
Hindawi Publishing Corporation
Journal of Artificial Evolution and Applications
Volume 2008, Article ID 876746, 12 pages
doi:10.1155/2008/876746

Research Article
Particle Swarm for Attribute Selection in Bayesian
Classification: An Application to Protein Function Prediction

Elon S. Correa, Alex A. Freitas, and Colin G. Johnson

Computing Laboratory and Center for Biomedical Informatics, University of Kent, Canterbury CT2 7NF, UK

Correspondence should be addressed to Elon S. Correa, elonsc@yahoo.com

Received 29 July 2007; Revised 26 November 2007; Accepted 10 January 2008

Recommended by Jim Kennedy

The discrete particle swarm optimization (DPSO) algorithm is an optimization technique which belongs to the fertile paradigm of
Swarm Intelligence. Designed for the task of attribute selection, the DPSO deals with discrete variables in a straightforward manner.
This work empowers the DPSO algorithm by extending it in two ways. First, it enables the DPSO to select attributes for a Bayesian
network algorithm, which is more sophisticated than the Naive Bayes classifier previously used by the original DPSO algorithm.
Second, it applies the DPSO to a set of challenging protein functional classification data, involving a large number of classes to be
predicted. The work then compares the performance of the DPSO algorithm against the performance of a standard Binary PSO
algorithm on the task of selecting attributes on those data sets. The criteria used for this comparison are (1) maximizing predictive
accuracy and (2) finding the smallest subset of attributes.

Copyright © 2008 Elon S. Correa et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Most of the particle swarm algorithms present in the litera-
ture deal only with continuous variables [1–3]. This is a sig-
nificant limitation because many optimization problems are
set in a search space featuring discrete variables. Typical ex-
amples include problems which require the ordering or ar-
ranging of discrete variables, such as scheduling or routing
problems [4]. Therefore, the design of particle swarm algo-
rithms that deal directly with discrete variables is pertinent
to this field of study.

The work in [5] proposed a discrete particle swarm op-
timization (PSO) algorithm for attribute selection in Data
Mining. Hereafter, this algorithm will be refereed to as the
discrete particle swarm optimization (DPSO) algorithm. The
DPSO deals directly with discrete variables, and its popu-
lation of candidate solutions contains particles of different
sizes—the DPSO forces each particle to carry a constant
number of attributes across iterations. The DPSO algorithm
interprets the concept of velocity, used in traditional PSO, as
“probability;” renders velocity as a proportional likelihood;
and uses this information to sample new particle positions.
The motivation behind the DPSO algorithm is indeed to in-
troduce a probability-like approach to particle swarm.

Although specifically designed for the task of attribute se-
lection, the DPSO is not limited to this kind of application.
By performing a few modifications, one can apply this algo-
rithm to many other discrete optimization problems, such as
facility location problems [6].

Many data mining applications involve the task of build-
ing a model for predictive classification. The goal of such a
model is to classify examples—records or data instances—
into classes or categories of the same type. Noise or unnec-
essary attributes may reduce the accuracy and reliability of
a classification or prediction model. Unnecessary attributes
also increase the costs of building and running a model—
particularly on large data sets. Before performing classifica-
tion, it is therefore important to select an appropriate sub-
set of “good” attributes. Attribute selection tries to simplify
a data set by reducing its dimensionality and identifying rel-
evant underlying attributes without sacrificing predictive ac-
curacy. As a result, it reduces redundancy in the information
provided by the attributes used for prediction. For a more
detailed review of the attribute selection task using genetic
algorithms, see [7].

The main difference between the DPSO and other tra-
ditional PSO algorithms is that the particles in the DPSO
do not represent points inside an n-dimensional Euclidean

mailto:elonsc@yahoo.com

2 Journal of Artificial Evolution and Applications

space (continuous case) or lattice (binary case) as in the stan-
dard PSO algorithms [8]. Instead, they represent a combina-
tion of selected attributes. In previous work, the DPSO was
used to select attributes for a Naive Bayes (NB) classifier. The
resulting NB classifier was then used to predict postsynaptic
function in proteins.

The study presented here extends previous work reported
in [5, 9] in two ways. First, it enables the DPSO to select at-
tributes for a Bayesian network algorithm, which is more so-
phisticated than the Naive Bayes algorithm previously used.
Second, it increases the number of data sets used to evalu-
ate the PSO from 1 to 6. All the 6 functional classification
data sets used have a much greater number of classes to be
predicted—in contrast with the postsynaptic data set used in
[5] which had just two classes to be predicted.

The work is organized as follows. Section 2 briefly
addresses Bayesian networks and Naive Bayes classifier.
Section 3 shortly discusses PSO algorithms. Section 4 de-
scribes the standard binary PSO algorithm and Section 5
the DPSO algorithm. Section 6 describes the G-protein-
coupled receptors (GPCRs) and Enzyme data sets used in
the computational experiments. Section 7 reports computa-
tional experiments—it also includes a discussion of the re-
sults obtained. Section 8 presents conclusions and points out
future research directions.

2. BAYESIAN NETWORKS AND NAIVE BAYES

The Naive Bayes (NB) classifier uses a probabilistic approach
to assign each record of the data set to a possible class. In this
work, the NB classifier assigns a protein of a data set of pro-
teins to a possible class. A Naive Bayes classifier assumes that
all attributes are conditionally independent of one another
given the class [10].

A Bayesian network (BN), by contrast, detects probabilis-
tic relationships among these attributes and uses this infor-
mation to aid the attribute selection process.

Bayesian networks are graphical representations of a
probability distribution over a set of variables of a given
problem domain [11, 12]. This graphical representation is a
directed acyclic graph in which nodes represent the variables
of the problem and arcs represent conditional probabilistic
independencies among the nodes. A directed acyclic graph G
is an ordered pair G = (V ,E), where V is a set whose ele-
ments are called vertices or nodes and E is a set whose ele-
ments are called directed edges, arcs, or arrows. The graph G
contains no directed cycles—for any vertex v ∈ V , there is
no directed path that starts and ends on v.

An example of a Bayesian network is as follows. (This
is a modified version of the so-called “Asia” problem [13].)
Suppose that a doctor is treating a patient who has been
suffering from shortness of breath—called dyspnoea. The
doctor knows that diseases such as tuberculosis, bronchitis,
and lung cancer are possible causes for that. The doctor also
knows that other relevant information includes whether the
patient is a smoker—increasing the chances of lung cancer
and bronchitis—and what sort of air pollution the patient
has been exposed to. A positive x-ray would indicate either

Table 1: Bayesian network: nodes and values for the lung cancer
problem. L = low, H = high, T = true, F = false, Pos = positive, and
Neg = negative.

Node name Values

Pollution {L, H}
Smoker {T, F}
Cancer {T, F}
Dyspnoea {T, F}
X-ray {Pos, Neg}

tuberculosis or lung cancer. The set of variables for this prob-
lem and their possible values are shown in Table 1.

Figure 1 shows a Bayesian network representing this
problem. For applications of Bayesian networks on evolu-
tionary algorithms and optimization problems, see [14, 15].

More formally, let X = {X1,X2, . . . ,Xn} be a multivariate
random variable whose componentsXi are also random vari-
ables. A corresponding lower-case letter xi denotes an assign-
ment of state or value to the random variable Xi. Parents (Xi)
represent the set of nodes—variables or attributes in this
work—that have a directed edge pointing to Xi. Let us con-
sider a BN containing n nodes, X1 to Xn, taken in that order.
A particular value of X = {X1,X2, . . . ,Xn} in the joint prob-
ability distribution is represented by

p(X) = p
(
X1 = x1, X2 = x2, . . . , Xn = xn

)
, (1)

or more compactly, p(x1, x2, ..., xn). The chain rule of prob-
ability theory allows the factorization of joint probabilities,
therefore

p(X) = p
(
x1
)
p
(
x2 | x1

) · · · p(xn | x1, . . . , xn−1
)

=
∏

i

p
(
xi | x1, . . . , xi−1

)
. (2)

As the structure of a BN implies that the value of a par-
ticular node is conditional only on the values of its parent
nodes, (2) may be reduced to

p(X) =
∏

i

p
(
Xi | Parents

(
Xi
))
. (3)

Learning the structure of a BN is an NP-hard problem
[16, 17]. Many algorithms that were developed to this end use
a scoring metric and a search procedure. The scoring metric
evaluates the goodness-of-fit of a structure to the data. The
search procedure generates alternative structures and selects
the best one based on the scoring metric. To reduce the search
space of networks, only candidate networks in which each
node has at most k-inward arcs (parents) are considered —k
is a parameter determined by the user. In the present work, k
is set to 20 (k = 20) to avoid overly complex models.

A greedy search algorithm is used to generate alternative
structures for the BN starting with an empty network, the
greedy search algorithm adds into the network the edge that
most increases the score of the resulting network. The search
stops when no other edge addition improves the score of the
network. Algorithm 1 shows the pseudocode of this generic
greedy search algorithm.

Elon S. Correa et al. 3

p(P = L) p(S = L)

0.9 0.3

Pollution Smoker

Cancer

X-ray Dyspnoea

P S

H

H

L

L

T

F

T

F

p(C = T|P, S)

0.05

0.02

0.03

0.001

C Cp(X = Pos|C) p(D = T|C)

T

F

T

F

0.9

0.2

0.65

0.3

Figure 1: A Bayesian network representing the lung cancer problem.

Require: Initialize an empty Bayesian network G containing n nodes (i.e., a BN with n nodes but no edges)

1: Evaluate the score of G: Score (G)

2: BEST = Score (G)

3: repeat

4: FROM = 0

5: TO = 0

6: for i = 1 to n do

7: for j = 1 to n do

8: G′ = G

9: if i /= j then

10: if there is no edge between the nodes i and j in G′ then

11: Modify G′: add an edge between the nodes i and j in G′ such that i is a parent of j: (i→ j)

12: if the resulting G′ is a DAG then

13: if (Score (G′) > BEST) then

14: BEST = Score (G′)
15: FROM = i
16: TO = j

17: end if

18: end if

19: end if

20: end if

21: end for

22: end for

23: if FROM > 0 then

24: Modify G: add an edge between the nodes FROM and TO in G such that FROM is a parent of TO: (FROM → TO)

25: end if

26: until FROM = 0

27: return G as the structure of the BN

Algorithm 1: Pseudocode for a generic greedy search algorithm.

4 Journal of Artificial Evolution and Applications

To evaluate the “goodness-of-fit” (score) of a network
structure to the data, an unconventional scoring metric—
specific for the target classification task—is adopted. The en-
tire data set is divided into mutually exclusive training and
test sets—the standard methodology for evaluating classi-
fiers, see Section 7.1. The training set is further divided into
two mutually exclusive parts. The first part is used to com-
pute the probabilities for the Bayesian network. The second
part is used as the validation set. During the search for the
best possible network structure, only the validation set is
used to compute predictive accuracy. The score of a candi-
date network is given by the classification accuracy in the val-
idation set. The graphical model of the network that shows
the highest predictive accuracy on the validation set—during
the entire PSO run—is then used to compute the predictive
accuracy on the test set.

Once the best network structure is selected, at the end
of the PSO run, the validation set and the other part of the
training set are merged and this merged data—that is, the
entire original training set—is used to compute the prob-
abilities for the selected Bayesian network. The predicted
accuracy—reported as the final result—is then computed on
the previously untouched test set. This process is discussed
again, in more details, in Section 7.1. A similar process is
adopted for the computation of the predictive accuracy us-
ing the Naive Bayes classifier.

3. A BRIEF INTRODUCTION TO PARTICLE
SWARM OPTIMIZATION

Particle swarm optimization (PSO) comprises a set of search
techniques, inspired by the behavior of natural swarms, for
solving optimization problems [8]. In PSO, a potential so-
lution to a problem is represented by a particle, Y(i) =
(Y(i,1),Y(i,2), . . . ,Y(i,n)) in an n-dimensional search space. Y(i)
represents the ith particle in the population and n repre-
sents the number of variables of the problem. The coordi-
nates Y(i,d) of these particles have a rate of change (velocity)
V(i,d), d = 1, 2, . . . ,n. Note that the use of the double sub-
script notation (i, d) like in Y(i,d) represents the dth compo-
nent of the ith particle in the swarm Y(i)—the same rationale
is used for V(i,d), and so forth.

Every particle keeps a record of the best position that it
has ever visited. Such a record is called the particle’s previous
best position and denoted by B(i). The global best position
attained by any particle so far is also recorded and stored in a
particle denoted by G. An iteration comprises evaluation of
each particle, then stochastic adjustment of V(i,d) in the di-
rection of particle Y(i)’s previous best position and the pre-
vious best position of any particle in the neighborhood [18].
There is much variety in the neighborhood topology used
in PSO, but quite often gbest or lbest topologies are used. In
the gbest topology, the neighborhood of a particle consists
of all the other particles in the swarm, and therefore all the
particles will have the same global best neighbor—which is
the best particle in the entire population. In the lbest topol-
ogy, each particle has just a “local” set of neighbors, typically
much fewer than the number of particles in the swarm, and
so different particles can have different best local neighbors.

For a review of the neighborhood topologies used in PSO the
reader is referred to [8, 19].

As a whole, the set of rules that govern PSO are eval-
uate, compare, and imitate. The evaluation phase measures
how well each particle (candidate solution) solves the prob-
lem at hand. The comparison phase identifies the best par-
ticles. The imitation phase produces new particle positions
based on some of the best particles previously found. These
three phases are repeated until a given stopping criterion is
met. The objective is to find the particle that best solves the
target problem.

Important concepts in PSO are velocity and neighbor-
hood topology. Each particle, Y(i), is associated with a ve-
locity vector. This velocity vector is updated at every gener-
ation. The updated velocity vector is then used to generate a
new particle position Y(i). The neighborhood topology de-
fines how other particles in the swarm, such as B(i) and G,
interact with Y(i) to modify its respective velocity vector and,
consequently, its position as well.

4. THE STANDARD BINARY PSO ALGORITHM

Potential solutions to the target problem are encoded as
fixed size binary strings; that is, Y(i) = (Y(i,1),Y(i,2), . . . ,Y(i,n)),
where Y(i, j) ∈ {0, 1}, i = 1, 2, . . . ,N , and j = 1, 2, . . . ,n [8].
Given a list of attributes A = (A1,A2, . . . ,An), the first ele-
ment of Y(i), from the left to the right hand side, corresponds
to the first attribute “A1,” the second to the second attribute
“A2,” and so forth. A value of 0 on the site associated to an at-
tribute indicates that the respective attribute is not selected.
A value of 1 indicates that it is selected.

4.1. The initial population for the standard binary
PSO algorithm

For the initial population, N binary strings of size n are ran-
domly generated. Each particle Y(i) is generated indepen-
dently. For every position Y(i,d) in Y(i), a uniform random
number ϕ is drawn on the interval (0, 1). If ϕ < 0.5, then
Y(i,d) = 1, otherwise Y(i,d) = 0.

4.2. Updating the records for the standard binary
PSO algorithm

At the beginning, the previous best position of Y(i), denoted
by B(i), is empty. Therefore, once the initial particle Y(i) is
generated, B(i) is set to B(i) = Y(i). After that, every time
that Y(i) is updated, B(i) is also updated if f (Y(i)) is better
than f (B(i)). Otherwise, B(i) remains as it is. Note that f (·)
represents the fitness function used to measure the quality of
the candidate solutions. A similar process is used to update
the global best position G. Once that all the B(i) have been
determined, G is set to the fittest B(i) previously computed.
After that, G is updated if the fittest B(i) in the swarm is bet-
ter than G. And, in that case, f (G) is set to f (G) = f (fittest
B(i)). Otherwise, G remains as it is.

Elon S. Correa et al. 5

4.3. Updating the velocities for the standard binary
PSO algorithm

Every particle Y(i) is associated to a unique vector of veloc-
ities V(i) = (V(i,1),V(i,2), . . . ,V(i,n)). Note that, for simplicity,
this work uses row vectors rather than column vectors. The
elements V(i,d) in V(i) determine the rate of change of each
respective coordinate Y(i,d) in Y(i), d = 1, 2, . . . ,n. Each ele-
ment V(i,d) ∈ V(i) is updated according to the equation

V(i,d) = wV(i,d) + ϕ1
(
B(i,d) − Y(i,d)

)
+ ϕ2

(
G(d) − Y(i,d)

)
,

(4)

where w (0 < w < 1), called the inertia weight, is a constant
value chosen by the user and d = 1, 2, . . . ,n. Equation (4)
is a standard equation used in PSO algorithms to update the
velocities [20, 21]. The factors ϕ1 and ϕ2 are uniform random
numbers independently generated in the interval (0, 1).

4.4. Sampling new particle positions for the standard
binary PSO algorithm

For each particle Y(i) and each dimension d, the value of the
new coordinate Y(i,d) ∈ Y(i) can be either 0 or 1. The deci-
sion of whether Y(i,d) will be 0 or 1 is based on its respective
velocity V(i,d) ∈ V(i) and is given by the equation

Y(i,d) =
{

1, if
(
rand < S

(
V(i,d)

))
,

0, otherwise;
(5)

where 0 ≤ rand ≤ 1 is a uniform random number, and

S
(
V(i,d)

) = 1
1 + exp

(−V(i,d)
) (6)

is the sigmoid function. Equation (5) is a standard equation
used to sample new particle positions in the binary PSO algo-
rithm [8]. Note that the lower the value of V(i,d) is, the more
likely the value of Y(i,d) will be 0. By contrast, the higher the
value of V(i,d) is, the more likely the value of Y(i,d) will be 1.
The motivation to use the sigmoid function is to map the in-
terval [−V(i,d), V(i,d)] for all i,d into the interval (0, 1) which
is equivalent to the interval of a probability function.

5. THE DISCRETE PSO (DPSO) ALGORITHM

The DPSO algorithm deals directly with discrete variables
(attributes) and, unlike the binary PSO algorithm, its pop-
ulation of candidate solutions contains particles of differ-
ent sizes. Potential solutions to the optimization problem at
hand are represented by a swarm of particles. There are N
particles in a swarm. The size of each particle may vary from
1 to n, where n is the number of variables—attributes in this
work—of the problem. In this context, the size of a parti-
cle refers to the number of different attribute indices that the
particle is able to represent at a single time.

For example, given i, j ∈ {1, 2, . . . ,N}, in DPSO it may
occur that a particle Z(i) in the population has size 6 (Z(i) =
{∗,∗ ,∗ ,∗ ,∗ ,∗ }), whereas another particle Z(j) in the same
population has size 2 (Z(i) = {∗,∗ }), and so forth, or any
other sizes between 1 and n.

Each particle Z(i) keeps a record of the best position it has
ever attained. This information is stored in a separate vector
labeled as B(i). The swarm also keeps a record of the global
best position ever attained by any particle in the swarm. This
information is also stored in a separate vector labeled G. Note
that G is equal to the best B(i) present in the swarm.

5.1. Encoding of the particles for the DPSO algorithm

Each attribute is represented by a unique positive integer
number, or index. These numbers, indices, vary from 1 to
n. A particle is a subset of nonordered indices without repe-
tition, for example, Z(k) = {2, 4, 18, 1}, k ∈ {1, 2, . . . ,N}.

5.2. The initial population for the DPSO algorithm

The original work on DPSO [5] used a randomly generated
initial population for the standard PSO algorithm and a new
randomly generated initial population for the DPSO algo-
rithm, when comparing these algorithms’ performances in a
given data set. However, the way in which those populations
were initialized generated a doubt about a possible advan-
tage of one initial population over the other—which would
bias the performance of one algorithm over the other. In this
work, to eliminate this possible bias, the initial population
used by the DPSO is always identical to the initial population
used by the binary PSO. They differ only in the way in which
solutions are represented. The conversion of every particle in
the initial population of solutions of the binary PSO to the
Discrete PSO initial population is as follows.

The index of every attribute that has value 1 is copied
to the new solution (particle) of the DPSO initial popula-
tion. For instance, an initial candidate solution for the bi-
nary PSO algorithm equal to Y(k) = (1, 0, 1, 1, 0) is converted
into Z(k) = {1, 3, 4} for the DPSO algorithm—because at-
tributes A1, A3, and A4 are set to 1 (are present) in Y(k),
k ∈ {1, 2, . . . ,N}. Note that the same initial population of
solutions is used to both algorithms, binary PSO and DPSO,
to make the comparison between the performances of these
algorithms as free from initialization bias as possible.

Initializing the particles Z(i) in this way causes different
particles, in DPSO, to have different sizes. For instance, an
initial candidate solution Y(j) = (1, 1, 0, 0, 0) (from the bi-
nary PSO algorithm) is converted into the initial candidate
solution Z(j) = {1, 2} (to the DPSO algorithm) which has
size 2, whereas another initial candidate solution Y(k) =
(0, 1, 1, 1, 1) (binary PSO) is converted into the initial can-
didate solution Z(k) = {2, 3, 4, 5} (DPSO) which has size 4,
j, k ∈ {1, 2, . . . ,N} and n = 5.

In the DPSO algorithm, for simplicity, once the size of
a particle is determined at the initialization, the particle will
keep that same size during the entire execution of the algo-
rithm. For example, particle Z(k) = {2, 3, 4, 5} above, which
has been initialized with 4 indices, will always carry exactly
4 indices, Z(k) = {∗,∗ ,∗ ,∗ }. The values of those 4 indices,
however, are likely to change every time that the particle is
updated.

6 Journal of Artificial Evolution and Applications

5.3. Velocities = proportional likelihoods

The DPSO algorithm does not use a vector of velocities as
the standard PSO algorithm does. It works with propor-
tional likelihoods instead. Arguably, the notion of propor-
tional likelihood used in the DPSO algorithm and the notion
of velocity used in the standard PSO are somewhat similar.
DPSO uses M(i) to represent an array of proportional likeli-
hoods and M(i,d) to represent one of M(i)’s components.

Every particle in DPSO is associated with a 2-by-n array
of proportional likelihoods, where 2 is the number of rows
in this array and n is the number of columns—note that the
number of columns in M(i) is equal to the number of vari-
ables of the problem n.

This is an example of a generic proportional likelihood
array

M(i) =
(

proportional-likelihood-row
attribute-index-row

)

. (7)

Each of the n elements in the first row of M(i) represents the
proportional likelihood that an attribute be selected. The sec-
ond row of M(i) shows the indices of the attributes associated
with the respective proportional likelihoods.

There is a one-to-one correspondence between the
columns of this array and the attributes of the problem do-
main. At the beginning, all elements in the first row of M(i)
are set to 1, for example,

M(i) =
(

1.0 1.0 1.0 1.0 1.0
1 2 3 4 5

)

. (8)

After the initial population of particles is generated, this array
is always updated before a new configuration for the particle
associated to it is generated. The updating of the likelihoods
M(i,d) is based on Z(i), B(i), G and three constant updating
factors, namely, α, β, and γ. The updating factors (α, β, and
γ) determine the strength of the contribution of Z(i), B(i),
and G to the adjustment of every coordinate M(i,d) ∈ M(i).

Note that α, β, and γ are parameters chosen by the user.
The contribution of these parameters to the updating of
M(i,d) is as follows. All indices present in Z(i) have their corre-
spondent proportional likelihood increased by α. In addition
to that, all indices present in B(i) have their correspondent
proportional likelihood increased by β. The same for G for
which the proportional likelihoods are increased by γ.

For instance, given n = 5, α = 0.10, β = 0.12, γ = 0.14,
Z(i) = {2, 3, 4}, B(i) = {3, 5, 2}, G = {5, 2}, and also

M(i) =
(

1.0 1.0 1.0 1.0 1.0
1 2 3 4 5

)

, (9)

the updated M(i) would be

M(i) =
(

(1.0) (1.0+α+β+γ) (1.0+α+β) (1.0+α) (1.0+ β +γ)
1 2 3 4 5

)

.

(10)

Note that index 1 is absent in Z(i), B(i), and G. There-
fore, the proportional likelihood of attribute 1 in M(i) re-
mains as it is. In this work, the values used for α, β, and γ

were α = 0.10, β = 0.12, and γ = 0.14. These values were
empirically determined in preliminary experiments; but this
work makes no claim that these are optimal values. Param-
eter optimization is a topic for future research. As a whole,
these values make the contribution of B(i) (β = 0.12) to the
updating of the V(i) a bit stronger than the contribution of
Z(i) (α = 0.10); and the contribution of G (γ = 0.14) even
stronger.

The new updated array M(i) replaces the old one and will
be used to generate a new configuration to the particle asso-
ciated to it as follows.

5.4. Sampling new particle positions for
the DPSO algorithm

The proportional likelihood array M(i) is then used to sam-
ple a new instance of particle Z(i)—the particle associated
to M(i). For this sampling process, a series of operations is
performed on the array. To start with, every element of the
first row of the array M(i) is multiplied by a uniform random
number between 0 and 1. A new random number is drawn
for every single multiplication performed.

To illustrate, suppose that

M(i) =
(

1.00 1.36 1.22 1.10 1.26
1 2 3 4 5

)

. (11)

The multiplied proportional likelihood array would be

M(i)

=
((

1.00 · ϕ1
) (

1.36 · ϕ2
) (

1.22 · ϕ3
) (

1.10 · ϕ4
) (

1.26 · ϕ5
)

1 2 3 4 5

)

,

(12)

where ϕ1, . . . ,ϕ5 are uniform random numbers indepen-
dently drawn on the interval (0, 1).

Suppose that this is the resulting array M(i) after the mul-
tiplication

M(i) =
(

0.11 0.86 0.57 0.62 1.09
1 2 3 4 5

)

. (13)

A new particle position is then defined by ranking the
columns in M(i) by the values in its first row. That is, the ele-
ments in the first row of the array are ranked in a decreasing
order of value; and the indices of the attributes—in the sec-
ond row of M(i)—follow their respective proportional like-
lihoods. For example, ranking the array M(i) (shown imme-
diately above) would generate

M(i) =
(

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

)

. (14)

The next operation now is to select the indices that will
compose the new particle position. After ranking the array
M(i), the first si indices (in the second row of M(i)), from
left to right, are selected to compose the new particle posi-
tion. Note that si represents the size of the particle Z(i)—the
particle associated to the ranked array M(i).

Elon S. Correa et al. 7

Suppose that the particle Z(i) associated to

M(i) =
(

1.09 0.86 0.62 0.57 0.11
5 2 4 3 1

)

(15)

has size 3 (Z(i) = {∗,∗ ,∗ }). That makes si = 3—note that
Z(j), for instance, may have a different size and consequently
a different s j value. For the Z(i) above, however, as si = 3
the first 3 indices from the second row of M(i) would be se-
lected to compose the new particle position. Based on the
array M(i) given above and si = 3, the indices (attributes) 5,
2, and 4 would be selected to compose the new particle po-
sition, that is, Z(i) = {5, 2, 4}. Note that indices that have a
higher proportional likelihood are, on average, more likely to
be selected.

The updating of Z(i), B(i), and G follows what is de-
scribed in Section 4.2.

Once the algorithms have been explained, the next sec-
tion briefly introduces the particular data sets (case studies)
used to test the algorithms.

6. CASE STUDY: THE GPCR AND ENZYME DATA SETS
USED IN THE COMPUTATIONAL EXPERIMENTS

The experiments involved 6 data sets comprising two kinds
of proteins, namely, G-protein-coupled receptors (GPCRs)
and Enzymes.

The G-protein-coupled receptors (GPCRs) are a pro-
tein superfamily of transmembrane receptors. Their func-
tion is to transduce signals that induce a cellular response
to the environment. GPCRs are involved in many types of
stimulus-response pathways, from intercellular communica-
tion to physiological senses. GPCRs are of much interest to
the pharmaceutical industry because these proteins are in-
volved in many pathological conditions—it is estimated that
GPCRs are the target of 40% to 50% of modern medical
drugs [22]

Enzymes are proteins that accelerate chemical reac-
tions—they participate in many processes in a biological cell.
Some enzymes are used in the chemical industry and other
industrial applications where extremely specific catalysts are
required. In Enzyme Nomenclature, enzymes are assigned
and identified by an Enzyme Commission (EC) number. For
instance, EC 2.3.4 is an enzyme with class value 2 in the first
hierarchical class level, class value 3 in the second class level,
and so forth. This work uses the GPCRs and EC data sets de-
scribed in Table 2.

These data sets were derived from the data sets used in
[23, 24]. Note that both the GPCR and the Enzyme data sets
have hierarchical classes. Each protein in these data sets is
assigned one class at the first (top) hierarchical level, cor-
responding to a broad function, another class at the second
level, corresponding to a more specialized function, and an-
other class at the third level, corresponding to an even more
specialized function, and so forth. This work copes with these
hierarchical classes in a simple way by predicting classes one
level at a time, as explained in more detail later.

The data sets used in the experiments involved four kinds
of protein signatures (biological “motifs”), namely, PROSITE

Table 2: GPCR and EC data sets. “Cases” represents the number
of proteins in the data set, “Attributes” represents the total num-
ber of attributes that describe the proteins in the data set, and
“L1”, . . . , “L4” represent the number of classes at hierarchical class
levels 1, . . . , 4, respectively.

Classes at

Data set Cases Attributes L1 L2 L3 L4

GPCR-PRINTS 330 281 8 36 52 44

GPCR-PROSITE 190 127 8 32 32 —

GPCR-InterPro 580 448 12 43 67 46

EC-PRINTS 500 380 6 43 83 —

EC-PROSITE 570 583 6 42 84 —

EC-Pfam 730 706 6 41 92 —

Table 3: Predictive accuracy: binary PSO versus DPSO. Paired two-
tailed t test for the predictive accuracy—significance level 0.05.

Class level Naive Bayes Bayesian network

1 t(9) = 0.467, p = 0.651 t(9) = 3.407, p = 0.007

2 t(9) = 2.221, p = 0.053 t(9) = 3.200, p = 0.010

3 t(9) = 3.307, p = 0.009 t(9) = 3.556, p = 0.006

patterns, PRINTS fingerprints, InterPro entries, and Pfam
signatures.

PROSITE is a database of protein families and domains.
It is based on the observation that, while there is a huge
number of different proteins, most of them can be grouped,
on the basis of similarities in their sequences, into a limited
number of families (a protein consists of a sequence of amino
acids). PROSITE patterns are essentially regular expressions
describing small regions of a protein sequence which present
a high sequence similarity when compared to other proteins
in the same functional family.

In the data sets, the absence of a given PROSITE pattern
is indicated by a value of 0 for the attribute corresponding
to that PROSITE pattern. The presence of it is indicated by a
value of 1 for that same attribute.

PRINTS is a compendium of protein fingerprints. A fin-
gerprint is a group of conserved motifs used to characterize
a protein family. In the PRINTS data sets, a fingerprint cor-
responds to an attribute. The presence of a fingerprint is in-
dicated by a value of 1 for that same attribute; the absence by
a 0.

Pfam signatures are produced by hidden Markov mod-
els, and InterPro integrates a number of protein signature
databases into a single database. In this work, Pfam and In-
terPro entries also correspond to binary attributes indicat-
ing whether or not a protein matches those entries, using the
same codification described for the PROSITE patterns and
Fingerprints.

The objective of the binary PSO and DPSO algorithms is
to classify each protein into its most suitable functional class
level. The classification of the proteins is performed in each
class level individually. For instance, given protein Υ, at first,
a conventional “flat” classification algorithm assigns a class to
Υ at the first class level only. Once Υ has been classified at the
first class level, the conventional flat classification algorithm

8 Journal of Artificial Evolution and Applications

Table 4: Number of selected attributes: binary PSO versus DPSO.
Paired two-tailed t test for the number of attributes selected—
significance level 0.05.

Class level Naive Bayes Bayesian network

1 t(9) = 7.248, p = 4.8E-5 t(9) = 8.2770, p = 1.6E-5

2 t(9) = 9.052, p = 8.1E-6 t(9) = 14.890, p = 1.2E-7

3 t(9) = 6.887, p = 7.1E-5 t(9) = 9.1730, p = 7.3E-6

is again applied to assign a class to Υ at the second level—no
information about Υ’s class at the previous level is used. The
same process is used to assign a class to protein Υ at the third
class level, and so forth.

7. EXPERIMENTS

The quality of a candidate solution (fitness) is evaluated in
three different ways: (1) by a baseline algorithm—using all
possible attributes; (2) by the binary PSO—using only the
attributes selected by this algorithm; and (3) by the discrete
PSO (DPSO) algorithm—using only the attributes selected
by this algorithm. Each of these algorithms computes the fit-
ness of every given solution using two distinct techniques: (a)
using a Naive Bayes classifier; and (b) using a Bayesian net-
work.

7.1. Experimental methodology

Note that the computation of the fitness function f (·) for
the particles Y(i) (binary PSO algorithm) and Z(i) (DPSO
algorithm) follows the description given below. For simplic-
ity, only the process using Y(i) is described—but the same
is applicable to Z(i). f (Y(i)) is equal to the predictive accu-
racy achieved by the Naive Bayes classifier—and the Bayesian
network—on each data set and using only the attributes se-
lected in Y(i).

The measurement of f (Y(i)) follows a wrapper ap-
proach. The wrapper approach searches for an optimal at-
tribute subset tailored to a particular algorithm, such as the
Naive Bayes classifier or Bayesian network. For more infor-
mation on wrapper and other attribute selection approaches,
see [25].

The computational experiments involved a 10-fold cross-
validation method [25]. First, the data set being considered
is divided into 10 equally sized folds. The folds are randomly
generated but under the following criterion. The proportion
of classes in every single fold must be similar to the propor-
tion of classes found in the original data set containing all
records. This is known as stratified crossvalidation.

Each of the 10 folds is used once as a test set and the re-
maining of the data is used as training set. Out of the 9 folds
in the training set one is reserved to be used as a validation
set. The Naive Bayes classifier and the Bayesian network use
the remaining 8 folds to compute the probabilities required
to classify new examples. Once those probabilities have been
computed, the Naive Bayes (NB) classifier and the Bayesian
network (BN) classify the examples in the validation set.

The accuracy of this classification on the validation set is
the value of the fitness functions fNB (Y(i)) and fBN (Y(i))—
the same for fNB (Z(i)) and fBN (Z(i)). When the run of the
PSO algorithm is completed, the 9 folds are merged into a
full training set. The Naive Bayes classifier and the Bayesian
network are then trained again on this full-training set (9
merged folds), and the probabilities computed in this final,
full-training set are used to classify examples in the test set
(the 10th fold), which was never accessed during the run of
the algorithms.

The reasons for having separate validation and test sets
are as follows. In the classification task of data mining,
by definition, the goal is to measure predictive accuracy—
generalization ability—on a test set unseen during training.
Hence, the test set cannot be accessed by the PSO, and is
reserved just to compute the predictive accuracy associated
with the Bayesian classifier constructed with the best set of
attributes selected at the end of the PSO run.

Concerning the validation set, which is used to compute
the fitness of particles during the PSO run, this is a part of
the original training set which is different from the part of
the training set used to build the Bayesian classifier, and the
reason for having these two separate parts of the training set
is to avoid overfitting of the classifier to the training data; for
overfitting in the context of classification, see [7, pages 17,
18]. In other words, if the same training set that was used to
build a Bayesian classifier was also used to measure the fitness
(accuracy) of the corresponding particle, there would be no
pressure to build classifiers with a good generalization ability
on data unseen during training, and a classifier could obtain
a high accuracy by simply being overfitted to idiosyncrasies
of the training set which are unlikely to generalize well to un-
seen data. By measuring fitness on a validation set separated
from the data used to build the classifier, this is avoided, and
a pressure to build classifiers with good generalization ability
is introduced in the fitness function.

In each of the 10 iterations of the crossvalidation proce-
dure, the predictive accuracy of the classification is assessed
by 3 different methods, as follows.

(1) Using all possible original attributes: all possible at-
tributes are used by the Naive Bayes classifier and the
Bayesian network—there is no attribute selection.

(2) Standard binary PSO algorithm: only the attributes se-
lected by the best particle found by the binary PSO al-
gorithm are used by the Naive Bayes classifier and the
Bayesian network.

(3) DPSO algorithm: only the attributes selected by the
best particle found by the DPSO algorithm are used
by the Naive Bayes classifier and the Bayesian network.

Since the Naive Bayes and Bayesian network classifiers
used in this work are deterministic, only one run—for each
of these algorithms—is performed for the classification using
all possible attributes.

For the binary PSO and the DPSO algorithms, 30 inde-
pendent runs are performed for each iteration of the cross-
validation procedure. The results reported are averaged over
these 30 independent runs and over the 10 iterations of the
crossvalidation procedure.

Elon S. Correa et al. 9

The population size used for both algorithms (binary
PSO and DPSO) is 200 and the search stops after 20 000 fit-
ness evaluations—or 100 iterations.

The binary PSO algorithm uses an inertia weight value of
0.8 (i.e., w = 0.8). The choice of the value of this parameter
was based on the work presented in [26].

Other choices of parameter values for the DPSO were α =
0.10, β = 0.12, and γ = 0.14, chosen based on empirical
experiments but probably not optimal values.

The measurement of the predictive accuracy rate of
a model should be a reliable estimate of how well that
model classifies the test examples—unseen during the train-
ing phase—on the target problem.

In Data Mining, typically, the equation

standard accuracy rate = TP + TN
TP + FP + FN + TN

(16)

is used to assess the accuracy rate of a classifier—where TP,
TN, FP, and FN are the numbers of true positives, true neg-
atives, false positives, and false negatives, respectively [25].

However, if the class distribution is highly unbalanced,
(16) is an ineffective way of measuring the accuracy rate of a
model. For instance, in many problems, it is easy to achieve a
high value for (16) by simply predicting always the majority
class. Therefore, on the experiments reported on this work,
a more demanding measurement for the accuracy rate of a
classification model is used.

This measurement has been used before in [27]. It is
given by the equation

predictive accuracy rate = TPR · TNR, (17)

where, TPR = TP/(TP+FN) and TNR = TN/(TN+FP)—TPR
stands for true positive rate and TNR stands for true negative
rate.

Note that if any of the quantities TPR or TNR is zero, the
value returned by (17) is also zero.

7.2. Discussion

Computational results are reported in Tables 5 and 6. Let us
focus the discussion on the results obtained by the 3 algo-
rithms (binary PSO, DPSO, and baseline algorithm) for at-
tribute selection on the GPCR-PROSITE data set, see Table 5.
The results obtained for the other 5 data sets are similar. To
start with, the results obtained using the Naive Bayes classi-
fier are presented.

Results obtained using the Naive Bayes classifier approach

To assess the performance of the algorithms, two criteria
were considered: (1) maximizing predictive accuracy; and (2)
finding the smallest subset of attributes.

The results for the first criterion, accuracy, show that
both versions of the PSO algorithm did better—in all class
levels—than the baseline algorithm using all attributes.

Furthermore, the DPSO algorithm did slightly better
than the binary PSO algorithm also in all class levels. Never-
theless, the difference in the predictive accuracy performance

between these algorithms is, in some cases, statistically in-
significant.

Table 3 shows the results of a paired two-tailed t-test for
the predictive accuracy of the binary PSO versus the predic-
tive accuracy of the DPSO at a significance level of 0.05.

Table 3 shows that, using Naive Bayes as classifier, the
only statistically significant difference in performance—in
terms of predictive accuracy—between the algorithms binary
PSO and DPSO is at the third class level. By contrast, using
Bayesian networks as classifier, the difference in performance
is statistically significant at all class levels.

Nevertheless, the discriminating factor between the per-
formance of these algorithms is on the second comparison
criterion—finding the smallest subset of attributes.

The DPSO not only outperformed the binary PSO in pre-
dictive accuracy, but also did so using a smaller subset of
attributes in all class levels. Moreover, when it comes to ef-
fectively pruning the set of attributes, the difference in per-
formance between the binary PSO and the DPSO is always
statistically significant, as Table 4 shows.

Results obtained using the the Bayesian network approach

Again, the predictive accuracy attained by both versions of
the PSO algorithm surpassed the predictive accuracy ob-
tained by the baseline algorithm in all class levels.

DPSO obtained the best predictive accuracy of all al-
gorithms in all class levels. Regarding the second compari-
son criterion, finding the smallest subset of attributes, again
DPSO always selected the smallest subset of attributes in all
hierarchical levels.

The results on the performance of the classifiers—Naive
Bayes versus Bayesian networks—show that Bayesian net-
works did a much better job. For all class levels, the pre-
dictive accuracy obtained by the 3 approaches (baseline, bi-
nary PSO and DPSO) using Bayesian networks was signif-
icantly better than the predictive accuracy obtained using
Naive Bayes classifier. The Bayesian networks approach also
enabled the two PSO algorithms to do the job using fewer
selected attributes—compared to the Naive Bayes approach.

The results emphasize the importance of taking relation-
ships among attributes into account—as Bayesian networks
do—when performing attribute selection. If these relation-
ships are ignored, predictive accuracy is adversely affected.

The results also show that for all 6 data sets tested, the
DPSO algorithm not only selected the smallest subset of at-
tributes, but also obtained the highest predictive accuracy in
every single class level.

8. CONCLUSIONS

Computational results show that the use of unnecessary at-
tributes tends to derail classifiers and hurt classification ac-
curacy. Using only a small subset of selected attributes, the
binary PSO and DPSO algorithms obtained better predictive
accuracy than the baseline algorithm using all attributes. Pre-
vious work had already shown that the DPSO algorithm out-
performs the binary PSO in the task of attribute selection [5],
but that work involves only one data set. This current work

10 Journal of Artificial Evolution and Applications

Table 5: Results for the GPCRs data sets. For the binary PSO and DPSO algorithms, 30 independent runs are performed. The results reported
are averaged over these 30 independent runs. The best result on each line for each performance criterion is marked with an asterisk (∗).

GPCR-PRINTS (281 attributes)

Average predictive accuracy Average number of selected attributes

Method Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes

1 72.36 ± 2.64 73.10 ± 2.71 ∗73.98 ± 3.13 97.40 ± 1.26 ∗73.30 ± 4.35

2 35.56 ± 2.56 37.10 ± 3.10 ∗40.74 ± 5.36 130.30 ± 1.34 ∗117.30 ± 6.04

3 27.00 ± 1.82 29.05 ± 2.71 ∗31.55 ± 4.54 171.10 ± 3.93 ∗145.70 ± 3.80

4 24.26 ± 1.75 26.97 ± 2.24 ∗30.14 ± 3.78 165.00 ± 4.11 ∗141.30 ± 5.21

Bayesian network

1 88.67 ± 1.72 89.46 ± 1.73 ∗89.97 ± 2.11 89.30 ± 3.77 ∗63.80 ± 3.99

2 53.46 ± 1.40 56.75 ± 2.47 ∗58.91 ± 3.95 123.70 ± 3.89 ∗103.00 ± 4.27

3 38.93 ± 1.92 43.08 ± 3.03 ∗50.33 ± 6.45 158.20 ± 4.21 ∗134.50 ± 4.60

4 28.47 ± 1.90 30.56 ± 2.63 ∗39.52 ± 5.32 152.60 ± 3.53 ∗126.80 ± 4.59

GPCR-PROSITE (127 attributes)

Average predictive accuracy Average number of selected attributes

Method Class level Using all attributes Binary PSO Discrete PSO Discrete PSO Binary PSO

Naive Bayes
1 71.27 ± 2.08 72.88 ± 2.40 ∗73.05 ± 2.31 85.60 ± 2.84 ∗74.90 ± 3.48

2 30.00 ± 2.10 31.34 ± 2.47 ∗32.60 ± 2.31 101.50 ± 3.14 ∗83.80 ± 4.64

3 20.47 ± 0.96 21.47 ± 1.16 ∗23.25 ± 1.08 102.30 ± 3.77 ∗87.50 ± 4.25

Bayesian network
1 78.05 ± 2.33 79.03 ± 2.57 ∗80.54 ± 2.46 78.50 ± 3.50 ∗65.50 ± 3.41

2 39.08 ± 2.67 40.31 ± 2.85 ∗43.24 ± 4.67 94.10 ± 3.70 ∗73.30 ± 2.67

3 24.70 ± 1.83 26.14 ± 2.11 ∗28.97 ± 2.77 94.90 ± 3.90 ∗77.60 ± 4.35

GPCR-INTERPRO (448 attributes)

Average predictive accuracy Average number of selected attributes

Method Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes

1 54.17 ± 2.26 55.33 ± 2.36 ∗56.55 ± 2.61 136.40 ± 1.17 ∗120.70 ± 5.01

2 25.19 ± 1.50 26.08 ± 1.62 ∗27.27 ± 1.87 158.60 ± 1.07 ∗136.20 ± 5.53

3 20.03 ± 0.65 21.19 ± 1.03 ∗22.03 ± 1.63 203.60 ± 1.26 ∗162.40 ± 6.62

4 27.97 ± 1.13 29.95 ± 2.18 ∗30.43 ± 2.56 168.00 ± 0.94 ∗150.10 ± 7.31

Bayesian network

1 86.68 ± 2.99 89.20 ± 3.06 ∗89.49 ± 4.28 122.60 ± 4.03 ∗107.70 ± 5.12

2 61.85 ± 1.71 64.57 ± 1.43 ∗68.66 ± 3.82 146.80 ± 3.12 ∗128.40 ± 5.02

3 40.77 ± 2.13 44.11 ± 2.48 ∗46.51 ± 3.41 184.60 ± 2.41 ∗148.10 ± 3.98

4 34.05 ± 1.64 36.89 ± 2.56 ∗39.03 ± 3.63 149.70 ± 2.41 ∗131.50 ± 4.12

shows much stronger evidence for the effectiveness of DPSO
in 6 data sets. In addition, the 6 data sets mined in this work
are much more challenging than the two-class data set mined
in [5], because the former have several hierarchical class lev-
els per data set, leading to a much larger number of classes to
be predicted for each data set.

Even when the difference in predictive accuracy is in-
significant, by selecting fewer attributes than the binary PSO,
the DPSO certainly enhances computational efficiency of the
classifier and is therefore preferable.

The original work on DPSO [5] questioned whether the
difference in performance between these two algorithms was
attributable to variations in the initial population of solu-
tions. To overcome this possible advantage/disadvantage for
one algorithm or the other, the present work used the same
initial population for both algorithms.

The results demonstrate that, even using an identical ini-
tial population of particles, the DPSO is still outperforming

the binary PSO in both predictive accuracy and number of
selected attributes. The DPSO is arguably not too different
from traditional PSO but still the algorithm has features that
enable it to improve over binary PSO on the task of attribute
selection.

Another result—although expected—from the experi-
ments is the clear difference in performance between Naive
Bayes and Bayesian networks used as classifiers. The Bayesian
networks approach outperformed the Naive Bayes approach
in all experiments and in all hierarchical class levels.

In this work, the hierarchical classification problem was
dealt with in a simple way by “flattening” the hierarchy, that
is, by predicting classes for one class level at a time, which
permitted the use of flat classification algorithms. The algo-
rithms made no use of the information of the class assigned
to a protein in one level to help predict the class at the next hi-
erarchical level. Future work intends to look at an algorithm
that makes use of this information.

Elon S. Correa et al. 11

Table 6: Results for the EC data sets. For the binary PSO and the DPSO algorithms, 30 independent runs are performed. The results reported
are averaged over these 30 independent runs. The best result on each line for each performance criterion is marked with an asterisk (∗).

EC-PRINTS (380 attributes)

Average predictive accuracy Average number of selected attributes

METHOD Class level Using all attributesS Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes
1 72.35 ± 3.33 73.78 ± 3.78 ∗74.81 ± 3.79 102.80 ± 1.23 ∗64.20 ± 4.37

2 31.19 ± 2.26 32.07 ± 2.48 ∗34.06 ± 2.91 149.00 ± 1.25 ∗112.30 ± 3.06

3 23.37 ± 1.73 24.64 ± 2.01 ∗26.97 ± 2.49 211.10 ± 1.37 ∗150.60 ± 5.58

Bayesian network
1 88.30 ± 1.94 89.51 ± 2.51 ∗90.73 ± 2.59 92.80 ± 4.57 ∗48.90 ± 4.68

2 53.15 ± 1.49 55.14 ± 1.87 ∗56.92 ± 2.93 129.70 ± 4.11 ∗102.00 ± 5.52

3 36.24 ± 1.62 38.26 ± 2.65 ∗40.95 ± 4.16 190.40 ± 4.55 ∗135.10 ± 4.28

EC-PROSITE (583 attributes)

Average predictive accuracy Average number of selected attributes

METHOD Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes
1 69.52 ± 5.02 70.37 ± 5.15 ∗72.31 ± 5.44 118.80 ± 1.14 ∗98.90 ± 1.85

2 35.70 ± 1.73 37.73 ± 2.04 ∗38.83 ± 2.66 154.50 ± 0.85 ∗134.90 ± 4.93

3 21.91 ± 1.13 22.86 ± 1.30 ∗24.36 ± 1.66 197.70 ± 1.16 ∗154.50 ± 5.34

Bayesian network
1 82.80 ± 1.09 84.83 ± 1.46 ∗85.95 ± 2.31 105.00 ± 3.62 ∗92.70 ± 4.00

2 45.30 ± 2.41 47.82 ± 2.80 ∗49.50 ± 3.33 135.20 ± 3.65 ∗119.00 ± 3.89

3 28.44 ± 2.37 29.40 ± 2.64 ∗32.52 ± 3.71 172.00 ± 2.94 ∗146.50 ± 4.40

EC-PFAM (706 attributes)

Average predictive accuracy Average number of selected attributes

METHOD Class level Using all attributes Binary PSO Discrete PSO Binary PSO Discrete PSO

Naive Bayes
1 71.61 ± 3.52 72.87 ± 4.02 ∗74.62 ± 3.77 131.60 ± 5.50 ∗102.20 ± 3.85

2 46.70 ± 1.21 48.24 ± 1.39 ∗49.02 ± 1.17 212.60 ± 5.10 ∗153.90 ± 5.26

3 31.00 ± 1.08 32.20 ± 1.53 ∗33.24 ± 1.76 244.40 ± 4.53 ∗177.70 ± 2.58

Bayesian network
1 85.94 ± 1.80 87.94 ± 1.80 ∗89.64 ± 3.27 116.60 ± 4.22 ∗91.80 ± 4.52

2 55.34 ± 1.30 56.84 ± 1.49 ∗58.02 ± 2.02 198.00 ± 4.40 ∗141.90 ± 4.63

3 36.56 ± 1.56 37.61 ± 1.44 ∗39.44 ± 3.07 221.70 ± 4.64 ∗168.60 ± 4.43

ACKNOWLEDGMENTS

The authors would like to thank Nick Holden for kindly pro-
viding them with the biological data sets used in this work.
The authors would also like to thank EPSRC (grant Extended
Particle Swarms GR/T11265/01) for financial support.

REFERENCES

[1] T. Blackwell and J. Branke, “Multi-swarm optimization in dy-
namic environments,” in Applications of Evolutionary Comput-
ing, vol. 3005 of Lecture Notes in Computer Science, pp. 489–
500, Springer, New York, NY, USA, 2004.

[2] S. Janson and M. Middendorf, “A hierarchical particle swarm
optimizer for dynamic optimization problems,” in Proceedings
of the 1st European Workshop on Evolutionary Algorithms in
Stochastic and Dynamic Environments (EvoCOP ’04), vol. 3005
of Lecture Notes in Computer Science, pp. 513–524, Springer,
Coimbra, Portugal, April 2004.

[3] M. Løvbjerg and T. Krink, “Extending particle swarm op-
timisers with self-organized criticality,” in Proceedings of the
Congress on Evolutionary Computation (CEC ’02), D. B. Fogel,
M. A. El-Sharkawi, X. Yao, et al., Eds., vol. 2, pp. 1588–1593,
IEEE Press, Honolulu, Hawaii, USA, May 2002.

[4] M. M. Solomon, “Algorithms for the vehicle routing and
scheduling problems with time window constraints,” Opera-
tions Research, vol. 35, no. 2, pp. 254–265, 1987.

[5] E. S. Correa, A. A. Freitas, and C. G. Johnson, “A new discrete
particle swarm algorithm applied to attribute selection in a
bioinformatics data set,” in Proceedings of the 8th Annual Con-
ference Genetic and Evolutionary Computation (GECCO ’06),
M. Keijzer, M. Cattolico, D. Arnold, et al., Eds., pp. 35–42,
ACM Press, Seattle, Wash, USA, July 2006.

[6] E. S. Correa, M. T. A. Steiner, A. A. Freitas, and C. Carnieri, “A
genetic algorithm for solving a capacity p-median problem,”
Numerical Algorithms, vol. 35, no. 2–4, pp. 373–388, 2004.

[7] A. A. Freitas, Data Mining and Knowledge Discovery with Evo-
lutionary Algorithms, Springer, Berlin, Germany, 2002.

[8] J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan
Kaufmann, San Francisco, Calif, USA, 2001.

[9] E. S. Correa, A. A. Freitas, and C. G. Johnson, “Particle swarm
and Bayesian networks applied to attribute selection for pro-
tein functional classification,” in Proceedings of the 9th Annual
Genetic and Evolutionary Computation Conference (GECCO
’07), pp. 2651–2658, London, UK, July 2007.

[10] T. M. Mitchell, Machine Learning, McGraw-Hill, London, UK,
1997.

[11] F. V. Jensen, Bayesian Networks and Decision Graphs, Springer,
New York, NY, USA, 1st edition, 2001.

12 Journal of Artificial Evolution and Applications

[12] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, San Francisco, Calif,
USA, 1st edition, 1988.

[13] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations
with probabilities on graphical structures and their applica-
tion to expert systems,” Journal of the Royal Statistics Society,
vol. 50, no. 2, pp. 157–224, 1988.

[14] P. Larrañaga, R. Etxeberria, J. A. Lozano, B. Sierra, I. Naki Inza,
and J. M. Peña, “A review of the cooperation between evolu-
tionary computation and probabilistic models,” in Proceedings
of the 2nd International Symposium on Artificial Intelligence
and Adaptive Systems (CIMAF ’99), pp. 314–324, La Havana,
Cuba, March 1999.

[15] J. M. Peña, J. A. Lozano, and P. Larrañaga, “Globally multi-
modal problem optimization via an estimation of distribution
algorithm based on unsupervised learning of Bayesian net-
works,” Evolutionary Computation, vol. 13, no. 1, pp. 43–66,
2005.

[16] R. R. Bouckaert, “Properties of Bayesian belief network learn-
ing algorithms,” in Proceedings of the 10th Annual Conference
on Uncertainty in Artificial Intelligence (UAI ’94), I. R. L. de
Mantaras and E. D. Poole, Eds., pp. 102–109, Morgan Kauf-
mann, Seattle, Wash, USA, July 1994.

[17] D. M. Chickering, D. Geiger, and D. Heckerman, “Learning
Bayesian networks is NP-hard,” Tech. Rep. MSR-TR-94-17,
Microsoft Research, Redmond, Wash, USA, November 1994.

[18] J. Kennedy and R. C. Eberhart, “A discrete binary version of the
particle swarm algorithm,” in Proceedings of the IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC ’97),
vol. 5, pp. 4104–4109, IEEE, Orlando, Fla, USA, October 1997.

[19] J. Kennedy, “Small worlds and mega-minds: effects of neigh-
borhood topology on particle swarm performance,” in Pro-
ceedings of the Congress of Evolutionary Computation, P. J. An-
geline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala,
Eds., vol. 3, pp. 1931–1938, IEEE Press, Washington, DC, USA,
July 1999.

[20] G. Kendall and Y. Su, “A particle swarm optimisation approach
in the construction of optimal risky portfolios,” in Proceedings
of the IASTED International Conference on Artificial Intelligence
and Applications, part of the 23rd Multi-Conference on Applied
Informatics, pp. 140–145, Innsbruck, Austria, February 2005.

[21] R. Poli, C. D. Chio, and W. B. Langdon, “Exploring extended
particle swarms: a genetic programming approach,” in Pro-
ceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO ’05), pp. 169–176, ACM Press, Washington, DC,
USA, June 2005.

[22] D. Filmore, “It’s a GPCR world,” Modern Drug Discovery,
vol. 11, no. 7, pp. 24–28, 2004.

[23] N. Holden and A. A. Freitas, “Hierarchical classification of
G-protein-coupled receptors with a PSO/ACO algorithm,” in
Proceedings of the IEEE Swarm Intelligence Symposium (SIS
’06), pp. 77–84, IEEE Press, Indianapolis, Ind, USA, May 2006.

[24] N. Holden and A. A. Freitas, “A hybrid particle swarm/ant
colony algorithm for the classification of hierarchical biologi-
cal data,” in Proceedings of the IEEE Swarm Intelligence Sympo-
sium (SIS ’05), pp. 100–107, IEEE Press, Pasadena, Calif, USA,
June 2005.

[25] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, San Fran-
cisco, Calif, USA, 2nd edition, 2005.

[26] Y. Shi and R. C. Eberhart, “Parameter selection in particle
swarm optimization,” in Proceedings of the 7th International
Conference on Evolutionary Programming (EP ’98), pp. 591–
600, Springer, San Diego, Calif, USA, March 1998.

[27] G. L. Pappa, A. J. Baines, and A. A. Freitas, “Predicting post-
synaptic activity in proteins with data mining,” Bioinformatics,
vol. 21, supplement 2, pp. ii19–ii25, 2005.

	INTRODUCTION
	BAYESIAN NETWORKS AND NAIVE BAYES
	A BRIEF INTRODUCTION TO PARTICLESWARM OPTIMIZATION
	THE STANDARD BINARY PSO ALGORITHM
	The initial population for the standard binaryPSO algorithm
	Updating the records for the standard binaryPSO algorithm
	Updating the velocities for the standard binary PSO algorithm
	Sampling new particle positions for the standard binary PSO algorithm

	THE DISCRETE PSO (DPSO) ALGORITHM
	Encoding of the particles for the DPSO algorithm
	The initial population for the DPSO algorithm
	Velocities = proportional likelihoods
	Sampling new particle positions for the DPSO algorithm

	CASE STUDY: THE GPCR AND ENZYME DATA SETS USED IN THE COMPUTATIONAL EXPERIMENTS
	EXPERIMENTS
	Experimental methodology
	Discussion
	Results obtained using the Naive Bayes classifier approach
	Results obtained using the the Bayesian network approach

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

