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Abstract. With the ever-increasing number of pre-processing and clas-
sification algorithms, manually selecting the best algorithm and their
best hyper-parameter settings (i.e. the best classification workflow) is a
daunting task. Automated Machine Learning (Auto-ML) methods have
been recently proposed to tackle this issue. Auto-ML tools aim to auto-
matically choose the best classification workflow for a given dataset. In
this work we analyse the predictive accuracy and overfit of the state-of-
the-art auto-sklearn tool, which iteratively builds a classification ensem-
ble optimised for the user’s dataset. This work has 3 contributions. First,
we measure 3 types of auto-sklearn’s overfit, involving the differences of
predictive accuracies measured on different data subsets: two parts of the
training set (for learning and internal validation of the model) and the
hold-out test set used for final evaluation. Second, we analyse the distri-
bution of types of classification models selected by auto-sklearn across
all 17 datasets. Third, we measure correlations between predictive accu-
racies on different data subsets and different types of overfitting. Overall,
substantial degrees of overfitting were found in several datasets, and de-
cision tree ensembles were the most frequently selected types of models.
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1 Introduction

With the growing popularity and number of Machine Learning (ML) techniques,
it is increasingly difficult for users to find the ‘best’ classification workflow
(the combination of pre-processing methods, classification algorithms, and their
hyper-parameter settings) to be applied to their data. This task becomes even
more difficult when one considers the use of ensemble techniques, which may
combine several classification workflows to make the final prediction.

Automated Machine Learning (Auto-ML) techniques were devised to solve
the problem of how to automatically choose the best classification workflow for
a given user’s dataset. Typically, Auto-ML methods perform a search that works
by using a dataset with instances with known class labels (the training dataset)
and returning a fully-parameterised model to be used to predict the class labels
of new unlabelled instances.

The state-of-the-art method for Auto-ML is the auto-sklearn tool [3, 8], which
was the overall winner of the first ChaLearn Auto-ML challenge [4], and a variant
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of auto-sklearn also won the second, latest AutoML challenge [1]. Auto-sklearn
uses meta-learning and the Sequential Model-based Algorithm Configuration
(SMAC) method to build an ensemble of classification workflows given a train-
ing dataset. Meta-learning is used to initialise the SMAC search, suggesting
a ‘reasonable’ classification model for the user’s dataset, given the estimated
predictive accuracy of the model in other datasets. Next, the iterative SMAC
search uses a Bayesian approach to explore the huge space of possible classifi-
cation workflows, training several candidate models per iteration and returning
the best model found by the search.

SMAC methods normally return only the best classification workflow found
by the search procedure as the final model. However, auto-sklearn exploits the
fact the SMAC search procedure produces several ‘good’ candidate classification
workflows that would normally be discarded. These classification workflows are
used to build an ensemble instead of being discarded. By default, this ensemble
contains at most 50 classification workflows at each iteration. Each workflow has
a weight which is proportional to the workflow’s relevance for the final prediction.

By default, auto-sklearn works by randomly dividing the training set into two
disjoint sets, a learning set and a validation set. The learning set is used during
the SMAC search to build the classification workflows. The validation set is used
to estimate the accuracy of the workflows. One key aspect of Auto-ML tools like
auto-sklearn, which has been to a large extent neglected in the literature thus
far, is the degree of overfitting resulting from repeatedly using a fixed validation
set across the search. Even though the training set has been properly divided
into learning and validation sets, the fact that there are several iterations, each
using the accuracy estimated in the validation set to guide the search, may lead
to a high degree of overfitting to the validation set. That is, the search may
select algorithms and their settings that classify the instances in the validation
set very well (since it had several iterations to fine-tune its parameters) but fail
to classify the test instances properly (due to model overfitting to the validation
set). Besides the just defined overfit (between the validation and test sets), we
also analyse two other types of overfit: 1) between the learning and validation
sets and 2) between the learning and test sets.

This work has three contributions, all related to experimental analyses of
auto-sklearn, as follows. First, we estimate the degree of overfitting of the tool
using 3 measures of overfit. This analysis can be useful to ascertain to what
extent SMAC’s iterative learning procedure is actually hindering predictive ac-
curacy due to overfit. Second, we identify the base classification algorithms most
frequently selected by the SMAC method. This can be useful to find classifica-
tion algorithms that are ‘good’ across several application domains and could be
used as a principled ‘first approach’ to tackle classification problems. Third, we
measure the correlations between several experimental results, aiming to uncover
non-obvious relationships between the experimental variables that may lead to
further insights about auto-sklearn.

We know of only one AutoML work [6] that measures and briefly analyses
overfit, however, there is no work performing a comprehensive overfit analysis
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(considering 3 types of overfit) comparable to the one presented here. Actually,
a very recent and comprehensive survey of Auto-ML studies [9] does not even
mention the issue of overfitting.

The rest of this paper is organised as follows: Section 2 presents our exper-
imental methodology. Section 3 presents the analysis of our results. Section 4
presents our conclusions and directions for future work.

2 Experimental Methodology

To measure the predictive accuracy of auto-sklearn we used 17 datasets which
are pre-divided into training and test sets, taken from [7]. The training sets are
further divided into a ‘learning’ set (which the SMAC method will use to build
the ensemble) and a ‘validation’ set, which will be used to estimate the predictive
accuracy of the models in each iteration of the SMAC search. The test set is never
shown to the SMAC method, being reserved to estimate the predictive accuracy
of the ensemble classifier created by each iteration of auto-sklearn. Note that,
in a normal experimental scenario, the test set would be used only to evaluate
the predictive accuracy of the ensemble returned after the last iteration of the
SMAC search. However, since this study is interested in the overfit behaviour
across iterations, we report results where the test set is also used to evaluate
the ensemble at each iteration of the SMAC search. We emphasise that this
procedure does not influence the SMAC search in any way.

Table 1 shows basic characteristics of the used datasets [7]. These datasets are
very diverse in terms of application domain and dataset characteristics, varying
from small datasets with 6 features and 1210 instances (car) to relatively large
datasets with 3072 features (CIFAR-10-Small) or 43,500 instances (shuttle).

Auto-sklearn was run for 30 hours on each dataset, using default settings
for the other parameters, except that it optimized the AUROC measure (Sec-
tion 2.1). We ran Auto-sklearn in a computing cluster comprising 20 8-core Intel
Haswell machines, with a clock speed of 2.6 GHz and 16 Gb of RAM memory.

2.1 Predictive Accuracy Estimation

We use the popular Area Under the Receiver Operating Characteristic curve
(AUROC) to measure the predictive accuracy of auto-sklearn [5]. An AUROC
of 1.0 indicates that the model correctly ranked all positive instances after the
negative ones. An AUROC of 0.5 indicates that the classifier achieved an accu-
racy equivalent to randomly ranking the instances. For datasets with more than
two class labels, the AUROC is calculated individually per class label and then
averaged, weighted by the number of instances annotated with each class label.

2.2 Estimation of Three Types of Overfitting

We measure three types of overfitting, which can be used to analyse different
aspects of auto-sklearn’s training procedure, as follows.
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Table 1. Dataset statistics.

Dataset name
Number of

features

Number of
training
instances

Number of
test instances

Number of
class labels

gisette 5000 4900 2100 2
shuttle 9 43500 14500 7
kr-vs-kp 36 2238 958 2
car 6 1210 518 4
semeion 256 1116 477 10
abalone 8 2924 1253 28
amazon 10000 1050 450 50
convex 784 8000 50000 2
madelon 500 1820 780 2
waveform 40 3500 1500 3
CIFAR-10-Small 3072 10000 10000 10
dexter 20000 420 180 2
winequalitywhite 11 3425 1468 7
yeast 8 1034 445 9
german credit 20 700 300 2
dorothea 100000 805 345 2
secom 590 1097 470 2

1. The learning-validation overfit – defined as the difference between the pre-
dictive accuracy in the learning and validation sets. This overfit can measure
if auto-sklearn is successfully controlling the overfit of its training procedure
by using the accuracy estimated in the validation set.

2. The learning-test overfit – defined as the difference between the predictive
accuracy in the learning and test sets. This overfit measures the conventional
overfit in standard classification, i.e., the difference between the accuracy in
the learning set versus the expectedly smaller accuracy in the test set.

3. The validation-test overfit – defined as the difference between the predictive
accuracy in the validation and test sets. This overfit can be interpreted as
a measure of the effectiveness of using an internal validation set (part of
the training set) to estimate the predictive accuracy on the test set (not
used during training). That is, if the predictive accuracy in the validation
set reflects the expected accuracy in the test set, this overfit should be close
to zero. Note that even though the instances in the validation set are not
directly used to train the models, the accuracy of the classification models is
repeatedly estimated across iterations using the validation set. Therefore, the
model choice can overfit the validation set across iterations and the ensemble
can perform badly in the final test set while achieving good accuracy in the
validation set. Arguably, this is the most interesting type of overfitting from
an Auto-ML perspective, and it is not normally investigated in the literature.

2.3 Analysis of the Selected Classification Models

To analyse the classification models present at the final iteration of auto-sklearn
we measure the frequency each classification algorithm is chosen and the total
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relevance weights associated with each classification workflow. Note that a clas-
sification workflow may be selected several times to be present in the ensemble,
but its total weight may be lower than a workflow that is selected only once.

3 Results

3.1 Predictive Accuracy and Overfit Results

Table 2 shows the main experimental results of our analysis, ordered by increas-
ing degree of validation-test overfit. The columns show, respectively: the dataset
name; the final learning set AUROC (the AUROC on the learning set at the
last iteration of the SMAC search); the final validation set AUROC; the final
test set AUROC; the learning-validation overfit (the final learning set AUROC
minus the final validation AUROC); the learning-test overfit (the final learning
set AUROC minus the final test AUROC); the training-test overfit (the final
training set AUROC minus the final test AUROC); and the total number of
iterations. The last row of this table shows the mean overfits across datasets.
Note that we do not average the AUROCs as they are not directly comparable,
easier problems will naturally have greater AUROCs than harder ones.

Table 2. Results ordered by increasing degree of validation-test overfit.

Dataset
Learning
AUROC

Val.
AUROC

Test
AUROC

Learning-
Val.

overfit

Val.-Test
overfit

Learning-
Test

overfit
Its.

gisette 1.000 0.998 0.998 0.003 -0.001 0.002 210
shuttle 1.000 1.000 1.000 0.000 0.000 0.000 8
kr-vs-kp 1.000 0.999 1.000 0.001 0.000 0.000 34
car 1.000 0.999 0.999 0.001 0.000 0.001 324
semeion 1.000 0.999 0.998 0.001 0.001 0.003 174
abalone 0.883 0.788 0.785 0.096 0.003 0.099 161
amazon 1.000 0.995 0.991 0.005 0.003 0.009 207
convex 1.000 0.933 0.927 0.067 0.006 0.073 253
madelon 1.000 0.966 0.959 0.034 0.007 0.041 296
waveform 0.986 0.979 0.971 0.007 0.008 0.015 160
CIFAR-10-Small 1.000 0.869 0.861 0.131 0.008 0.139 193
dexter 1.000 0.994 0.982 0.006 0.012 0.018 428
winequalitywhite 1.000 0.851 0.829 0.149 0.023 0.171 186
yeast 0.997 0.868 0.840 0.129 0.028 0.157 74
german credit 1.000 0.840 0.765 0.160 0.075 0.236 206
dorothea 0.979 0.966 0.878 0.013 0.088 0.101 241
secom 0.974 0.877 0.702 0.097 0.174 0.272 332

Mean overfit 0.053 0.026 0.079

We can see in Table 2 that the learning AUROC (second column) in almost
all datasets is 1.0 or very close to 1.0. Just the dataset “abalone” had an AUROC
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smaller than 0.97. This shows that the SMAC method is building models with
high predictive accuracy in the learning set, as expected.

By analysing the column “Learning-Val. overfit” (fifth column) we can see
that almost all datasets (except shuttle) exhibit this kind of overfit, the valida-
tion AUROC is almost always smaller than the learning AUROC. This is also
expected, as SMAC did not have access to the validation instances during the
training of each model. The degree of learning-validation overfit was smaller than
1% in 8 of the 17 datasets. However, a large degree of learning-validation overfit
was observed in 6 datasets: 0.160 in german credit, 0.149 in winequalitywhite,
0.131 in CIFAR-10-Small, 0.129 in yeast, 0.097 in secom, and 0.096 in abalone.

Also, by analysing the column “Val.-Test overfit” (sixth column) we can see
that, with the exception of the first 4 datasets, the validation set AUROC is
always over-optimistically estimated when compared to the test set AUROC,
suggesting that the models are indeed overfitting in the validation set.

Finally, by analysing the column “Learning-Test overfit” (seventh column),
we can see that, overall, it presents the largest overfit values across datasets.
This is expected, as the SMAC method never had access to the test set to
train the ensemble, but it did have direct access to the learning set (to train the
classification models) and indirect access to the validation dataset (for predictive
accuracy estimation).

Analysing the mean overfits (last row) we can see that the average learning-
validation overfit is smaller than the learning-test overfit. This is expected, as
the AUROC in the test set is usually smaller than in the validation set while
the learning AUROC is the same for these two measures of overfitting. Also,
the average validation-test overfit is smaller than the learning-test overfit, this is
also expected, as the validation AUROC is naturally smaller than the learning
AUROC, which drives the validation-test overfit value down.

Figures 1 and 2 show the evolution of the accuracy of the models across
iterations by calculating the AUROC in the learning, validation and test sets.
The datasets in the figures are ordered in the same sequence as in Table 2. To
save space, we do not show figures associated with the first 5 datasets in Table 2,
as those results are trivial (a horizontal line at AUROC=1.0). Note that several
plots appear to show only two lines, this is because the test and validation lines
are overlapping.

Figure 1 and the first three plots in Figure 2 show that the validation AUROC
and the test AUROC are tracking very closely. Hence, for these datasets, the
validation AUROC is a good estimator for the test AUROC, although there is
little improvement in the validation and test AUROC along the search iterations
for some datasets.

The last three plots in Figure 2, however, show that auto-sklearn is clearly
overfitting to the validation set. Note that, in these plots, the validation AUROC
increases with the iterations, while the test AUROC decreases. The results for
the dorothea dataset are especially interesting, since there was a test AUROC
decrease between the first and last iterations of the SMAC algorithm while the
validation AUROC increases. We attribute this behaviour, which is also observ-
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Fig. 1. Training, validation, and test AUROC variation across iterations. Overall, these
plots show a ‘good’ convergence profile: the test AUROC increases with the iteration
number.

able to a lesser extent in datasets german credit and secom, to the fact that
the validation set, which is never directly used to build the model, is being
constantly queried to estimate the performance of the models, which leads the
selected models to overfit the validation set. That is, since the performance in
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Fig. 2. Training, validation, and test AUROC values across iterations. The plots in
this figure show a poor convergence profile: as the iteration number increases, the test
AUROC remains close to its initial value, with no sign of clear improvement.

the same validation set is being repeatedly used to guide the SMAC algorithm’s
search, SMAC is selecting parameter settings and algorithms that are, by some
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degree of random chance, good at classifying instances in the validation set, but
have poor performance in the testing set.

On another note, 11 of the 17 datasets evaluated in this work had a difference
between the final test AUROC and the test AUROC after one iteration of just
0.01 or less. Out of those 11 datasets, the first five (gisette, shuttle, kr-vs-kp,
car and semeion) are probably too “easy” for classification algorithms, having a
test AUROC after just one iteration already close to 1.

3.2 Selected models

Table 3 shows the classification algorithms selected to be part of the final ensem-
ble, with their total weight and the number of times each algorithm was selected
to be part of the final iteration’s ensemble. The summation of these frequency
numbers is the number of members in the final iteration’s ensemble.

Note that the algorithm frequency varies from just one final ensemble member
in the shuttle dataset to 28 members in the dexter dataset; which is much smaller
than the maximum allowed number of 50. Also, a high algorithm frequency in
the final ensemble does not necessarily imply high importance. For instance,
for the kr-vs-kp dataset, gradient boosting was selected 10 times, many more
than the other algorithms. However, its weight (0.50) is similar to the weight
associated with the extra trees algorithm (0.46), which was selected only twice.

Table 4 shows a summary of Table 3, presenting the average weights and
selection frequencies of each classification algorithm across all datasets.

Tables 3 and 4 contain 8 unique classification algorithms: 1) extra trees and 2)
random forests, both ensembles of decision trees that randomly sample instances
and a feature subset from which a feature is selected for each data split. Note
that extra trees introduce extra randomization to the decision tree ensemble by
also randomizing the cutoff point of each split. 3) passive agressive is an online
version of SVM. 4) gradient boosting induces a regression tree based on the
negative gradient of the loss function. 5) lda is a Linear Discriminant Analysis
classifier. 6) libsvm svc and 7) liblinear scv are both versions of a SVM classifier.
8) qda is the Quadratic Discriminant Analysis classifier.

Interestingly, the two classification algorithms with the highest average weight
and average frequency across datasets are based on decision tree ensembles.

3.3 Statistical Analysis

The statistical analyses presented below are based on the Pearson’s correlation
coefficient (r) under the null hypothesis of r = 0 using a t-test. We have tested in
total 12 hypotheses, one hypothesis for each unordered column pair in Table 2,
excluding the hypotheses involving correlations between the variable pairs that
are deterministically correlated (e.g.: ‘Test AUROC’ and ‘Learning-test overfit’,
since Learning-test overfit is equal to Learning AUROC minus Test AUROC). We
used the well-known Bonferroni correction for multiple hypotheses testing [5], so
the adjusted threshold of statistical significance (the α value) we consider below
is α = 0.05/12 ≈ 0.004. We show the results of these analyses in Table 5.
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Table 3. Distribution of selected classification algorithms per dataset. The second
column shows the final composition of the SMAC-generated ensemble, displaying the
name of the base classification algorithm, followed by two numbers in parenthesis: the
total weight of the algorithm in the interval [0, 1] and the number of times the algorithm
was selected to be in the final ensemble for a given dataset.

Dataset Selected algorithm (weight, frequency)

gisette
extra trees (0.18, 1), gradient boosting (0.30, 8),
passive aggressive (0.52, 1)

shuttle random forest (1.00, 1)

kr-vs-kp
liblinear svc (0.04, 1), extra trees (0.46, 2), gradient boosting
(0.50, 10)

car passive aggressive (1.00, 16)

semeion passive aggressive (0.42, 8), extra trees (0.58, 5)

abalone random forest (0.42, 7), liblinear svc (0.58, 16)

amazon
extra tree (0.12, 4), random forest (0.30, 12), passive aggressive
(0.58, 3)

convex gradient boosting (1.00, 15)

madelon extra trees (0.36, 7), libsvm svc (0.64, 6)

waveform
liblinear svc (0.02, 1), random forest (0.22, 6), passive aggressive
(0.24, 3), lda (0.52, 5)

CIFAR-10-Small random forest (0.40, 10), qda (0.60, 1)

dexter lda (1.00, 28)

winequalitywhite extra trees (1.00, 18)

yeast random forest (0.26, 1) extra trees (0.74, 15)

german credit libsvm svc (0.02, 1), random forest (0.18, 3), extra trees (0.80, 12)

dorothea random forest (1.00, 1)

secom extra trees (1.00, 12)

Table 4. Average weight and selection frequency of each algorithm across all datasets.

Classification algorithm Avg. weight across datasets Avg. freq. across datasets

extra trees 0.31 4.47
random forest 0.22 2.41
passive aggressive 0.16 1.82
gradient boosting 0.11 1.94
lda 0.09 1.94
libsvm svc 0.04 0.41
liblinear svc 0.04 1.06
qda 0.04 0.06

As expected, there is a strong statistically significant correlation between the
validation AUROC and the test AUROC (r = 0.90). Hence, the model’s AUROC
in the validation set is a good predictor for the AUROC in the test set.

There is a strong, highly statistically significant, negative correlation between
the test AUROC and the learning-validation overfit (r = −0.84). That is, the
greater the learning-validation overfit, the lower the test AUROC. This is ex-
pected, as models with a high overfit tend to perform worst in the testing set.
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Table 5. Correlations between pairs of measures in Table 2. The top three rows show
the statistically significant correlations (α = 0.004) among the measures in Table 2
using Pearson’s correlation coefficient (r), ordered by absolute r value. The remaining
rows show the non-statistically significant correlations, also ordered by absolute r value.
The first and second columns show the measures being tested, the third column shows
the r value and the last column shows the p-value associated with that r value.

Measure 1 Measure 2 r p-value

Validation AUROC Test AUROC 0.90 1.21× 10−6

Test AUROC Learning-validation overfit -0.84 2.30× 10−5

Validation AUROC Learning-test overfit -0.81 7.61× 10−5

Learning AUROC Validation AUROC 0.55 2.23× 10−2

Learning AUROC Test AUROC 0.45 6.81× 10−2

Validation-test overfit Iterations 0.31 2.33× 10−1

Learning-test overfit Iterations 0.13 6.30× 10−1

Learning AUROC Validation-test overfit -0.11 6.80× 10−1

Test AUROC Iterations -0.10 6.97× 10−1

Validation AUROC Iterations 0.06 8.14× 10−1

Learn.val.overfit Iterations -0.05 8.42× 10−1

Learning AUROC Iterations 0.04 8.68× 10−1

Similarly, there is a strong, highly statistically significant correlation between
the validation AUROC and the learning-test overfit (r = −0.81).

Somewhat surprisingly, there is no statistically significant correlation between
the test AUROC and the learning AUROC nor between the validation AUROC
and the learning AUROC. This reinforces the need for using validation sets to
properly estimate the accuracy of the SMAC method.

Also, unexpectedly, there is no statistically significant correlation between the
number of SMAC iterations and any measure of predictive accuracy or overfit.
We were expecting that the more the validation set is used to estimate SMAC’s
performance, the greater would be the potential for overfit, but our analysis did
not support this notion.

4 Conclusions and Future Work

In this work we have analysed the following two important aspects of the auto-
sklearn tool using 17 datasets: 1) the degree of overfitting of the tool in terms of
3 types of overfitting, and 2) the diversity of the base classification algorithms
most selected by the tool. The three overfits are defined as follows. The learning-
validation overfit is the difference between the predictive accuracy in the learning
and validation sets. The learning-test overfit is the difference between the pre-
dictive accuracy in the learning and test sets The validation-test overfit is the
difference between the predictive accuracy in the validation and test sets.

We have concluded that there is a strong statistically significant correlation
between the AUROC in the validation and testing sets, which suggests that, over-
all, the AUROC in the validation set is a useful proxy for the AUROC in the test
set. We have also detected a strong significant negative correlation between the
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test AUROC and the learning-validation overfit, which suggests that reducing
learning-validation overfit could be an effective approach to increase test AU-
ROC. This is an intuitive conclusion since overfitting to the validations set (part
of the training set) should reduce the AUROC on the test set. This conclusion is
also actionable, since approaches can be developed to control learning-validation
overfit during training, such as re-sampling the learning and validation sets or us-
ing cross-validation across SMACs iterations [2]. Finally, we have also detected a
statistically significant negative correlation between the validation AUROC and
the learning-test overfit, which suggests that improving the validation AUROC
(which is accessible during training) can lead to reduced learning-test overfit.

Regarding the base classification algorithms selected by auto-sklearn across
all 17 datasets, the 2 most selected algorithms (with higher average weights and
average selection frequency) were ensembles of decision trees.

Future work includes comparing the results obtained using auto-sklearn with
other AutoML tools (such as Auto-Weka [7]), as well as investigating the scala-
bility of Auto-sklearn to much larger datasets.
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