
Low

ID=6 N=18
Low

ID=8 N=7
Low

ID=9 N=4
High

SHHBd

<= 7.810000 > 7.810000

ABSQ

<= 6.455150 > 6.455150

FiA1

<= 0.139080 > 0.139080

ACD_Density

<= 1.750000 > 1.750000

xvch7

<= 0.012450 > 0.012450

VAMP HOMO

<= -9.220000 > -9.220000

Total Dipole Moment

<= 6.636200 > 6.636200

High    

Low
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prediction accuracy indicates that such descriptor selection methods may be better than the 

descriptor selection algorithm in C&RT. This may be due to the smaller number of chemicals 

in lower nodes of the tree that are used for the selection of the best descriptor for further splits 

in C&RT. Model 10 achieved an SP × SE of 0.686, sensitivity value of 0.857 and a 

specificity value of 0.800 when using a cost ratio of 1:2 for FP:FN. This model has been 

shown in Figure 4. It is interesting to note in Table 2 that specificity is much better with the 

model obtained with higher cost for the false positives, using descriptor set 1, which shows 

that the misclassification costs are having the expected effect on the model.  

 

Figure 4. Tree graph for C&RT analysis using TS1 with misclassification costs applied to 

reduce false negatives using descriptor set 1 (Model 10) - the dashed box around the nodes 

indicates pruning of the original tree 

There is a general pattern when misclassification costs are applied to either reduce false 

positives or false negatives in the majority of models (Table 2). When higher 

misclassification costs are applied to reduce false positives the specificity values are higher or 

Tree 1 graph for HIA CLASS

Num. of non-terminal nodes: 8,  Num. of terminal nodes: 9

ID=1 N=94
High

ID=2 N=64
High

ID=5 N=27
High

ID=8 N=21
High

ID=11 N=16
High

ID=3 N=30
Low

ID=16 N=11
High

ID=17 N=19
Low

ID=4 N=37
High

ID=10 N=5
Low

ID=12 N=14
High

ID=13 N=2
Low

ID=9 N=6
Low

ID=18 N=5
High

ID=19 N=6
Low

ID=20 N=18
Low

ID=21 N=1
High

SHHBd

<= 7.814650 > 7.814650

SHBint2

<= 22.683000 > 22.683000

Inertia Moment 2 Size

<= 1274.500000 > 1274.500000

ACDLogD5.5

<= -2.345000 > -2.345000

ACD_Density

<= 1.725000 > 1.725000

SpcPolarizability

<= 0.037050 > 0.037050

SHBint2

<= 24.049500 > 24.049500

ACDLogD5.5

<= 3.945000 > 3.945000

High    

Low
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equal to models where similar costs are applied, with only a few exceptions. On the other 

hand, false negative values decrease upon assigning higher misclassification costs on false 

negatives, resulting in higher or equivalent to FP:FN 1:1 ratio sensitivity values.  

Interpretation of the selected models based on TS1 

In the tree in Figure 3 the first split variable is SHHBd, which is the sum of the E-State 

indexes for hydrogen bond donors. This molecular descriptor is linked to the number of 

hydrogen bond donors highlighted in Lipinski’s rule of five
27

, which states that a molecule 

will be highly likely to be poorly-absorbed if two or more of the following rules are broken: 

if molecular weight >500 Da, sum of OH and NH hydrogen bond donors >5, calculated logP 

(ClogP) >5 and sum of N and O atoms as hydrogen bond acceptors >10. The cut off point for 

SHHBd is 7.81, which corresponds to roughly 3 or more hydrogen bond donor groups. 

Compounds with low hydrogen bonding donor ability (low SHHBd value) will have poor 

absorption if ABSQ, the sum of absolute values of atomic partial charges of the molecule
28

 is 

high (node 5). This indicates that molecules or compounds with electronegative or positive 

atoms (molecules containing heteroatoms) will be less absorbed through the intestine. This is 

in agreement with the hydrogen bond acceptor factor in Lipinski’s rule of five. The 

compounds with low number of heteroatoms (ABSQ) will have high absorption unless they 

are highly acidic and have high acidic ionization at pH 1 (FiA1 > 0.139). It has been well 

cited that drugs that are unionised will pass through the intestinal membrane
27, 29

. 

The next important descriptor selected by the C&RT for the partitioning of highly hydrogen 

bond donor compounds is VAMP HOMO, which is the energy of the highest occupied 

molecular orbital calculated by AM1 semi empirical method and has been used in previous 

QSAR models for bioavailability
30

. According to this split, compounds with HOMO energy 

of <= -9.22 are all poorly-absorbed compounds. These are highly polar molecules containing 

many hydrogen bonding groups (SHHBd) and few or no double bonds – e.g bisphosphonates 

and macrolides. The high HOMO energy group (Node 7) on the other hand, consists mainly 

of compounds of moderate absorption level (HIA of 40-60%) and, although marked as 

highly-absorbed, contains more of the poorly-absorbed compounds to be classified at the next 

level. These compounds are also of polar nature with many hydrogen bonding groups, but 

they also have planar areas in the molecule resulting from aromatic groups or other 

conjugated double bonds (hence high HOMO energy)
31

. High HOMO energy compounds at 

Node 7 will have high absorption provided that they have dipole moment > 6.63. An 
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inspection of these compounds at Node 9 shows that these are mainly natural or semi-

synthetic compounds e.g. a peptide or a sugar like structure. These compounds may be 

absorbed by carrier systems due to resemblance to natural metabolites. Examples of these are 

oxytetracycline, which contains an aromatic system with many oxygen and nitrogen 

functional groups and is a known substrate of human organic anion transporters
32

 or 

dipyridamole transported via nucleoside transporters in the small intestine
33

.    

For Figure 4 (model 10), although all of the eight descriptors of descriptor set 1 were used as 

independent continuous variables in the C&RT analysis, not all of them were used to build 

the tree in Figure 4; in fact only six out of the eight were used with SHBin7 and SsCH3 not 

being selected. Similar to model 9, SHHBd is the first split variable in this model. The highly 

hydrogen bond (according to SHHBd), low absorption group (node 3) has been partitioned 

again according to SpcPolarizability, which has replaced VAMP HOMO in the previous 

model (Figure 3). SpcPolarizability defines how readily the molecular charge distribution on 

a molecule, which is the sum of the electronic structure of the individual atoms of the 

compound, is affected by external oscillating fields. Compounds with low SpcPolarizability 

values have been divided into groups according to their SHBint2 values. SHBint2 is the sum 

of E-state indexes for hydrogen bonding groups of path length 2 
34

 and is high in compounds 

like saquinavir and ceftriaxone with peptide bonds. If this value is high then compounds will 

be classed into the poor absorption class. Compounds with low SHHBd (node 2) have also 

been partitioned according to SHBint2, with chemicals containing a low number of hydrogen 

bonding groups of two bond distance showing high oral absorption probability (node 4). 

Compounds with high SHBint2 may still have high oral absorption if ‘inertia moment 2 size’ 

(a size related descriptor) has a low value and ACDlogD5.5 (lipophilicity descriptor) value is 

high (node 11) and ACD_Density (molecular density) value is small (node 12). Descriptors 

relating to molecular size have been inversely related to intestinal absorption, therefore the 

larger the molecule the lower the absorption
35

. The relationship with logD (a measure of 

hydrophobicity at a specific pH
6) is in accordance with previous literature

35-38
. ACD Density 

is the mass per unit volume of a molecule; density will be high for molecules containing 

many heteroatoms. Compounds with a high density will have low absorption
31

, which is also 

true according to this tree. Pruning of this tree was carried out as there were child nodes with 

only one compound in them as shown in Figure 4.  
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3.2 C&RT classification analysis for TS2 

C&RT classification analysis with misclassification costs was also carried out on TS2, the 

unbalanced dataset, to see if error rates can be reduced. As there are a larger number of 

highly-absorbed compounds compared to poorly-absorbed compounds, the misclassification 

costs to reduce the number of false negatives need not be applied as the class distribution of 

TS2 already favours the decrease of false negatives. Therefore misclassification costs are 

applied for reducing false positives only. The costing of 4 was applied to false positives 

(keeping the baseline cost of 1 for false negatives), as this was considered the most suitable 

number based on the class distribution of roughly 4:1 for high to low absorption compounds. 

The results of the C&RT classification analysis for TS2 are shown in Table 3. 

Table 3. The results of C&RT Classification analysis using different descriptor sets and 

misclassification costs ratios for TS2 

Mod

el 

Cost           

FP:FN 

Descriptor 

Set 
Set 

N 

Validation 

set 

SP × SE SE SP CNMI 

13 1:1 ALL 
t 

94 
0.862 0.955 0.903 0.053 

v 0.400 0.880 0.455 0.170 

14 1:1 3 
t 

102 
0.704 0.973 0.724 0.064 

v 0.445 0.954 0.467 0.118 

15 1:1 4 
t 

102 
0.620 0.982 0.632 0.070 

v 0.451 0.966 0.467 0.108 

16 4:1 ALL 
t 

94 
0.861 0.873 0.986 0.033 

v 0.660 0.807 0.818 0.070 

17 4:1 3 
t 

102 
0.879 0.890 0.987 0.028 

v 0.653 0.816 0.800 0.077 

18 4:1 4 
t 

102 
0.855 0.890 0.961 0.033 

v 0.517 0.862 0.600 0.099 

FP = False positive; FN = False negative; SE= Sensitivity, SP = Specificity; CNMI = Cost normalised 

misclassification index; N validation is the number of validation set compounds that was predicted by the model 

 

Table 3 shows that when all descriptors were available to C&RT analysis the best results 

were achieved when applying misclassification costs to reduce false positives (comparing 

model 13 and 16). As expected, specificity increases and misclassification error rate 

decreases when misclassification costs were applied. By applying misclassification costs to 

increase specificity, the sensitivity of the model will decrease (Table 3). Figure 5 shows the 

best model when all descriptors were supplied and the significant descriptors were selected 

by C&RT analysis (model 16). 
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Figure 5.  Tree graph for the best C&RT analysis using TS2 using all descriptors with misclassification costs applied to reduce false positives 

(Model 16) - the dashed box around the nodes denotes pruning of the original tree 

Tree graph for HIA CLASS

Num. of non-terminal nodes: 13,  Num. of terminal nodes: 14

Model: C&RT
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As with the TS1, C&RT analysis was carried out using the pre-selected molecular 

descriptors
26

 (Table 2). Table 3 shows that the best pre-selected descriptor set was descriptor 

set 3 (model 17) when considering SP × SE. The classification tree model 17 is shown in 

Figure 6. With misclassification costs to reduce false positives the tree had the highest 

specificity (0.800) and also the lowest CNMI (0.077). Depending on the use of the model, if 

the reduction of false positives (increase of specificity) is the intention then using 

misclassification costs will increase the specificity for descriptor set 3 from 0.467 to 0.800; 

however, sensitivity decreases from 0.954 to 0.816. 

 

Figure 6. Tree graph for C&RT analysis using TS2 with misclassification costs applied to 

false positives (FP:FN 4:1) using descriptor set 3 (Model 17)  

 

 Tree graph for HIA CLASS

Num. of non-terminal nodes: 8,  Num. of terminal nodes: 9

Model: C&RT

ID=1 N=517
High

ID=2 N=350
High

ID=3 N=166
Low

ID=7 N=91
High

ID=8 N=77
High

ID=11 N=59
High

ID=13 N=44
High

ID=14 N=40
High

ID=4 N=11
Low

ID=5 N=337
High

ID=6 N=75
Low

ID=10 N=18
High

ID=12 N=15
Low

ID=16 N=4
Low

ID=17 N=36
High

ID=15 N=4
Low

ID=9 N=14
Low

ACD_PSA

<= 95.160000 > 95.160000

ACDLogD5.5

<= -2.700000 > -2.700000

ACDLogD5.5

<= -1.310000 > -1.310000

ACD_PSA

<= 161.460000 > 161.460000

ACDLogD2

<= -0.420000 > -0.420000

ACDLogD5.5

<= 0.280000 > 0.280000

Mass (Whole Molecule)

<= 537.230000 > 537.230000

ACD_PSA

<= 97.370000 > 97.370000

High    

Low



19 
 

Interpretation of selected models based on TS2 

Figure 5 shows the selected tree when C&RT analysis selected the descriptors from all the 

supplied descriptors (model 16). Similar to models 9 and 10 obtained using TS1, this tree 

involves the hydrogen bond donor descriptor, SHHBd, as the first variable. Compounds with 

high SHHBd values are more likely to have poor oral absorption, especially if they are 

hydrophilic with ACDLogD10 below -0.76; unless their Hmin value is lower than 0.48. A 

high number of potential H-bond formations is detrimental to high oral absorption, which is 

cited in the literature
11, 27, 39, 40

. Hmin is the minimum hydrogen electrotopological-state value 

for all atoms in the drug molecule and shows the nature of the hydrogen atoms attached to the 

skeleton of the drug molecule and whether they are hydrogen bond donors
41

. Otherwise if the 

Hmin value is higher than 0.48 compounds with higher VAMP HOMO than -8.56 may still 

have high oral absorption, but the large majority of compounds have a lower HOMO energy 

value and therefore will be expected to be poorly-absorbed through the gastrointestinal 

system (node 14). On the left hand side of the tree (node 2), for compounds with low 

hydrogen bond donor ability (SHHBd ≤ 6.59), oral absorption is expected to be high, unless 

ACDlogD7.4 is low and xc3 is high (node 9). The descriptor xc3 is the third order cluster chi 

connectivity index. This Chi index encodes the number and branching of the molecule for a 

single branch point and in this tree, it indicates that branched molecules (of hydrophilic 

nature) have poor oral absorption
42

. It must be noted in Figure 5 in nodes 9 and 11, for 

example, that the effect of misclassification costs is altering the final terminal class node, 

showing the misclassification costs applied to reduce false positives is working. Moreover, 

for high ACDlog7.4 compounds (>-1.10) oral absorption would be poor if they have a high 

number of internal hydrogen bonding groups of three bond distance (SHBint3_Acnt). It is 

interesting to note those nodes in the tree after the first split using SHHBd were both logD 

molecular descriptors but at different pH values. LogD at different pH values is affected by 

the ionization of the compound and is related to the compound’s pka. For example, for 

logD10, which means the diffusion coefficient at pH10, any basic compounds at pH10 will be 

unionized, therefore will have higher logD10 values than acidic compounds which will 

remain ionized due to the higher pH, and in the case of intestinal absorption will then be not 

absorbed. This indicates that pH-dependent lipophilicity measure (logD) at different pH 

values are important in distinguishing between high and low absorption for acidic and basic 

compounds as well as characterizing the lipophilicity.  
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In Figure 6, all the molecular descriptors have been described previously apart from polar 

surface area (PSA). This descriptor along with lipophilicity has been described as an 

influential molecular descriptor in predicting passive intestinal absorption
6, 43, 44

. PSA is the 

area of the Van der Waals surface that arises from oxygen and nitrogen atoms or hydrogen 

atoms bound to these atoms. It is a polarity measure which is also related to size and has a 

negative correlation with intestinal absorption so the larger the PSA the lower the absorption. 

Mass has also been used in this tree and in accordance with Lipinski’s rule of five, but only 

with a slightly different cut off point of 537.23 Da
27, 45

.  

4. Discussion 

4.1 Comparing models 

There are many statistical measures for the assessment of the predictability of classification 

models. The most common in QSAR literature are overall accuracy accompanied by SP and 

SE. However it must be emphasized here that ‘accuracy’ reported in the literature as the ratio 

of all the correctly classified compounds is misleading when the datasets are highly skewed
22, 

46, 47
. In other words, due to the majority of highly-absorbed compounds in the training and 

validation sets, the classification outcome of these compounds disproportionately affects the 

overall accuracy: therefore accuracy will follow the same trend as the sensitivity values in the 

model and fail to take into account the specificity appropriately. For example, if a dataset 

contained 90% of highly-absorbed and 10% of poorly absorbed compounds, a trivial 

classifier would consist of predicting the highly-absorbed class (the majority class) for all 

compounds in the validation set. Such a trivial majority classifier – which does not involve 

any data analysis – would trivially achieve an overall accuracy of 90% (if accuracy is simply 

measured as (TP + TN) / (TP + TN + FP + FN)). However, this high accuracy is misleading. 

Although the majority classifier achieved perfect prediction for the high absorption class, it 

achieved no correct predictions for the poorly –absorbed class. This example clearly shows a 

weakness of the overall accuracy measure, which is not an appropriate measure to use when 

the class distribution is very unbalanced.  The use of SP × SE avoids the above problem in 

this scenario, since the trivial majority classifier would achieve a prediction of 0% by 

multiplying the sensitivity (100%) and specificity (0%), and therefore would show the 

majority classifier’s ability to classify both classes as poor. A measure of 0% accuracy for the 

majority classifier is also intuitively fair; since that classifier is not even taking a look at the 

value of the descriptors (it just counts the number of compounds in each class). In summary, 

the overall accuracy as defined in the literature is an incorrect measure of accuracy in 
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problems with very unbalanced class distributions, like the dataset in this work. In this work, 

to overcome the problem, the better accuracy measure of SP × SE was used as the measure of 

the overall accuracy. This measure is a better representation of a models’ predictability, as it 

is affected the same way by false negatives as by false positives, and should be used in 

measuring the overall accuracy of a classification model. Other measures such as the 

Matthew’s correlation coefficient (MCC)
48

, kappa statistic
49

 and Youden’s J statistic
50

 to 

name a few have been used in the literature, with the choice of which one to use being 

subjective, with each measure having advantages and disadvantages
51, 52

. Youden’s index or J 

statistic
50

 is used frequently for medical diagnosis tests and is defined as 1 – (SE + SP). 

Kappa has been introduced as a chance-corrected measure of accuracy
49

 but it uses the 

overall accuracy in the calculation, which may not be suitable in this case since it will have a 

higher contribution from the majority highly absorbed class. MCC is another useful measure 

frequently used in QSAR and although it uses all four numbers (TP, TN, FP, FN), it requires 

normalized distribution and may give controversial results, for example when there are very 

few FP but also there are very few TPs
52

. We used SP × SE on the grounds that it is a simple 

measure with a clear interpretation and gives an overall fair measure of model performance 

without being affected by the class distribution bias. 

 

As stated previously, a direct comparison between the two different training sets is not a fair 

comparison due to the different class distributions of TS1, the balanced set, and TS2, the set 

biased towards highly-absorbed compounds. Nevertheless, it can be seen that TS1 in the 

majority of cases leads to higher specificity when misclassification costs are equal for FN and 

FP. TS2 gave higher sensitivity in all cases, which is expected due to the bias of the training 

set towards highly-absorbed compounds. It has been cited that the rule of five can give rise to 

false positives and could be a possible explanation why the specificity is lower for this model 

even with a balanced training set
27, 53, 54

.  

When misclassification costs are applied to either TS1 or TS2 to reduce false positives, 

specificity improves for both training sets. Moreover, it can be seen in Table 3 that the use of 

4:1 misclassification costs for FP:FN leads to improved models for TS2 with better SP × SE 

values. This finding shows that using misclassification costs can overcome a dataset bias by 

increasing specificity. 

In this paper we compared the effect of allowing the software to pick the most significant 

descriptors from all 215 descriptors used or from a smaller subset of descriptors previously 
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selected as significant by stepwise regression analysis or those related to Lipinski’s rule of 

five. Table 2 shows that model 10 achieved the lowest value CNMI of 0.165 and the highest 

SP × SE of 0.686 using descriptor set 1. The next best CNMI was again achieved by 

descriptor set 1 with a value of 0.188 (model 6); this model also obtained the highest 

specificity of 0.925 when misclassification costs were applied to reduce false positives. From 

Table 2 it is interesting to see that in several cases the CNMI values are higher for C&RT 

models using all descriptors compared with those models using smaller descriptor sets 

selected by feature selection techniques, meaning that there are more misclassification errors 

when allowing the C&RT analysis to pick significant descriptors from the 215 available. This 

could show that using linear stepwise regression to select a smaller subset of significantly 

relevant molecular descriptors to intestinal absorption beforehand can be advantageous as 

often models are produced with fewer misclassifications. The most accurate models for TS2 

(Table 3) are models 16 and then 17 which was developed using all descriptors or descriptor 

set 3. The fact that using all descriptors works well for TS2 but for TS1 prior descriptor 

selection is best, suggests that C&RT can be an efficient descriptor selection method when a 

large dataset is used (517 vs 94 compounds in TS2 and TS1, respectively). 

In the study for TS1 containing 94 compounds, a validation set containing 89 compounds has 

been used which mirrors the balanced data distribution of the training set. By balancing the 

validation set too it gives a fair representation of the models’ predictive performance. As an 

additional test the predictive performance of the models was investigated for a new validation 

set containing all the compounds not used in the training set. It must be noted that the 

additional validation set compounds are all highly-absorbed with the exception of two 

compounds. Therefore this validation set is biased. The results of this work can be found in 

Table 4. 
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Table 4. The validation results of C&RT Classification models obtained using TS1 for all the 

remaining compounds not used in training 

Model 
Cost           

FP:FN 

Descriptor 

Set 

N 

validation 

set 

SP x SE SE SP CNMI 

1 

1:1 

ALL 496 0.647 0.869 0.745 0.143 

2 1 521 0.730 0.852 0.857 0.148 

3 2 521 0.728 0.887 0.820 0.119 

4 4 521 0.341 0.898 0.380 0.152 

5 

2:1 

ALL 496 0.510 0.800 0.638 0.131 

6 1 521 0.712 0.775 0.918 0.115 

7 2 521 0.685 0.856 0.800 0.089 

8 4 521 0.654 0.909 0.720 0.072 

9 

1:2 

ALL 496 0.673 0.855 0.787 0.258 

10 1 521 0.701 0.881 0.796 0.214 

11 2 521 0.657 0.887 0.740 0.208 

12 4 521 0.497 0.887 0.560 0.224 

FP = False positive; FN = False negative; SE= Sensitivity, SP = Specificity; CNMI = Cost normalised 

misclassification index; N validation is the number of validation set compounds that was predicted by the model 

According to Table 4  the best models according to SP × SE were those using descriptor set 1 

(models 2, 6 and 10), which corresponds to the results seen earlier for the smaller balanced 

validation set (Table 2 Model 10).  

4.2 Discussion of the related literature  

 

Summary tables in the literature detail the accuracy, specificity and sensitivity of 

classification work carried out by previous studies
55-57

. In particular Talevi et al (2011) has 

compiled a summary table summarising classification studies of intestinal absorption over the 

past decade. To compare the models obtained in this work with the literature is a very 

difficult task. There is lack of compound information and data distribution and a lack of 

consistency in the literature with regards to validation techniques and more importantly how 

the overall accuracy of the models are measured
58-60

. To directly compare our work with 

others in the literature all the information as described previously would be needed to mimic 

conditions regarding the dataset to enable comparison of the models, however this is not 

freely available
61

. 

 

The number of compounds in the datasets in the literature should be considered when 

assessing the model performances. Small datasets may achieve high prediction accuracy 
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within the chemical space of the dataset, however will lack generalization to new chemical 

compounds. In the study by Niwa et al (2003), using 67 compounds achieved 100% correct 

classification for the training set, however this dropped to 80% for the external prediction set 

of 12 compounds. It must be highlighted that the main misclassification in Niwa et al’s model 

was for the poorly-absorbed compounds, which were represented inadequately in Niwa’s 

dataset
47

. As a result, the overall accuracy of Niwa et al’s model as calculated using our 

accuracy measurement (SP × SE) yields a value of 0.667. This is a reoccurring problem with 

the other datasets in the literature that we considered
7, 8, 17

. Poorly-absorbed compounds are 

predicted better using our models due to the larger representation of this class in our TS1 

training set and/or the use of varying misclassification costs. 

 

Perez et al (2004)
62

 used linear discriminant analysis to classify a dataset of 209 compounds 

with training and validation set of 82 and 127 compounds respectively. This paper created 

two models, one which focussed on classification of %HIA using a threshold of ≤30% HIA 

and the other focussing on classification using a threshold of >80% HIA. Both training and 

validation sets are heavily biased towards highly-absorbed compounds and the results reflect 

this. Higher sensitivity values of 0.955 and 0.835 and much lower specificity values of 0.765 

and 0.722 for the threshold of ≤30% and >80% respectively.  

 

As stated before, in most studies the accuracy and sensitivity results are higher than the 

specificity values, due to the under-representation of poorly-absorbed compounds
22, 46, 47

. The 

one exception to this was obtained by Hou et al (2007) who obtained higher specificity than 

sensitivity in the validation set. However only five compounds in their validation set was 

defined as poorly-absorbed. Deconinck et al (2005) carried out C&RT analysis using Splus 

software on a smaller subset of the dataset compiled by Hou et al (2007). Deconinck achieved, 

using C&RT as a variable selection classification technique using a validation set of 27 

compounds, an overall prediction accuracy of 85%. However this validation set only 

contained highly-absorbed compounds and therefore only sensitivity values could be 

considered
22

. 

 

Lipinski’s rule of five is a qualitative rule based model which indicates that poor absorption 

is highly likely when two or more of the rules are broken. It has been criticised for having a 

high rate of false positives
53, 54

. With this work, descriptors describing Lipinski’s rule of five 

plus the number of rotatable bonds allowed a qualitative evaluation of Lipinski’s rule of five 
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via C&RT analysis. Using Lipinski’s rule of five in its original form (if 2 or more rules were 

violated indicating poor absorption) specificity was 0.425 and 0.400 for the validation sets of 

TS1 and TS2 respectively. By incorporating these descriptors (descriptor set 4) in C&RT, for 

TS1 upon using higher misclassification costs to reduce false positives the specificity was 

0.750 and for TS2 specificity was 0.600. Using misclassification costs to reduce false 

positives, an improvement to Lipinski’s rules using misclassification costs was made possible.  

 

Table 5. Molecular descriptors used in the selected models (9, 10, 16 and 17) 

Type of descriptor Name of descriptor 

Number of 

occurrences in 

selected models 

Hydrogen bonding 

SHHBd 3 

ABSQ 1 

ACD_Density 2 

SHBint2 1* 

SHBint3_Acnt 1 

Hmin 1 

ACD_PSA 1* 

Lipophilicity 

ACD logD 5.5 2* 

ACD logD 7.4 1 

ACD logD 10 1 

ACD logD 2 1 

Size 

xvch7 1 

Inertia moment 2 (size) 1 

xc3 1 

Mass 1 

Polarity/ 

polarizability 

VAMP HOMO 2 

Total dipole moment 1 

Spc polarizability 1 

Acidity FiA1 1 

* occurred more than once in a single tree model 

 

The descriptors selected in the models can be interpreted according to the known mechanisms 

involved in the absorption process. Table 5 gives a summary of all the molecular descriptors 

used in the selected models of 9, 10, 16 and 17. The most common molecular descriptors 

used in the best models were descriptors of hydrogen bonding (such as SHHBd, SHBint2), 

log D at various pH values which is related to lipophilicity and acid/base property, 

ACD_Density which is related to the number of heteroatoms in the molecules, and polar 
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surface area (PSA) which has been cited as a molecular descriptor relating to polarity and 

size 
20, 63

. Other important molecular attributes are size related parameters. These are in 

agreement with the literature indicating that the molecular descriptors important to intestinal 

absorption are those related to lipophilicity, hydrogen bonding, polarity, ionization, and size
45, 

60, 63
. From considering the molecular descriptors utilised in the models in this work overall, 

no matter what training set used, molecular descriptors that described these parameters which 

are shown in the literature to be important for intestinal absorption were present in the best 

models
30, 64

.  

5 Conclusion 

Class imbalance occurs frequently in QSAR and drug discovery datasets
14, 65-67

. This could be 

for a number of reasons; however in this context it is due to lack of publically available data 

for the minority class, poorly-moderately absorbed compounds, in the literature. The aim of 

this work was to improve the class prediction of poorly absorbed compounds by the use of 

varying misclassification costs in C&RT analysis. This was analysed using two training sets, 

the one selected by under-sampling the majority class (TS1), or the training set selected 

randomly and hence biased towards highly-absorbed compounds (TS2). The comparison 

between C&RT descriptor selection and pre-selecting a small subset of molecular descriptors 

using statistical techniques or rule-based models was also considered. In this work, in order to 

effectively compare the models, the traditional ‘overall accuracy’ measure was scrutinised 

and better measures of prediction accuracy, SP × SE, and cost normalised misclassification 

index (CNMI), were suggested and incorporated. 

Under-sampling the majority class to create a balanced training set produced models that had 

high predictive power for the prediction of poorly-absorbed compounds. The randomly 

selected training set (TS2) as expected had high predictive power for highly-absorbed 

compounds with high sensitivity values, but this was accompanied by low specificity values. 

This conclusion conforms to the previous work using regression and discriminant analysis 

classification
26

.  

The use of misclassification costs led to improvements in prediction accuracy. Even though 

there is no general consensus to reduce false positives or false negatives from the literature, 

this work shows that misclassification costs can be applied to reduce false positives or false 

negatives. Other considerations such as poor solubility and carrier mediated transport systems 

can play a part in misclassification error rates in the models
17

. For the biased training set 
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containing the majority high absorption class, applying higher costs for the misclassification 

of false positives improved specificity in all cases. The imbalanced dataset can be utilised 

without removing compounds as an advantage for improved sensitivity as it will already be 

biased towards high absorption compounds. Therefore, varying ratios of misclassification 

costs can be used as a vital and effective tool to overcome class imbalance, which is a 

recurring problem in drug discovery datasets.  

The comparison between using all descriptors for the C&RT or to use a smaller subset of 

molecular descriptors suggests that the descriptors selected by stepwise linear regression may 

achieve better prediction, but this cannot be generalized and descriptor selection by C&RT 

may work just as well when a large training set is used, e.g. TS2. 

In conclusion, reasonably interpretable user friendly models that can be easily understood and 

utilised for specific purposes has been achieved by using two strategies, under-sampling the 

majority class of the training set and misclassification costs, to overcome class imbalance of 

the dataset. 
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