
Freitas et al. Journal of Cheminformatics  (2015) 7:6 
DOI 10.1186/s13321-015-0054-x
RESEARCH ARTICLE Open Access
Predicting volume of distribution with decision
tree-based regression methods using predicted
tissue:plasma partition coefficients
Alex A Freitas1, Kriti Limbu2 and Taravat Ghafourian2,3*
Abstract

Background: Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug’s
distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of
distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression
methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types
of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as
predictive features, both the compounds’ molecular descriptors and the compounds’ tissue:plasma partition
coefficients (Kt:p) – often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether
the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds’
molecular descriptors but also (a subset of) their predicted Kt:p values.

Results: Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree
(mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such
as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p
values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection
is applied.

Conclusions: Decision tree based models presented in this work have an accuracy that is reasonable and similar to
the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds
in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible
non-linear data mining methods such as decision trees, which can produce interpretable models.

Keywords: Volume of distribution, Tissue partition, QSAR, QSPkR, Data mining, Machine learning, Decision tree,
Pharmacokinetics, ADME
Background
Despite significant advances in pharmacology in the last
decades, at present it is still very difficult to find (near)-
optimal answers to the questions of how much, how
often and for how long a drug should be given to a pa-
tient, in order to maximize its therapeutic effect and
minimize its adverse effects. This is especially important
in drug discovery since, for a new drug candidate, a
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poorly designed study with incorrect dose regimen can
lead to misleading results which can prove very costly to
the sponsor company when the product fails later in
development.
In this context, this paper addresses an important

pharmacokinetics problem: how to estimate the apparent
volume of distribution of a drug in the human body at
steady state (Vss), which is the volume of reference fluid
(usually plasma) in which the drug appears to be dis-
solved at steady state [1]. Although this apparent Vss has
no physiological meaning, its estimation is important be-
cause it predicts the drug’s plasma concentration for a
given amount of drug in the body and it influences the
drug’s half-life [2,3], which in turn is very important to
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determine the correct dosage regimen that clinicians
should prescribe to patients [4,5]. Hence, one needs to
estimate or predict Vss using an in vivo, in vitro or in
silico approach [6-9].
In vivo animal models produce rich information about

a drug’s pharmacokinetics properties, but they are a
low-throughput approach which is very time-consuming
and costly, as well as involving ethical issues. In vitro
models are less time-consuming and less costly than
in vivo ones, but they are still based on time-consuming
and costly biological assays, being at best a medium-
throughput approach. For a review and comparison of
in vivo and in vitro methods for Vss prediction, see e.g.
ref. [10].
In silico models are theoretical models that lack the

experimentally-derived rich information associated with
in vivo or in vitro models, but they are a very high-
throughput approach, which is much less time-consuming
and costly than in vivo and in vitro approaches. Hence,
the results of an in silico model can be used to suggest
which chemical compounds should have a higher prior-
ity to be further tested by the more expensive but more
accurate in vivo and in vitro experiments. In addition to
much smaller time and cost requirements, in silico
models have the advantages that they can be directly
generated with human data and can even be used to
evaluate the pharmacokinetics of compounds which
have not been synthesized yet, which is not possible
with in vivo and in vitro experiments.
This work is based on the in silico approach, using

data mining (or machine learning) methods to build
models that predict the Vss using the properties of mo-
lecular structures of chemical compounds as the model
features. Such a modeling approach is generally known
as Quantitative Structure-Activity Relationship (QSAR) ap-
proach, with the special QSAR case here being the Quanti-
tative Structure-Pharmacokinetic Relationship (QSPkR)
modeling [11,12]. More precisely, we use two types of data
mining methods – mainly decision tree-based regression
methods, but also a feature selection method (see Methods
section) – to produce QSPkR models that predict the Vss
of chemical compounds.
Conventional QSPkR modeling methods for predicting

Vss normally use, as features, a large set of physico-
chemical or molecular descriptors, most of which are
calculated by specialized software. The use of such phys-
icochemical descriptors as potential predictors of Vss
makes sense because, broadly speaking, the Vss of a drug
is mainly determined by its nonspecific binding to
plasma and tissue components, rather than its specific
pharmacophore, and such nonspecific binding is to a
large extent determined by the drug’s physicochemical
properties [4,13,14]. In addition, binding to the pharma-
cological target is considered to have relatively little
importance for predicting Vss, since the level of target
expression is usually low [15].
As an alternative to building QSPkR models for pre-

dicting Vss based on physicochemical drug properties,
several studies use a physiologically-based pharmacokin-
etics (PBPK) approach for predicting the Vss of a drug
based on its tissue:plasma partition coefficients (Kt:p),
where a compound’s Kt:p is its concentration ratio be-
tween a tissue and plasma at steady state. The basic idea
is to determine the Kt:p value for each of the major tis-
sues in the body where a drug can be present in signifi-
cant concentration and calculate the Vss for the whole
body as a function of the sum of the product of Kt:p and
tissue volume for all those tissues, using (variations of )
the following equation [16,17]: Vss =Vp + Ve × (E:P) + Σt

(Vt × Kt:p), where Vp, Ve and Vt are the volumes of
plasma, erythrocyte and tissue, respectively, E:P is
erythrocyte-to-plasma partition coefficient, and Kt:p is
the tissue:plasma partition coefficient for tissue t. Note
that this equation refers to Kt:p coefficients based on
total concentrations in tissue and plasma, but one could
use instead coefficients referring to the unbound drug
concentrations [18,19].
The use of such tissue-composition-based equations to

predict Vss has the advantage of providing a model with
a clear interpretation about where drugs are being dis-
tributed; but it introduces the problem of obtaining
the Kt:p coefficients for a number of tissues, for each
drug. These are typically obtained via in vivo or in vitro
experiments (whose limitations were briefly mentioned
earlier) in animals, as they are difficult to be determined
in humans [20]. Both in vitro and in vivo approaches are
based on the measurement of drug concentration in the
tissues and in the plasma at equilibrium or steady state.
The model animals used in these studies are most often
rat. In fact, rat is one of the most commonly used verte-
brate in the estimation of pharmacokinetic parameters
by interspecies scaling [21]. Due to the difficulty of
obtaining experimental Kt:p values for a large number of
drugs, an alternative approach consists of predicting Kt:p

values and then using those predicted values to predict
the Vss of a large number of compounds. This is essen-
tially the approach that we propose here.
More precisely, we propose a new QSPkR approach

consisting of two phases. In the first phase we obtained,
from the literature, experimentally derived Kt:p values
for a relatively small set of 110 compounds, and used
that dataset to build QSPkR models predicting Kt:p

values for different tissues based on molecular descrip-
tors. In the second phase, we used the models built in
the first phase to predict Kt:p for a larger set of 604 com-
pounds, and then used the predicted Kt:p values as de-
scriptors, in addition to molecular descriptors, to predict
the Vss of compounds in that larger dataset. In this
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phase, we used the Vss dataset made available by Obach
et al. [14]. This dataset has the advantages of being manu-
ally curated, being relatively large and containing only data
collected from intravenous studies – which avoids the un-
certainties about the degree of bioavailability in common
routes of administration, like oral administration.
It is important to note that the dataset used here has a

very diverse set of compounds, unlike other studies in
the literature that focus on relatively small subsets of
Obach et al.’s dataset – see, e.g., ref. [5,22]. On one hand,
this large compound diversity makes it difficult to dis-
cover a model that predicts Vss with a high accuracy;
but on the other hand the models produced in this study
have a wider domain of applicability than other Vss
models more specialized for certain classes of drugs. We
will elaborate on this issue in the Discussion section.
The main contribution of this paper is to investigate

whether or not the data mining-based prediction of the
Vss of chemical compounds can be made more accurate
by using as input not only the compounds’ molecular de-
scriptors but also computationally predicted tissue:plasma
partition coefficients (Kt:p values) for those compounds for
a (sub) set of tissues. A secondary contribution of this
work is that we discuss the pros and cons of several differ-
ent types of decision tree-based regression methods and
report the results of experiments comparing their predict-
ive accuracy when building models to predict Kt:p and Vss.
To our knowledge, these two contributions have not been
reported yet in the pharmacokinetics or QSAR literature.

Methods
The main dataset used in this research is a dataset con-
taining 604 compounds with Vss values at steady state in
humans, obtained from Obach et al.’s work [14], and our
ultimate goal is to build models that predict human Vss
for compounds in that dataset based on molecular de-
scriptors and tissue:plasma partition coefficient (Kt:p) de-
scriptors, as mentioned in the Introduction. However,
the experimental Kt:p values for different human tissues
are unknown for the large majority of those compounds.
Hence, in this study we propose a two-phase approach
for building models predicting human Vss in steady
state. In the first phase we build QSPkR models for pre-
dicting log Kt:p values for different tissues based on mo-
lecular descriptors; whilst in the second phase we used
the predicted log Kt:p values as descriptors, in addition
to molecular descriptors, to build QSPkR models pre-
dicting log Vss. These two phases are described in more
detail next.

The first phase of the proposed approach – building
QSPkR models for predicting Log Kt:p
Experimentally derived Kt:p values were available in the
literature for a number of rat tissues for 110 compounds
(see Additional file 1 for the dataset, including the ori-
ginal references for the data). ACDlabs logD 12.0 and
MOE (Molecular Operating Environment) 2011 software
were used to calculate about 300 molecular descriptors
for each of these compounds, as described in detail in
ref. [23]. This dataset was created with rat tissue Kt:p, ra-
ther than human tissue Kt:p, because there is substan-
tially more data for the former than for the latter in the
literature. Hereafter, we refer to that created dataset as
the Kt:p-target dataset. In essence, it included several
types of drugs, such as NSAIDs, anticonvulsants, sulfo-
nylureas, benzodiazepines, beta blockers, antipsychotics
and some antibiotics such as cephalosporins, fluoroqui-
nolones, tetracyclines, etc. Then, we applied data mining
methods (described later) to the Kt:p-target dataset in
order to build a regression-type model for predicting the
log Kt:p (where the log is in base 10) for each of 13 dif-
ferent tissues whose data is included in the Additional
file 1, based on the molecular descriptors of the com-
pounds. This process is summarized in graphical form in
the top half of Figure 1.
Note that, for most compounds in the created dataset,

there is a large proportion of missing values for the log
Kt:p of most tissues (See Additional file 1). For one of
the tissues, namely pancreas, only 3 compounds in the
dataset have a known log Kt:p value, and so no attempt
was made to build a regression model predicting pan-
creas log Kt:p values from so few compounds. For each
of the other tissues, we tried to build regression-type
models predicting the log Kt:p value for that tissue. This
generated 13 different regression-type problems, each
characterized by a different target (dependent, or re-
sponse) variable, representing the log Kt:p of a different
tissue, and a different (but overlapping) set of com-
pounds. On the other hand, the set of descriptors (fea-
tures, or independent variables) used to build the
models was the same in all 13 regression problems, con-
sisting of about 300 molecular descriptors.
In each of those regression-type problems, all com-

pounds with known log Kt:p value for the target tissue
were used to build and validate models predicting the
target tissue’s log Kt:p value. For each tissue, we built
several QSPkR models predicting that tissue’s log Kt:p

value using different types of decision tree-based regres-
sion methods (described later). The error rate associated
with each method was measured by a 10-fold cross-
validation procedure, which works as follows [24]. First,
the Kt:p-target dataset was randomly divided into 10
folds. Next, the regression method was run 10 times,
each time using a different fold as the validation set and
the other 9 folds as the training set. The mean absolute
error (MAE) on the validation set is computed for each
run, and then averaged over the 10 runs and returned
as the MAE for that method. Finally, the best model



Figure 1 Graphical summary of our two-phase approach for predicting log Vss. First, 13 log Kt:p’s (one for each tissue) are the target
variables to be predicted from molecular descriptors. Then, the predicted log Kt:p values from these models together with molecular descriptors
are used as descriptors to build models predicting log Vss.
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predicting log Kt:p for each tissue is chosen as the model
produced by the method with the lowest MAE. The best
model built for each tissue can then be used to predict
that tissue’s log Kt:p value in the Vss-target dataset. Note
that the use of a cross-validation procedure is not shown
in Figure 1 in order to keep the figure simple.
It is important to note that, when building a model to

predict a certain tissue’s log Kt:p, the log Kt:ps of other
tissues are not used as descriptors. This restriction was
implemented because a model built from the Kt:p-target
dataset is used later to predict a tissue’s log Kt:p values in
the Obach et al.’s dataset, where other tissues’ log Kt:p

values are unknown.

The second phase of the proposed approach – building
QSPkR models for predicting Log Vss
In this phase we used a larger set of 604 compounds and
corresponding steady state Vss values in humans ob-
tained from ref. [14]. The dataset published by Obach
et al. consists of Vss values for 665 compounds. In this
study, some of the compounds were removed because
their molecular descriptors could not be calculated. This
was the case for compounds containing metals, or other
salts, or permanently charged compounds such as qua-
ternary ammoniums. We also removed from the initial
dataset all compounds that were included in our Kt:p-
target dataset. As a result, the final version of the dataset
used in our experiments has 604 compounds. We refer
to this dataset as the Vss-target dataset hereafter. As
mentioned earlier, the log Kt:p values of different tissues
are unknown for the large majority of compounds in the
Vss-target dataset. Hence, we used the best regression
models built in the first phase (i.e. the best model for
each tissue) to predict the set of tissues’ log Kt:p values
for the compounds in this dataset. Again, ACDlabs logD
12.0 and MOE (Molecular Operating Environment)
2011 software were used to calculate about 300 molecu-
lar descriptors for each compound in the Vss-target
dataset [23]. Then we applied data mining methods to
the Vss-target dataset in order to build regression
models predicting log Vss in steady state in humans
(where the log is in base 10), using as descriptors both
the set of calculated molecular descriptors and the pre-
dicted log Kt:p values. We built models predicting log
Vss, rather than Vss, because Vss has a very skewed dis-
tribution, with relatively few compounds having very
high Vss values. This process is summarized in graphical
form in the bottom half of Figure 1. In both phases, the
regression models are expressed in the form of decision
trees, as will be explained next.

An overview of the decision tree-based regression
methods used in this work
The type of regression method used in both the previ-
ously described phases of the proposed approach was
decision-tree building algorithms. In essence, this type of
method builds a decision tree by recursively partitioning
the set of compounds in the training set, as follows.
First, it considers all training set compounds, selects the
descriptor that is the best predictor of the value of the
target variable (a tissue’s log Kt:p in the first phase or log
Vss in the second phase, in this work), adds the selected
descriptor to the tree (as its root node), and partitions
the training set based on the values of the selected
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descriptor. In this context, the best predictor is the pre-
dictor that partitions the data in a way that each of the
resulting nodes has the minimum possible variance in
the values of the target variable. Typically, in the case of
numerical variables, this involves creating two training
set partitions, one with compounds satisfying the condi-
tion dsel ≤ t and the other with compounds satisfying
dsel > t, where dsel is the selected descriptor and t is a
threshold automatically chosen by the algorithm. Next,
the same process of selecting the best descriptor, adding
it to the tree and further partitioning the current set of
compounds is applied to each of the just-created parti-
tions (nodes). This process is recursively applied until a
stopping criterion is satisfied for each partition, e.g.
when the variance of the value of the target variable for
the compounds in the current partition is below a pre-
defined threshold, in which case a leaf node (terminal
node) is created for that partition. The result of this
process is a decision tree, where internal (non-leaf )
nodes contain names of descriptors, the edges coming
out from a node contain conditions like dsel ≤ t or dsel >
t, and each leaf node predicts the value of the target
variable for the compounds that have the descriptor
values associated with the edges in the path from the
root node to that leaf node. The leaf node’s prediction
can be performed in different ways, associated with dif-
ferent types of decision trees, as discussed later.
We chose this paradigm of decision tree-based regres-

sion methods for several reasons. First, they produce
graphical models that can be potentially comprehensible
and interpretable by users [24-27]. This is in contrast to
methods such as support vector machines and artificial
neural networks, which produce models that are a kind
of “black box”, being hardly interpretable by users. Sec-
ond, they produce models capturing non-linear relation-
ships in the data, instead of simply modeling only linear
relationships, like traditional linear regression models
often used in QSPkR studies. In addition, the paradigm
of decision tree methods is broad enough to include
several different types of decision trees (with different
types of structures) for regression, which gives us more
opportunities to try to find the best type of tree struc-
ture for our target regression problem. More precisely,
in this work we compare the effectiveness of several
types of decision tree-based model structures for regres-
sion, as follows.

(Conventional) regression trees
This type of decision tree structure has been popularized
by the well-known CART (Classification and Regression
Tree) algorithm [28]. In a regression tree, in each leaf
(terminal) node, the log Vss value predicted for a new
compound reaching that node is given by the mean of
log Vss values over all the training set compounds that
belong to that node. The main advantages of such regres-
sion trees are their simplicity and easy interpretation; i.e.,
each leaf node directly provides a predicted log Vss value,
unlike the case of model trees, discussed next.

Model trees
This is a more sophisticated type of decision tree for re-
gression. In a model tree, in each leaf node, the log Vss
value predicted for a new compound reaching that node
is given by a multivariate linear regression model built
from the training set compounds that belong to that
node [29]. Note that, at each leaf node, the linear model
contains only descriptors that occur in tree nodes in the
path from the root to the current leaf node or descrip-
tors that occur in linear models somewhere in the sub-
tree containing the current leaf node. After building
such a linear model using standard linear regression
techniques, the linear model can be simplified by remov-
ing irrelevant variables, using a greedy search procedure
that tries to improve the model’s estimated error rate.
Hence, a model tree performs embedded feature selec-
tion at two levels, i.e., at the level of internal (non-leaf )
nodes and at the level of leaf nodes. The model tree ap-
proach is much more flexible than the conventional lin-
ear regression approach of building a single (global)
linear model from the entire training set, because the
latter makes the strong assumption that all the com-
pounds have the same relationship between features and
log Vss. By contrast, a model tree recognizes that differ-
ent linear equations might describe well the relationship
between features and log Vss for different subsets of
compounds. Hence, in theory model trees can better
adapt their structure to a diverse set of compounds, such
as the Vss-target dataset used in this work. On the other
hand, model trees tend to be more difficult to interpret
than regression trees, since a single model tree can have
a large number of linear equations (each with tens of de-
scriptors) in its leaves. We will discuss the interpretation
of model trees later.

If-then regression rules
A type of model conceptually similar to regression trees
is a set of If-Then regression rules. Each rule has an “If
part”, which consists of a set of conditions on the values
of selected descriptors, and a “Then part”, which predicts
the target variable’s value for any compound whose de-
scriptors satisfy the conditions in the If part. Note that
the If part is conceptually equivalent to a path from the
root to a leaf node in a regression tree, and the Then
part is conceptually equivalent to a leaf node. Actually,
the method used to build If-Then regression rules in this
work is based on decision trees [30]. In essence, it is an
iterative method that, at each iteration, builds a decision
tree, selects the “best” leaf node (the one with the largest
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estimated accuracy) and creates a rule corresponding to
the path from the root to that leaf node, throwing away
the rest of the tree. By iteratively repeating this proced-
ure, it builds a set of modular If-Then rules, rather than
a decision tree.

Bagging
Bagging (which stands for Bootstrap Aggregation) con-
sists of an ensemble (or set) of decision trees, where dif-
ferent decision trees in the ensemble are produced by
different random samplings (different bootstrap samples)
of the original training set [31]. When we need to pre-
dict the log Kt:p or log Vss of a new compound, a pre-
dicted value is computed by each tree in the ensemble,
and the predictions are averaged to give the ensemble’s
prediction. Bagging can be used to produce a set of re-
gression or model trees. In this work, all the trees in the
ensemble produced by Bagging are model trees, since
this type of decision tree produced somewhat better re-
sults than regression trees in our preliminary experi-
ments. Bagging has the advantage of increasing the
robustness of the model (reducing the variance of its
predictions), by comparison with using a single decision
tree, since its prediction is an average of the prediction
of many models. However, Bagging has the disadvantage
of producing a more complex model, which is consider-
ably more difficult to interpret than a single decision
tree. We will also discuss the interpretation of a Bagging
model later.

Correlation-based feature selection (CFS) with genetic search
From a feature selection perspective, all the previously
described decision tree-based regression methods per-
form “embedded feature selection”, in the sense that a
decision tree is built by selecting the “best” feature to be
used in each node of the tree, and normally only a
proper subset of the input features is selected to occur
in some tree node. A different type of feature selection
method performs feature selection in a preprocessing
phase, before running the decision tree building algo-
rithm – or any other type of classification algorithm for
that matter. It is often possible to achieve better predict-
ive accuracy using a two-stage approach, where we first
use a preprocessing feature selection method and then
apply a decision tree building algorithm to the features
selected in the first stage. For evidence that this ap-
proach can improve predictive accuracy over using just a
decision tree building method, see e.g. Newby et al.’s
work [32]. Hence, in this work we also tried to use one
type of preprocessing feature selection method, namely
genetic search-based CFS, which was also successfully
used by Newby et al.. In essence, this method uses a
genetic algorithm as a search method in the space of
candidate feature (descriptor) subsets, and evaluates the
quality of each candidate feature subset using a “fitness”
(evaluation) function that considers two criteria: the cor-
relation between features in that candidate subset and
the target variable, and the redundancy among features
in that candidate subset. The genetic search is used to
find a feature subset that maximizes that correlation and
minimizes that redundancy. For a review of the CFS
method, see ref. [33], and for a review of genetic search
applied to feature selection, see e.g. ref. [34].

Results
Results for the regression models predicting each Tissue’s
Log Kt:p values
Table 1 shows, for each tissue, the mean absolute error
(calculated by 10-fold cross-validation [24]) in the pre-
diction of log Kt:p by each regression method, in our
Kt:p-target dataset. As discussed in the Methods section,
we investigated the use of different types of decision
tree-based regression methods. More precisely, the first
four regression methods in Table 1 are variations of
model trees built by the M5P algorithm in WEKA [29],
where each variation used a different value of the param-
eter ‘minNumInstances’ (the minimum number of in-
stances (compounds) to allow at a leaf node), namely the
value 4, 6, 8 or 10, as indicated in the column headings.
The column heading M5P-RegTree refers to the M5P
version building regression trees, rather than model trees.
REP-Tree is a method that produces a regression tree
and was designed particularly to be fast, which may
however lead to some reduction in its predictive accur-
acy, by comparison with other decision tree methods.
M5-Rules is an M5P version that produces a model con-
sisting of a list of If-Then regression rules, rather than
regression trees [30]. The Bagging-M5P method [31]
produces a set of M5P model trees and predicts, for a
new compound, the value of a target variable that is an
average of the values predicted by the individual model
trees. The number of trees produced is a parameter, for
which we used the default value of 10 in WEKA.
In Table 1, for each tissue, the smallest Mean Absolute

Error (MAE) – among the 8 regression methods – is
highlighted in bold. As expected, there is no single re-
gression method that is the best across all tissues, but
overall the Bagging-M5P method is the most successful
one. It obtains the smallest MAE in 7 out of the 13 tis-
sues. Recall, however, that our goal is not to select the
best regression method overall, but rather to select the
best regression method to predict the log Kt:p value for
each tissue. The best model built for each tissue was
then used to predict that tissue’s log Kt:p value for all
compounds in the Vss-target dataset, where those pre-
dicted log Kt:p values are used as descriptors (in addition
to a large number of molecular descriptors) to build and
validate models predicting log Vss.



Table 1 Mean Absolute Error (calculated by 10-fold cross-validation) in the prediction of log Kt:p value by different
decision tree-based regression methods, for each tissue, in Kt:p-target dataset (with 110 compounds)

Tissue M5P-4 M5P-6 M5P-8 M5P-10 M5P-RegTree REP-Tree M5-Rules Bagging (M5P)

muscle 0.3029 0.3040 0.3164 0.2950 0.3384 0.3857 0.3172 0.3228

brain 0.4695 0.4797 0.4869 0.4768 0.5387 0.5347 0.5170 0.4613

intestine 0.5939 0.4700 0.5337 0.5245 0.4523 0.4698 0.6060 0.5361

lung 0.4549 0.4812 0.4755 0.4776 0.5710 0.5522 0.5114 0.4822

spleen 0.9824 1.0069 1.0276 1.0206 0.8149 0.7997 0.8783 0.7857

heart 0.3391 0.3076 0.2991 0.3321 0.3562 0.4116 0.3723 0.3358

skin 0.2844 0.2752 0.2954 0.2666 0.3436 0.3433 0.2782 0.2961

bone 0.6210 0.7101 0.5893 0.5735 0.5109 0.5847 0.5724 0.4762

adipose 0.3581 0.4106 0.4186 0.4005 0.4557 0.5268 0.4031 0.3214

kidneys 0.2848 0.2706 0.2756 0.2736 0.3226 0.4035 0.2913 0.2281

liver 0.5495 0.5634 0.5036 0.5091 0.4925 0.5569 0.5879 0.4608

gut 0.6484 0.6134 0.6056 0.4905 0.4695 0.3912 0.4135 0.3169

thymus 0.3943 0.3599 0.3667 0.3601 0.2633 0.2176 0.3529 0.2623
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As can be seen in Table 1, the value of the best (smal-
lest) MAE for each tissue varies from 0.2176 and 0.2281
for the log Kt:p’s of thymus and kidneys, respectively, to
0.7857 for the log Kt:p of spleen. Given this significant
variability in the MAE values, one could wonder whether
just a subset of the models having relatively small MAEs
(e.g., values below a certain threshold) should be used for
predicting the tissue log Kt:p values to be used as descrip-
tors in the Vss-target dataset, whilst other tissues’ log Kt:p

values (with large MAEs) should be ignored. However, this
would introduce the problem of how to determine which
MAE values are small enough for their corresponding pre-
dicted log Kt:p to be reliably used as descriptors in the Vss-
target dataset. A predefined threshold would be an ad-hoc
solution. In addition, the MAE value by itself seems not to
be an effective measure of the usefulness of a predicted
log Kt:p value, because the predicted values will be used as
descriptors for building models predicting log Vss in the
Vss-target dataset, which is a regression problem very dif-
ferent from the problem of building the models reported
in Table 1.
Hence, once the best model predicting log Kt:p has

been selected for each tissue based on the results shown
in Table 1, the decision about which of those models will
be used as descriptors should be made by directly taking
into account the predictive performance of each pre-
dicted log Kt:p descriptor in log Vss models. In our case,
this is naturally done by taking advantage of the fact that
the decision tree-based regression methods used to pre-
dict log Vss perform an embedded ‘descriptor selection’
(or feature selection) procedure as part of the decision
tree building process – recall that only descriptors con-
sidered relevant for predicting the target variable are
included in the decision tree. That is, we let the decision
tree-based regression methods use, as input descriptors,
the set of predicted log Kt:p values for (almost) all the
tissues – in addition to the aforementioned large set of
molecular descriptors. Then the tree-building algorithm
automatically decides which of those predicted log Kt:p

descriptors – as well as which molecular descriptors –
are relevant enough to be included in the decision tree
predicting log Vss. Out of the 13 tissues shown in
Table 1, there is only one whose best log Kt:p-predicting
model was not used to fill in the corresponding descrip-
tor values in the Vss-target dataset, namely the model
for intestine. This is because the best model for this tis-
sue’s log Kt:p consists of a degenerated decision tree hav-
ing only one leaf node, which predicts the same value of
intestine log Kt:p for all new compounds, making it use-
less as a descriptor.

Results for the regression models predicting Log Vss
In order to evaluate the predictive performance of
models predicting log Vss, the Vss-target dataset was
randomly divided into two sets. One set, with 402 com-
pounds, is used as the model selection set; whilst the
other set, with the remaining 202 compounds, is used as
an external validation set. To perform model selection,
each of the aforementioned decision tree-based regres-
sion methods was applied to the model selection set,
using 10-fold cross-validation. Then the best model –
i.e., the one with smallest mean absolute error (MAE) –
is selected, and that model is used to predict log Vss
for the compounds in the external set. We emphasize
that the compounds in the external set were not used
in the model selection set (nor in the Kt:p-target dataset),
i.e., the external set compounds were not used in any
way to build or select models, and so the predictive
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performance in the external set represents a fair measure
of the generalization ability of the used decision tree-
based regression models.
Table 2 shows the MAE – calculated by 10-fold cross-

validation – in the prediction of log Vss in the model se-
lection dataset. This table has 3 columns with results.
The first one reports results for each regression method
when using, as input descriptors, both the set of 12 tis-
sue log Kt:ps whose values were predicted by the corre-
sponding best model in Table 1 and a set of about 300
molecular descriptors – as explained earlier. The next
column reports the results for each regression method
when using, as input descriptors, only the set of molecu-
lar descriptors. Hence, in those experiments the pre-
dicted tissue log Kt:ps were not used as descriptors for
predicting log Vss, providing us with a baseline set of ex-
periments against which we can measure the influence
of using predicted tissue log Kt:ps as descriptors.
The last column in Table 2 reports the results of another

set of experiments involving a two-step feature selection
approach, as follows. First we apply a feature (descriptor)
selection method to the dataset containing, as input de-
scriptors, both the set of 12 tissue log Kt:ps whose values
were predicted by the corresponding best model in Table 1
and the large set of molecular descriptors. The feature se-
lection method used was Correlation-based Feature Selec-
tion (CFS) with genetic search (see Methods section). Out
of the 56 descriptors selected by the CFS method, only
two are predicted log Kt:p descriptors, namely the log Kt:p

for adipose tissue and thymus. In the second step, the 56
descriptors selected by CFS are used as input by a decision
tree-based regression method. Note that in the first step a
descriptor subset is selected by CFS in a preprocessing
phase, independent from the regression method; and in
the second step the embedded descriptor selection pro-
cedure of the regression method further selects a (usually
Table 2 Mean Absolute Error (MAE) – calculated by
10-fold cross-validation – in the prediction of log Vss by
each regression method, in model selection dataset
(with 402 compounds)

Regression
method

MAE (logVss)

Descriptor set
includes predicted
log Kt:p’s

Descriptor set
without predicted
log Kt:p’s

Descriptor set
selected by
genetic CFS

M5P-4 0.3891 0.3698 0.3739

M5P-6 0.3823 0.3665 0.4003

M5P-8 0.4715 0.3616 0.3847

M5P-10 0.4751 0.3658 0.3763

M5P-RegTree 0.3689 0.3772 0.3782

REPTree 0.3824 0.4330 0.3974

M5Rules 0.3911 0.3843 0.3836

Bagging (M5P) 0.3713 0.3371 0.3509
smaller) subset of relevant descriptors. This kind of two-
step feature selection approach has also been successfully
used to build other types of QSPkR models [32].
In Table 2, the best result (smallest MAE) for each

type of descriptor set is highlighted in bold. As can be
observed in the Table, the M5P algorithm generating a
regression tree produced the best model when using
the first type of descriptor set, whilst Bagging produced
the best models when using the other two types of
descriptor sets.
Finally, for each of the three types of descriptor sets,

the best model identified in Table 2 was used to predict
the log Vss of all compounds in the external set. The re-
sults are shown in Table 3. The Geometric Mean Fold
Errors (GMFEs) shown in that table were calculated as:
GMFE = antilog10 (MAE) [3]. The GMFE measure has the
advantage of being less affected by extreme outliers, by
comparison with the coefficient of determination (which
measures the quadratic error) [35]. In order to interpret
the GMFE measure, note that a model with a GMFE of 2
makes Vss predictions which are on average twofold off –
i.e., 100% above or 50% below the true Vss value.
As can be observed in Table 3, the approach of using

as descriptors both the predicted log Kt:p values for 12
tissues and a large set of molecular descriptors (model
1) was not successful, by comparison with the baseline
approach of using as descriptors only a large set of mo-
lecular descriptors (model 2). The former approach ob-
tained a GMFE of 2.61, versus a GMFE of 2.33 for the
baseline approach. However, when the more sophisti-
cated approach of selecting descriptors with both the
genetic search-based CFS and the decision tree method
was used (an approach that also used predicted log Kt:p

values as descriptors), a small improvement over the
baseline approach was obtained, with the GMFE being
slightly reduced from 2.33 to 2.29. A T-Test of mean dif-
ference with a 95% confidence interval indicated the
difference between the prediction errors was not statisti-
cally significant (confidence interval of (−0.031, 0.017)
and p = 0.577). Despite this, the significance of log Kt:p

in the prediction of Vss was very clear based on the fact
that all the models where log Kt:p parameters were in-
cluded as input parameters (Model 1 and all the model
trees making up Model 3) used a log Kt:p parameter as
the most important descriptor (see model interpretations
in the next two sections).
The fact that the approach of using the predicted log

Kt:p values as descriptors without running genetic
search-based CFS (model 1) led to a higher GMFE than
the baseline may be due to a number of factors. One ex-
planation may be the two phase approach adding a level
of uncertainty due to the use of predicted, as opposed to
the experimentally measured, Kt:p values. Despite the ad-
vantages of using tissue distribution from a mechanistic



Table 3 Mean Absolute Error (MAE) and Geometric Mean Fold Error (GMFE) calculated for each combination of input
descriptor set and the best regression model for that descriptor set, when predicting log Vss for all compounds in the
external set (with 202 compounds)

Model Input descriptor set Regression model type MAE GMFE

1 predicted log Kt:p’s and molecular descriptors M5P – regression tree 0.4172 2.61

2 molecular descriptors only (i.e., without predicted log Kt:p’s) Bagging (a set of M5P model trees) 0.3676 2.33

3 descriptor set selected by genetic search-based CFS Bagging (a set of M5P model trees) 0.3609 2.29
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point of view, the use of predicted tissue to plasma parti-
tion coefficients can subject the model to the errors as-
sociated with Kt:p prediction. This is in addition to the
experimental error associated with the in vitro or in vivo
measurements of partition coefficients [36], which is es-
pecially variable for basic lipophilic compounds [37].
Therefore, it is essential to ascertain the quality of pre-
dicted Kt:p values for the compounds in Vss-target data
set. It is usually noted that prediction by a QSAR model
is reliable only to compounds that are similar to the
training set compounds [38]. In this case, the com-
pounds in the Vss-target dataset need to be within the
molecular descriptor boundaries of the Kt:p dataset.
Here, we used a descriptor range-based approach to

identify compounds within or outside the molecular de-
scriptor space. Since only one log Kt:p parameter has
been used in the set of model trees built by M5P in
model 3 in Table 3, namely Kt:p for the adipose tissue,
the descriptor boundary was investigated only for this
parameter. First, the set of descriptors that was used for
the prediction of adipose tissue’s log Kt:p were identified.
This set contains 16 descriptors. Then, compounds in
the Vss validation set that have at least one descriptor
value outside the descriptor values of the Kt:p dataset
were identified. Out of 202 compounds in the Vss valid-
ation set, 43 compounds (21%) were identified as falling
outside the range of the descriptor values of the Kt:p data-
set. The average error for all validation set compounds
and the validation set excluding the 43 compounds were
found to be similar (2.29 for all compounds vs 2.34 for
compounds that are within the descriptor space). The rea-
son for a very similar error for the validation set com-
pounds within and those outside the descriptor range
could be due to the source of Vss error being other param-
eters than the uncertainties of log Kt:p prediction. For ex-
ample, one important observation for the compounds
showing high Vss prediction error (by all methods) is that
the large majority of these compounds have a relatively
extreme (very high or very low) Vss value, which seems
to be the main reason for their large errors. In other
words, these major outliers are “prediction outliers” rather
than “descriptor outliers”. As further evidence, a compari-
son of the compounds that are outside the descriptor
boundary with those that are within the descriptor range
shows that in general compounds with similar chemical
and pharmacological nature can be found in both groups.
For example, three out of nine cephalosporins and one
out of seven penicillins and two out of four quaternary
ammonium muscle relaxants are outside the domain with
the remaining similar structures within the boundary.
To further evaluate the reliability of the predicted log

Kt:p for adipose tissue for the prediction of Vss, we per-
formed a sensitivity analysis to investigate how uncer-
tainty in the regression for adipose tissue’s log Kt:p

prediction affects the prediction of Vss. More precisely,
we performed a controlled experiment where we artifi-
cially introduced 10% of noise to the predicted adipose
tissue’s log Kt:p, as follows. For each compound in the
entire Vss-target dataset (including both the training
(model selection) and external datasets), the value of the
predicted adipose tissue’s log Kt:p descriptor in that com-
pound was modified by adding or subtracting 10% of the
current descriptor value, where the decision to perform
addition or subtraction was made at random. This pro-
cedure was repeated five times, varying the random seed
used to decide if the 10% of noise was added or sub-
tracted to each compound, which led to 5 new modified
versions of the Vss-target dataset. For each of these 5
modified Vss-target datasets, we ran again the Bagging
M5P regression algorithm and measured its geometric
mean fold error (GMFE), averaging the results over the 5
runs. This procedure led to a GMFE or 2.35, which should
be compared to the GMFE of 2.29 obtained by Bagging
using the original predicted adipose tissue’s log Kt:p de-
scriptor values (without any extra artificial noise) – as
reported in Table 3. Hence, a small degree of noise added
to the predicted adipose tissue’s log Kt:p only moderately
affected the prediction of Vss, giving us more confidence
in the relevance of this tissue’s log Kt:p to predict Vss.
In order to further understand the effect of this small

degree of noise in the predictive power of the predicted
adipose tissue’s log Kt:p descriptor, we also computed
the frequency of occurrence of this descriptor in the
root node of the model trees built by Bagging M5P.
Recall that a model tree’s root node contains the most
relevant descriptor for predicting Vss. When using the
original predicted adipose tissue’s log Kt:p descriptor
values (without any extra artificial noise), that descriptor
occurs as the root node in all the 10 model trees built by
Bagging. On the other hand, using the predicted adipose
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tissue’s log Kt:p descriptor values with 10% of noise, this
descriptor occurs as the root node, on average, in 8.6 of
the 10 model trees. So, again the decrease in the rele-
vance of this descriptor was not great; it is still the most
relevant descriptor overall in the set of model trees built
by Bagging, even with 10% noise added to its value,
which further reinforces our confidence in the predictive
power of this descriptor.
Distribution coefficients are the main factors control-

ling the Vss of drugs. However, here we used data for rat
Kt:p, rather than human Kt:p, when building models pre-
dicting log Kt:p. As mentioned earlier, this was due to
the availability of more rat Kt:p data than human Kt:p

data in the literature, but clearly there are species differ-
ences that lead to different values of Kt:p for rats and
humans [6,39]. In addition, even when using rat Kt:p

data, the number of compounds with known log Kt:p

value available for some tissues (i.e. data required to
build the model for those tissues) was still relatively
small, which also limited the predictive accuracy that
could be achieved by the log Kt:p models. However, the
fact that the third approach in Table 3, selecting descrip-
tors (including predicted log Kt:p values) using both the
genetic search-based CFS and the decision tree method,
achieved the best results overall suggests that at least
some tissue(s)’ log Kt:p(s) were predicted well enough
and were correlated with Vss strongly enough to im-
prove the predictive accuracy, by comparison with the
baseline approach of not using predicted log Kt:p values.
Hence, a natural question to ask is whether the de-

scriptors representing predicted log Kt:p values are often
selected to be included in the decision tree models, in
the case of the first and third approaches in Table 3.
This question is discussed in the next two sections. Note
that the question is not valid in the case of the second
approach, where predicted log Kt:p values are not used
as descriptors.

Interpreting the regression tree for predicting Vss built
by M5P from predicted Kt:p and molecular descriptors
The best model built by M5P when using as input the
12 predicted log Kt:p descriptors for different tissues is a
regression tree where log Kskin:plasma is the most relevant
descriptor, occurring at the tree’s root node. Note that,
due to its position at the root of the tree, log Kskin:plasma

will be used to predict the log Vss of every new com-
pound, since the root node is included in all the paths
leading to all the leaf nodes in the tree. The regression
tree also contained log Kmuscle:plasma, but this occurred at
a deeper position in the tree, and therefore it is used to
predict the log Vss of a much smaller number of com-
pounds, by comparison with the log Kt:p for skin. The
entire regression tree has 34 nodes (16 internal nodes
and 18 leaf nodes), which is too large to be visualized
here. Hence, instead of showing the regression tree, we
show here a subset of the If-Then rules extracted from
that tree. Recall that each path from the root to a leaf
node in a regression tree is equivalent to an If-Then rule
where the antecedent (“If part”) contains the conditions
associated with values of the descriptors in the internal
nodes and the consequent (“Then part”) contains the log
Vss value predicted for any compound that satisfies the
conditions in the rule’s antecedent. Analyzing a list of
rules extracted from a tree, rather than directly analyzing
the tree, helps us to interpret the model in a more
modular way [26,27], since each rule can be interpreted
independent from the others, unlike the entanglement of
paths in a decision tree. Hence, this approach for im-
proving model interpretability is often used in data min-
ing, particularly when the original tree is relatively large,
which is the case in this work.
Table 4 shows the subset of rules extracted from the

regression tree satisfying the criterion that each rule
covers at least 10 compounds in the model selection
dataset – where the coverage of a rule is the number of
compounds satisfying the conditions in the antecedent
of the rule. We focus on these rules because they can be
considered more reliable, since the rules covering less
than 10 compounds have less statistical support for their
predicted log Vss value. Note that, although the regres-
sion tree predicts log Vss, rather than Vss, in order to fa-
cilitate the interpretation of the results the second
column of Table 4 shows the actual Vss value in L/Kg.
Note that log Kskin:plasma occurs in all rules shown in

Table 4 because it is the root node in the regression
tree from which the rules were extracted, as mentioned
earlier. The first three rules in the table are the only
rules in the original tree containing the condition log
Kskin:plasma ≤ 0.044, and all those rules predict small Vss
values, considerably below 1 L/Kg. These are the only
rules predicting Vss < 1 L/Kg out of the entire set of
18 rules corresponding to the 18 leaf nodes in the ori-
ginal tree, i.e., all rules containing the condition log
Kskin:plasma > 0.044 predict Vss values higher than 1. The
other descriptors SlogP_VSA7 and ASA– are used in the
first three rules to refine the predicted Vss value; in par-
ticular the condition SlogP_VSA7 > 88.002 is associated
with even smaller Vss values. SlogP_VSA7 is the sum of
accessible van der Waals surface area for atoms whose
atomic contribution to logP(o/w) is in (0.25,0.30). These
are specific atom types that include acidic hydrogens
and aromatic and non-aromatic carbon atoms in certain
positions, e.g. attached to other aromatic groups (see ref.
[40] for a full description of these atoms). The effect of
SlogP_VSA7 on Vss values indicates that drugs with
large resonance area (e.g. more than one aromatic ring)
that contain acidic groups such as COOH have low Vss.
This is in agreement with previous literature, as acidic



Table 4 If-Then regression rules with coverage ≥ 10 extracted from the regression tree built by M5P when using as
input descriptors both the predicted log Kt:p for 12 tissues and a large set of molecular descriptors

Rule IF (a set of conditions) THEN Vss (L/Kg) coverage

1 log Kskin:plasma ≤ 0.044 and SlogP_VSA7≤ 88.002 0.57 80

2 log Kskin:plasma ≤ 0.044 and SlogP_VSA7 > 88.002 and ASA–≤ 181.026 0.37 30

3 log Kskin:plasma ≤ 0.044 and SlogP_VSA7 > 88.002 and ASA– > 181.026 0.27 60

4 log Kskin:plasma > 0.044 and a_ICM < = 1.553 and fiA < = 0.017 and
PEOE_VSA+0 < = 108.431 and PEOE_RPC– < = 0.187

1.66 13

5 log Kskin:plasma > 0.044 and a_ICM < = 1.553 and fiA < = 0.017 and
PEOE_VSA+0 < = 108.431 and PEOE_RPC– > 0.187

1.96 26

6 log Kskin:plasma > 0.044 and a_ICM < = 1.553 and fiA < = 0.017 and
PEOE_VSA+0 > 108.431 and SlogP_VSA4 < = 16.939

3.14 20

7 log Kskin:plasma > 0.044 and a_ICM < = 1.553 and fiA < = 0.017 and
PEOE_VSA+0 > 108.431 and SlogP_VSA4 > 16.939

2.15 19

8 log Kskin:plasma > 0.044 and a_ICM > 1.553 1.10 100
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drugs are known to have low Vss values in general
[3,41]. Furthermore, it can be seen from Table 4 that out
of these acidic and aromatic compounds, those with
large surface area of negatively partially charged atoms
(ASA-) have even lower Vss values. Large ASA- indicates
compounds with many electronegative atoms, a param-
eter similar to polar surface area that is known to have a
negative effect in membrane penetration [42,43].
Turning to the rules with log Kskin:plasma > 0.044 in Table 4,

the first four ones (i.e. rules 4–7) are somewhat more diffi-
cult to be interpreted, since they have five conditions in
their antecedent, but they all have three conditions in
common in their antecedents: “log Kskin:plasma > 0.044 and
a_ICM<= 1.553 and fiA < = 0.017”, where a_ICM is atom
information content and more precisely the entropy of the
element distribution in the molecule, and fiA is the fraction
of molecules that are ionized as acid at physiologic pH. This
part of the rule indicates that compounds with high ability
to partition into skin that also contain fewer heteroatoms
and are not considerably acidic have relatively high Vss
values, according to rules 4–7 in Table 4. Given those three
conditions, those rules’ predictions depend on the value
of PEOE_VSA+0 and another descriptor. PEOE_VSA+0
is sum of van der Waals surface area of atoms that have
a close to neutral partial atomic charge (in the range
(0.00,0.05) with PEOE charge calculation [44]). For
compounds that satisfy the above three conditions on log
Kskin:plasma, a_ICM and fiA, broadly speaking the condition
PEOE_VSA+0 < = 108.431 is associated with smaller Vss
values than the condition PEOE_VSA+0 > 108.431, as can
be seen by comparing the 4th and 5th rules in Table 4
against the 6th and 7th rules. This indicates higher Vss
values for molecules containing mostly neutral (or less
polar) atoms. In the case of the two rules with PEOE_
VSA+0 < = 108.431, the use of the descriptor PEOE_RPC–
in the last condition to refine the rules does not have much
impact on the predicted Vss. However, in the case of the
two rules with PEOE_VSA+0 > 108.431, the predicted value
is significantly affected by the value of SlogP_VSA4, another
SlogP-related descriptor. This is the sum of van der Waals
surface area of specific atom types with logP(o/w) contribu-
tion in the range (0.1,0.15]. These atoms include aliphatic
carbon and hydrogens and carbonyl groups attached to
aromatic rings, which are more prevalent in larger mole-
cules with many heteroatoms such as paclitaxel, cyclospor-
ine and saquinavir. Consistently with the occurrence of
SlogP_VSA7 in the first three rules shown in Table 4, a
larger value of SlogP_VSA4 (in this case, > 16.939) is asso-
ciated with a smaller predicted Vss, namely 2.15, versus
3.14 when SlogP_VSA4 < = 16.939. Finally, the last rule in
Table 4 is “If log Kskin:plasma > 0.044 and a_ICM> 1.553
Then Vss = 1.10”. This rule predicts a Vss of 1.10, which is
the lowest predicted Vss value among all 15 rules with con-
dition log Kskin:plasma > 0.044 found in the original tree. The
compounds with high a_ICM have a higher ratio of differ-
ent heteroatoms in the molecule. It is also the most generic
rule found in the original tree, with a coverage of 100 com-
pounds that includes β-lactam and quinolone antibiotics,
antivirals such as guanosine analogues and similar relatively
polar compounds.
In summary, according to the regression tree model

built by M5P, the most relevant descriptor for predicting
log Vss is log Kskin:plasma, where larger values of this de-
scriptor are associated with higher log Vss values. In
addition, other (molecular) descriptors can be used to-
gether with log Kskin:plasma to improve log Vss prediction.
In particular, larger values of the related descriptors
SlogP_VSA7 and SlogP_VSA4 along with heteroatom ra-
tio (a_ICM) are associated with smaller predicted Vss
values – in the context of the values of other descriptors
occurring in the same rule antecedents as those two
descriptors.



Table 5 Most relevant descriptors occurring in the set of
10 model trees produced by Bagging M5P to predict log
Vss when using as input only the descriptors selected by
genetic search-based CFS

Descriptor Frequency in
root node

Frequency in child
of root node

log Kadipose_tissue:plasma 10 0

PEOE_VSA+0 0 3

Log P 0 2

TPSA 0 2

C_ratio 0 2

Vsurf_ID6 0 2
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Interpreting the model trees for predicting Vss built by
bagging M5P from the descriptors selected by CFS
The best regression model built by M5P when using as
input only the descriptors selected by the genetic
search-based CFS method in a preprocessing phase is a
Bagging model, consisting of 10 model trees. The inter-
pretation of this regression model is complicated be-
cause in each model tree, at each leaf (terminal) node,
there is a multiple linear regression model. Each such
linear regression equation typically has about 30 descrip-
tors. In addition, there are in total 244 such linear re-
gression equations in the set of 10 model trees, making
their interpretation very difficult in practice. Therefore,
in terms of interpretability of the Bagging regression
model, we focus mainly on identifying the most relevant
descriptors occurring in the internal (non-leaf ) nodes of
the 10 model trees, rather than on the descriptors occur-
ring in the more numerous linear models.
Identifying only the most relevant descriptors occur-

ring in the internal nodes of a set of decision trees (pro-
duced, e.g., by Bagging or random forests) is actually
relatively common in the literature, and it can be per-
formed in different ways. One approach consists of com-
puting the percentage of the number of times that each
descriptor was selected as the split variable in a tree, out
of the number of times the descriptor could be selected
(i.e., the total number of nodes in all trees), and then re-
port the top descriptors ranked according to that per-
centage of selection frequency. This approach was used
e.g. in ref. [45], where the top 10 descriptors were re-
ported. However, this approach implicitly assumes that
the occurrence of a descriptor in a tree node has the
same importance regardless of the level of that node in
the tree. This assumption is far from true, because,
broadly speaking, descriptors at shallow (close to the
root) nodes are more relevant than descriptors at deep
(far from the root) nodes. This is because, when using
any decision tree for predicting the log Vss value of new
compounds, each compound will be assigned to a single
path in the tree from a root to a leaf node, and in gen-
eral shallow nodes occur in many more paths than deep
nodes. In particular, a descriptor at the root node will be
used to classify every new compound, since it occurs in
all paths from the root to any leaf node, as mentioned
earlier. In contrast, a descriptor that occurs, say, twice in
the tree at deep levels (say at the 4th and 5th levels) will
be used to classify much fewer compounds, being there-
fore considerably less relevant (despite occurring twice
in the tree) than the root descriptor.
Hence, taking into account that descriptors at shallow

tree levels are in general more relevant than descriptors
at deep tree levels, we report in Table 5 the descriptors
selected by M5P to occur either at the root node or
at one of the root’s child nodes, for the best model
produced in our experiments when using as input only
the descriptors selected by genetic search-based CFS
method applied in a preprocessing step. The table shows
only descriptors occurring at least twice as a root or its
child in some model tree. We did not consider descrip-
tors that were chosen in such roles just once because
their occurrence is less reliable and may be due mainly
to some stochastic effect of the Bagging method.
In Table 5, it is interesting to note that, in all of the 10

model trees built by Bagging, the descriptor selected for
the tree’s root node was log Kadipose_tissue:plasma. Hence,
this can be considered by far the most relevant descrip-
tor (out of the descriptors pre-selected by the CFS
method) as evaluated by the Bagging M5P algorithm.
Note that no other tissue’s log Kt:p descriptor was found
to be very relevant according to the criteria used to pro-
duce Table 5. In addition, it should be recalled that log
Kadipose_tissue:plasma was selected by the CFS method in a
preprocessing phase, unlike most other tissues’ log Kt:ps.
A possible explanation for the much greater importance
of log Kadipose_tissue:plasma, by comparison with the other
tissues’ log Kt:ps, is that the other tissues’ log Kt:p values
are redundant with respect to other molecular descrip-
tors selected by Bagging; whilst log Kadipose_tissue:plasma is
not only strongly correlated with Vss, but is also non-
redundant (or at least less redundant) with respect to
the other molecular descriptors selected by Bagging. In-
deed, it has been reported in the literature that adipose
tissue has some special characteristics that may make it
particularly distinguishable from other tissues, in the
context of Vss prediction. More precisely, adipose tissue
is fatty and has a higher percentage of neutral lipids, and
in adipose tissue the distribution may be dominated by
lipophilicity and hydrophobic interactions, rather than
by electronic interactions like in other tissues [39]. In
addition, in a recent study proposing a physiologically-
based pharmacokinetic model for improving the predic-
tion of tissue distribution and volume distribution of
highly lipophilic compounds [19], the simulation of the
partition coefficient for adipose tissue was considered
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more sensitive to lipophilicity, by comparison with a
non-adipose tissue. Interestingly, another tissue with a
more lipophilic composition is skin [39], and, in the re-
gression tree built by M5P when using as input the 12
predicted log Kt:p descriptors for different tissues, the
most relevant descriptor chosen for the root node was
log Kskin:plasma, as discussed in the previous section.
The next descriptor mentioned in Table 5 is PEOE_VSA+0

(sum of van der Waals surface area of the least polar
atoms with low partial atomic charges), which occurred at
a child of the root node in 3 out of the 10 model trees.
Another group of relevant descriptors reported in

Table 5 includes log P (the log of n-octanol-water parti-
tion coefficient), TPSA (Topological Polar Surface Area),
C_ratio (the ratio of the number of carbon atoms over
the total number of atoms in the compound) and Vsur-
f_ID6 (Hydrophobic integy moment), each occurring
twice as a child of the root node in the set of model
trees. Out of those, log P is a very common measure of
lipophilicity, but C_ratio can also indicate compounds’
lipophilicities, since higher carbon ratios indicate fewer
polar heteroatoms. Log P and other lipophilicity descrip-
tors are often considered relevant predictors of Vss in
the literature, since in general increased values of log P
lead to increased values of Vss [4,13,14,45]; although this
general tendency may not be always true for compounds
with extremely high log P values [19]. Also, log P and
other lipophilicity descriptors are not identified as rele-
vant in every study; an example exception is reported in
[22], where the authors did not find any direct relation-
ship between Vss and lipophilicity descriptors. However,
in that study polarity descriptors often occurred in the
Vss models, and the authors noted that polarity is in-
versely related to lipophilicity. In a recent study by
Paixao et al., who incorporated eight input molecular
descriptors in their artificial neural network model
based on the literature studies on drug distribution, the
relative importance of the descriptors was investigated
by varying each input at a time and considering all the
other descriptors as constant. This study identified
similar parameters, including log P, TPSA and hydro-
philicity index as the important determinants of drug
distribution [46]. In our experiments, log P seems both
to be a relevant descriptor of Vss and to have a positive
correlation with Vss.

Discussion
Related work on building QSPkR models for predicting
Vss using Obach et al.’s dataset
A direct comparison between the models produced in
this work and other models predicting Vss reported in
the literature is complicated by the differences in the
datasets and types of regression methods used. Concern-
ing dataset variations, there are several other studies
based on Obach et al.’s dataset [14], including [5,22,35,45].
However, unlike our work, most of those studies tend to
use a substantially smaller version of Obach et al.’s dataset,
focusing on a single type of compounds or removing com-
pounds that are more difficult to predict for some reason.
In particular, the dataset used by Louis and Agrawal [5]
contains drugs that belong to the category of anti-infective
(J) and sub-categories antibacterial (J01), antimycotics
(J02) antimycobacterial (J04) and antiviral (J05) according
to the anatomical therapeutic classification (ATC). That
dataset contains only 126 compounds, whose Vss varies
from 0.05 to 33 L/Kg. The smaller diversity of compounds
and their smaller Vss range helps to improve the predict-
ive accuracy of the models, at the expense of a more nar-
row applicability domain [22,45].
Another study using just a relatively small subset of

compounds from Obach et al.’s dataset is reported by
Zhivkova and Doytchinova [22]. In that work the dataset
consisted of a more heterogenous set of structurally di-
verse drugs, but the data used to build the models con-
tained only 132 acidic drugs, with an external set
containing only 10 acidic drugs that were compiled from
ref. [47] and were not included in Obach et al.’s dataset.
It is known that acidic drugs tend to have relatively
small values of Vss, compared with basic drugs, due to
the fact that acids tend to have extensive binding to
plasma proteins [41]. Indeed, in the dataset used by
Zhivkova and Doytchinova, the compounds’ Vss values
range from 0.04 to 15 L/kg, an even smaller range than
the one in the dataset used by Louis and Agrawal [5].
Again, the smaller Vss range in the dataset used by
Zhivkova and Doytchinova helps to improve the predict-
ive accuracy of the models, at the expense of the models’
applicability being restricted to acidic drugs.
In the work of Demir-Kavuk et al. [35], in order to

avoid missing values for some descriptors, many com-
pounds for which some descriptors could not be calcu-
lated were removed from the original Obach et al.’s
dataset. More precisely, compounds containing phos-
phorous, boron and metal atoms, all macrocycles, and
some fragment-like compounds (like Metformin) were
removed, which reduced the size of the dataset to 584
compounds. By contrast, in this current work we did not
remove any compounds due to missing descriptor
values, since the regression methods in the WEKA data
mining tool used in this work can cope with missing
values (see ref. [24] for details); and this allowed us to
work with a somewhat larger dataset of 604 compounds
(the size of our Vss-target dataset after the removal of
compounds that occurred in our Kt:p-target dataset).
In the work of del Amo et al. [45] a larger subset of

Obach et al.’s dataset was used, containing 642 drugs –
even larger than our Vss-target dataset, since they did
not need to remove compounds occurring in a separate
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Kt:p-target dataset (they do not use any dataset equiva-
lent to that). In that study idadronic, pamodronic, rise-
dronic and zoledronic bisphosphonates were removed
from the original dataset based on the argument that
these compounds are sequestered to the bones, which
hinders their detection in plasma and leads to underesti-
mated Vss values. In addition, two antimalarial drugs,
namely hydroxychloroquine and chloroquine, were also
removed from the original dataset due to their very high
Vss values of 700 L/Kg and 140 L/Kg, respectively, which
are far from the range of Vss values of the other com-
pounds in their dataset (from 0.035 to 60 L/Kg). The lat-
ter two drugs were included in our external set, which
contributed to a larger prediction error – this issue is
further discussed later, when we mention some outliers
to our models’ prediction.

Related work on decision tree-based regression methods
for predicting Vss
Among the several aforementioned studies building
QSPkR models from subsets of the Obach et al.’s dataset,
the one using the most related data mining method is the
work by del Amo et al. [45], where decision trees are used
for predicting Vss. By contrast, the studies performed by
Demir-Kavuk et al. [35], Louis and Agrawal [5], and
Zhivkova and Doytchinova [22] focused mainly on using
variations of multiple linear regression, without building
decision tree models. Hence, in the following we initially
focus on discussing the decision tree-based regression
methods used by del Amo et al. [45], contrasting them
with the decision tree-based methods used in this work.
Next, we discuss other related work on using decision
tree-based regression models for predicting Vss.
First of all, note that in del Amo et al.’s work the deci-

sion trees are used to predict discrete classes of Vss value,
namely classification into ‘high’, ‘medium’ or ‘low’ Vss
groups. In contrast, in our work the decision trees perform
regression, predicting the numerical value of log Vss.
Another work using decision tree-based methods to

predict Vss is reported by Lombardo et al. [13]. The
main type of QSPkR model discussed in that study was a
hybrid mixture discriminant analysis (MDA)/random
forest model. The MDA model is built to discriminate
between high or low Vss values, which are defined as
above or below the threshold of 10 L/Kg. In addition,
two different random forest models are built for predict-
ing the numerical values of high and low Vss com-
pounds. The prediction of Vss for a new compound is
then performed in two stages. Firstly, the MDA model
predicts just whether a compound has a high or low Vss.
Secondly, the numerical value of Vss is predicted by the
corresponding random forest model.
The random forest method used in that study is

broadly similar to the bagging method used in our study,
in the sense that both build a model with a set of deci-
sion trees. However, each of the two random forests
used by Lombardo et al. [13] had 500 trees, making the
model more robust but also much slower to build and
harder to be interpreted, by comparison with the smaller
set of 10 trees in our Bagging model. In addition, the de-
cision trees used in the random forest in Lombardo
et al.’s work are regression trees, whilst in our work we
used instead model trees, which had somewhat better
predictive accuracy in our preliminary experiments.
Concerning the threshold of 10 L/Kg used to define high
and low Vss values for the MDA algorithm, this thresh-
old choice seems very ad-hoc. However, to mitigate this
problem and try to improve the prediction of Vss for
compounds with Vss near the boundary of 10 L/Kg, the
random forest predicting high Vss was built using train-
ing compounds with Vss ≥ 5 L/Kg, whilst the random
forest predicting low Vss was built using as training set
all available training compounds. Another difference
with respect with our work is that we used only values
of Vss in steady state for 604 compounds obtained from
Obach et al.’s work [14], whilst in Lombardo et al.’s work
[13] the dataset used was not only much smaller, with
384 compounds, but the Vss values for about 10% of
compounds was the Vss during the terminal elimination
phase, rather than in steady state. These dataset limita-
tions are due to the fact that the study by Lombardo
et al. predates the availability of the larger dataset of
compounds with Vss in steady state made available by
Obach et al..
The random forest method was also used by Berellini

et al. [47], using a larger set of 669 compounds and
using Vss in steady state available from Obach et al.’s
work [14]. That study also built a random forest with
500 trees, with the aforementioned pro and cons.
Note that none of those two studies [13,47] reported a

systematic interpretation of their random forest models
(presumably due to the complexity of interpreting 500
trees); unlike this work, where the trees in a Bagging
model were interpreted as discussed earlier.

Outliers of Vss predictions
In this study, the predicted tissue partitioning values and
the molecular properties were able to provide a reason-
able prediction of Vss for the majority of the drugs in
the external validation set. However, there are a number
of outlier compounds with large deviation between the
measured and predicted Vss values. Figure 2 shows
the plot of observed log Vss versus log Vss predicted by
the best model built by Bagging M5P from the descrip-
tors selected by CFS for the external validation set.
Broadly speaking, most outliers are compounds with
high Vss values that were substantially under-predicted
by all the three best models analyzed earlier in the



Figure 2 Observed vs predicted log Vss for the external validation set using the model built by Bagging M5P from the descriptors
selected by CFS; outliers have been identified by empty circles.
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Discussion section. For example, out of 15 compounds with
highest Vss values in the external dataset (11–700 L/Kg),
12 have been underpredicted with a GMFE > 4 by all the
three models. This phenomenon of under-prediction of
high Vss values was also observed, e.g., in Lombardo
et al.’s work [13].
Two outlier compounds whose Vss were substantially

under-predicted by our models are hydroxychloroquine
and chloroquine, which are antimalarial drugs. These
drugs have the very high Vss values of 700 L/Kg and
140 L/Kg, respectively, which are much higher than the
highest Vss of compounds in the training set used to
build our models. Hence, it is not surprising they are
underpredicted by our models. Actually, these two drugs
were removed from the dataset used by del Amo et al.
[45], which avoided their negative influence in the meas-
ure of predictive accuracy of the models in that work,
but we preferred not to remove any compound from the
dataset based on its prediction difficulty. An explanation
for the very high Vss of chloroquine is that it accumu-
lates in lysosomes due to an ion-trapping mechanism
[48,49]. Another outlier whose Vss was substantially
under-predicted in our models is artesunate. Although
the Vss of artesunate is 15 L/Kg, its median Vss value
obtained for a group of 11 patients with malaria varied
from 2.2 to 39 L/Kg [22].
In general, possible explanations for other underpre-

dicted outliers in our models could be that they undergo
active transport (by influx or efflux transporters) or ex-
hibit specific binding to some tissues, or they are stored
in subcellular compartments in specific tissues. For ex-
ample, ion-trapping is a mechanism driven by pH gradi-
ents that leads to weakly basic drugs accumulation in
lysosomes or other acidic membrane-bound intracellular
compartments [50]. In addition, some lipophilic weakly
basic drugs induce “phospholipidosis”, a phenomenon
characterized by histological changes in certain body
tissues as a result of the formation of many phospholipid-
and cholesterol-rich multivesicular bodies and multilamel-
lar bodies that accumulate large quantities of the drug and
phospholipids [48,51]. However, as pointed out by del
Amo et al. [45], it is difficult to know if active transport
and specific binding occur to an extent that is large
enough to significantly hinder the prediction of Vss, and a
precise explanation of outliers would require extensive
experimental work, which is out of the scope of this paper.

Conclusions
In this work we have used mainly decision tree-based re-
gression methods, but also a feature selection method
(correlation-based feature selection with genetic search),
to build regression models that predict the Vss of chem-
ical compounds based on those compounds’ molecular
descriptors and predicted tissue:plasma partition coeffi-
cients (Kt:p) in rat.
In order to predict Vss, we investigated three ap-

proaches: (a) predicting Vss from both the predicted Kt:p

values and molecular descriptors; (b) predicting Vss
from the molecular descriptors only; (c) a two-step ap-
proach, where we first used the correlation-based feature
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selection (CFS) method to select a subset of relevant fea-
tures from both predicted Kt:p values and molecular de-
scriptors, and next we predicted Vss from the set of
features selected by the CFS method. In our experi-
ments, the results indicated that the use of predicted
Kt:p values as descriptors could be beneficial for predict-
ing Vss if prior feature selection is applied (approach
(c)). In addition, our results indicate that different deci-
sion tree methods and workflows can be used for Vss
prediction and we have shown an example of a model
developed using Kt:p for adipose tissue.
We also compared our work with several other works

predicting Vss in the literature, concluding that, al-
though some of those works obtained smaller prediction
errors, in general they focused on a smaller set of com-
pounds with a narrower applicability domain, by com-
parison with the larger, more diverse set of compounds
used in this work. The mean fold error of our selected
model (approach (c)) was 2.29. This is a reasonable ac-
curacy when considering the mean fold error reported in
the literature for the interspecies scaling of 1.56 – 2.78
[52] and an animal to human extrapolation of Vss for a
small range of drugs showing an average error of 1.82
[21]. The results of this investigation identified a prob-
lem with the prediction of Vss for a number of compounds
(outliers). An analysis of the outliers indicates that these are
mainly compounds with extremely large volumes of distri-
bution. Such extreme volumes of distribution are generally
the results of compounds accumulating in specific organs
due to specific interactions with certain tissue constituents,
transporter proteins or storage in subcellular compart-
ments. Availability of tissue partition coefficient data for a
larger number of compounds in the future should lead to
more accurate predictions of Kt:ps and consequently a bet-
ter prediction of Vss from such data. In addition, other
mechanisms leading to extreme Vss values and the subcel-
lular transport properties of drugs can be investigated in
order to aid the accurate prediction of Vss [48].

Experimental
All data mining computations were done with the free
data mining software WEKA 3.6 [24]. The methods in-
cluded variations of decision trees like model trees,
REP-Tree, regression trees and M5-Rules built by the
M5P algorithm and the Bagging-M5P method with the
default value of 10 for the number of trees.
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