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We have previously proposed a hybrid particle swarm optimisation/ant colony optimisation (PSO/ACO) algorithm for the
discovery of classification rules. Unlike a conventional PSO algorithm, this hybrid algorithm can directly cope with nominal
attributes, without converting nominal values into binary numbers in a preprocessing phase. PSO/ACO2 also directly deals with
both continuous and nominal attribute values, a feature that current PSO and ACO rule induction algorithms lack. We evaluate
the new version of the PSO/ACO algorithm (PSO/ACO2) in 27 public-domain, real-world data sets often used to benchmark the
performance of classification algorithms. We compare the PSO/ACO2 algorithm to an industry standard algorithm PART and
compare a reduced version of our PSO/ACO2 algorithm, coping only with continuous data, to our new classification algorithm
for continuous data based on differential evolution. The results show that PSO/ACO2 is very competitive in terms of accuracy to
PART and that PSO/ACO2 produces significantly simpler (smaller) rule sets, a desirable result in data mining—where the goal is
to discover knowledge that is not only accurate but also comprehensible to the user. The results also show that the reduced PSO
version for continuous attributes provides a slight increase in accuracy when compared to the differential evolution variant.
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1. INTRODUCTION

The focus of this paper is on supervised learning, more
specifically, the classification task of data mining. In classi-
fication, the knowledge or patterns discovered in the dataset
can be represented in terms of a set of rules. A rule consists
of an antecedent (a set of attribute values) and a consequent
(class):

IF 〈attrib = value〉 AND · · ·AND

〈attrib = value〉 THEN 〈class〉.
(1)

The consequent of the rule is the class that is predicted
by that rule. The antecedent consists of a set of terms,
where each term is essentially an attribute value pair. More
precisely, a term is defined by a triple 〈attribute, operator,
value〉, where value is a value belonging to the domain of
attribute. The operator used in this paper is “=” in the case
of categorical/nominal attributes, or “≤” and “>” in the
case of continuous attributes. The knowledge representation

in the form of rules has the advantage of being intuitively
comprehensible to the user. This is important because the
general goal of data mining is to discover knowledge that is
not only accurate, but also comprehensible [1, 2].

We previously proposed a hybrid particle swarm opti-
misation [3, 4]/ant colony optimisation [5] (PSO/ACO)
algorithm for the discovery of classification rules [6, 7] (the
PSO/ACO2 classification algorithm is freely available on
Sourceforge: http://sourceforge.net/projects/psoaco2). PSO
has been explored as a mean for classification in previous
work [8, 9] and shown to be rather successful. However,
previous authors have never addressed the case, where PSO
is used for datasets containing both continuous and nominal
attributes. The same can be said for ACO, where no variants
have been proposed that deal directly with continuous
attributes [10].

ACO has been shown to be a powerful paradigm
when used for the discovery of classification rules involving
nominal attributes [11] and is considered state-of-the-
art for many combinatorial optimisation problems [12].
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Furthermore, ACO deals directly with nominal attributes
rather than having to convert the problem first into a
binary optimisation problem. When compared to other
combinatorial optimisation algorithms (e.g., binary PSO),
this reduces the complexity of the algorithm and frees the
user from the issues involved in the conversion process. Note
that, in the case of a nominal attribute containing more
than two values the conversion of the nominal attribute
into a binary one in order to use binary PSO is not trivial.
For instance, consider the nominal attribute marital status
taking on 4 values: “single, married, divorced, and widow.”
One could convert this attribute into four binary values—
“yes” or “no” for each original nominal value—but this has
the drawbacks of increasing the number of attributes (and
so the dimensionality of the search space) and requiring a
special mechanism to guarantee that, out of the 4 values,
exactly one is “turned on” in each candidate classification
rule. Alternatively, we could try to use a standard PSO for
continuous attributes by converting the original nominal
values into numbers, say “1, 2, 3, 4,” but this introduces an
artificial ordering in the values, whereas there is no such
order in the original nominal values.

PSO/ACO2 uses ideas from ACO to cope directly with
nominal attributes, and uses ideas from PSO to cope with
continuous attributes, trying to combine “the best of both
worlds” in a single algorithm.

We have shown [6, 7] in two of our previous papers that
PSO/ACO is at least competitive with binary PSO in terms
of a search mechanism for discovering rules. PSO/ACO is
competitive with binary PSO in terms of accuracy, and often
beats binary PSO when rule set complexity is taken into
account. In this paper, we propose an improved PSO/ACO
variant for classification rule discovery (PSO/ACO2) and
provide a comprehensive comparison between it and an
industrial standard classification algorithm (PART [1])
across 27 datasets (involving both continuous and nom-
inal attributes). We also introduce and compare another
PSO/ACO2 classification algorithm variant for continuous
data based on differential evolution (DE) [13].

We propose several modifications to the original
PSO/ACO algorithm. In essence, the proposed modifications
involve changes in the pheromone updating procedure and
in the rule initialisation method, as well as—significantly—
the splitting of the rule discovery process into two separate
phases. In the first phase, a rule is discovered using nominal
attributes only. In the second phase, the rule is potentially
extended with continuous attributes. This further increases
the ability of the PSO/ACO algorithm in treating nominal
and continuous attributes in different ways, recognising the
differences in these two kinds of attributes (a fact ignored by
a conventional PSO algorithm, as mentioned earlier).

The remainder of the paper is organised as follows.
Section 2 describes in detail the workings of the modified
algorithm (PSO/ACO2). Section 3 discusses the reasons for
the modifications. In Section 4, we present the experimental
setup and results. In Section 5, we draw some conclusions
from the work and discuss possible future research. This
paper is a significantly extended version of our recent
workshop paper [14].

2. THE NEW PSO/ACO2 ALGORITHM

In this section, we provide an overview of the new version
of the hybrid particle swarm optimization/ant colony opti-
mization (PSO/ACO2) algorithm. PSO/ACO2 is a significant
extension of the original PSO/ACO algorithm (here denoted
PSO/ACO1) proposed in [6, 7]. The PSO/ACO1 algorithm
was designed to be the first PSO-based classification algo-
rithm to natively support nominal data—that is, to cope
with nominal data directly, without converting a nominal
attribute into a numeric or binary one and then applying
a mathematical operator to the converted value, as is the
case in [8]. The PSO/ACO1 algorithm achieves a native
support of nominal data by combining ideas from ant colony
optimisation [5] (the successful ant-miner classification
algorithm [11]) and particle swarm optimisation [3, 8] to
create a classification meta heuristic that supports innately
both nominal (including binary as a special case) and
continuous attributes.

2.1. PSO/ACO2’s sequential covering approach

Both the original PSO/ACO1 algorithm and the new
modified version (PSO/ACO2) use a sequential covering
approach [1] to discover one classification rule at a time. The
original PSO/ACO1 algorithm is described in detail in [6, 7],
hereafter we describe how the sequential covering approach
is used in PSO/ACO2 as described in Algorithm 1. The
sequential covering approach is used to discover a set of rules.
While the rules themselves may conflict (in the sense that
different rules covering a given example may predict different
classes), the “default” conflict resolution scheme is used by
PSO/ACO2. This is where any example is only considered
covered by the first rule that matches it from the ordered
rule list, for example, the first and third rules may cover an
example, but the algorithm will stop testing after it reaches
the first rule. Although the rule set is generated on a per class
basis, it is ordered according to rule quality before it is used
to classify examples (to be discussed later in this paper).

The sequential covering approach starts by initialising
the rule set (RS) with the empty set. Then, for each class
the algorithm performs a WHILE loop, where TS is used to
store the set of training examples the rules will be created
from. Each iteration of this loop performs one run of the
PSO/ACO2 algorithm, which only discovers rules based
on nominal attributes, returning the best discovered rule
(Rule), predicting examples of the current class (C). The
rule returned by the PSO/ACO2 algorithm is not (usually)
complete as it does not include any terms with continuous
values. For this to happen, the best rule discovered by the
PSO/ACO2 algorithm is used as a base for the discovery of
terms with continuous values.

For the continuous part of the rule, a conventional
PSO algorithm (applied only to numeric attributes) with
constriction is used [4]. The vector to be optimised consists
of two dimensions per continuous attribute, one for an upper
bound (ub) and one for a lower bound (lb). At every particle
evaluation, the vector is converted to a set of terms (rule
conditions) and added to Rule produced by the PSO/ACO2
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RS = ∅ /∗ initially, Rule Set is empty ∗/
FOR EACH class C

TS = {All training examples belonging to any class}
WHILE (Number of uncovered training examples belonging to class C > MaxUncovExampPerClass)

Run the PSO/ACO2 algorithm to discover the best nominal rule predicting class C called Rule
Run the standard PSO algorithm to add continuous terms to Rule, and return the best discovered rule BestRule
Prune BestRule
RS = RS ∪ BestRule
TS = TS −{training examples covered by discovered rule}

END WHILE
END FOR
Order rules in RS by decending Quality
Prune RS removing unnecessary terms and/or rules

Algorithm 1: Sequential covering approach used by the hybrid PSO/ACO2 algorithm.

algorithm for fitness evaluation. For instance, if the dataset
contained one nominal attribute An0 and one continuous
attribute Ac0, the PSO/ACO2 algorithm might produce a
rule like IF An0 = 〈value〉 THEN class C. The standard PSO
algorithm would then attempt to improve this rule by adding
the terms xub0 > Ac0 and xlb0 ≤ Ac0, which effectively
corresponds to a term of the form xub0 > Ac0 > xlb0. Where
a single particle’s position would be the vectors �xlb,�xub. The
rule for evaluation purposes would be

IF An0 = 〈value〉 AND xub0 > Ac0

AND xlb0 ≤ Ac0 THEN Class C.
(2)

If the two bounds cross over, (i.e., xlb0 ≥ xub0) both terms are
omitted from the decoded rule, but the Personal Best position
is still updated in those dimensions:

PSO velocity update:

vid = χ
(
vid + c1ϕ1

(
pid − xid

)
+ c2ϕ2

(
pgd − xid

))
, (3)

PSO position update:

xid = xid + vid. (4)

To improve the performance of the PSO algorithm, the
upper bound for each dimension is initialised (seeded) in
the following manner. Each example in the training set is
examined to find the lowest and highest values that each
continuous attribute takes. From these values, the ranges of
each continuous attribute are found. Then, each particle’s
initial position (for the upper bound dimension) is set to
a uniformly distributed position between the value of a
randomly chosen seed example’s continuous attribute and
that value added to the range for that attribute. For the
lower bound, the same procedure is also conducted except
that the position is initialised at a uniformly distributed
position between an example’s value (for that attribute) and
an example’s value minus the range for that attribute. This
seeding procedure will likely produce some seeding positions
outside the range of the values seen within the dataset. This
is an intended feature as for some attributes it might never be
beneficial to set lower or upper bounds on their values. The

most likely place a particle will be seeded is around the lowest
and highest values the seeding examples have (for lower and
upper bounds, resp.). However, the seeding examples are
from the class being predicted by the rule that the particle
is encoding, so if the way in which the values from these
examples are distributed is different from all the examples,
then hopefully the search will be biased in a useful way.
This idea is backed up by an improvement in performance
observed in initial experiments.

While the standard PSO algorithm attempts to optimise
the values for the upper and lower bounds of these terms, it
is still possible that the nominal part of the rule may change.
The particles in the PSO/ACO2 algorithm are prevented
from fully converging using the Min-Max system (discussed
in the next subsection) used by some ACO algorithms,
so that an element of random search remains for the
nominal part of the rule. This is helpful for the search, as
in combination with the continuous terms, some nominal
terms may become redundant or detrimental to the overall
rule-quality. The exact mechanism of this partially random
search is discussed in Section 2.2.

After the BestRule has been generated it is then added to
the rule set after being pruned using a pruning procedure
inspired by Ant-Miner’s pruning procedure [11]. Ant-
Miner’s pruning procedure involves finding the term which,
when removed from a rule, gives the biggest improvement in
rule quality. When this term is found (by iteratively removing
each term tentatively, measuring the rule’s quality and then
replacing the term) it is permanently removed from the rule.
This procedure is repeated until no terms can be removed
without loss of rule quality. Ant-Miner’s pruning procedure
attempts to maximise the quality of the rule in any class,
so the consequent class of the rule may change during the
procedure. The procedure is obviously very computationally
expensive; a rule with n terms may require in the worst case
∑n

i=1i = n(n+ 1)/2—that is, O(n2)—rule quality evaluations
before it is fully pruned. For this reason, the PSO/ACO2
classification algorithm only uses the Ant-Miner pruning
procedure if a rule has less than 20 terms. If there are more
than 20 terms then the rule’s terms are iterated through once,
removing each one if it is detrimental or unimportant for
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the rule’s quality—that is, if the removal of the term does not
decrease the classification accuracy of the rule on the training
set. Also, for reasons of simplicity the rule’s consequent class
is fixed throughout the pruning procedure in PSO/ACO2.
These alterations were observed (in initial experiments) to
make little or no difference to rule quality.

After the pruning procedure, the examples covered by
that rule are removed from the training set (TS). An example
is said to be covered by a rule if that example satisfies
all the terms (attribute value pairs) in the rule antecedent
(“IF part”). This WHILE loop is performed as long as the
number of uncovered examples of the class C is greater than a
user-defined threshold, the maximum number of uncovered
examples per class (MaxUncovExampPerClass). After this
threshold has been reached TS is reset by adding all the
previously covered examples. This process means that the
rule set generated is unordered—it is possible to use the rules
in the rule set in any order to classify an example without
unnecessary degradation of predictive accuracy. Having an
unordered rule set is important because after the entire
rule set is created, the rules are ordered by their quality
and not the order they were created in. This is a common
approach often used by rule induction algorithms [15, 16].
Also, after the rule set has been ordered it is pruned as a
whole. This involves tentatively removing terms from each
rule and seeing if each term’s removal affects the accuracy
of the entire rule set. If that individual term’s removal does
not affect the accuracy then it is permanently removed. If it
does affect the accuracy then it is replaced and the algorithm
moves onto the next term, and eventually the next rule. After
this process is complete, the algorithm also removes whole
rules that do not contribute to the classification accuracy.
This is achieved by classifying the training set using the rule
list, if any rules do not classify any examples correctly then
they are removed.

2.2. The part of the PSO/ACO2 algorithm coping
with nominal data in detail

The PSO/ACO2 algorithm initially generates the nominal
part of the rule, by selecting a (hopefully) near optimal
combination of attribute value pairs to appear in the rule
antecedent (the way in which rules are assessed is discussed
in Section 2.4). The PSO/ACO2 algorithm generates one rule
per run and so must be run multiple times to generate
a set of rules that cover the training set. The sequential
covering approach, as described in Section 2.1, attempts to
ensure that the set of rules cover the training set in an
effective manner. This section describes in detail the part of
the PSO/ACO2 algorithm coping with nominal data, which
is the part inspired by ACO. The part of the PSO/ACO2
algorithm coping with continuous data is essentially a
variation of standard PSO, where each continuous attribute
is represented by two dimensions, referring to the lower
and upper bound values for that attribute in the rule to be
decoded from the particle, as explained in Section 2.1.

To understand—in an intuitive and informal way—
why the PSO/ACO2 algorithm is an effective rule discovery
metaheuristic, it may be useful to first consider how one

might create a very simple algorithm for the discovery of
rules. An effective rule should cover as many examples as
possible in the class given in the consequent of the rule,
and as few examples as possible in the other classes in the
dataset. Given this fact a good rule should have the same
attribute-value pairs (terms) as many of the examples in
the consequent class. A simple way to produce such a rule
would be to use the intersection of the terms in all examples
in the consequent class as the rule antecedent. This simple
procedure can be replicated by an agent-based system. Each
agent has the terms from one example from the consequent
class (it is seeded with these terms), each agent could then
take the intersection of its terms with its neighbours and
then keep this new set. If this process is iterated, eventually
all agents will have the intersection of the terms from all
examples in the consequent class.

This simple procedure may work well for very simple
datasets, but we must consider that it is highly likely that
such a procedure would produce a rule with an empty
antecedent (as no single term may occur in every example
in the consequent class). Also, just because certain terms
frequently occur in the consequent class does not mean that
they will also not frequently occur in other classes, meaning
that our rule will possibly cover many examples in other
classes.

PSO/ACO2 was designed to “intelligently” deal with the
aforementioned problems with the simple agent-based algo-
rithm by taking ideas from PSO and ACO. From PSO: having
a particle network, the idea of a best neighbour and best
previous position. From ACO: probabilistic term generation
guided by the performance of good rules produced in the
past. PSO/ACO2 still follows the basic principle of the simple
agent-based system, but each particle takes the intersection
of its best neighbour’s and previous personal best position’s
terms in a selective (according to fitness) and probabilistic
way.

Each particle in the PSO/ACO2 population is a collection
of n pheromone matrices (each matrix encodes a set of
probabilities), where n is the number of nominal attributes
in a dataset. Each particle can be decoded probabilistically
into a rule with a predefined consequent class. Each of
the n matrices has two entries, one entry represents an off
state and one entry represents an on state. If the off state
is (probabilistically) selected, the corresponding (seeding)
attribute-value pair will not be included in the decoded rule.
If the on state is selected when the rule is decoded, the
corresponding (seeding) attribute-value pair will be added to
the decoded rule. Which value is included in this attribute-
value pair (term) is dependant on the seeding values.

The seeding values are set when the population of
particles is initialised. Initially, each particle has its past best
state set to the terms from a randomly chosen example from
class C—the same class as the predefined consequent class
for the decoded rule. From now on, the particle is only able
to decode to a rule with attribute values equal to the seeding
terms, or to a rule without some or all those terms. This may
seem at first glance counter intuitive as flexibility is lost—
each particle cannot be translated into any possible rule, the
reasons for this will be discussed later.
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Table 1

Colour Has fur Swims

(on) Colour = blue Off (on) Has fur = false off (on) Swims = true off

0.01 0.99 0.8 0.2 0.9 0.1

Initialise population
REPEAT for MaxInterations

FOR every particle x
/∗Rule Creation ∗/
Set Rule Rx = “IF ∅ THEN C”
FOR every dimension d in x

Use roulette selection to choose whether the state should be set to off or on. If it is on then the
corresponding attribute-value pair set in the initialisation will be added to Rx; otherwise (i.e., if
off is selected) nothing will be added.

LOOP
Calculate Quality Qx of Rx
/∗Set the past best position ∗/
P = x’s past best state
Qp = P’s quality
IF Qx > Qp

Qp = Qx

P = x
END IF

LOOP
FOR every particle x

P = x’s past best state
N = the best state ever held by a neighbour of x according to N ’s quality QN

FOR every dimension d in x
/∗Pheromone updating procedure ∗/
IF Pd = Nd THEN

pheromone entry corresponding to the value of Nd in the current xd is increased by Qp

ELSE IF Pd = off AND seeding term for xd /=Nd THEN
pheromone entry for the off state in xd is increased by Qp

ELSE
pheromone entry corresponding to the value of Nd in the current xd is increased by Qp

END IF
Normalize pheromone entries

LOOP
LOOP

LOOP
RETURN best rule discovered

Algorithm 2: The part of the PSO/ACO2 algorithm coping with nominal data.

Each pheromone matrix entry is a number representing
a probability and all the entries in each matrix for each
attribute add up to 1. Each entry in each pheromone
matrix is associated with a minimum, positive, and nonzero
pheromone value. This prevents a pheromone from drop-
ping to zero, helping to increase the diversity of the
population (reducing the risk of premature convergence).

For instance, a particle may have the following three
pheromone matrices for attributes Colour, Has fur and
Swims. It was seeded with an example: Colour = Blue, Has fur
= False, Swims = True, Class = Fish as shown in Table 1.

The probability of choosing the term involving the
attribute colour to be included in the rule is low, as the off
flag has a high probability in the first pheromone matrix
(0.99). It is likely that the term Has fur = False will be

included in the decoded rule as it has a high probability (0.8)
in the second pheromone matrix. It is also likely that the term
Swims = True will be included in the decoded rule.

The most likely rule decoded from this set of pheromone
matrices is

IF Has fur = False AND

Swims = True THEN

Class = Fish.

(5)

Algorithm 2 shows the modified PSO/ACO2 algorithm
proposed in this paper and utilised in Algorithm 1. Firstly,
the population of particles is initialised. Each particle is
seeded with terms from a randomly selected example, as
described earlier. Initially, in each dimension the pheromone
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Figure 1: The Von-Neumann topology used by PSO/ACO2.

for the on state is set to 0.9 and the pheromone for the off
state is set to 0.1. The first loop (REPEAT statement) iterates
the whole population for MaxIterations. Then, for each
particle x a rule is built probabilistically from its pheromone
matrices. For each dimension d in x, roulette selection—a
well-known selection method in evolutionary algorithms—
is used to decide if the on or off state should be selected [6].
In PSO/ACO2 this simply involves the following rule:

IF rand() > pheromone in entry for on state THEN

Select on state

ELSE

Select off state

(6)

where rand() returns a number from the interval [0 · · · 1]
with a uniform probability distribution. If the on state
is selected, then the corresponding term is added to the
antecedent of Rx, this is an attribute value pair, where the
attribute corresponds to the dimension d and the value
corresponds to the initial seeding value. After this process has
been repeated for every dimension, the quality Qx of the rule
is calculated. If the new Qx is greater than the previous best
Qp, then the particle’s state is saved as P.

After the rule creation phase, the pheromone is updated
for every particle. Each particle finds its best neighbour’s best
state (N) according to QN (the quality of the best rule N
has ever produced). The particles are in a static topology,
so each particle has a fixed set of neighbour particles
throughout the entire run of the algorithm. PSO/ACO2
uses Von-Neumann [17] topology, where the particles are
arranged in a 2D grid, each particle having four neighbours.
This topology was chosen as it consistently performed the
best in initial experiments. This is likely due to the level
of connectivity present in this particular topology, that is,
enough connectivity but not too much (global topology
showed to be suboptimal due to premature convergence to
a local optimum in the search space).

The pheromone updating procedure is influenced by two
factors, the best state a particle x has ever held (the state P),
and the best state ever held by a neighbour particle N. As

discussed previously, each dimension can take two values and
so it has two corresponding pheromone entries, one for the
on state and one for the off state. These states are examined
in every dimension d and the following rules are applied. If
Pd is the same as Nd, then an amount of pheromone equal
to Qp (the quality of P) is added to the pheromone entry in
xd corresponding to the value of Pd. The second pheromone
updating rule is (the ELSE statement) if Pd is not the same
as Nd then an amount of pheromone equal to Qp is removed
from the pheromone entry in xp corresponding to the value
of Pd. In other words, if a particle and its neighbour have
both found that a particular attribute-value is good, then
pheromone is added to the entry corresponding to it. If
they disagree about that attribute value, then pheromone is
removed from the corresponding entry.

There is a caveat in this pheromone updating procedure
given by the “ELSE IF” statement in Algorithm 2. It states
that if Pd is off and the current particle and its best neighbour
do not have the same seeding terms, then increase the
likelihood of choosing the off state (by adding pheromone
to the pheromone entry corresponding to the off value). The
reason for this is to maintain the idea from the simple agent-
based system described earlier in this section. That is, when
two particles have different seeding terms, then those terms
should tend to be omitted. Without this caveat the opposite
would happen, the probability of the term being omitted
would become less, as pheromone is usually removed from
Pd (off ) if Pd and Nd do not agree. A more detailed
examination of the effect of the pheromone updating rules
can be seen in Table 2 with this caveat being shown in the
second row from the bottom.

If after this process is completed any pheromone entry is
less than a predefined minimum amount, then it is set to that
amount (0.01). Importantly, this allows the pheromone entry
that is not the best state to increase due to the normalisation
procedure. This increase will occur if pheromone is removed
from a state. If this happens, the amount of pheromone in
the matrix becomes less than 1 and, as long as both entries
have a greater than zero amount of pheromone, when the
matrix is normalised both entries will increase. It also aids
search in a conceptually similar way to mutation in GAs and
the Min-Max system in the ACO literature [5].

In Table 2, the six possible scenarios for pheromone
updating are described given the differing states of Pd,Nd and
also the seeding term for xd. These outcomes are controlled
by the pheromone updating rules shown in Algorithm 2
(discussed previously). The first and last cases shown in the
table are quite intuitive, if both Pd and Nd agree on a state
that state is made more likely, this allows the algorithm to
converge on a good solution that the particles agree on. Cases
of the second type are shown in the second and fifth rows,
where Pd and Nd have different seeding terms. In these cases,
the particle makes it more likely that the conflicting term will
be omitted from the decoded rule, by selecting the off state.
This feature allows the particle to create rules that generalise
well, covering more examples from the consequent class
(discussed further in Section 3). Cases of the third type—
which involve a disagreement between Pd and Nd about
whether or not the seeded term should be used in the rule
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decoded from the current particle—are shown in the third
and fourth rows. These cases bias the search towards Nd so
that each particle tries to emulate its best neighbour. In the
third row; if Nd = off then the probability of xd decoding to
off will be increased (by increasing the pheromone associated
with the off state). In the fourth row; if Nd = w (and Nd and
xd have the same seeing terms) the probability of xd decoding
to on will be increased. The cases of the third type allow the
particles to come to a consensus about the best set of states.
By trying to emulate its best neighbour, each particle has the
potential to create (in future iterations) a new past best state
(P) based on a mix of its own current P and N.

2.3. A differential evolution classification algorithm
for continuous data

Differential evolution (DE) [13] has become a popular
optimisation algorithm for continuous spaces. It has been
shown to be very competitive with respect to other search
algorithms [18]. It can be considered a kind of evolutionary
algorithm whose population moves around the search space
in a greedy manner. Each offspring is (usually) generated
from the weighted combination of the best member of
the population with two or more other members of the
population. If this offspring has a higher fitness then it
replaces its parent, if not it is discarded. There are many
variations on this basic evolutionary method for DE, the ones
used in this paper are the rand-to-best/1 and best/1 as they
seemed to be good during initial experiments. The formulas
for offspring generation in these DE variants are as follows:

DE update equation for best/1:

v = xbest + F(xr1 − xr2), (7)

DE update equation for rand-to-best/1

v = xi + F(xbest − xi) + F(xr1 − xr2), (8)

where v is the offspring vector, xbest is the best member of
the current population. xr1 and xr2 are randomly-selected
members of the population, xi is the parent vector, and
F is the weighting factor. The other parameters for the
algorithm are: CR—a crossover likelihood factor and NP—
the population size.

As we already have the framework for a PSO-based
classification algorithm using sequential covering (as detailed
in Section 2.1), the DE optimiser can essentially be “plugged-
in,” replacing standard PSO as the rule discovery algorithm
(for continuous data). To make any comparisons fair the
same seeding mechanism and procedure to deal with crossed
over attribute value bounds is used both in the PSO and DE
classification algorithm.

2.4. Quality measures

It is necessary to estimate the quality of every candidate
rule (decoded particle). A measure must be used in the
training phase in an attempt to estimate how well a rule
will perform in the testing phase. Given such a measure, it
becomes possible for an algorithm to optimise a rule’s quality

(the fitness function). In our previous work [6], the quality
measure used was Sensitivity × Specificity (9) [19].

Quality Measure used by PSO/ACO1 [6]:

Sensitivity× Specificity = TP/(TP + FN)× TN/(TN + FP),
(9)

where TP, FN, FP and TN are, respectively, the number of
true positives, false negatives, false positives, and true
negatives associated with the rule [1]:

(i) true positives (TP) are the number of examples that
match the rule antecedent (attribute values) and also
match the rule consequent (class). These are desirable
correct predictions;

(ii) false positives (FP) are the number of examples
that match the rule antecedent, but do not match
the rule consequent. These are undesirable incorrect
predictions;

(iii) false negatives (FN) are the number of examples that
do not match the rule antecedent but do match the
rule consequent. These are undesirable uncovered
cases and are caused by an overly specific rule;

(iv) true negatives (TN) are the number of examples
that do not match the rule antecedent and do not
match the rule consequent. These are desirable and
are caused by a rule’s antecedent being specific to its
consequent class.

In the new PSO/ACO2 classification algorithm proposed
in this paper, the quality measure is Precision with Laplace
correction [1, 20], as per (10). In initial experiments this
quality measure was observed to lead to the creation of rules
that were more accurate (when compared to the original
quality measure shown in (9).

New Quality Measure used by PSO/ACO2:

Laplace-corrected Precision = (1 + TP)/(1 + TP + FP),
(10)

We observed that in some cases (when using (10) as a
quality measure), rules would be generated covering very few
examples. These cases were likely due to the way in which the
Laplace-Corrected Precision measure penalises false positives
very severely (when compared to Sensitivity × Specificity).
To stop this less than ideal situation we added the following
conditional statement to the new quality measure:

IF TP < MinTP

Rule Quality = Laplace-Corrected Precision∗0.1,

ELSE

Rule Quality = Laplace-Corrected Precision,

END IF
(11)

where MinTP is the least number of correctly covered
examples that a rule has to cover before it is given a “normal”
value, as computed by (10). When a rule covers too few
examples the quality is severely reduced (by a factor of 100).
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Table 2: Different pheromone updating scenarios.

Seeding Term for xd Pd Nd Outcome for entries in xd

〈value〉 = w (on) 〈value〉 = w (on) 〈value〉 = w on pheromone increased

off pheromone decreased

〈value〉 = w (on) 〈value〉 = w (on) 〈value〉 /= w
on pheromone increased
off pheromone decreased

〈value〉 = w (on) 〈value〉 = w off
on pheromone increased
off pheromone decreased

〈value〉 = w off (on) 〈value〉 = w on pheromone increased
off pheromone decreased

〈value〉 = w off (on) 〈value〉 /= w
on pheromone increased
off pheromone decreased

〈value〉 = w off off
on pheromone increased
off pheromone decreased

Table 3: An example single class dataset, R’s are records, An’s are
nominal attributes.

An1 An2 An3

R1 a a a

R2 a a b

R3 a a b

R4 b b b

R5 b b b

R6 b b b

This procedure reduces the quality below the quality of any
normal rule, but still allows the particles covering fewer than
MinTP examples to compare their solutions effectively. In
our experiments, we set MinTP to 10, but any comparably
small number will have a similar effect.

3. MOTIVATIONS FOR PSO/ACO2 AND DISCUSSION

The modified algorithm (PSO/ACO2) proposed in this paper
differs from the original algorithm (PSO/ACO1) proposed in
[6, 7] in five important ways. Firstly, PSO/ACO1 attempted
to optimise both the continuous and nominal attribute
values present in a rule antecedent at the same time,
whereas PSO/ACO2 takes the best nominal rule built by
PSO/ACO2 and then attempts to add continuous attributes
to it using a conventional PSO algorithm. Secondly, the
original algorithm used a type of rule pruning to create
seeding terms for each particle, whilst PSO/ACO2 uses all the
terms from an entire training example (record). Thirdly, in
PSO/ACO1 it was possible for a particle to select a value for
an attribute that was not present in its seeding terms, whilst

in PSO/ACO2 only the seeding term values may be added
to the decoded rule. Fourthly, the pheromone updating
rules have been simplified to concentrate on the optimi-
sation properties of the original algorithm. In PSO/ACO1
pheromone was added to each entry that corresponded
to the particle’s past best state, its best neighbour’s best
state, and the particle’s current state in proportion to a
random learning factor. Now, pheromone is only added to
a pheromone matrix entry in the current particle when Nd

and Pd match, or taken away when they do not. Fifthly, the
algorithm now prunes the entire rule set after creation, not
simply on a per rule basis.

In PSO/ACO2, the conventional PSO for continuous
data and the hybrid PSO/ACO2 algorithm for nominal
data have been separated partially because they differ quite
largely in the time taken to reach peak fitness. It usually
takes about 30 iterations (depending on the complexity
of the dataset) for the pheromone matrices to reach a
stable state in PSO/ACO2, whilst it tends to take consid-
erably longer for the standard PSO algorithm to converge.
Due to this fact, the standard PSO algorithm’s particles
set past best positions in quite dissimilar positions, as
their fitness is dependant on the quickly converging part
of the PSO/ACO2 algorithm coping with nominal data.
This causes high velocities and suboptimal search, with
a higher likelihood of missing a position of high fitness.
Therefore, separating the rule discovery process into two
stages—one stage for the part of the PSO/ACO2 algorithm
coping with nominal data and one stage for the part of
the PSO/ACO2 algorithm coping with continuous data
(essentially a variation of a standard PSO)—provides more
consistent results.

Secondly, in the PSO/ACO1 algorithm, sets of seeding
terms were pruned before they were used. This aggressive
pruning algorithm used a heuristic to discard certain terms.
This is less than ideal as the heuristic does not take into
account attribute interaction, and so potentially useful terms
are not investigated.
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Table 4: Accuracy of labelled approaches in UCI datasets, with standard deviation and Student’s t-test shadings.

Data set
Accuracy

PSO/ACO2 PART

Average rule size

PSO/ACO2 PART

Average rule set length

PSO/ACO2 PART

Autos

Balance scale

Breast cancer

Breast w

Credit-a

Credit-g

Crx

Diabetes

Glass

Heart-c

Heart-statlog

Ionosphere

Iris

Iris d

Lymph

Mmushroom

Promoters

Segment

Sonar

Soybean

Tic-tac-toe

Vehicle

Vowel

Wisconsin

Kr-vs-kp

Zoo

Splice

76.63± 8.36

82.72± 4.77

72.62± 6.84

93.42± 3.79

85.31± 4.14

67.9± 5.82

85.6± 2.84

72.67± 4.98

70.95± 7.5

77.38± 5.45

81.11± 6.16

88.06± 4.91

94.67± 5.26

94.67± 6.13

83.05± 6.67

99.9± 0.11

81.0± 12.12

96.67± 1.17

75.05± 9.11

87.01± 6.53

100.0± 0.0

73.05± 4.45

86.16± 3.47

94.87± 2.53

99.47± 0.51

97.18± 6.25

93.48± 1.24

79.83± 11.43

79.38± 7.81

69.7± 7.8

93.7± 4.05

84.23± 3.35

69.7± 4.4

84.54± 2.8

74.36± 4.51

65.43± 11.45

78.72± 5.92

78.15± 6.64

90.04± 4.68

90.67± 7.17

94.0± 5.84

83.19± 9.47

100.0± 0.0

83.91± 7.91

96.67± 0.84

72.52± 10.57

90.57± 3.96

93.85± 2.7

73.29± 2.77

85.05± 5.79

94.43± 2.06

99.37± 0.29

94.18± 6.6

92.79± 1.65

2.8± 0.17

2.56± 0.17

1.73± 0.26

1.17± 0.09

2.94± 0.31

4.23± 0.19

2.94± 0.28

3.88± 0.29

3.11± 0.18

3.33± 0.19

3.17± 0.44

3.33± 0.79

0.93± 0.14

0.68± 0.04

1.89± 0.15

1.86± 0.18

1.02± 0.05

2.8± 0.27

2.6± 0.63

2.08± 0.21

2.67± 0.0

3.85± 0.18

4.2± 0.25

1.21± 0.07

2.25± 0.15

1.14± 0.18

3.0± 0.07

2.54± 0.24

3.13± 0.16

1.91± 0.18

1.01± 0.03

2.46± 0.34

3.01± 0.25

2.44± 0.31

1.88± 0.23

2.7± 0.28

2.42± 0.21

2.88± 0.34

2.35± 0.43

1.02± 0.05

0.76± 0.06

2.26± 0.42

1.55± 0.02

1.02± 0.14

3.07± 0.17

2.23± 0.49

2.66± 0.16

2.65± 0.11

3.84± 0.38

3.55± 0.21

1.02± 0.03

3.03± 0.35

1.48± 0.12

2.65± 0.1

16.0± 1.25

26.6± 1.07

12.4± 2.27

9.9± 1.6

22.7± 2.0

54.3± 1.89

22.5± 3.1

33.4± 1.43

20.4± 1.35

12.6± 0.84

9.7± 1.34

3.6± 0.97

3.0± 0.0

3.2± 0.42

14.7± 2.0

8.7± 0.48

5.1± 0.32

21.9± 0.99

4.4± 1.58

24.2± 1.03

9.0± 0.0

37.8± 1.2

29.0± 0.82

10.2± 1.87

18.7± 2.0

7.1± 0.32

88.0± 2.91

14.2± 2.74

38.9± 3.25

17.3± 4.72

10.4± 3.03

30.8± 9.66

77.0± 4.57

29.9± 8.67

7.1± 1.52

16.1± 1.6

19.9± 2.42

18.4± 1.9

8.9± 1.91

4.3± 1.42

4.4± 0.97

10.0± 1.25

12.8± 0.42

6.9± 1.2

26.3± 1.7

7.4± 1.17

32.1± 3.21

38.3± 3.06

34.0± 3.02

50.5± 3.57

9.9± 3.11

22.7± 1.34

7.6± 0.52

99.6± 6.1

Table 5: Overall performance of PSO/ACO2 against PART accord-
ing to WEKA’s Student’s t-test (out of 27 datasets).

Accuracy Average rule size Average rule length

Total 1 −6 14

To understand the reasons behind the last two modifica-
tions, it is important to understand how the algorithms find
good rules. In both PSO/ACO1 and PSO/ACO2, sets of terms
are generated by mixing together the experiences of the par-
ticles and their neighbours. As the entries in the pheromone
matrices converge and reach one (and zero), better rules
should be generated more often. In PSO/ACO1, the levels of
the pheromone in the matrices are influenced by three factors
(current state, past best state, and best neighbours’ best state)
[6]. If these factors do not agree, then the pheromone matrix
will be slow to converge. Slow convergence can sometimes
be advantageous as the algorithm should not prematurely
converge to a local maximum. However, in PSO/ACO1 the
result of this slow convergence is usually destructive, as
incompatible terms can be mixed together over and over
again. Incompatible terms are terms that do not cover any
of the same examples. For instance, in Table 3, incompatible
terms are An1 = a and An2 = b. A rule including both

these terms would have a quality of zero as it would not
cover any examples. This problem is addressed by the third
modification in PSO/ACO2, now incompatible terms will
not be mixed. This modification also ensures a particle will
always cover at least one example (the seeding example) even
if all the terms are included in the decoded rule. This was not
the case in PSO/ACO1 as at the beginning of the search many
incompatible terms could be mixed, creating many particles
with zero fitness.

In PSO/ACO2, the pattern being investigated by the
particles will likely include relatively general terms—an
example might be a rule including the term An3 = b in
Table 3. It is the job of the PSO/ACO2 algorithm to find
terms that interact well to create a rule that is not only general
to the class being predicted (covering many examples of that
class) but also specific to the class (by not covering examples
in other classes). It is also the job of the PSO/ACO2 algorithm
to turn off terms that limit the generality of the rule without
adding specificity to it. This trade-off between specificity and
generality (or sensitivity) is calculated by the rule quality
measure. It is clear, in Table 3, that including values for An1

and An2 will not ever lead to the most general rule (the
optimal rule only has one term, An3 = b). Due to the new
pheromone updating procedures a particle would choose the
off state for these conflicting attributes quickly.
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Table 6: Accuracy of labelled approaches in UCI datasets containing only continuous attributes, with standard deviation and Student’s t-test
shadings.

Data set
PSO/ACO2 using
standard PSO

PSO/ACO2 using differential
evolution (P) (rand-to-best/1)

PSO/ACO2 using differential
Evolution (P) (best/1)

Balance-scale 81.46± 6.33 81.94± 5.1 80.33± 3.4

Diabetes 76.19± 3.79 74.11± 5.82 74.04± 5.39

Glass 67.68± 11.27 66.73± 10.98 68.45± 7.69

Heart-statlog 79.26± 6.34 76.3± 8.41 76.3± 10.36

Ionosphere 84.33± 6.51 84.33± 3.85 80.33± 7.09

Iris 87.33± 11.95 94.67± 5.26 93.67± 5.54

Segment 95.89± 0.82 93.9± 1.38 94.2± 0.85

Sonar 69.71± 10.02 76.9± 7.89 77.4± 10.29

Vehicle 70.1± 5.75 65.72± 6.24 66.01± 3.94

4. RESULTS

For the experiments, we used 27 datasets from the well-
known UCI dataset repository [21]. We performed 10-fold
cross validation [1], and run each algorithm 10 times for each
fold for the stochastic algorithms (PSO/ACO2 and the DE
algorithm).

Both the part of the PSO/ACO2 algorithm coping with
nominal data and the standard PSO algorithm (i.e., the
part of PSO/ACO2 coping with continuous data) had 100
particles, and these two algorithms ran for a maximum of
100 iterations (MaxIterations) per rule discovered. In all
experiments, constriction factor χ = 0.72984 and social and
personal learning coefficients c1 = c2 = 2.05 [4]. PSO/ACO2
is freely available on sourceforge.

A freely available java implementation of DE by Mikal
Keenan and Rainer Storn was used in all experiments
presented in this paper [22]. The default values (as stated
in the JavaDoc) of F = 0.5, CR = 1 for rand-to-best/1
and F = 0.5, CR = 1 for best/1 were used, so as not to
delve into the realms of parameter tweaking. To maintain
consistency with the PSO algorithm, a population size of 100
was used and the number of fitness evaluations was kept the
same as the PSO variant. As to not bias the comparison,
the PSO/ACO2 and DE classification algorithms were only
compared on continuous attribute only datasets. This was
done in an attempt to prevent any bias that might occur
from the interaction with the nominal PSO/ACO2 part of
the algorithm.

MaxUncovExampPerClass was set to 10 as this is
standard in the literature [11]. As mentioned previously,
PSO/ACO2 uses Von-Neumann topology, where each par-
ticle has four neighbours, with the population being con-
nected together in a 2D grid. The corrected WEKA [1]
statistics class was used to compute the standard deviation
of the predictive accuracies and to apply the corresponding
corrected two-tailed Student’s t-test—with a significance
level of 5%—in the results presented in Tables 4, 5, and 6.

The algorithms compared in Table 4 are PSO/ACO2 and
PART. PART is WEKA’s improved implementation of C4.5
rules [1]. PART extracts rules from decision trees created
by J48 (WEKA’s implementation of C4.5). We compared

PSO/ACO2 against this algorithm as it is considered an
industry standard.

The first two columns (not including the dataset column)
in Table 4 show the percentage predictive accuracy of both
algorithms. The second two columns show the average rule
size (number of terms, or attribute-value pairs) for the rules
generated for each dataset. The third two columns show
the average rule set size for each dataset; this is simply the
average number of rules in each rule set. The measures of
average rule size and average rule set size give an indication
of the complexity (and so comprehensibility) of the rule
sets produced by each algorithm. The shading in these six
columns denotes a statistically significant win or a loss
(according to the corrected WEKA two-tailed Student’s t-
test), light grey for a win and dark grey for a loss against the
baseline algorithm (PART). Table 5 shows the overall score
of the PSO/ACO2 classification algorithm against PART,
considering that a significant win counts as “+1” and a
significant loss counts as a “−1,” and then calculating the
overall score across the 27 datasets.

It can be seen from Tables 4 and 5 that in terms of
accuracy PART and PSO/ACO2 are quite closely matched.
This is not completely surprising as PART is already con-
sidered to be very good in terms of predictive accuracy.
Furthermore, there is only one result that is significant in
terms of accuracy; the accuracy result for the tic-tac-toe
dataset. However, if one scans through the accuracy results
it is clear that often one algorithm outperforms the other
slightly. In terms of rule set complexity, the algorithms
are much less closely matched. When the average rule size
results are taken as a whole, PSO/ACO2 generates longer
rules in 6 cases overall. Although the average rule size
results are significant, the real impact of having a rule
that is under one term longer is arguable (as is found
in many cases). The most significant results by far are in
the rule set size columns. PSO/ACO produces significantly
smaller rule sets in 14 cases overall, sometimes having
tens of rules less than PART. These improvements have a
tangible effect on the comprehensibility of the rule set as a
whole.

The reduced PSO/ACO2 classification algorithm (for
continuous data only) using standard PSO (i.e., coping only
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with continuous attributes) is compared with the PSO/ACO2
classification algorithm using two DE variants in Table 6.
Although there is one significant loss for each DE variant
against the PSO variant, both algorithms seem to slightly
outperform each other on certain datasets. Also, there is no
clear winner between the different DE variants.

5. DISCUSSION AND CONCLUSIONS

We have conducted our experiments on 27 public domain
“benchmark” datasets used in the classification literature,
and we have shown that PSO/ACO2 is at least competitive
with PART (an industry standard classification algorithm) in
terms of accuracy, and that PSO/ACO2 often generates much
simpler (smaller) rule sets. This is a desirable result in data
mining—where the goal is to discover knowledge that is not
only accurate but also comprehensible to the user.

At present, PSO/ACO2 is partly greedy in the sense that
it builds each rule with the aim of optimising that rule’s
quality individually, without directly taking into account the
interaction with other rules. A less greedy, but possibly more
computationally expensive way to approach the problem
would be to associate a particle with an entire rule set and
then to consider the quality of the entire rule set when
evaluating a particle. This is known as the “Pittsburgh
approach” in the evolutionary algorithm literature, and it
could be an interesting research direction. Also the nominal
part of the rule is always discovered first and separately from
the continuous part, it could be advantageous to use a more
“coevolved” approach.
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