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Abstract. Classification is one of the most important tasks in the data mining field, allowing patterns to be leveraged
from data in order to try to properly classify unseen instances. Also, more and more often, the classification task has
to be performed on datasets containing uncertain data. Although an increasing number of studies have been developed
to handle uncertainty in classification in the last decade, there are still many underexplored scenarios — such as sparse
data, usual in the bioinformatics field. Thus, in this work, we propose a novel distance measure for sparse and uncertain
binary data based on the widely used Jaccard distance, testing its performance using the 1NN classifier. We evaluate the
classification performance of our proposed method on 28 biological aging-related datasets with sparse and probabilistic
binary features and compare it with a common technique to handle uncertainty by employing data transformation and
traditional classification. The experimental results show that our proposed distance measure has both a smaller runtime
and a better predictive performance than the traditional transformation approach.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications; I.5.4 [Pattern Recog-
nition]: Applications; J.3 [Computer Applications]: Life and Medical Sciences

Keywords: aging-related genes, classification, data mining, Jaccard distance, uncertain data

1. INTRODUCTION

The classification task is one of the most relevant tasks in the data mining field [Han et al. 2011].
Given a dataset of pre-labeled instances, the classification task comprises the induction of a clas-
sification model that is capable of predicting the class of an unseen instance based solely on its
features. These features can have a numerical or categorical domain, with certain or uncertain values.
Naturally, because of their higher prevalence, the majority of the techniques that have been developed
so far focus on the handling of certain data [Aggarwal 2014].

In this work, we focus on the classification of uncertain data, specifically in sparse datasets.
This kind of data can originate from many sources due to various factors, such as measurement
precision limits, measurement errors, approximations or even lack of information. Even though the
number of studies on classifying uncertain data has significantly increased in the last decade [Aggarwal
2014], there are still many underexplored areas, as is the case of sparse datasets.

We are particularly interested in the study of aging-related genes (represented as instances in our
datasets) in order to identify the effect of genes on the longevity of an organism. These datasets
commonly use binary features extracted from the Gene Ontology (GO) database [Ashburner et al.
2000], but another important type of feature are protein-protein interactions (PPIs) [Stojanova et al.
2013]. PPI features indicate whether or not an aging-related protein interacts with each of a set of
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other proteins (which may or may not be aging-related proteins). For that purpose, we can use the
STRING database [Szklarczyk et al. 2014], a popular source of PPI datasets in the bioinformatics
literature. Note, however, that instead of providing binary values for the PPIs, the STRING database
provides confidence scores for each interaction. This allows the dataset to present more PPI data, but
adds uncertainty to it.

When not working with uncertain data, an approach to classify genes described by binary features
in the aging literature is to use the k -Nearest Neighbors classifier with the Jaccard distance [Wan
et al. 2015] [Wan and Freitas 2017]. Since the Jaccard distance is not able to directly handle uncertain
binary values, a data transformation procedure would be required to "remove" the uncertainty, which,
of course, could cause loss of valuable data. A simple and common transformation is applying a cut-off
on the PPI values, so that when the confidence score is over (below) a certain value it is converted
to 1 (0). The problem would then lie on how to choose an appropriate cut-off value. However, in
the bioinformatics literature there is usually no concern on optimizing this value and not even an
explanation about the reasons behind its choice.

Thus, the main contribution of this work is to provide an intuitive, fast and accurate method to han-
dle uncertain PPI data in distance-based classification. For that purpose, we propose a novel Jaccard
distance measure able to handle uncertain binary features, without requiring any data transformation
procedure or parameter optimization. Also, it allows the algorithm to benefit from the uncertain
information available, removing the need to rely on arbitrary cut-off values or to spend much time on
optimizing its value.

The remainder of this article is organized as follows. Section 2 describes the related work. In Section
3, we introduce the novel distance measure for classification in sparse datasets with probabilistic binary
features. Section 4 presents the datasets used in this work. Computational results are presented in
Section 5. Lastly, in Section 6, we present the conclusions and future research directions.

2. RELATED WORK

The classification of uncertain data has been extensively studied in the last two decades. Many different
techniques have been adapted to handle uncertain data, such as Bayesian approaches [Ren et al. 2009],
Neural Networks [Ge et al. 2010], Decision Trees [Tsang et al. 2011], k -Nearest Neighbors [Yang et al.
2015] and Support Vector Machines [Yang and Li 2009]. Most of them focus on uncertain numerical
features, not specifically on binary features. Notwithstanding, very few uncertain data mining studies
focus on sparse datasets, and they are usually related to other tasks, such as Frequent Itemset Mining
[Xu et al. 2014].

As mentioned in the previous section, a lot of the research done so far in the bioinformatics field has
simply ignored the uncertain information provided by the STRING database about PPIs. This has
been done by applying ad-hoc cut-off values such as 0.4 [Shi et al. 2017], 0.7 [Gao et al. 2017], and 0.9
[Lin et al. 2016].

3. A NOVEL PROBABILISTIC JACCARD DISTANCE MEASURE

Distance-based classifiers use the intuitive idea that instances of the same class are more similar among
themselves than among instances of other classes [Han et al. 2011]. Similarity (distance) measures,
like the Jaccard index (distance), are functions that calculate how similar (distant) two objects are
to (from) each other, and thus are the basis of supervised distance-based classification algorithms.

Next, we present the definitions of the traditional Jaccard measure (which cannot directly han-
dle uncertainty, since a data transformation is needed to handle it) and of our proposed distance
measure (which handles uncertainty directly).
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Let sj and sj′ be the sets of binary features with positive value (the least frequent value for each
feature) in instances j and j′ respectively. The Jaccard index is defined as in Equation (1). In the
special case when both sj and sj′ are empty, the Jaccard index is defined to be equal to 1.

Jaccard(sj , sj′) =
|sj ∩ sj′ |
|sj ∪ sj′ |

(1)

And the Jaccard distance between j and j′ is simply defined as:

δJaccard(j, j
′) = 1− Jaccard(sj , sj′). (2)

Note that Equation (1), and consequently Equation (2), are limited to scenarios with binary feature
values without uncertainty. We then propose an extension of the Jaccard index to take into account
the probability pi(sj) of a binary feature i (of a total of n features in the dataset) belonging to sj , i.e.,
having positive value in instance j. Equation (3) defines this new similarity coefficient, here called
ProbJaccard (Probabilistic Jaccard measure). Again, we define ProbJaccard(sj ,sj′) = 1 when the
denominator evaluates to zero, which happens when both sets are certainly empty.

ProbJaccard(sj , sj′) =
∑n

i=1[pi(sj)× pi(sj′)]∑n
i=1[pi(sj) + pi(sj′)− pi(sj)× pi(sj′)]

(3)

Like Equation (1), the numerator of Equation (3) measures the degree of intersection between
the two instances, while the denominator measures the degree of union between the two instances.
Note however, that these degrees of intersection and union are probabilistic in Equation (3).

Analogously, we define the Probabilistic Jaccard distance between j and j′ as:

δProbJaccard(j, j
′) = 1− ProbJaccard(sj , sj′). (4)

Note that all these indexes and distances take values in the interval [0,1]. Also note that, when
working with certain data, Equations (3) and (4) become equivalent to Equations (1) and (2), and,
thus, they can be used in datasets with both certain and uncertain binary features.

4. EXPERIMENTAL DATASETS

We use 28 datasets of aging-related genes, where instances are genes and the binary class indicates
whether or not the genes are related to longevity. These datasets were created by integrating data
from the Human Ageing Genomic Resources (HAGR) GenAge database (version: 335 Build 17)
[de Magalhães et al. 2009] and the Gene Ontology (GO) database (version: 2015-10-10) [Ashburner
et al. 2000]. HAGR is a database of aging- and longevity-associated genes in model organisms which
provides aging information for genes from four model organisms: C.elegans (worm), D.melanogaster
(fly), M.musculus (mouse) and S.cerevisiae (yeast). The GO database provides information about
three ontology types: biological process (BP), molecular function (MF) and cellular component (CC).
Each ontology contains a separate set of GO terms (features). So, for each of the four model organisms,
we created seven datasets, with seven combinations of feature types, denoted by BP, CC, MF, BP.CC,
BP.MF, CC.MF, and BP.CC.MF.

Hence, each dataset contains instances (genes) from a single model organism. Each instance is
formed by a set of binary features indicating whether or not the gene is annotated with each GO
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term and a binary class variable indicating if the instance is either positive ("pro-longevity" gene)
or negative ("anti-longevity" gene) according to the HAGR database. These GO features values are
highly sparse and, in order to avoid overfitting, GO terms which occurred in less than three genes
were discarded, avoiding the use of rare features with very little statistical support and virtually no
generalization power for our set of genes.

Finally, as a contribution to the aging-related genes classification problem, in order to improve the
predictive performance achieved when using only GO terms [Wan et al. 2015], we added protein-
protein interactions (PPIs) uncertain data from the STRING database (version: 10) [Szklarczyk et al.
2014] to each of the 28 datasets. The data is also highly sparse and, as we did with the GO features,
we also filtered out the PPIs that only occurred in less than three genes.

These PPI features values were obtained, in the STRING database, from the combined_score field
in the network.node_node_links table. Their values s ∈ [0, 1] indicate the degree of confidence
of their correspondent interactions. We use these values under a probabilistic perspective, where
the features can be seen as binary ones (with the value 0 (1) indicating absence (presence) of the
correspondent PPI in that instance’s set of PPIs) and their values are represented by a probability
distribution function f , defined as f(1) = s and f(0) = 1− s.

Table I shows statistics for each dataset, including information on their sparsity. For each of the
four model organisms, each of the seven rows shows information about a specific dataset. The first
column identifies the model organism. The second column shows the selected Gene Ontologies on the
dataset. The other columns show, respectively, the number of features, the number (and percentage)
of GO features, the number of PPI features, the average percentage of GO features with value 0 in an
instance, the average percentage of PPI features with value 0 in an instance, the number of instances,
the number (and percentage) of positive-class instances and the number of negative-class instances.
For example, for the C. elegans dataset with GO terms of the Biological Process (BP) ontology type
only (first row), out of the 12,438 features, 991 (7.97%) are GO features and the remaining 11,447
(92.03%) are PPI features. Also, the column "avg. % GO = 0" shows that, on average, an instance
of that dataset has 95.48% of its GO features with value 0 and the column "avg. % PPI = 0" shows
that, on average, an instance of that dataset has 95.32% of its PPI features with value 0. Finally, the
last three columns show that this dataset has 657 instances, from which only 226 (34.40%) are labeled
positive (Pos) and the remaining 431 (65.60%) are labeled negative (Neg).

5. EXPERIMENTS

In our datasets, as shown in Table I, the distribution of instances belonging to the two classes is
imbalanced. Then, if the simple accuracy measure (the percentage of correctly classified instances)
had been used, it would provide us with misleading performance evaluation since we could trivially
obtain a high accuracy (but no useful model) by predicting the majority class for all instances [Jap-
kowicz and Shah 2011]. Hence, we evaluate the predictive performance of the classifiers by using the
value of Geometric mean (Gmean), defined as Gmean =

√
Sens× Spec, which takes into account

the balance of the classifiers’s sensitivity (Sens) and specificity (Spec) [Japkowicz and Shah 2011].
Sensitivity (specificity) means the proportion of pro-longevity (anti-longevity) genes that were cor-
rectly predicted as pro-longevity (anti-longevity) in the testing dataset [Altman and Bland 1994]. The
reported Gmean value for each dataset is the average of all the 10 Gmean values generated by the
well-known stratified 10-fold cross-validation procedure [Witten et al. 2016].

In this work, we use the 1-Nearest Neighbor (1NN) classifier since, in previous work, it has been
shown effective for classification in aging-related datasets [Wan et al. 2015][Wan and Freitas 2017].

We start by testing the improvement in predictive performance when the PPI features are added
to the original database composed of GO terms only. Since this inserted data is uncertain and the
Jaccard distance does not handle uncertain values, we decided to use, as a baseline, a 5-fold Internal
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Table I: Statistics for each dataset.

# # (%) # avg. % avg. % # # (%) #
Organism Dataset features GO features PPI features GO = 0 PPI = 0 instances Pos Neg

C
.
el

eg
an

s

BP 12438 991 (7.97) 11447 95.48 95.32 657 226 (34.40) 431
CC 11163 178 (1.59) 10985 93.35 94.63 484 176 (36.36) 308
MF 11151 263 (2.36) 10888 94.93 94.58 504 190 (37.70) 314
BP.CC 12626 1169 (9.26) 11457 95.47 95.35 664 228 (34.34) 436
BP.MF 12733 1254 (9.85) 11479 95.65 95.35 663 227 (34.24) 436
CC.MF 11731 441 (3.76) 11290 95.01 94.87 566 205 (36.22) 361
BP.CC.MF 12912 1432 (11.09) 11480 95.62 95.37 667 229 (34.33) 438

D
.
m

el
an

og
as

te
r BP 7359 800 (10.87) 6559 91.68 91.11 132 95 (71.97) 37

CC 6549 89 (1.36) 6460 86.98 90.85 122 86 (70.49) 36
MF 6698 145 (2.16) 6553 92.28 90.92 126 89 (70.63) 37
BP.CC 7503 889 (11.85) 6614 91.38 91.20 133 95 (71.43) 38
BP.MF 7559 945 (12.50) 6614 91.89 91.20 133 95 (71.43) 38
CC.MF 6817 234 (3.43) 6583 90.72 91.17 130 92 (70.77) 38
BP.CC.MF 7648 1034 (13.52) 6614 91.56 91.20 133 95 (71.43) 38

M
.
m

us
cu

lu
s

BP 11513 1332 (11.57) 10181 89.35 90.04 109 75 (68.81) 34
CC 10236 142 (1.39) 10094 83.20 90.11 107 73 (68.22) 34
MF 10323 240 (2.32) 10083 90.27 89.86 106 72 (67.92) 34
BP.CC 11655 1474 (12.65) 10181 88.79 90.04 109 75 (68.81) 34
BP.MF 11753 1572 (13.38) 10181 89.53 90.04 109 75 (68.81) 34
CC.MF 10563 382 (3.62) 10181 87.93 90.04 109 75 (68.81) 34
BP.CC.MF 11895 1714 (14.41) 10181 89.03 90.04 109 75 (68.81) 34

S.
ce

re
vi

si
ae

BP 6305 844 (13.39) 5461 94.65 92.25 331 44 (13.29) 287
CC 5606 145 (2.59) 5461 89.96 92.25 331 44 (13.29) 287
MF 5682 221 (3.89) 5461 94.27 92.25 331 44 (13.29) 287
BP.CC 6450 989 (15.33) 5461 93.96 92.25 331 44 (13.29) 287
BP.MF 6526 1065 (16.32) 5461 94.57 92.25 331 44 (13.29) 287
CC.MF 5827 366 (6.28) 5461 92.56 92.25 331 44 (13.29) 287
BP.CC.MF 6671 1210 (18.14) 5461 94.02 92.25 331 44 (13.29) 287

Cross-Validation (ICV) method (accessing the training set only) to automatically choose a cut-off
value to discretize the feature (feature values greater or equal than the cut-off are set to 1 and set
to 0 otherwise). This ICV is performed in each iteration of the external cross-validation procedure.
This baseline method is here called Jaccard-ICV. Applying this cut-off on the uncertain data allows
us to convert it to certain binary values and then use it with the 1NN classifier using the traditional
Jaccard distance.

The STRING database online search interface suggests four cut-off values: 0.15, 0.40, 0.70 and
0.90, meaning, respectively, low, medium, high and highest confidence. These values have also been
extensively employed in the related literature [Lin et al. 2016] [Shi et al. 2017] [Gao et al. 2017]. For
these two reasons, the ICV focused on choosing the best out of these four cut-off values.

The results are shown in Table II, where the boldface numbers denote the highest Gmean value
obtained for each dataset. The first two columns are the same as in Table I, explained in the previous
section. The third column shows the Gmean values obtained by the 1NN classifier in datasets with
GO features only and using the traditional Jaccard distance metric. The fourth and fifth columns
show the values obtained with the classification on the datasets composed of both GO and PPI data.
While the fourth column shows the results with the internal cross-validation approach explained above,
the fifth column shows the results obtained when using 1NN with our new proposed distance measure.
Each row represents a different dataset in the same way as in Table I. Table II, however, has two
additional rows. The second to last row, Average Rank, shows the average rank obtained by each
method over the 28 datasets. For each dataset, the best method receives the ranking value of 1;
conversely, the worst method receives the ranking value of 3. So, the smaller the average rank of a
method, the better its overall predictive performance. Finally, the last row, #Wins, shows the number
of datasets where each method has obtained the best predictive performance. Again, the boldface
numbers denote the best result in each of these two rows.
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Table II: Comparison of predictive performance using Gmean as evaluation measure.

GO GO + PPI
Group Dataset Jaccard Jaccard-ICV Prob-Jaccard

C
.
el

eg
an

s

BP 55.91 65.30 64.13
CC 59.73 61.01 63.21
MF 53.47 64.86 66.41
BP.CC 61.14 65.25 66.44
BP.MF 58.07 67.15 65.19
CC.MF 60.33 63.12 62.30
BP.CC.MF 58.11 68.49 66.25

D
.
m

el
an

og
as

te
r BP 64.17 52.39 61.13

CC 70.44 72.08 68.03
MF 50.65 60.52 58.13
BP.CC 61.87 55.05 65.19
BP.MF 62.88 63.24 63.81
CC.MF 58.69 64.14 64.93
BP.CC.MF 62.57 65.49 63.30

M
.
m

us
cu

lu
s BP 62.98 68.31 63.07

CC 50.74 56.27 63.95
MF 53.94 65.64 69.18
BP.CC 61.84 55.56 56.81
BP.MF 63.81 66.29 65.30
CC.MF 56.61 67.23 68.89
BP.CC.MF 62.27 63.49 58.51

S.
ce

re
vi

si
ae

BP 53.69 57.34 58.26
CC 50.61 53.56 61.45
MF 40.34 58.69 58.99
BP.CC 58.32 55.88 65.39
BP.MF 51.03 57.83 58.29
CC.MF 41.56 63.74 60.73
BP.CC.MF 53.60 57.32 62.88

Average Rank 2.71 1.75 1.54
# Wins 2 11 15

The results in Table II show that Prob-Jaccard, which uses our proposed distance measure, achieves
the best predictive performance on 15 datasets, followed by Jaccard-ICV (best results on 11 datasets)
and Jaccard (2 datasets). To determine whether the differences in performance are statistically sig-
nificant, we ran the non-parametric Friedman test followed by the Nemenyi test [Japkowicz and Shah
2011]. Both tests were used at the 0.05 significance level. The Friedman test indicated that there was
at least one pair of classifiers with a statistical difference in the predictive performance. Hence, we em-
ployed the post-hoc Nemenyi test to discover in which pairs this difference occurs. The Nemenyi test
showed that both Prob-Jaccard and Jaccard-ICV are significantly superior to Jaccard-GO, which does
not include PPI features. However, even though Prob-Jaccard achieves both a better average rank and
a higher number of wins than Jaccard-ICV, the difference in the performance between Prob-Jaccard
and Jaccard-ICV was not statistically significant.

One could think of using the Euclidean distance with the 1NN classifier by using the probability
values as features values, thus leading to a scenario with "certain" numerical features instead of un-
certain binary ones. A preliminary experiment using this strategy has been performed, obtaining very
poor results when compared to the other two methods explored in this article. These results are some-
what intuitive, since the Euclidean distance is known to be weakly discriminant for multidimensional
and sparse data, and also because treating a probability as just a numeric value can lead to wrong
assumptions. As an example, think of the case when comparing the distance between two instances
with a single uncertain binary feature, and assume this feature’s values for both instances are repre-
sented by the same probability distribution function f , for which f(0) = f(1) = 0.5. The Euclidean
distance between these two instances would be zero, even though, if we assume that the (unknown)
true value of a feature is binary (an assumption that may or may not be appropriate depending on the
application domain), there is a 50% chance that these two instances have the opposite binary values
for their single feature.
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Based on the conducted experiments, we can notice a great improvement by simply adding the
PPI features and optimizing the choice of cut-off value for each fold via internal cross-validation.
However, this approach is slow, which could be a big problem when working with larger datasets.
We then compared the runtime performance of the Jaccard-ICV method with our proposed Prob-
Jaccard method to demonstrate how much faster this proposed method can be in comparison to the
internal cross-validation one, without losing in overall predictive performance (and actually improving
it most of the times). These results are presented in Table III. In this table, the first two columns are
exactly the same as the ones in the previous tables. The third and fourth columns show the average
time in seconds that was taken to classify a fold in the 10-fold cross-validation procedure. Notice
that the reported times for the Jaccard-ICV method include the time spent in the selection of the
cut-off value. The last column shows the ratio of the values in the third column to the values in the
fourth column, which indicates how many times faster the Prob-Jaccard method is in comparison to
Jaccard-ICV. These times were measured in a computer with 1.6 GHz Intel Core i5 processor and 4
GB 1600 MHz DDR3 memory.

Table III: Comparison of average CPU time in seconds per cross-validation fold.

GO + PPI Jaccard-ICV
Prob-JaccardGroup Dataset Jaccard-ICV Prob-Jaccard

C
.
el

eg
an

s

BP 18.048 0.835 21.614
CC 9.577 0.399 24.003
MF 10.802 0.438 24.662
BP.CC 20.492 0.845 24.251
BP.MF 20.316 0.861 23.596
CC.MF 13.394 0.594 22.549
BP.CC.MF 21.181 0.855 24.773

D
.
m

el
an

og
as

te
r BP 0.639 0.023 28.684

CC 0.492 0.018 24.200
MF 0.469 0.016 25.059
BP.CC 0.705 0.020 27.500
BP.MF 0.676 0.021 29.905
CC.MF 0.527 0.020 25.667
BP.CC.MF 0.718 0.022 30.700

M
.
m

us
cu

lu
s BP 0.639 0.023 27.783

CC 0.492 0.018 27.333
MF 0.469 0.016 29.313
BP.CC 0.705 0.020 35.250
BP.MF 0.676 0.021 32.190
CC.MF 0.527 0.020 26.350
BP.CC.MF 0.718 0.022 32.636

S.
ce

re
vi

si
ae

BP 3.796 0.112 33.893
CC 3.321 0.097 34.237
MF 3.274 0.105 31.181
BP.CC 4.008 0.116 34.552
BP.MF 3.925 0.118 33.263
CC.MF 3.488 0.108 32.296
BP.CC.MF 4.190 0.126 33.254

Average 5.314 0.233 28.596

The last row of Table III shows that, on average, the Jaccard-ICV approach took 5.3 seconds to
classify a single fold, while Prob-Jaccard took only 0.2 seconds. The last column in that row shows
that the Prob-Jaccard approach was able to classify a single fold 28.6 times faster on average.

6. CONCLUSIONS

In this work, we presented a novel Jaccard distance measure for nearest-neighbor classification in
sparse datasets with probabilistic binary features. We compared both the speed and the predictive
performance of the 1NN classifier using both our novel distance measure and the traditional Jaccard
distance (by applying an internal cross-validation to optimize the cut-off value).
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The 1NN classifier using the proposed ProbJaccard distance measure is significantly faster than the
Jaccard-ICV method. This is due to the fact that ProbJaccard handles the uncertainty from the data
directly, so there is no need to perform an internal cross-validation to optimize a cut-off parameter.
Additionally, the proposed ProbJaccard method has shown an overall improvement in the predictive
performance of the 1NN classifier across 28 aging-related datasets, with a better average rank and
higher number of wins when compared with the Jaccard-ICV method and a dataset with GO terms
only, as shown in Table II; even though there was no statistically significant difference between the
results of ProbJaccard and Jaccard-ICV.

Finally, this new distance measure can be extended to handle categorical features with more general
types of uncertain values in sparse classification datasets. We leave this research for future work.
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