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Attribute sele
tion is an important prepro
essing task for the appli
ationof a 
lassi�
ation algorithm to a given data set. This task often involvesthe simultaneous optimization of two or more obje
tives. In order tosolve this problem, this 
hapter des
ribes two multi-obje
tive methods:a geneti
 algorithm and a forward sequential feature sele
tion method.Both methods are based on the wrapper approa
h for attribute sele
tionand were used to �nd the best subset of attributes that minimizes the
lassi�
ation error rate and the size of de
ision tree built by a well-known
lassi�
ation algorithm, namely C4.5.1. Introdu
tionAttribute sele
tion is one of the most important prepro
essing tasks to beperformed before the appli
ation of data mining te
hniques. In essen
e,it 
onsists of sele
ting a subset of attributes relevant for the target datamining task, out of all original attributes. In this work the target task is
lassi�
ation, where the goal is to predi
t the 
lass of an example (re
ord)given the values of the attributes des
ribing that example. Attribute sele
-tion be
ame essential when resear
hes dis
overed it 
an improve the datamining algorithm's performan
e (with respe
t to learning speed, 
lassi�
a-1
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ity) and at the same time remove noise andde
rease data dimensionality.In fa
e of the importan
e of attribute sele
tion, a variety of methodshave been used in order to �nd a small attribute subset 
apable of obtaininga better 
lassi�
ation rate than that obtained with the entire attributeset. These methods in
lude sequential sear
h1, ranking te
hniques2 andevolutionary algorithms3.Independent of the method used to solve the problem of attribute se-le
tion, solving this problem often requires the minimization of at leasttwo obje
tives: the 
lassi�
ation error rate and a measure of size | whi
h
an be a measure of size of the sele
ted data (typi
ally the number of se-le
ted attributes) and/or a measure of size of the 
lassi�er (say, a rule set)learned from the sele
ted data. Many attribute sele
tion methods optimizethese obje
tives setting weights to ea
h one and 
ombining them in a singlefun
tion.However, the study of multi-obje
tive optimization has shown that, insome tasks, a weighted 
ombination of the obje
tives to be optimized ina single fun
tion is not the most e�e
tive approa
h to solve the problem.Mainly in tasks that deal with optimization of 
on
i
ting obje
tives, su
has attribute sele
tion, the use of the Pareto's dominan
e 
on
ept duringoptimization 
an be the best 
hoi
e.The optimization based on the Pareto's 
on
ept4 suggests that, for ea
hof the 
on
i
ting obje
tives to be optimized, exists an optimal solution. So,the �nal response of the optimization system is a set of optimal solutionsinstead of a single solution. This is in 
ontrast with systems that intend tooptimize a single obje
tive. Hen
e, it is left to the user to de
ide whi
h ofthe optimal solutions he/she 
onsiders the best to solve his/her problem,using his/her ba
kground knowledge about the problem.In this spirit, this work presents two multi-obje
tive attribute sele
-tion algorithms based on the Pareto's dominan
e 
on
ept. One of them isa multi-obje
tive geneti
 algorithm, and the other one is a multi-obje
tiveversion of the well-known forward sequential feature sele
tion method. Bothmethods use the wrapper approa
h (see next se
tion) in order to minimizethe error rate and the size of the de
ision tree built by a well-known 
las-si�er, namely C4.5.We report the results of extensive 
omputational experiments with 18publi
 domain real-world data sets, 
omparing the performan
e of thesetwo methods. The results show that both methods e�e
tively sele
t goodattribute subsets | by 
omparison with the original set of all attributes |
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tive Algorithms for Attribute Sele
tion in Data Mining 3and, somewhat surprisingly, the multi-obje
tive forward sequential sele
tionmethod is 
ompetitive with the multi-obje
tive geneti
 algorithm.
2. Attribute Sele
tionAs mentioned earlier, attribute sele
tion is an important step in the knowl-edge dis
overy pro
ess and aims to sele
t a subset of attributes that arerelevant for a target data mining task. In the 
lassi�
ation task, whi
h isthe task addressed in this work, an attribute is 
onsidered relevant if it isuseful for dis
riminating examples belonging to di�erent 
lasses.We 
an �nd in the literature a lot of attribute sele
tion methods. Thesemethods di�er mainly in the sear
h strategy they use to explore the spa
eof 
andidate attribute subsets and in the way they measure the quality ofa 
andidate attribute subset.With respe
t to the sear
h strategy, the methods 
an be 
lassi�ed asexponential (e.g. exhaustive sear
h), randomized (e.g. geneti
 algorithms)and sequential. The exponential methods are usually too 
omputationallyexpensive, and so are not further dis
ussed here.The sequential methods in
lude the well-known FSS (forward sequentialsele
tion) and BSS (ba
kward sequential sele
tion)5. FSS starts with anempty set of attributes (features) and iteratively sele
ts one-attribute-at-a-time | the attribute 
onsidered most relevant for 
lassi�
ation at the
urrent step | until 
lassi�
ation a

ura
y 
annot be improved by sele
tinganother attribute. BSS starts with the full set of original attributes anditeratively removes one-attribute-at-a-time | the attribute 
onsidered leastrelevant for 
lassi�
ation at the 
urrent step | as long as 
lassi�
ationa

ura
y is not de
reased. We have developed a multi-obje
tive version ofthe FSS method, whi
h will be des
ribed later.With respe
t to randomized methods, in this 
hapter we are parti
ularlyinterested in geneti
 algorithms, due to their ability to perform a globalsear
h in the solution spa
e. In our 
ase, this means that they tend to 
opebetter with attribute intera
tion than greedy, lo
al-sear
h methods (su
has sequential methods)3. We have also developed a multi-obje
tive geneti
algorithm (GA) for attribute sele
tion, whi
h will be des
ribed later.The evaluation of the quality of ea
h 
andidate attribute subset 
an bebased on two approa
hes: the �lter or the wrapper approa
h. The maindi�eren
e between them is that in the wrapper approa
h the evaluationfun
tion uses the target 
lassi�
ation algorithm to evaluate the quality ofa 
andidate attribute subset. This is not the 
ase in the �lter approa
h,
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tion is spe
i�ed in a generi
 way, regardless of the
lassi�
ation algorithm. That is, in the wrapper approa
h the quality of a
andidate attribute subset depends on the performan
e of the 
lassi�
ationalgorithm trained only with the sele
ted attributes. This performan
e 
anbe measured with respe
t to several fa
tors, su
h as 
lassi�
ation a

ura
yand size of the 
lassi�er learned from the sele
ted data. Indeed, these arethe two performan
e measures used in this work, as will be seen later.Although the wrapper approa
h tends to be more expensive than the �l-ter approa
h, the wrapper approa
h usually obtains better predi
tive a

u-ra
y that the �lter approa
h, sin
e it �nds an attribute subset \
ustomized"for the target 
lassi�
ation algorithm.The vast majority of GAs for attribute sele
tion follow the wrapperapproa
h. Table 1, adapted from Freitas3, shows the 
riteria used in the�tness fun
tion of a number of GAs for attribute sele
tion following thewrapper approa
h.As 
an be observed in Table 1, there are many 
riteria that 
an be usedin the �tness of a GA for attribute sele
tion, but all the GAs mentioned inthe table use 
lassi�
ation a

ura
y, and many GAs use either the numberof sele
ted attributes or the size of the 
lassi�er learned from the data. Notethat only one of the GAs mentioned in Table 1 is a multi-obje
tive method| all the other GAs either try to optimize a single obje
tive (predi
tivea

ura
y) or use some method (typi
ally a weighted formula) to 
ombinetwo or more obje
tives into a single obje
tive to be optimized.
3. Multi-obje
tive OptimizationReal world problems are usually 
omplex and require the optimization ofmany obje
tives to rea
h a good solution. Unfortunately, many proje
ts thatshould involve the simultaneous optimization of multiple obje
tives avoidthe 
omplexities of su
h optimization, and adopt the simpler approa
h ofjust weighing and 
ombining the obje
tives into a single fun
tion. Thissimpler approa
h is not very e�e
tive in many 
ases, due to at least tworeasons. First, the obje
tives are often 
on
i
ting with ea
h other. Se
ond,the obje
tives often represent di�erent and non-
ommensurate aspe
ts of a
andidate solution's quality, so that mixing them into a single formula is notsemanti
ally meaningful. Indeed, both reasons hold in our 
ase, where thetwo obje
tives to be minimized | 
lassi�
ation error rate and de
ision-treesize are to some extent 
on
i
ting and entirely non-
ommensurate.A

ording to the multi-obje
tive optimization 
on
ept, when many ob-
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tive Algorithms for Attribute Sele
tion in Data Mining 5Table 1. Main aspe
ts of �tness fun
tions of GAs for attribute sele
tionReferen
e Criteria used in �tness fun
tion[Bala et al. 1995℄6 predi
tive a

ura
y, number of sele
tedattributes[Bala et al. 1996℄7 predi
tive a

ura
y, information 
on-tent, number of sele
ted attributes[Chen et al. 1999℄8 based �rst on predi
tive a

ura
y, andthen on number of sele
ted attributes[Guerra-Sal
edo & Whitley 1998℄9 predi
tive a

ura
y[Guerra-Sal
edo et al. 1999℄10 predi
tive a

ura
y[Cherkauer & Shavlik 1996℄11 predi
tive a

ura
y, number of sele
tedattributes, de
ision-tree size[Terano & Ishino 1998℄12 subje
tive evaluation, predi
tive a

u-ra
y, rule set size[Vafaie & DeJong 1998℄13 predi
tive a

ura
y[Yang & Honavar 1997, 1998℄14;15 predi
tive a

ura
y, attribute 
ost[Moser & Murty 2000℄16 predi
tive a

ura
y, number of sele
tedattributes[Ishibu
hi & Nakashima 2000℄17 predi
tive a

ura
y, number of se-le
ted instan
es, number of sele
tedattributes (attribute and instan
esele
tion)[Emmanouilidis et al. 2000℄18 predi
tive a

ura
y, number of sele
tedattributes (multi-obje
tive evaluation)[Rozsypal & Kubat 2003℄19 predi
tive a

ura
y, number of se-le
ted instan
es, number of sele
tedattributes (attribute and instan
esele
tion)[Ll�ora & Garrell 2003℄20 predi
tive a

ura
y
je
tives are simultaneously optimized, there is no single optimal solution.Rather, there is a set of optimal solutions, ea
h one 
onsidering a 
ertaintrade-o� among the obje
tives21. In this way, a system developed to solvethis kind of problem returns a set of optimal solutions, and 
an be left to theuser to 
hoose the one that best solves his/her spe
i�
 problem. This meansthat the user has the opportunity of 
hoosing the solution that representsthe best trade-o� among the 
on
i
ting obje
tives after examining severalhigh-quality solutions. Intuitively, this is better than for
ing the user to de-�ne a single trade-o� before the sear
h is performed, whi
h is what happenswhen the multi-obje
tive problem is transformed in a single-obje
tive one.The Pareto's multi-obje
tive optimization 
on
ept is used to �nd this setof optimal solutions. A

ording to this 
on
ept, a solution S1 dominates asolution S2 if and only if4:



6 G.L.Pappa & A.A.Freitas & C.A.A.Kaestner� Solution S1 is not worse than solution S2 in any of the obje
tives;� Solution S1 is stri
tly better than solution S2 in at least one of the ob-je
tives.Figure 1 shows an example of possible solutions found for a multi-obje
tive attribute sele
tion problem. The solutions that are not dominatedby any other solutions are 
onsidered Pareto-optimal solutions, and theyare represented by the dotted line in Figure 1.

Fig. 1. Example of Pareto dominan
e in a two-obje
tive problem
Note that Solution A has a small de
ision-tree size but a large error rate.Solution D has a large de
ision-tree size but a small error rate. Assumingthat minimizing both obje
tives is important, one 
annot say that solutionA is better than D, nor vi
e-versa. On the other hand, solution C is 
learlynot a good solution, sin
e it is dominated, for instan
e, by D.

4. The Proposed Multi-Obje
tive Methods for AttributeSele
tionIn the last few years, the use of multi-obje
tive optimization has led toimproved solutions for many di�erent kinds of problems21. So, in order toevaluate the e�e
tiveness of the multi-obje
tive framework in the attributesele
tion problem for the 
lassi�
ation task, we proposed a multi-obje
tivegeneti
 algorithm22 (MOGA) that returns a set of non-dominated solu-tions. We also proposed a multi-obje
tive version of the forward sequentialsele
tion (FSS) method23.The goal of these proposed algorithms is to �nd a subset of relevant
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tion in Data Mining 7attributes that leads to a redu
tion in both 
lassi�
ation error rate and
omplexity (size) of the de
ision tree built by a data mining algorithm.The 
lassi�
ation algorithm used in this paper is C4.525, a well-knownde
ision tree indu
tion algorithm. The proposed methods are based in thewrapper approa
h, whi
h means they use the target data mining algorithm(C4.5) to evaluate the quality of the 
andidate attribute subsets. Hen
e,the methods' evaluation fun
tions are based on the error rate and on thesize of the de
ision tree built by C4.5. These two 
riteria (obje
tives) areto be minimized a

ording to the 
on
ept of Pareto dominan
e.The next subse
tions present the main aspe
ts of the proposed methods.The reader is referred to Pappa22;23 for further details.4.1. The Multi-Obje
tive Geneti
 Algorithm (MOGA)A geneti
 algorithm (GA) is a sear
h algorithm inspired by the prin
ipleof natural sele
tion. It works evolving a population of individuals, whereea
h individual is a 
andidate solution to a given problem. Ea
h individualis evaluated by a �tness fun
tion, whi
h measures the quality of its 
orre-sponding solution. At ea
h generation (iteration) the �ttest (the best) indi-viduals of the 
urrent population survive and produ
e o�spring resemblingthem, so that the population gradually 
ontains �tter and �tter individuals| i.e., better and better 
andidate solutions to the underlying problem.For a 
omprehensive review of GAs in general the reader is referred toMi
halewi
z24. For a 
omprehensive review of GAs applied to data miningthe reader is referred to Freitas3.The motivation for developing a multi-obje
tive GA for attribute sele
-tion was that: (a) GAs are a robust sear
h method, 
apable of e�e
tivelyexploring the large sear
h spa
es often asso
iated with attribute sele
tionproblems; (b) GAs perform a global sear
h, so that they tend to 
ope bet-ter with attribute intera
tion than greedy sear
h methods, whi
h is also animportant advantage in attribute sele
tion; and (
) GAs already work witha population of 
andidate solutions, whi
h makes them naturally suitablefor multiobje
tive problem solving4, where the sear
h algorithm is requiredto 
onsider a set of optimal solutions at ea
h iteration.4.1.1. Individual En
odingIn the proposed GA, ea
h individual represents a 
andidate subset of se-le
ted attributes, out of all original attributes. Ea
h individual 
onsists ofM genes, where M is the number of original attributes in the data being
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h gene 
an take on the value 1 or 0, indi
ating that the 
orre-sponding attribute o

urs or not (respe
tively) in the 
andidate subset ofsele
ted attributes.4.1.2. Fitness Fun
tionThe �tness (evaluation) fun
tion measures the quality of a 
andidate at-tribute subset represented by an individual. Following the prin
iple of multi-obje
tive optimization, the �tness of an individual 
onsists of two qualitymeasures: (a) the error rate of C4.5; and (b) the size of the de
ision treebuilt by C4.5. Both (a) and (b) are 
omputed by running C4.5 with theindividual's attribute subset only, and by using a hold-out method to es-timate C4.5's error rate, as follows. First, the training data is partitionedinto two mutually-ex
lusive data subsets, the building subset and the vali-dation subset. Then we run C4.5 using as its training set only the examples(re
ords) in the building subset. On
e the de
ision tree has been built, it isused to 
lassify examples in the validation set.4.1.3. Sele
tion Methods and Geneti
 OperatorsAt ea
h generation (iteration) of the GA, the next population of individualsis formed as follows. First the GA sele
ts all the non-dominated individualsof the 
urrent generation, whi
h are then passed unaltered to the next gen-eration by elitism26. Elitism is a 
ommon pro
edure in MOGAs. It avoidsthat non-dominated individuals disappear from the population due to thesto
hasti
 nature of sele
tion operators. However, a maximum number ofelitist individuals has to be �xed to avoid that the next population 
on-sist only of elitist individuals, whi
h would prevent the 
reation of newindividuals, stopping the evolutionary pro
ess. This maximum number ofelitist individuals was set to half the population size. If the number of non-dominated individuals is larger than half the population size, that numberof elitist individuals is 
hosen by the tie-breaking 
riterion explained later.On
e elitist reprodu
tion has been performed, the remainder of the nextgeneration's population is �lled in with new \
hildren" individuals, gener-ated from \parent" individuals from the 
urrent generation. The parentindividuals are 
hosen by tournament sele
tion with a tournament size of2. Then 
hildren are generated from parents by applying 
onventional uni-form 
rossover and bit-
ip mutation. The tournament sele
tion pro
edureis adapted for multi-obje
tive sear
h as follows.The �tness of an individual is a ve
tor with values for two obje
tives:
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tion in Data Mining 9the error rate and de
ision-tree size asso
iated with the attribute subsetrepresented by the individual. The sele
tion of the best individual is basedon the 
on
ept of Pareto dominan
e, taking into a

ount the two obje
tivesto be minimized. Given two individuals I1 and I2 playing a tournament,there are two possible situations. The �rst one is that one of the individualsdominates the other. In this 
ase the former is sele
ted as the winner of thetournament.The se
ond situation is that none of the individuals dominates the other.In this 
ase, we use the following tie-breaking 
riterion to determine the�ttest individual. For ea
h of the two individuals Ii , i=1,2, the GA 
om-putes Xi as the number of individuals in the 
urrent population that aredominated by Ii , and Yi as the number of individuals in the 
urrent popu-lation that dominate Ii . Then the GA sele
ts as the best the individual Iiwith the largest value of the formula: Xi - Yi . Finally, if I1 and I2 have thesame value of the formula Xi - Yi (whi
h is rarely the 
ase), the tournamentwinner is simply 
hosen at random.In all our experiments the probabilities of 
rossover and mutation wereset to 80% and 1%, respe
tively, whi
h are relatively 
ommon values in theliterature. The population size was set to 100 individuals, whi
h evolve for50 generations. These values were used in all our experiments.
4.2. The Multi-Obje
tive Forward Sequential Sele
tionMethod (MOFSS)A single-obje
tive optimization and a multi-obje
tive optimization methoddi�er mainly in the number of optimal solutions that they return. Hen
e,the �rst step to 
onvert the traditional FSS into a multi-obje
tive methodis to make it able to return a set of optimal solutions instead of a singlesolution.This �rst point was resolved by 
reating a list of all non-dominatedsolutions generated by the MOFSS until the 
urrent iteration of the al-gorithm. This 
on
ept of a external list of non-dominated solutions wasinspired by some MOGAs in literature su
h as SPEA27, that maintain allthe non-dominated individuals in an external population.The proposed MOFSS starts as the traditional FSS: a subset of solutionsis 
reated and evaluated. The evaluation of ea
h solution 
onsiders both theerror rate and the de
ision tree size generated by C4.5 during training. Asin the proposed MOGA, the values of these obje
tives to be minimized arestored and later used to judge a solution as better or worse than other.
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h new solution of the 
urrent iteration is 
ompared with every othersolution of the 
urrent iteration, in order to �nd all non-dominated solu-tions in the 
urrent iteration. Then the non-dominated solution list, L, isupdated. This update 
onsists in 
omparing, through the Pareto's domi-nan
e 
on
ept, the solutions in the list with the non-dominated solutions ofthe 
urrent iteration. More pre
isely, for ea
h non-dominated solution S ofthe 
urrent iteration, S will be added to the list L only if S is not dominatedby any solution in L. It is also possible that S dominates some solution(s)in L. In this 
ase those dominated solutions in L are, of 
ourse, removedfrom L.The non-dominated solution list is the start point for generating new
andidate solutions. At ea
h iteration, ea
h solution in the 
urrent list isextended with ea
h new attribute (di�erent from the ones that o

ur in the
urrent solution), and the pro
ess starts again, until no more updates 
anbe made in the non-dominated solution list.
5. Computational ResultsExperiments were exe
uted with 18 publi
-domain, real-world data setsobtained from the UCI (University of California at Irvine)'s data setrepository28. The number of examples, attributes and 
lasses of these datasets is shown in Table 2.All the experiments were performed with a well-known strati�ed 10-fold
ross-validation pro
edure. For ea
h iteration of the 
ross-validation pro
e-dure, on
e the MOGA/MOFSS run is over we 
ompare the performan
e ofC4.5 using all the original attributes (the \baseline" solution) with the per-forman
e of C4.5 using only the attributes sele
ted by the MOGA/MOFSS.Re
all that the MOGA/MOFSS 
an be 
onsidered su

essful to the extentthat the attributes subsets sele
ted by it lead to a redu
tion in the errorrate and size of the tree built by C4.5, by 
omparison with the use of alloriginal attributes.As explained before, the solution for a multi-obje
tive optimizationproblem 
onsists of all non-dominated solutions (the Pareto front) found.Hen
e, ea
h run of the MOGA outputs the set of all non-dominated so-lutions (attribute subsets) present in the last generation's population andea
h run of the MOFSS outputs the solutions stored in the non-dominatedsolution list in the last iteration. In a real-world appli
ation, it would beleft to the user the �nal 
hoi
e of the non-dominated solution to be usedin pra
ti
e. However, in our resear
h-oriented work, involving many di�er-
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tion in Data Mining 11Table 2. Main 
hara
teristi
s of the data sets used in the experi-mentsData Set # examples # attributes # 
lassesArrhythmia 269 452 16Balan
e-S
ale 4 625 3Bupa 6 345 2Car 6 1717 4Crx 15 690 2Dermatology 34 366 6Glass 10 214 7Ionosphere 34 351 2Iris 4 150 3Mushroom 22 8124 2Pima 8 768 2Promoters 57 106 2Si
k-euthyroid 25 3163 2Ti
 ta
 toe 9 958 2Vehi
le 18 846 4Votes 16 435 2Wine 13 178 3Wis
onsin breast-
an
er 9 699 2
ent publi
-domain data sets, no user was available. Hen
e, we needed toevaluate the quality of the non-dominated attribute subsets returned byMOGA/MOFSS in an automati
, data-driven manner. We have done thatin two di�erent ways, re
e
ting two di�erent (but both valid) perspe
tives,as follows.The �rst approa
h to evaluate the set of non-dominated solutions re-turned by MOGA and MOFSS is 
alled Return All Non-Dominated So-lutions. The basi
 idea is that we return all the non-dominated solutionsfound by the method, and we 
ompare ea
h of them, one-at-a-time, with thebaseline solution | whi
h 
onsists of the set of all original attributes. Thenwe 
ount the number of solutions returned by the MOGA and MOFSS thatdominate or are dominated by the baseline solution, in the Pareto sense |with respe
t to the obje
tives of minimizing error rate and de
ision-treesize, as explained above.The se
ond approa
h, 
alled Return the \Best" Non-Dominated Solution
onsists of sele
ting a single solution to be returned to the user by usingthe tie-breaking 
riterion des
ribed earlier. From a user's point of view,this is a pra
ti
al approa
h, sin
e the user often wants a single solution.Moreover, this de
ision making pro
ess makes the solution of the multi-obje
tive problem 
omplete, following its 3 potential stages of development:
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h and de
ision making29.There are many ways of setting preferen
es in a de
ision making pro
ess,as shown in Coello-Coello29, but we did not follow any of those approa
hes.For both MOGA and MOFSS we return the solution in the non-dominatedset of the last generation (or iteration) with the highest value of the tie-breaking 
riterion - whi
h is a de
ision-making 
riterion tailored for ouralgorithms and underlying appli
ation. Note that, on
e the number of so-lutions that dominates the solutions in the non-dominated set is zero, theformula of the tie-breaking 
riterion is redu
ed to Xi. Therefore, insteadof expli
it ranking the obje
tives, we rank the non-dominated solutions a
-
ording the number of individuals they dominate in the last generation.The solution 
hosen through this method was 
ompared with the baselinesolution.There is one 
aveat when using this 
riterion in MOFSS. For this algo-rithm, we re
al
ulate the tie-breaking 
riterion 
onsidering all the solutionsgenerated in all the iterations of the method. That is, we 
al
ulate thenumber of solutions that are dominated by ea
h of the solutions in thenon-dominated solution list of the last iteration, 
onsidering all solutionsgenerated by the method. The tie-braking 
riterion was re
al
ulated be-
ause, for some data sets, the number of solutions in the non-dominatedlist at the beginning of the last iteration was small. As a result, few newsolutions were generated in the last iteration. It was not fair to 
omparethe solutions in that list just with those few solutions generated in the lastgeneration, be
ause the small number of solutions would lead to a low 
on-�den
e (from a statisti
al point of view) in the result. In order to solve thisproblem, the tie-breaking 
riterion is re
al
ulated using all generated solu-tions sin
e the algorithm starts. There was no need to apply this pro
edureto MOGA, be
ause this method has a larger number of solutions in thelast iteration, providing enough solutions for a reliable 
omputation of thetie-breaking 
riterion.
5.1. Results for the \Return All Non-Dominated Solutions"Approa
hAs explained earlier, the basi
 idea of this approa
h is that MOGA andMOFSS return all non-dominated solutions that they have found, and thenwe 
ount the number of solutions returned by ea
h of these methods thatdominate or are dominated by the baseline solution.Tables 3 and 4 show, respe
tively, the results found by MOGA and
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tive Algorithms for Attribute Sele
tion in Data Mining 13MOFSS returning all the non-dominated solutions of the last generation(or iteration). Hereafter this version of the algorithms is 
alled MOGA-all and MOFSS-all. In Tables 3 and 4 the se
ond 
olumn shows the totalnumber of solutions found by the method. The numbers after the \�" arestandard deviations. The next 
olumns show the relative frequen
y of thefound solutions that dominate the baseline solution (
olumn Fdominate), therelative frequen
y of the found solutions that are dominated by the base-line solution (
olumn Fdominated) and the relative frequen
y of the foundsolutions that neither dominate nor are dominated by the baseline solution(
olumn Fneutral). Table 3. Results found with MOGA-allSolutions found with MOGA-allData set Total Fdominate Fdominated FneutralArrhythmia 3.9 � 0.54 0.21 0.33 0.46Balan
e-S
ale 1.0 � 0.0 0.7 0 0.3Bupa 6.1 � 0.38 0.31 0 0.69Car 38.3 � 0.76 0.002 0 0.998Crx 4.55 � 0.67 0.56 0.05 0.39Dermatology 1.11 � 0.11 0.8 0 0.2Glass 46.9 � 1.03 0 0.06 0.94Ionosphere 1.14 � 0.14 0.37 0.12 0.5Iris 4.4 � 0.16 0.8 0.02 0.18Mushroom 1.9 � 0.18 0.68 0 0.32Pima 18.3 � 1.15 0.34 0 0.66Promoters 1.5 � 0.16 0.33 0 0.67Si
k- euthyroid 25.4 � 0.93 0.02 0.02 0.96Ti
 ta
 toe 16.5 � 1.0 0 0 1Vehi
le 6.1 � 0.76 0.25 0.18 0.57Votes 26.6 � 1.63 0.6 0 0.4Wine 4.66 � 1.21 0.48 0.31 0.21Wis
onsin 9.3 � 0.4 0.5 0.2 0.3
As 
an be observed in Table 3, there are 6 data sets where the valueof Fdominate is greater than 0.5 (shown in bold), whi
h means that morethan 50% of the MOGA-all's solutions dominated the baseline solution. In9 out of the 18 data sets, no MOGA-all's solution was dominated by thebaseline solution. There are only two data sets, namely arrhythmia andglass, where the value of Fdominate is smaller than the value of Fdominated(shown in bold), indi
ating that the MOGA was not su

essful in thesetwo data sets. In any 
ase, in these two data sets the di�eren
e betweenFdominate and Fdominated is relatively small (whi
h is parti
ularly true in
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ase of glass), and the value of Fneutral is greater than the values ofboth Fdominate and Fdominated.In summary, in 14 out of the 18 data sets the value of Fdominate isgreater than the value of Fdominated, indi
ating that overall MOGA-all wassu

essful in the majority of the data sets. MOGA-all was very su

essfulin 6 data sets, where the value of Fdominate was larger than 0.5 and mu
hgreater than the value of Fdominated.In Table 4, we 
an see that there are 7 data sets where the value ofFdominate is greater than 0.5 (shown in bold), whi
h means that 50% or moreof the MOFSS-all's solutions dominated the baseline solution. Remarkably,there are only two data sets | namely wine and Wis
onsin breast 
an
er| where the number of MOFSS-all's solutions dominated by the baselinesolution was greater than zero, and in the 
ase of wine that number isvery 
lose to zero, anyway. There are two data sets where all MOFSS-all'ssolutions are neutral, namely dermatology and mushroom. In summary, in16 out of the 18 data sets the value of Fdominate is greater than the valueof Fdominated, indi
ating that overall MOFSS was su

essful in the vastmajority of the data sets. MOFSS was very su

essful in 7 data sets, asmentioned above. Table 4. Results found with MOFFS-allSolutions found with MOFFS-allData set Total Fdominate Fdominated FneutralArrhythmia 32.2 � 10.82 0.54 0 0.46Balan
e-S
ale 1.8 � 0.2 0.5 0 0.5Bupa 2.9 � 0.31 0.65 0 0.35Car 4.3 � 0.33 0.07 0 0.93Crx 84.1 � 2.05 0.89 0 0.11Dermatology 76.5 � 10.3 0 0 1Glass 94.1 � 5.24 0.99 0 0.01Ionosphere 12.9 � 6.23 0.14 0 0.86Iris 3.5 � 0.34 0.86 0 0.14Mushroom 51.9 � 11.88 0 0 1Pima 11.1 � 1.88 0.95 0 0.05Promoters 66.6 � 12.66 0.27 0 0.73Si
k-euthyroid 50.3 � 6.44 0.1 0 0.9Ti
 ta
 toe 8.1 � 1.54 0.11 0 0.89Vehi
le 3.6 � 0.16 0.17 0 0.83Votes 98.4 � 0.37 0.1 0 0.9Wine 8.3 � 6.1 0.92 0.01 0.07Wis
onsin 10.1 � 4.76 0.45 0.37 0.18
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tion in Data Mining 155.2. Results for the \Return the `Best' Non-DominatedSolution" Approa
hTables 5 and 6 show the results obtained by following this approa
h. Thesetables show results for error rate and tree size separately, as usual in thema
hine learning and data mining literature. Later in this se
tion we showresults (in Table 7) involving Pareto dominan
e, whi
h 
onsider the simulta-neous minimization of error rate and tree size. In Tables 5 and 6 the 
olumntitled C4.5 
ontains the results for C4.5 ran with the baseline solution (alloriginal attributes), whereas the 
olumns titled MOGA-1 and MOFSS-1
ontain the results for C4.5 ran with the single \best" non-dominated so-lution found by MOGA and MOFSS, using the 
riterion for 
hoosing the\best" solution explained earlier. The �gures in the tables are the averageover the 10 iterations of the 
ross-validation pro
edure. The values after the\�" symbol represent the standard deviations, and the �gures in bold indi-
ate the smallest error rates/tree sizes obtained among the three methods.In the 
olumns MOGA-1 and MOFSS-1, the symbol \+" (\-") denotesthat the results (error rate or tree size) of the 
orresponding method issigni�
antly better (worse) than the result obtained with the baseline solu-tion. The di�eren
e in error rate or tree size between the 
olumns MOGA-1/MOFSS-1 and C4.5 are 
onsidered signi�
ant if the 
orresponding errorrate or tree size intervals | taking into a

ount the standard deviations |do not overlap. The last two lines of Tables 5 and 6 summarize the resultsof these tables, indi
ating in how many data sets MOGA-1/MOFSS-1 ob-tained a signi�
ant win/loss over the baseline solution using C4.5 with alloriginal attributes.In Tables 5 and 6, the results of MOFSS-1 for the dataset Arrhythmiaare not available due to the large number of attributes in this data set, 269.This leads to a too large number of solutions generated along all iterations ofthe algorithm, so that re-
al
ulating the tie-breaking 
riterion 
onsideringall the generated solutions was impra
ti
al with the ma
hine used in theexperiments (a dual-PC with 1.1GHz 
lo
k rate and 3Gbytes memory).The results in Table 5 show that MOGA-1 obtained signi�
antly bettererror rates than the baseline solution (
olumn \C4.5") in 8 data sets. In
ontrast, the baseline solution obtained signi�
antly better results thanMOGA-1 in just two data sets. MOFSS-1 has not found solutions withsigni�
antly better error rates than the baseline solution in any data set.On the 
ontrary, it found solutions with signi�
antly worse error rates thanthe baseline solution in 7 data sets.



16 G.L.Pappa & A.A.Freitas & C.A.A.KaestnerTable 5. Error rates obtained with C4.5, MOGA-1 and MOFSS-1Error Rate (%)Data set C4.5 MOGA-1 MOFSS-1Arrhythmia 32.93 � 3.11 26.38 � 1.47 (+) N/ABalan
e-S
ale 36.34 � 1.08 28.32 � 0.71 (+) 36.47 � 1.84Bupa 37.07 � 2.99 30.14 � 1.85 (+) 40.85 � 1.45Car 7.49 � 0.70 16.65 � 0.4 (-) 18.5 � 0.70 (-)Crx 15.95 � 1.43 12.44 � 1.84 15.04 � 1.35Dermatology 6.0 � 0.98 2.19 � 0.36 (+) 11.15 � 1.60 (-)Glass 1.86 � 0.76 1.43 � 0.73 1.86 � 0.76Ionosphere 10.2 � 1.25 5.13 � 1.27 (+) 7.98 � 1.37Iris 6.0 � 2.32 2.68 � 1.1 (+) 6.01 � 2.09Mushroom 0.0 � 0.0 0.0 � 0.0 0.18 � 0.07 (-)Pima 26.07 � 1.03 23.07 � 1.16 28.16 � 1.72Promoters 16.83 � 2.55 11.33 � 1.92 (+) 33.5 � 6.49 (-)Si
k-euthyroid 2.02 � 0.12 2.22 � 0.18 2.32 � 0.23Ti
 ta
 toe 15.75 � 1.4 22.65 � 1.19 (-) 31.19 � 1.69 (-)Vehi
le 26.03 � 1.78 23.16 � 1.29 33.74 � 1.78 (-)Votes 3.2 � 0.91 2.97 � 0.75 4.57 � 0.89Wine 6.69 � 1.82 0.56 � 0.56 (+) 6.07 � 1.69Wis
onsin 5.28 � 0.95 3.84 � 0.67 7.16 � 0.77 (-)Wins over C4.5 - 8 0Losses over C4.5 - 2 7
As 
an be observed in Table 6, the tree sizes obtained with the solutionsfound by MOGA-1 and MOFSS-1 are signi�
antly better than the onesobtained with the baseline solution in 15 out of 18 data sets. In the otherthree data sets the di�eren
e is not signi�
ant.In summary, both MOGA-1 and MOFSS-1 are very su

essful in �ndingsolutions that led to a signi�
ant redu
tion in tree size, by 
omparison withthe baseline solution of all attributes. The solutions found by MOGA-1were also quite su

essful in redu
ing error rate, unlike the solutions foundby MOFSS-1, whi
h unfortunately led to a signi�
ant in
rease in error ratein a number of data sets. Hen
e, these results suggest that MOGA-1 hase�e
tively found a good trade-o� between the obje
tives of minimizing errorrate and tree size, whereas MOFSS-1 minimized tree size at the expense ofin
reasing error rate in a number of data sets.Table 7 
ompares the performan
e of MOGA-1, MOFSS-1 and C4.5using all attributes 
onsidering both the error rate and the tree size atthe same time, a

ording to the 
on
ept of signi�
ant Pareto dominan
e.This is a modi�ed version of 
onventional Pareto dominan
e tailored for the
lassi�
ation task of data mining, where we want to �nd solutions that arenot only better, but signi�
antly better, taking into a

ount the standard
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tion in Data Mining 17Table 6. Tree sizes obtained with C4.5, MOGA-1 and MOFSS-1Tree Size (number of nodes)Data set C4.5 MOGA-1 MOFSS-1Arrhythmia 80.2 � 2.1 65.4 � 1.15 (+) N/ABalan
e-S
ale 41.0 � 1.29 16.5 � 3.45 (+) 7.5 � 1.5 (+)Bupa 44.2 � 3.75 7.4 � 1.36 (+) 11.4 � 2.78 (+)Car 165.3 � 2.79 29.4 � 5.2 (+) 17.7 � 1.07 (+)Crx 29.0 � 3.65 11.2 � 3.86 (+) 24.6 � 8.27Dermatology 34.0 � 1.89 25.2 � 0.96 (+) 23.2 � 2.84 (+)Glass 11.0 � 0.0 11.0 � 0.0 11.0 � 0.0Ionosphere 26.2 � 1.74 13.0 � 1.4 (+) 14.2 � 2.23 (+)Iris 8.2 � 0.44 5.8 � 0.53 (+) 6.0 � 0.68 (+)Mushroom 32.7 � 0.67 30.0 � 0.89 (+) 27.2 � 1.76 (+)Pima 45.0 � 2.89 11.0 � 2.6 (+) 9.2 � 1.85 (+)Promoters 23.8 � 1.04 11.4 � 2.47 (+) 9.0 � 1.2 (+)Si
k-euthyroid 24.8 � 0.69 11.2 � 1.35 (+) 9.6 � 0.79 (+)Ti
 ta
 toe 130.3 � 4.25 21.1 � 4.54 (+) 10.6 � 1.4 (+)Vehi
le 134.0 � 6.17 95 � 3.13 (+) 72.8 � 10.98 (+)Votes 10.6 � 0.26 5.4 � 0.88 (+) 5.6 � 1.07 (+)Wine 10.2 � 0.68 9.4 � 0.26 8.6 � 0.26 (+)Wis
onsin 28.0 � 2.13 25 � 3.71 18 � 1.53 (+)Wins over C4.5 - 15 15Losses over C4.5 - 0 0Table 7. Number of signi�
ant Paretodominan
e relationsC4.5 MOGA-1 MOFSS-1C4.5 X 0 0MOGA-1 14 X 7MOFSS-1 8 0 X
deviations (as explained earlier for Tables 5 and 6). Hen
e, ea
h 
ell ofTable 7 shows the number of data sets in whi
h the solution found bythe method indi
ated in the table row signi�
antly dominates the solutionfound by method indi
ated in the table 
olumn. A solution S1 signi�
antlydominates a solution S2 if and only if:� obj1(S1) + sd1(S1) < obj1(S2)� sd1(S2) and� not[obj2(S2) + sd2(S2) < obj2(S1)� sd2(S1)℄where obj1(S1) and sd1(S1) denote the average value of obje
tive 1 and thestandard deviation of obje
tive 1 asso
iated with solution S1, and similarlyfor the other variables. Obje
tive1 and obje
tive2 
an be instantiated witherror rate and tree size, or vi
e-versa. For example, in the bupa dataset
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an say that the solution found by MOGA-1 signi�
antly dominatesthe solution found by MOFSS-1 be
ause: (a) In Table 5 MOGA-1's errorrate plus standard deviation (30.14+1.85) is smaller than MOFSS-1's errorrate minus standard deviation (40.85-1.45); and (b) 
on
erning the tree size(Table 6), the 
ondition \not (11.4 + 2.78 < 7.4 - 1.36)" holds. So, both
onditions for signi�
ant dominan
e are satis�ed.As shown in Table 7, the baseline solution (
olumn \C4.5") did notsigni�
antly dominate the solutions found by MOGA-1 and MOFSS-1 inany dataset. The best results were obtained by MOGA-1, whose solutionssigni�
antly dominated the baseline solution in 14 out of the 18 datasetsand signi�
antly dominated MOFSS-1's solutions in 7 data sets. MOFSS-1 obtained a reasonably good result, signi�
antly dominating the baselinesolution in 8 datasets, but it did not dominate MOGA-1 in any dataset. Amore detailed analysis of these results, at the level of individual data sets,
an be observed later in Tables 8 and 9.
5.3. On the e�e
tiveness of the 
riterion to 
hoose the\best" solutionAnalyzing the results in Tables 3, 4, 5 and 6 we 
an evaluate whether the
riterion used to 
hoose a single solution out of all non-dominated ones(i.e., the 
riterion used to generate the results of Tables 5 and 6) is reallyable to 
hoose the \best" solution for ea
h data set. We 
an do this ana-lyzing the dominan
e relationship (involving the error rate and tree size)between the single returned solution and the baseline solution. That is,we 
an observe whether or not the single solution returned by MOGA-1and MOFSS-1 dominates, is dominated by, or is neutral with respe
t tothe baseline solution. On
e we have this information, we 
an 
ompare itwith the 
orresponding relative frequen
ies asso
iated with the solutionsfound by MOGA-all/MOFSS-all (
olumns Fdominate, Fdominated, Fneutralof Tables 3 and 4). This 
omparison is performed in Tables 8 and 9, whi
hrefer to MOGA and MOFSS, respe
tively. In these two tables the �rst 
ol-umn 
ontains the data set names, the next three 
olumns are 
opied fromthe last three 
olumns in Tables 3 and 4, respe
tively, and the last three
olumns are 
omputed from the results in Tables 5 and 6, by applyingthe above-explained 
on
ept of signi�
ant Pareto dominan
e between theMOGA-1's/MOFSS-1's solution and the baseline solution.As 
an be observed in Table 8, there are only 4 data sets in whi
h thesolutions found by MOGA-1 do not dominate the baseline solutions: 
ar,
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tion in Data Mining 19Table 8. Performan
e of MOGA-all versus MOGA-1Performan
e of MOGA-all'ssolutions wrt baselinesolution Performan
e of MOGA-1'ssolution wrt baseline solutionData set Fdom Fdom ed Fneut Dom Dom ed NeutArrhythmia 0.21 0.33 0.46 XBalan
e-S
ale 0.7 0 0.3 XBupa 0.31 0 0.69 XCar 0.002 0 0.998 XCrx 0.56 0.05 0.39 XDermatology 0.8 0 0.2 XGlass 0 0.06 0.94 XIonosphere 0.37 0.12 0.5 XIris 0.8 0.02 0.18 XMushroom 0.68 0 0.32 XPima 0.34 0 0.66 XPromoters 0.33 0 0.67 XSi
k- euthyroid 0.02 0.02 0.96 XTi
 ta
 toe 0 0 1 XVehi
le 0.25 0.18 0.57 XVotes 0.6 0 0.4 XWine 0.48 0.31 0.21 XWis
onsin 0.5 0.2 0.3 X
glass, ti
-ta
-toe and wis
onsin. For these 4 data sets the solutions found byMOGA-1 were neutral (last 
olumn of Table 8), and the value of Fneutralwas respe
tively 0.998, 0.94, 1 and 0.3. Therefore, in the �rst three of thosedata sets it was expe
ted that the single solution 
hosen by MOGA-1 wouldbe neutral, so that the 
riterion used for 
hoosing a single solution 
annotbe blamed for returning a neutral solution. Only in the wis
onsin data setthe 
riterion did badly, be
ause 50% of the found solutions dominated thebaseline solution but a neutral solution was 
hosen.The 
riterion was very su

essful, managing to 
hose a solution thatdominated the baseline, in all the other 14 data sets, even though in 8 ofthose data sets less than 50% of the solutions found by MOGA-all domi-nated the baseline. The e�e
tiveness of the 
riterion 
an be observed, forinstan
e, in arrhythmia and si
k-euthyroid. Although in arrhythmia thevalue of Fdominated was quite small (0.21), the solution returned by MOGA-1 dominated the baseline solution. In si
k-euthyroid, 96% of the solutionsfound by MOGA-all were neutral, but a solution that dominates the base-line solution was again returned by MOGA-1. With respe
t to the e�e
tive-ness of the 
riterion when used by MOFSS-1, unexpe
ted negative resultswere found in 2 data sets of Table 9, namely 
rx and glass. For both data
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e of MOFSS-all versus MOFSS-1Performan
e of MOFSS-all'ssolutions wrt baselinesolution Performan
e of MOFSS-1'ssolution wrt baseline solutionData set Fdom Fdom ed Fneut Dom Dom ed NeutArrhythmia 0.54 0 0.46 - - -Balan
e-S
ale 0.5 0 0.5 XBupa 0.65 0 0.35 XCar 0.07 0 0.93 XCrx 0.89 0 0.11 XDermatology 0 0 1 XGlass 0.99 0 0.01 XIonosphere 0.14 0 0.86 XIris 0.86 0 0.14 XMushroom 0 0 1 XPima 0.95 0 0.05 XPromoters 0.27 0 0.73 XSi
k- euthyroid 0.1 0 0.9 XTi
 ta
 toe 0.11 0 0.89 XVehi
le 0.17 0 0.83 XVotes 0.1 0 0.9 XWine 0.92 0.01 0.07 XWis
onsin 0.45 0.37 0.18 X
sets, despite the high values of Fdominate, the solutions 
hosen by MOFSS-1 were neutral. The opposite happened in ionosphere, si
k-euthyroid andvotes, where Fneutral had high values, but single solutions better than thebaseline solution were 
hosen by MOFSS-1.The relatively large number of neutral solutions 
hosen by MOFSS-1 happened be
ause in many data sets the tree size asso
iated with thesolution 
hosen by MOFSS-1 was smaller than the tree size asso
iated withthe baseline solution, whilst the error rates of the former were larger thanthe error rates of the latter.Overall, the 
riterion for 
hoosing a single solution was moderately su
-
essful when used by MOFSS-1, and mu
h more su

essful when used byMOGA-1. A possible explanation for this result is that the pro
edure usedfor tailoring the 
riterion for MOFSS, des
ribed earlier, is not working verywell. An improvement in that pro
edure 
an be tried in future resear
h.It is important to note that, remarkably, the 
riterion for 
hoosing asingle solution did not 
hoose a solution dominated by the baseline solutionin any data set. This result holds for both MOGA-1 and MOFSS-1.
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tion in Data Mining 216. Con
lusions and Future WorkThis 
hapter has dis
ussed two multi-obje
tive algorithms for attribute se-le
tion in data mining, namely a multi-obje
tive geneti
 algorithm (MOGA)and a multi-obje
tive forward sequential sele
tion (MOFSS) method. Thee�e
tiveness of both algorithms was extensively evaluated in 18 real-worlddata sets. Two major sets of experiments were performed, as follows.The �rst set of experiments 
ompared ea
h of the non-dominated solu-tions (attribute subsets) found by MOGA and MOFSS with the baselinesolution (
onsisting of all the original attributes). The 
omparison aimedat 
ounting how many of the solutions found by MOGA and MOFSS dom-inated (in the Pareto sense) or were dominated by the baseline solution, interms of 
lassi�
ation error rate and de
ision tree size. Overall, the results(see Tables 3 and 4) show that both MOGA and MOFSS are su

essfulin the sense that they return solutions that dominate the baseline solutionmu
h more often than vi
e-versa.The se
ond set of experiments 
onsisted of sele
ting a single \best" so-lution out of all the non-dominated solutions found by ea
h multi-obje
tiveattribute sele
tion method (MOGA and MOFSS) and then 
omparing thissolution with the baseline solution. Although this kind of experiment is notoften performed in the multi-obje
tive literature, it is important be
ausein pra
ti
e the user often wants a single solution to be suggested by thesystem, to relieve him from the 
ognitive burden and diÆ
ult responsibilityof 
hoosing one solution out of all non-dominated solutions.In order to perform this set of experiments, this work proposed a simpleway to 
hoose a single solution to be returned from the set of non-dominatedsolutions generated by MOGA and MOFSS. The e�e
tiveness of the pro-posed 
riterion was analyzed by 
omparing the results of the two di�erentversions of MOGA and MOFSS, one version returning all non-dominatedsolutions (results of the �rst set of experiments) and another version re-turning a single 
hosen non-dominated solution. Despite its simpli
ity, theproposed 
riterion worked well in pra
ti
e, parti
ularly when used in theMOGA method. It 
ould be improved when used in the MOFSS method,as dis
ussed earlier.In the future we intend to analyze the 
hara
teristi
s of the data setswhere ea
h of the proposed methods obtained its best results, in order to�nd patterns that des
ribe the data sets where ea
h method 
an be appliedwith greater su

ess.
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