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Attribute seletion is an important preproessing task for the appliationof a lassi�ation algorithm to a given data set. This task often involvesthe simultaneous optimization of two or more objetives. In order tosolve this problem, this hapter desribes two multi-objetive methods:a geneti algorithm and a forward sequential feature seletion method.Both methods are based on the wrapper approah for attribute seletionand were used to �nd the best subset of attributes that minimizes thelassi�ation error rate and the size of deision tree built by a well-knownlassi�ation algorithm, namely C4.5.1. IntrodutionAttribute seletion is one of the most important preproessing tasks to beperformed before the appliation of data mining tehniques. In essene,it onsists of seleting a subset of attributes relevant for the target datamining task, out of all original attributes. In this work the target task islassi�ation, where the goal is to predit the lass of an example (reord)given the values of the attributes desribing that example. Attribute sele-tion beame essential when researhes disovered it an improve the datamining algorithm's performane (with respet to learning speed, lassi�a-1



2 G.L.Pappa & A.A.Freitas & C.A.A.Kaestnertion rate and/or rule set simpliity) and at the same time remove noise andderease data dimensionality.In fae of the importane of attribute seletion, a variety of methodshave been used in order to �nd a small attribute subset apable of obtaininga better lassi�ation rate than that obtained with the entire attributeset. These methods inlude sequential searh1, ranking tehniques2 andevolutionary algorithms3.Independent of the method used to solve the problem of attribute se-letion, solving this problem often requires the minimization of at leasttwo objetives: the lassi�ation error rate and a measure of size | whihan be a measure of size of the seleted data (typially the number of se-leted attributes) and/or a measure of size of the lassi�er (say, a rule set)learned from the seleted data. Many attribute seletion methods optimizethese objetives setting weights to eah one and ombining them in a singlefuntion.However, the study of multi-objetive optimization has shown that, insome tasks, a weighted ombination of the objetives to be optimized ina single funtion is not the most e�etive approah to solve the problem.Mainly in tasks that deal with optimization of oniting objetives, suhas attribute seletion, the use of the Pareto's dominane onept duringoptimization an be the best hoie.The optimization based on the Pareto's onept4 suggests that, for eahof the oniting objetives to be optimized, exists an optimal solution. So,the �nal response of the optimization system is a set of optimal solutionsinstead of a single solution. This is in ontrast with systems that intend tooptimize a single objetive. Hene, it is left to the user to deide whih ofthe optimal solutions he/she onsiders the best to solve his/her problem,using his/her bakground knowledge about the problem.In this spirit, this work presents two multi-objetive attribute sele-tion algorithms based on the Pareto's dominane onept. One of them isa multi-objetive geneti algorithm, and the other one is a multi-objetiveversion of the well-known forward sequential feature seletion method. Bothmethods use the wrapper approah (see next setion) in order to minimizethe error rate and the size of the deision tree built by a well-known las-si�er, namely C4.5.We report the results of extensive omputational experiments with 18publi domain real-world data sets, omparing the performane of thesetwo methods. The results show that both methods e�etively selet goodattribute subsets | by omparison with the original set of all attributes |



Multi-objetive Algorithms for Attribute Seletion in Data Mining 3and, somewhat surprisingly, the multi-objetive forward sequential seletionmethod is ompetitive with the multi-objetive geneti algorithm.
2. Attribute SeletionAs mentioned earlier, attribute seletion is an important step in the knowl-edge disovery proess and aims to selet a subset of attributes that arerelevant for a target data mining task. In the lassi�ation task, whih isthe task addressed in this work, an attribute is onsidered relevant if it isuseful for disriminating examples belonging to di�erent lasses.We an �nd in the literature a lot of attribute seletion methods. Thesemethods di�er mainly in the searh strategy they use to explore the spaeof andidate attribute subsets and in the way they measure the quality ofa andidate attribute subset.With respet to the searh strategy, the methods an be lassi�ed asexponential (e.g. exhaustive searh), randomized (e.g. geneti algorithms)and sequential. The exponential methods are usually too omputationallyexpensive, and so are not further disussed here.The sequential methods inlude the well-known FSS (forward sequentialseletion) and BSS (bakward sequential seletion)5. FSS starts with anempty set of attributes (features) and iteratively selets one-attribute-at-a-time | the attribute onsidered most relevant for lassi�ation at theurrent step | until lassi�ation auray annot be improved by seletinganother attribute. BSS starts with the full set of original attributes anditeratively removes one-attribute-at-a-time | the attribute onsidered leastrelevant for lassi�ation at the urrent step | as long as lassi�ationauray is not dereased. We have developed a multi-objetive version ofthe FSS method, whih will be desribed later.With respet to randomized methods, in this hapter we are partiularlyinterested in geneti algorithms, due to their ability to perform a globalsearh in the solution spae. In our ase, this means that they tend to opebetter with attribute interation than greedy, loal-searh methods (suhas sequential methods)3. We have also developed a multi-objetive genetialgorithm (GA) for attribute seletion, whih will be desribed later.The evaluation of the quality of eah andidate attribute subset an bebased on two approahes: the �lter or the wrapper approah. The maindi�erene between them is that in the wrapper approah the evaluationfuntion uses the target lassi�ation algorithm to evaluate the quality ofa andidate attribute subset. This is not the ase in the �lter approah,



4 G.L.Pappa & A.A.Freitas & C.A.A.Kaestnerwhere the evaluation funtion is spei�ed in a generi way, regardless of thelassi�ation algorithm. That is, in the wrapper approah the quality of aandidate attribute subset depends on the performane of the lassi�ationalgorithm trained only with the seleted attributes. This performane anbe measured with respet to several fators, suh as lassi�ation aurayand size of the lassi�er learned from the seleted data. Indeed, these arethe two performane measures used in this work, as will be seen later.Although the wrapper approah tends to be more expensive than the �l-ter approah, the wrapper approah usually obtains better preditive au-ray that the �lter approah, sine it �nds an attribute subset \ustomized"for the target lassi�ation algorithm.The vast majority of GAs for attribute seletion follow the wrapperapproah. Table 1, adapted from Freitas3, shows the riteria used in the�tness funtion of a number of GAs for attribute seletion following thewrapper approah.As an be observed in Table 1, there are many riteria that an be usedin the �tness of a GA for attribute seletion, but all the GAs mentioned inthe table use lassi�ation auray, and many GAs use either the numberof seleted attributes or the size of the lassi�er learned from the data. Notethat only one of the GAs mentioned in Table 1 is a multi-objetive method| all the other GAs either try to optimize a single objetive (preditiveauray) or use some method (typially a weighted formula) to ombinetwo or more objetives into a single objetive to be optimized.
3. Multi-objetive OptimizationReal world problems are usually omplex and require the optimization ofmany objetives to reah a good solution. Unfortunately, many projets thatshould involve the simultaneous optimization of multiple objetives avoidthe omplexities of suh optimization, and adopt the simpler approah ofjust weighing and ombining the objetives into a single funtion. Thissimpler approah is not very e�etive in many ases, due to at least tworeasons. First, the objetives are often oniting with eah other. Seond,the objetives often represent di�erent and non-ommensurate aspets of aandidate solution's quality, so that mixing them into a single formula is notsemantially meaningful. Indeed, both reasons hold in our ase, where thetwo objetives to be minimized | lassi�ation error rate and deision-treesize are to some extent oniting and entirely non-ommensurate.Aording to the multi-objetive optimization onept, when many ob-



Multi-objetive Algorithms for Attribute Seletion in Data Mining 5Table 1. Main aspets of �tness funtions of GAs for attribute seletionReferene Criteria used in �tness funtion[Bala et al. 1995℄6 preditive auray, number of seletedattributes[Bala et al. 1996℄7 preditive auray, information on-tent, number of seleted attributes[Chen et al. 1999℄8 based �rst on preditive auray, andthen on number of seleted attributes[Guerra-Saledo & Whitley 1998℄9 preditive auray[Guerra-Saledo et al. 1999℄10 preditive auray[Cherkauer & Shavlik 1996℄11 preditive auray, number of seletedattributes, deision-tree size[Terano & Ishino 1998℄12 subjetive evaluation, preditive au-ray, rule set size[Vafaie & DeJong 1998℄13 preditive auray[Yang & Honavar 1997, 1998℄14;15 preditive auray, attribute ost[Moser & Murty 2000℄16 preditive auray, number of seletedattributes[Ishibuhi & Nakashima 2000℄17 preditive auray, number of se-leted instanes, number of seletedattributes (attribute and instaneseletion)[Emmanouilidis et al. 2000℄18 preditive auray, number of seletedattributes (multi-objetive evaluation)[Rozsypal & Kubat 2003℄19 preditive auray, number of se-leted instanes, number of seletedattributes (attribute and instaneseletion)[Ll�ora & Garrell 2003℄20 preditive auray
jetives are simultaneously optimized, there is no single optimal solution.Rather, there is a set of optimal solutions, eah one onsidering a ertaintrade-o� among the objetives21. In this way, a system developed to solvethis kind of problem returns a set of optimal solutions, and an be left to theuser to hoose the one that best solves his/her spei� problem. This meansthat the user has the opportunity of hoosing the solution that representsthe best trade-o� among the oniting objetives after examining severalhigh-quality solutions. Intuitively, this is better than foring the user to de-�ne a single trade-o� before the searh is performed, whih is what happenswhen the multi-objetive problem is transformed in a single-objetive one.The Pareto's multi-objetive optimization onept is used to �nd this setof optimal solutions. Aording to this onept, a solution S1 dominates asolution S2 if and only if4:



6 G.L.Pappa & A.A.Freitas & C.A.A.Kaestner� Solution S1 is not worse than solution S2 in any of the objetives;� Solution S1 is stritly better than solution S2 in at least one of the ob-jetives.Figure 1 shows an example of possible solutions found for a multi-objetive attribute seletion problem. The solutions that are not dominatedby any other solutions are onsidered Pareto-optimal solutions, and theyare represented by the dotted line in Figure 1.

Fig. 1. Example of Pareto dominane in a two-objetive problem
Note that Solution A has a small deision-tree size but a large error rate.Solution D has a large deision-tree size but a small error rate. Assumingthat minimizing both objetives is important, one annot say that solutionA is better than D, nor vie-versa. On the other hand, solution C is learlynot a good solution, sine it is dominated, for instane, by D.

4. The Proposed Multi-Objetive Methods for AttributeSeletionIn the last few years, the use of multi-objetive optimization has led toimproved solutions for many di�erent kinds of problems21. So, in order toevaluate the e�etiveness of the multi-objetive framework in the attributeseletion problem for the lassi�ation task, we proposed a multi-objetivegeneti algorithm22 (MOGA) that returns a set of non-dominated solu-tions. We also proposed a multi-objetive version of the forward sequentialseletion (FSS) method23.The goal of these proposed algorithms is to �nd a subset of relevant



Multi-objetive Algorithms for Attribute Seletion in Data Mining 7attributes that leads to a redution in both lassi�ation error rate andomplexity (size) of the deision tree built by a data mining algorithm.The lassi�ation algorithm used in this paper is C4.525, a well-knowndeision tree indution algorithm. The proposed methods are based in thewrapper approah, whih means they use the target data mining algorithm(C4.5) to evaluate the quality of the andidate attribute subsets. Hene,the methods' evaluation funtions are based on the error rate and on thesize of the deision tree built by C4.5. These two riteria (objetives) areto be minimized aording to the onept of Pareto dominane.The next subsetions present the main aspets of the proposed methods.The reader is referred to Pappa22;23 for further details.4.1. The Multi-Objetive Geneti Algorithm (MOGA)A geneti algorithm (GA) is a searh algorithm inspired by the prinipleof natural seletion. It works evolving a population of individuals, whereeah individual is a andidate solution to a given problem. Eah individualis evaluated by a �tness funtion, whih measures the quality of its orre-sponding solution. At eah generation (iteration) the �ttest (the best) indi-viduals of the urrent population survive and produe o�spring resemblingthem, so that the population gradually ontains �tter and �tter individuals| i.e., better and better andidate solutions to the underlying problem.For a omprehensive review of GAs in general the reader is referred toMihalewiz24. For a omprehensive review of GAs applied to data miningthe reader is referred to Freitas3.The motivation for developing a multi-objetive GA for attribute sele-tion was that: (a) GAs are a robust searh method, apable of e�etivelyexploring the large searh spaes often assoiated with attribute seletionproblems; (b) GAs perform a global searh, so that they tend to ope bet-ter with attribute interation than greedy searh methods, whih is also animportant advantage in attribute seletion; and () GAs already work witha population of andidate solutions, whih makes them naturally suitablefor multiobjetive problem solving4, where the searh algorithm is requiredto onsider a set of optimal solutions at eah iteration.4.1.1. Individual EnodingIn the proposed GA, eah individual represents a andidate subset of se-leted attributes, out of all original attributes. Eah individual onsists ofM genes, where M is the number of original attributes in the data being



8 G.L.Pappa & A.A.Freitas & C.A.A.Kaestnermined. Eah gene an take on the value 1 or 0, indiating that the orre-sponding attribute ours or not (respetively) in the andidate subset ofseleted attributes.4.1.2. Fitness FuntionThe �tness (evaluation) funtion measures the quality of a andidate at-tribute subset represented by an individual. Following the priniple of multi-objetive optimization, the �tness of an individual onsists of two qualitymeasures: (a) the error rate of C4.5; and (b) the size of the deision treebuilt by C4.5. Both (a) and (b) are omputed by running C4.5 with theindividual's attribute subset only, and by using a hold-out method to es-timate C4.5's error rate, as follows. First, the training data is partitionedinto two mutually-exlusive data subsets, the building subset and the vali-dation subset. Then we run C4.5 using as its training set only the examples(reords) in the building subset. One the deision tree has been built, it isused to lassify examples in the validation set.4.1.3. Seletion Methods and Geneti OperatorsAt eah generation (iteration) of the GA, the next population of individualsis formed as follows. First the GA selets all the non-dominated individualsof the urrent generation, whih are then passed unaltered to the next gen-eration by elitism26. Elitism is a ommon proedure in MOGAs. It avoidsthat non-dominated individuals disappear from the population due to thestohasti nature of seletion operators. However, a maximum number ofelitist individuals has to be �xed to avoid that the next population on-sist only of elitist individuals, whih would prevent the reation of newindividuals, stopping the evolutionary proess. This maximum number ofelitist individuals was set to half the population size. If the number of non-dominated individuals is larger than half the population size, that numberof elitist individuals is hosen by the tie-breaking riterion explained later.One elitist reprodution has been performed, the remainder of the nextgeneration's population is �lled in with new \hildren" individuals, gener-ated from \parent" individuals from the urrent generation. The parentindividuals are hosen by tournament seletion with a tournament size of2. Then hildren are generated from parents by applying onventional uni-form rossover and bit-ip mutation. The tournament seletion proedureis adapted for multi-objetive searh as follows.The �tness of an individual is a vetor with values for two objetives:



Multi-objetive Algorithms for Attribute Seletion in Data Mining 9the error rate and deision-tree size assoiated with the attribute subsetrepresented by the individual. The seletion of the best individual is basedon the onept of Pareto dominane, taking into aount the two objetivesto be minimized. Given two individuals I1 and I2 playing a tournament,there are two possible situations. The �rst one is that one of the individualsdominates the other. In this ase the former is seleted as the winner of thetournament.The seond situation is that none of the individuals dominates the other.In this ase, we use the following tie-breaking riterion to determine the�ttest individual. For eah of the two individuals Ii , i=1,2, the GA om-putes Xi as the number of individuals in the urrent population that aredominated by Ii , and Yi as the number of individuals in the urrent popu-lation that dominate Ii . Then the GA selets as the best the individual Iiwith the largest value of the formula: Xi - Yi . Finally, if I1 and I2 have thesame value of the formula Xi - Yi (whih is rarely the ase), the tournamentwinner is simply hosen at random.In all our experiments the probabilities of rossover and mutation wereset to 80% and 1%, respetively, whih are relatively ommon values in theliterature. The population size was set to 100 individuals, whih evolve for50 generations. These values were used in all our experiments.
4.2. The Multi-Objetive Forward Sequential SeletionMethod (MOFSS)A single-objetive optimization and a multi-objetive optimization methoddi�er mainly in the number of optimal solutions that they return. Hene,the �rst step to onvert the traditional FSS into a multi-objetive methodis to make it able to return a set of optimal solutions instead of a singlesolution.This �rst point was resolved by reating a list of all non-dominatedsolutions generated by the MOFSS until the urrent iteration of the al-gorithm. This onept of a external list of non-dominated solutions wasinspired by some MOGAs in literature suh as SPEA27, that maintain allthe non-dominated individuals in an external population.The proposed MOFSS starts as the traditional FSS: a subset of solutionsis reated and evaluated. The evaluation of eah solution onsiders both theerror rate and the deision tree size generated by C4.5 during training. Asin the proposed MOGA, the values of these objetives to be minimized arestored and later used to judge a solution as better or worse than other.



10 G.L.Pappa & A.A.Freitas & C.A.A.KaestnerEah new solution of the urrent iteration is ompared with every othersolution of the urrent iteration, in order to �nd all non-dominated solu-tions in the urrent iteration. Then the non-dominated solution list, L, isupdated. This update onsists in omparing, through the Pareto's domi-nane onept, the solutions in the list with the non-dominated solutions ofthe urrent iteration. More preisely, for eah non-dominated solution S ofthe urrent iteration, S will be added to the list L only if S is not dominatedby any solution in L. It is also possible that S dominates some solution(s)in L. In this ase those dominated solutions in L are, of ourse, removedfrom L.The non-dominated solution list is the start point for generating newandidate solutions. At eah iteration, eah solution in the urrent list isextended with eah new attribute (di�erent from the ones that our in theurrent solution), and the proess starts again, until no more updates anbe made in the non-dominated solution list.
5. Computational ResultsExperiments were exeuted with 18 publi-domain, real-world data setsobtained from the UCI (University of California at Irvine)'s data setrepository28. The number of examples, attributes and lasses of these datasets is shown in Table 2.All the experiments were performed with a well-known strati�ed 10-foldross-validation proedure. For eah iteration of the ross-validation proe-dure, one the MOGA/MOFSS run is over we ompare the performane ofC4.5 using all the original attributes (the \baseline" solution) with the per-formane of C4.5 using only the attributes seleted by the MOGA/MOFSS.Reall that the MOGA/MOFSS an be onsidered suessful to the extentthat the attributes subsets seleted by it lead to a redution in the errorrate and size of the tree built by C4.5, by omparison with the use of alloriginal attributes.As explained before, the solution for a multi-objetive optimizationproblem onsists of all non-dominated solutions (the Pareto front) found.Hene, eah run of the MOGA outputs the set of all non-dominated so-lutions (attribute subsets) present in the last generation's population andeah run of the MOFSS outputs the solutions stored in the non-dominatedsolution list in the last iteration. In a real-world appliation, it would beleft to the user the �nal hoie of the non-dominated solution to be usedin pratie. However, in our researh-oriented work, involving many di�er-



Multi-objetive Algorithms for Attribute Seletion in Data Mining 11Table 2. Main harateristis of the data sets used in the experi-mentsData Set # examples # attributes # lassesArrhythmia 269 452 16Balane-Sale 4 625 3Bupa 6 345 2Car 6 1717 4Crx 15 690 2Dermatology 34 366 6Glass 10 214 7Ionosphere 34 351 2Iris 4 150 3Mushroom 22 8124 2Pima 8 768 2Promoters 57 106 2Sik-euthyroid 25 3163 2Ti ta toe 9 958 2Vehile 18 846 4Votes 16 435 2Wine 13 178 3Wisonsin breast-aner 9 699 2
ent publi-domain data sets, no user was available. Hene, we needed toevaluate the quality of the non-dominated attribute subsets returned byMOGA/MOFSS in an automati, data-driven manner. We have done thatin two di�erent ways, reeting two di�erent (but both valid) perspetives,as follows.The �rst approah to evaluate the set of non-dominated solutions re-turned by MOGA and MOFSS is alled Return All Non-Dominated So-lutions. The basi idea is that we return all the non-dominated solutionsfound by the method, and we ompare eah of them, one-at-a-time, with thebaseline solution | whih onsists of the set of all original attributes. Thenwe ount the number of solutions returned by the MOGA and MOFSS thatdominate or are dominated by the baseline solution, in the Pareto sense |with respet to the objetives of minimizing error rate and deision-treesize, as explained above.The seond approah, alled Return the \Best" Non-Dominated Solutiononsists of seleting a single solution to be returned to the user by usingthe tie-breaking riterion desribed earlier. From a user's point of view,this is a pratial approah, sine the user often wants a single solution.Moreover, this deision making proess makes the solution of the multi-objetive problem omplete, following its 3 potential stages of development:



12 G.L.Pappa & A.A.Freitas & C.A.A.Kaestnermeasurement, searh and deision making29.There are many ways of setting preferenes in a deision making proess,as shown in Coello-Coello29, but we did not follow any of those approahes.For both MOGA and MOFSS we return the solution in the non-dominatedset of the last generation (or iteration) with the highest value of the tie-breaking riterion - whih is a deision-making riterion tailored for ouralgorithms and underlying appliation. Note that, one the number of so-lutions that dominates the solutions in the non-dominated set is zero, theformula of the tie-breaking riterion is redued to Xi. Therefore, insteadof expliit ranking the objetives, we rank the non-dominated solutions a-ording the number of individuals they dominate in the last generation.The solution hosen through this method was ompared with the baselinesolution.There is one aveat when using this riterion in MOFSS. For this algo-rithm, we realulate the tie-breaking riterion onsidering all the solutionsgenerated in all the iterations of the method. That is, we alulate thenumber of solutions that are dominated by eah of the solutions in thenon-dominated solution list of the last iteration, onsidering all solutionsgenerated by the method. The tie-braking riterion was realulated be-ause, for some data sets, the number of solutions in the non-dominatedlist at the beginning of the last iteration was small. As a result, few newsolutions were generated in the last iteration. It was not fair to omparethe solutions in that list just with those few solutions generated in the lastgeneration, beause the small number of solutions would lead to a low on-�dene (from a statistial point of view) in the result. In order to solve thisproblem, the tie-breaking riterion is realulated using all generated solu-tions sine the algorithm starts. There was no need to apply this proedureto MOGA, beause this method has a larger number of solutions in thelast iteration, providing enough solutions for a reliable omputation of thetie-breaking riterion.
5.1. Results for the \Return All Non-Dominated Solutions"ApproahAs explained earlier, the basi idea of this approah is that MOGA andMOFSS return all non-dominated solutions that they have found, and thenwe ount the number of solutions returned by eah of these methods thatdominate or are dominated by the baseline solution.Tables 3 and 4 show, respetively, the results found by MOGA and



Multi-objetive Algorithms for Attribute Seletion in Data Mining 13MOFSS returning all the non-dominated solutions of the last generation(or iteration). Hereafter this version of the algorithms is alled MOGA-all and MOFSS-all. In Tables 3 and 4 the seond olumn shows the totalnumber of solutions found by the method. The numbers after the \�" arestandard deviations. The next olumns show the relative frequeny of thefound solutions that dominate the baseline solution (olumn Fdominate), therelative frequeny of the found solutions that are dominated by the base-line solution (olumn Fdominated) and the relative frequeny of the foundsolutions that neither dominate nor are dominated by the baseline solution(olumn Fneutral). Table 3. Results found with MOGA-allSolutions found with MOGA-allData set Total Fdominate Fdominated FneutralArrhythmia 3.9 � 0.54 0.21 0.33 0.46Balane-Sale 1.0 � 0.0 0.7 0 0.3Bupa 6.1 � 0.38 0.31 0 0.69Car 38.3 � 0.76 0.002 0 0.998Crx 4.55 � 0.67 0.56 0.05 0.39Dermatology 1.11 � 0.11 0.8 0 0.2Glass 46.9 � 1.03 0 0.06 0.94Ionosphere 1.14 � 0.14 0.37 0.12 0.5Iris 4.4 � 0.16 0.8 0.02 0.18Mushroom 1.9 � 0.18 0.68 0 0.32Pima 18.3 � 1.15 0.34 0 0.66Promoters 1.5 � 0.16 0.33 0 0.67Sik- euthyroid 25.4 � 0.93 0.02 0.02 0.96Ti ta toe 16.5 � 1.0 0 0 1Vehile 6.1 � 0.76 0.25 0.18 0.57Votes 26.6 � 1.63 0.6 0 0.4Wine 4.66 � 1.21 0.48 0.31 0.21Wisonsin 9.3 � 0.4 0.5 0.2 0.3
As an be observed in Table 3, there are 6 data sets where the valueof Fdominate is greater than 0.5 (shown in bold), whih means that morethan 50% of the MOGA-all's solutions dominated the baseline solution. In9 out of the 18 data sets, no MOGA-all's solution was dominated by thebaseline solution. There are only two data sets, namely arrhythmia andglass, where the value of Fdominate is smaller than the value of Fdominated(shown in bold), indiating that the MOGA was not suessful in thesetwo data sets. In any ase, in these two data sets the di�erene betweenFdominate and Fdominated is relatively small (whih is partiularly true in



14 G.L.Pappa & A.A.Freitas & C.A.A.Kaestnerthe ase of glass), and the value of Fneutral is greater than the values ofboth Fdominate and Fdominated.In summary, in 14 out of the 18 data sets the value of Fdominate isgreater than the value of Fdominated, indiating that overall MOGA-all wassuessful in the majority of the data sets. MOGA-all was very suessfulin 6 data sets, where the value of Fdominate was larger than 0.5 and muhgreater than the value of Fdominated.In Table 4, we an see that there are 7 data sets where the value ofFdominate is greater than 0.5 (shown in bold), whih means that 50% or moreof the MOFSS-all's solutions dominated the baseline solution. Remarkably,there are only two data sets | namely wine and Wisonsin breast aner| where the number of MOFSS-all's solutions dominated by the baselinesolution was greater than zero, and in the ase of wine that number isvery lose to zero, anyway. There are two data sets where all MOFSS-all'ssolutions are neutral, namely dermatology and mushroom. In summary, in16 out of the 18 data sets the value of Fdominate is greater than the valueof Fdominated, indiating that overall MOFSS was suessful in the vastmajority of the data sets. MOFSS was very suessful in 7 data sets, asmentioned above. Table 4. Results found with MOFFS-allSolutions found with MOFFS-allData set Total Fdominate Fdominated FneutralArrhythmia 32.2 � 10.82 0.54 0 0.46Balane-Sale 1.8 � 0.2 0.5 0 0.5Bupa 2.9 � 0.31 0.65 0 0.35Car 4.3 � 0.33 0.07 0 0.93Crx 84.1 � 2.05 0.89 0 0.11Dermatology 76.5 � 10.3 0 0 1Glass 94.1 � 5.24 0.99 0 0.01Ionosphere 12.9 � 6.23 0.14 0 0.86Iris 3.5 � 0.34 0.86 0 0.14Mushroom 51.9 � 11.88 0 0 1Pima 11.1 � 1.88 0.95 0 0.05Promoters 66.6 � 12.66 0.27 0 0.73Sik-euthyroid 50.3 � 6.44 0.1 0 0.9Ti ta toe 8.1 � 1.54 0.11 0 0.89Vehile 3.6 � 0.16 0.17 0 0.83Votes 98.4 � 0.37 0.1 0 0.9Wine 8.3 � 6.1 0.92 0.01 0.07Wisonsin 10.1 � 4.76 0.45 0.37 0.18



Multi-objetive Algorithms for Attribute Seletion in Data Mining 155.2. Results for the \Return the `Best' Non-DominatedSolution" ApproahTables 5 and 6 show the results obtained by following this approah. Thesetables show results for error rate and tree size separately, as usual in themahine learning and data mining literature. Later in this setion we showresults (in Table 7) involving Pareto dominane, whih onsider the simulta-neous minimization of error rate and tree size. In Tables 5 and 6 the olumntitled C4.5 ontains the results for C4.5 ran with the baseline solution (alloriginal attributes), whereas the olumns titled MOGA-1 and MOFSS-1ontain the results for C4.5 ran with the single \best" non-dominated so-lution found by MOGA and MOFSS, using the riterion for hoosing the\best" solution explained earlier. The �gures in the tables are the averageover the 10 iterations of the ross-validation proedure. The values after the\�" symbol represent the standard deviations, and the �gures in bold indi-ate the smallest error rates/tree sizes obtained among the three methods.In the olumns MOGA-1 and MOFSS-1, the symbol \+" (\-") denotesthat the results (error rate or tree size) of the orresponding method issigni�antly better (worse) than the result obtained with the baseline solu-tion. The di�erene in error rate or tree size between the olumns MOGA-1/MOFSS-1 and C4.5 are onsidered signi�ant if the orresponding errorrate or tree size intervals | taking into aount the standard deviations |do not overlap. The last two lines of Tables 5 and 6 summarize the resultsof these tables, indiating in how many data sets MOGA-1/MOFSS-1 ob-tained a signi�ant win/loss over the baseline solution using C4.5 with alloriginal attributes.In Tables 5 and 6, the results of MOFSS-1 for the dataset Arrhythmiaare not available due to the large number of attributes in this data set, 269.This leads to a too large number of solutions generated along all iterations ofthe algorithm, so that re-alulating the tie-breaking riterion onsideringall the generated solutions was impratial with the mahine used in theexperiments (a dual-PC with 1.1GHz lok rate and 3Gbytes memory).The results in Table 5 show that MOGA-1 obtained signi�antly bettererror rates than the baseline solution (olumn \C4.5") in 8 data sets. Inontrast, the baseline solution obtained signi�antly better results thanMOGA-1 in just two data sets. MOFSS-1 has not found solutions withsigni�antly better error rates than the baseline solution in any data set.On the ontrary, it found solutions with signi�antly worse error rates thanthe baseline solution in 7 data sets.



16 G.L.Pappa & A.A.Freitas & C.A.A.KaestnerTable 5. Error rates obtained with C4.5, MOGA-1 and MOFSS-1Error Rate (%)Data set C4.5 MOGA-1 MOFSS-1Arrhythmia 32.93 � 3.11 26.38 � 1.47 (+) N/ABalane-Sale 36.34 � 1.08 28.32 � 0.71 (+) 36.47 � 1.84Bupa 37.07 � 2.99 30.14 � 1.85 (+) 40.85 � 1.45Car 7.49 � 0.70 16.65 � 0.4 (-) 18.5 � 0.70 (-)Crx 15.95 � 1.43 12.44 � 1.84 15.04 � 1.35Dermatology 6.0 � 0.98 2.19 � 0.36 (+) 11.15 � 1.60 (-)Glass 1.86 � 0.76 1.43 � 0.73 1.86 � 0.76Ionosphere 10.2 � 1.25 5.13 � 1.27 (+) 7.98 � 1.37Iris 6.0 � 2.32 2.68 � 1.1 (+) 6.01 � 2.09Mushroom 0.0 � 0.0 0.0 � 0.0 0.18 � 0.07 (-)Pima 26.07 � 1.03 23.07 � 1.16 28.16 � 1.72Promoters 16.83 � 2.55 11.33 � 1.92 (+) 33.5 � 6.49 (-)Sik-euthyroid 2.02 � 0.12 2.22 � 0.18 2.32 � 0.23Ti ta toe 15.75 � 1.4 22.65 � 1.19 (-) 31.19 � 1.69 (-)Vehile 26.03 � 1.78 23.16 � 1.29 33.74 � 1.78 (-)Votes 3.2 � 0.91 2.97 � 0.75 4.57 � 0.89Wine 6.69 � 1.82 0.56 � 0.56 (+) 6.07 � 1.69Wisonsin 5.28 � 0.95 3.84 � 0.67 7.16 � 0.77 (-)Wins over C4.5 - 8 0Losses over C4.5 - 2 7
As an be observed in Table 6, the tree sizes obtained with the solutionsfound by MOGA-1 and MOFSS-1 are signi�antly better than the onesobtained with the baseline solution in 15 out of 18 data sets. In the otherthree data sets the di�erene is not signi�ant.In summary, both MOGA-1 and MOFSS-1 are very suessful in �ndingsolutions that led to a signi�ant redution in tree size, by omparison withthe baseline solution of all attributes. The solutions found by MOGA-1were also quite suessful in reduing error rate, unlike the solutions foundby MOFSS-1, whih unfortunately led to a signi�ant inrease in error ratein a number of data sets. Hene, these results suggest that MOGA-1 hase�etively found a good trade-o� between the objetives of minimizing errorrate and tree size, whereas MOFSS-1 minimized tree size at the expense ofinreasing error rate in a number of data sets.Table 7 ompares the performane of MOGA-1, MOFSS-1 and C4.5using all attributes onsidering both the error rate and the tree size atthe same time, aording to the onept of signi�ant Pareto dominane.This is a modi�ed version of onventional Pareto dominane tailored for thelassi�ation task of data mining, where we want to �nd solutions that arenot only better, but signi�antly better, taking into aount the standard



Multi-objetive Algorithms for Attribute Seletion in Data Mining 17Table 6. Tree sizes obtained with C4.5, MOGA-1 and MOFSS-1Tree Size (number of nodes)Data set C4.5 MOGA-1 MOFSS-1Arrhythmia 80.2 � 2.1 65.4 � 1.15 (+) N/ABalane-Sale 41.0 � 1.29 16.5 � 3.45 (+) 7.5 � 1.5 (+)Bupa 44.2 � 3.75 7.4 � 1.36 (+) 11.4 � 2.78 (+)Car 165.3 � 2.79 29.4 � 5.2 (+) 17.7 � 1.07 (+)Crx 29.0 � 3.65 11.2 � 3.86 (+) 24.6 � 8.27Dermatology 34.0 � 1.89 25.2 � 0.96 (+) 23.2 � 2.84 (+)Glass 11.0 � 0.0 11.0 � 0.0 11.0 � 0.0Ionosphere 26.2 � 1.74 13.0 � 1.4 (+) 14.2 � 2.23 (+)Iris 8.2 � 0.44 5.8 � 0.53 (+) 6.0 � 0.68 (+)Mushroom 32.7 � 0.67 30.0 � 0.89 (+) 27.2 � 1.76 (+)Pima 45.0 � 2.89 11.0 � 2.6 (+) 9.2 � 1.85 (+)Promoters 23.8 � 1.04 11.4 � 2.47 (+) 9.0 � 1.2 (+)Sik-euthyroid 24.8 � 0.69 11.2 � 1.35 (+) 9.6 � 0.79 (+)Ti ta toe 130.3 � 4.25 21.1 � 4.54 (+) 10.6 � 1.4 (+)Vehile 134.0 � 6.17 95 � 3.13 (+) 72.8 � 10.98 (+)Votes 10.6 � 0.26 5.4 � 0.88 (+) 5.6 � 1.07 (+)Wine 10.2 � 0.68 9.4 � 0.26 8.6 � 0.26 (+)Wisonsin 28.0 � 2.13 25 � 3.71 18 � 1.53 (+)Wins over C4.5 - 15 15Losses over C4.5 - 0 0Table 7. Number of signi�ant Paretodominane relationsC4.5 MOGA-1 MOFSS-1C4.5 X 0 0MOGA-1 14 X 7MOFSS-1 8 0 X
deviations (as explained earlier for Tables 5 and 6). Hene, eah ell ofTable 7 shows the number of data sets in whih the solution found bythe method indiated in the table row signi�antly dominates the solutionfound by method indiated in the table olumn. A solution S1 signi�antlydominates a solution S2 if and only if:� obj1(S1) + sd1(S1) < obj1(S2)� sd1(S2) and� not[obj2(S2) + sd2(S2) < obj2(S1)� sd2(S1)℄where obj1(S1) and sd1(S1) denote the average value of objetive 1 and thestandard deviation of objetive 1 assoiated with solution S1, and similarlyfor the other variables. Objetive1 and objetive2 an be instantiated witherror rate and tree size, or vie-versa. For example, in the bupa dataset



18 G.L.Pappa & A.A.Freitas & C.A.A.Kaestnerwe an say that the solution found by MOGA-1 signi�antly dominatesthe solution found by MOFSS-1 beause: (a) In Table 5 MOGA-1's errorrate plus standard deviation (30.14+1.85) is smaller than MOFSS-1's errorrate minus standard deviation (40.85-1.45); and (b) onerning the tree size(Table 6), the ondition \not (11.4 + 2.78 < 7.4 - 1.36)" holds. So, bothonditions for signi�ant dominane are satis�ed.As shown in Table 7, the baseline solution (olumn \C4.5") did notsigni�antly dominate the solutions found by MOGA-1 and MOFSS-1 inany dataset. The best results were obtained by MOGA-1, whose solutionssigni�antly dominated the baseline solution in 14 out of the 18 datasetsand signi�antly dominated MOFSS-1's solutions in 7 data sets. MOFSS-1 obtained a reasonably good result, signi�antly dominating the baselinesolution in 8 datasets, but it did not dominate MOGA-1 in any dataset. Amore detailed analysis of these results, at the level of individual data sets,an be observed later in Tables 8 and 9.
5.3. On the e�etiveness of the riterion to hoose the\best" solutionAnalyzing the results in Tables 3, 4, 5 and 6 we an evaluate whether theriterion used to hoose a single solution out of all non-dominated ones(i.e., the riterion used to generate the results of Tables 5 and 6) is reallyable to hoose the \best" solution for eah data set. We an do this ana-lyzing the dominane relationship (involving the error rate and tree size)between the single returned solution and the baseline solution. That is,we an observe whether or not the single solution returned by MOGA-1and MOFSS-1 dominates, is dominated by, or is neutral with respet tothe baseline solution. One we have this information, we an ompare itwith the orresponding relative frequenies assoiated with the solutionsfound by MOGA-all/MOFSS-all (olumns Fdominate, Fdominated, Fneutralof Tables 3 and 4). This omparison is performed in Tables 8 and 9, whihrefer to MOGA and MOFSS, respetively. In these two tables the �rst ol-umn ontains the data set names, the next three olumns are opied fromthe last three olumns in Tables 3 and 4, respetively, and the last threeolumns are omputed from the results in Tables 5 and 6, by applyingthe above-explained onept of signi�ant Pareto dominane between theMOGA-1's/MOFSS-1's solution and the baseline solution.As an be observed in Table 8, there are only 4 data sets in whih thesolutions found by MOGA-1 do not dominate the baseline solutions: ar,



Multi-objetive Algorithms for Attribute Seletion in Data Mining 19Table 8. Performane of MOGA-all versus MOGA-1Performane of MOGA-all'ssolutions wrt baselinesolution Performane of MOGA-1'ssolution wrt baseline solutionData set Fdom Fdom ed Fneut Dom Dom ed NeutArrhythmia 0.21 0.33 0.46 XBalane-Sale 0.7 0 0.3 XBupa 0.31 0 0.69 XCar 0.002 0 0.998 XCrx 0.56 0.05 0.39 XDermatology 0.8 0 0.2 XGlass 0 0.06 0.94 XIonosphere 0.37 0.12 0.5 XIris 0.8 0.02 0.18 XMushroom 0.68 0 0.32 XPima 0.34 0 0.66 XPromoters 0.33 0 0.67 XSik- euthyroid 0.02 0.02 0.96 XTi ta toe 0 0 1 XVehile 0.25 0.18 0.57 XVotes 0.6 0 0.4 XWine 0.48 0.31 0.21 XWisonsin 0.5 0.2 0.3 X
glass, ti-ta-toe and wisonsin. For these 4 data sets the solutions found byMOGA-1 were neutral (last olumn of Table 8), and the value of Fneutralwas respetively 0.998, 0.94, 1 and 0.3. Therefore, in the �rst three of thosedata sets it was expeted that the single solution hosen by MOGA-1 wouldbe neutral, so that the riterion used for hoosing a single solution annotbe blamed for returning a neutral solution. Only in the wisonsin data setthe riterion did badly, beause 50% of the found solutions dominated thebaseline solution but a neutral solution was hosen.The riterion was very suessful, managing to hose a solution thatdominated the baseline, in all the other 14 data sets, even though in 8 ofthose data sets less than 50% of the solutions found by MOGA-all domi-nated the baseline. The e�etiveness of the riterion an be observed, forinstane, in arrhythmia and sik-euthyroid. Although in arrhythmia thevalue of Fdominated was quite small (0.21), the solution returned by MOGA-1 dominated the baseline solution. In sik-euthyroid, 96% of the solutionsfound by MOGA-all were neutral, but a solution that dominates the base-line solution was again returned by MOGA-1. With respet to the e�etive-ness of the riterion when used by MOFSS-1, unexpeted negative resultswere found in 2 data sets of Table 9, namely rx and glass. For both data



20 G.L.Pappa & A.A.Freitas & C.A.A.KaestnerTable 9. Performane of MOFSS-all versus MOFSS-1Performane of MOFSS-all'ssolutions wrt baselinesolution Performane of MOFSS-1'ssolution wrt baseline solutionData set Fdom Fdom ed Fneut Dom Dom ed NeutArrhythmia 0.54 0 0.46 - - -Balane-Sale 0.5 0 0.5 XBupa 0.65 0 0.35 XCar 0.07 0 0.93 XCrx 0.89 0 0.11 XDermatology 0 0 1 XGlass 0.99 0 0.01 XIonosphere 0.14 0 0.86 XIris 0.86 0 0.14 XMushroom 0 0 1 XPima 0.95 0 0.05 XPromoters 0.27 0 0.73 XSik- euthyroid 0.1 0 0.9 XTi ta toe 0.11 0 0.89 XVehile 0.17 0 0.83 XVotes 0.1 0 0.9 XWine 0.92 0.01 0.07 XWisonsin 0.45 0.37 0.18 X
sets, despite the high values of Fdominate, the solutions hosen by MOFSS-1 were neutral. The opposite happened in ionosphere, sik-euthyroid andvotes, where Fneutral had high values, but single solutions better than thebaseline solution were hosen by MOFSS-1.The relatively large number of neutral solutions hosen by MOFSS-1 happened beause in many data sets the tree size assoiated with thesolution hosen by MOFSS-1 was smaller than the tree size assoiated withthe baseline solution, whilst the error rates of the former were larger thanthe error rates of the latter.Overall, the riterion for hoosing a single solution was moderately su-essful when used by MOFSS-1, and muh more suessful when used byMOGA-1. A possible explanation for this result is that the proedure usedfor tailoring the riterion for MOFSS, desribed earlier, is not working verywell. An improvement in that proedure an be tried in future researh.It is important to note that, remarkably, the riterion for hoosing asingle solution did not hoose a solution dominated by the baseline solutionin any data set. This result holds for both MOGA-1 and MOFSS-1.



Multi-objetive Algorithms for Attribute Seletion in Data Mining 216. Conlusions and Future WorkThis hapter has disussed two multi-objetive algorithms for attribute se-letion in data mining, namely a multi-objetive geneti algorithm (MOGA)and a multi-objetive forward sequential seletion (MOFSS) method. Thee�etiveness of both algorithms was extensively evaluated in 18 real-worlddata sets. Two major sets of experiments were performed, as follows.The �rst set of experiments ompared eah of the non-dominated solu-tions (attribute subsets) found by MOGA and MOFSS with the baselinesolution (onsisting of all the original attributes). The omparison aimedat ounting how many of the solutions found by MOGA and MOFSS dom-inated (in the Pareto sense) or were dominated by the baseline solution, interms of lassi�ation error rate and deision tree size. Overall, the results(see Tables 3 and 4) show that both MOGA and MOFSS are suessfulin the sense that they return solutions that dominate the baseline solutionmuh more often than vie-versa.The seond set of experiments onsisted of seleting a single \best" so-lution out of all the non-dominated solutions found by eah multi-objetiveattribute seletion method (MOGA and MOFSS) and then omparing thissolution with the baseline solution. Although this kind of experiment is notoften performed in the multi-objetive literature, it is important beausein pratie the user often wants a single solution to be suggested by thesystem, to relieve him from the ognitive burden and diÆult responsibilityof hoosing one solution out of all non-dominated solutions.In order to perform this set of experiments, this work proposed a simpleway to hoose a single solution to be returned from the set of non-dominatedsolutions generated by MOGA and MOFSS. The e�etiveness of the pro-posed riterion was analyzed by omparing the results of the two di�erentversions of MOGA and MOFSS, one version returning all non-dominatedsolutions (results of the �rst set of experiments) and another version re-turning a single hosen non-dominated solution. Despite its simpliity, theproposed riterion worked well in pratie, partiularly when used in theMOGA method. It ould be improved when used in the MOFSS method,as disussed earlier.In the future we intend to analyze the harateristis of the data setswhere eah of the proposed methods obtained its best results, in order to�nd patterns that desribe the data sets where eah method an be appliedwith greater suess.
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