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Attribute selection is an important preprocessing task for the application
of a classification algorithm to a given data set. This task often involves
the simultaneous optimization of two or more objectives. In order to
solve this problem, this chapter describes two multi-objective methods:
a genetic algorithm and a forward sequential feature selection method.
Both methods are based on the wrapper approach for attribute selection
and were used to find the best subset of attributes that minimizes the
classification error rate and the size of decision tree built by a well-known
classification algorithm, namely C4.5.

1. Introduction

Attribute selection is one of the most important preprocessing tasks to be
performed before the application of data mining techniques. In essence,
it consists of selecting a subset of attributes relevant for the target data
mining task, out of all original attributes. In this work the target task is
classification, where the goal is to predict the class of an example (record)
given the values of the attributes describing that example. Attribute selec-
tion became essential when researches discovered it can improve the data
mining algorithm’s performance (with respect to learning speed, classifica-
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tion rate and/or rule set simplicity) and at the same time remove noise and
decrease data dimensionality.

In face of the importance of attribute selection, a variety of methods
have been used in order to find a small attribute subset capable of obtaining
a better classification rate than that obtained with the entire attribute
set. These methods include sequential search!, ranking techniques? and
evolutionary algorithms®.

Independent of the method used to solve the problem of attribute se-
lection, solving this problem often requires the minimization of at least
two objectives: the classification error rate and a measure of size — which
can be a measure of size of the selected data (typically the number of se-
lected attributes) and/or a measure of size of the classifier (say, a rule set)
learned from the selected data. Many attribute selection methods optimize
these objectives setting weights to each one and combining them in a single
function.

However, the study of multi-objective optimization has shown that, in
some tasks, a weighted combination of the objectives to be optimized in
a single function is not the most effective approach to solve the problem.
Mainly in tasks that deal with optimization of conflicting objectives, such
as attribute selection, the use of the Pareto’s dominance concept during
optimization can be the best choice.

The optimization based on the Pareto’s concept? suggests that, for each
of the conflicting objectives to be optimized, exists an optimal solution. So,
the final response of the optimization system is a set of optimal solutions
instead of a single solution. This is in contrast with systems that intend to
optimize a single objective. Hence, it is left to the user to decide which of
the optimal solutions he/she considers the best to solve his/her problem,
using his/her background knowledge about the problem.

In this spirit, this work presents two multi-objective attribute selec-
tion algorithms based on the Pareto’s dominance concept. One of them is
a multi-objective genetic algorithm, and the other one is a multi-objective
version of the well-known forward sequential feature selection method. Both
methods use the wrapper approach (see next section) in order to minimize
the error rate and the size of the decision tree built by a well-known clas-
sifier, namely C4.5.

We report the results of extensive computational experiments with 18
public domain real-world data sets, comparing the performance of these
two methods. The results show that both methods effectively select good
attribute subsets — by comparison with the original set of all attributes —
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and, somewhat surprisingly, the multi-objective forward sequential selection
method is competitive with the multi-objective genetic algorithm.

2. Attribute Selection

As mentioned earlier, attribute selection is an important step in the knowl-
edge discovery process and aims to select a subset of attributes that are
relevant for a target data mining task. In the classification task, which is
the task addressed in this work, an attribute is considered relevant if it is
useful for discriminating examples belonging to different classes.

We can find in the literature a lot of attribute selection methods. These
methods differ mainly in the search strategy they use to explore the space
of candidate attribute subsets and in the way they measure the quality of
a candidate attribute subset.

With respect to the search strategy, the methods can be classified as
exponential (e.g. exhaustive search), randomized (e.g. genetic algorithms)
and sequential. The exponential methods are usually too computationally
expensive, and so are not further discussed here.

The sequential methods include the well-known FSS (forward sequential
selection) and BSS (backward sequential selection)’. FSS starts with an
empty set of attributes (features) and iteratively selects one-attribute-at-
a-time — the attribute considered most relevant for classification at the
current step — until classification accuracy cannot be improved by selecting
another attribute. BSS starts with the full set of original attributes and
iteratively removes one-attribute-at-a-time — the attribute considered least
relevant for classification at the current step — as long as classification
accuracy is not decreased. We have developed a multi-objective version of
the FSS method, which will be described later.

With respect to randomized methods, in this chapter we are particularly
interested in genetic algorithms, due to their ability to perform a global
search in the solution space. In our case, this means that they tend to cope
better with attribute interaction than greedy, local-search methods (such
as sequential methods)3. We have also developed a multi-objective genetic
algorithm (GA) for attribute selection, which will be described later.

The evaluation of the quality of each candidate attribute subset can be
based on two approaches: the filter or the wrapper approach. The main
difference between them is that in the wrapper approach the evaluation
function uses the target classification algorithm to evaluate the quality of
a candidate attribute subset. This is not the case in the filter approach,
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where the evaluation function is specified in a generic way, regardless of the
classification algorithm. That is, in the wrapper approach the quality of a
candidate attribute subset depends on the performance of the classification
algorithm trained only with the selected attributes. This performance can
be measured with respect to several factors, such as classification accuracy
and size of the classifier learned from the selected data. Indeed, these are
the two performance measures used in this work, as will be seen later.

Although the wrapper approach tends to be more expensive than the fil-
ter approach, the wrapper approach usually obtains better predictive accu-
racy that the filter approach, since it finds an attribute subset “customized”
for the target classification algorithm.

The vast majority of GAs for attribute selection follow the wrapper
approach. Table 1, adapted from Freitas®, shows the criteria used in the
fitness function of a number of GAs for attribute selection following the
wrapper approach.

As can be observed in Table 1, there are many criteria that can be used
in the fitness of a GA for attribute selection, but all the GAs mentioned in
the table use classification accuracy, and many GAs use either the number
of selected attributes or the size of the classifier learned from the data. Note
that only one of the GAs mentioned in Table 1 is a multi-objective method
— all the other GAs either try to optimize a single objective (predictive
accuracy) or use some method (typically a weighted formula) to combine
two or more objectives into a single objective to be optimized.

3. Multi-objective Optimization

Real world problems are usually complex and require the optimization of
many objectives to reach a good solution. Unfortunately, many projects that
should involve the simultaneous optimization of multiple objectives avoid
the complexities of such optimization, and adopt the simpler approach of
just weighing and combining the objectives into a single function. This
simpler approach is not very effective in many cases, due to at least two
reasons. First, the objectives are often conflicting with each other. Second,
the objectives often represent different and non-commensurate aspects of a
candidate solution’s quality, so that mixing them into a single formula is not
semantically meaningful. Indeed, both reasons hold in our case, where the
two objectives to be minimized — classification error rate and decision-tree
size are to some extent conflicting and entirely non-commensurate.
According to the multi-objective optimization concept, when many ob-
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Table 1.

Main aspects of fitness functions of GAs for attribute selection

Reference

Criteria used in fitness function

[Bala et al. 1995]°

[Bala et al. 1996]7

[Chen et al. 19998
[Guerra-Salcedo & Whitley 1998]°
[Guerra-Salcedo et al. 1999]10
[Cherkauer & Shavlik 1996]'!
[Terano & Ishino 1998]12

[Vafaie & DeJong 1998]13

[Yang & Honavar 1997, 1998]14:15
[Moser & Murty 2000]6

predictive accuracy, number of selected
attributes

predictive accuracy, information con-
tent, number of selected attributes
based first on predictive accuracy, and
then on number of selected attributes
predictive accuracy

predictive accuracy

predictive accuracy, number of selected
attributes, decision-tree size
subjective evaluation, predictive accu-
racy, rule set size

predictive accuracy

predictive accuracy, attribute cost

predictive accuracy, number of selected

attributes

[Ishibuchi & Nakashima 2000]'7 predictive accuracy, number of se-
lected instances, number of selected
attributes (attribute and instance
selection)
[Emmanouilidis et al. 2000]'8 predictive accuracy, number of selected
attributes (multi-objective evaluation)
[Rozsypal & Kubat 200319 predictive accuracy, number of se-
lected instances, number of selected
attributes (attribute and instance
selection)

[Llora & Garrell 2003]2° predictive accuracy

jectives are simultaneously optimized, there is no single optimal solution.
Rather, there is a set of optimal solutions, each one considering a certain
trade-off among the objectives?!. In this way, a system developed to solve
this kind of problem returns a set of optimal solutions, and can be left to the
user to choose the one that best solves his/her specific problem. This means
that the user has the opportunity of choosing the solution that represents
the best trade-off among the conflicting objectives after examining several
high-quality solutions. Intuitively, this is better than forcing the user to de-
fine a single trade-off before the search is performed, which is what happens
when the multi-objective problem is transformed in a single-objective one.
The Pareto’s multi-objective optimization concept is used to find this set
of optimal solutions. According to this concept, a solution S; dominates a
solution S5 if and only if*:
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e Solution S; is not worse than solution Ss in any of the objectives;
e Solution S is strictly better than solution S; in at least one of the ob-
jectives.

Figure 1 shows an example of possible solutions found for a multi-
objective attribute selection problem. The solutions that are not dominated
by any other solutions are considered Pareto-optimal solutions, and they
are represented by the dotted line in Figure 1.
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Fig. 1. Example of Pareto dominance in a two-objective problem

Note that Solution A has a small decision-tree size but a large error rate.
Solution D has a large decision-tree size but a small error rate. Assuming
that minimizing both objectives is important, one cannot say that solution
A is better than D, nor vice-versa. On the other hand, solution C is clearly
not a good solution, since it is dominated, for instance, by D.

4. The Proposed Multi-Objective Methods for Attribute
Selection

In the last few years, the use of multi-objective optimization has led to
improved solutions for many different kinds of problems?!. So, in order to
evaluate the effectiveness of the multi-objective framework in the attribute
selection problem for the classification task, we proposed a multi-objective
genetic algorithm?? (MOGA) that returns a set of non-dominated solu-
tions. We also proposed a multi-objective version of the forward sequential
selection (FSS) method?.

The goal of these proposed algorithms is to find a subset of relevant
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attributes that leads to a reduction in both classification error rate and
complexity (size) of the decision tree built by a data mining algorithm.

The classification algorithm used in this paper is C4.5%°, a well-known
decision tree induction algorithm. The proposed methods are based in the
wrapper approach, which means they use the target data mining algorithm
(C4.5) to evaluate the quality of the candidate attribute subsets. Hence,
the methods’ evaluation functions are based on the error rate and on the
size of the decision tree built by C4.5. These two criteria (objectives) are
to be minimized according to the concept of Pareto dominance.

The next subsections present the main aspects of the proposed methods.
The reader is referred to Pappa??22 for further details.

4.1. The Multi-Objective Genetic Algorithm (MOGA)

A genetic algorithm (GA) is a search algorithm inspired by the principle
of natural selection. It works evolving a population of individuals, where
each individual is a candidate solution to a given problem. Each individual
is evaluated by a fitness function, which measures the quality of its corre-
sponding solution. At each generation (iteration) the fittest (the best) indi-
viduals of the current population survive and produce offspring resembling
them, so that the population gradually contains fitter and fitter individuals
— i.e., better and better candidate solutions to the underlying problem.
For a comprehensive review of GAs in general the reader is referred to
Michalewicz?4. For a comprehensive review of GAs applied to data mining
the reader is referred to Freitas®.

The motivation for developing a multi-objective GA for attribute selec-
tion was that: (a) GAs are a robust search method, capable of effectively
exploring the large search spaces often associated with attribute selection
problems; (b) GAs perform a global search, so that they tend to cope bet-
ter with attribute interaction than greedy search methods, which is also an
important advantage in attribute selection; and (c) GAs already work with
a population of candidate solutions, which makes them naturally suitable
for multiobjective problem solving*, where the search algorithm is required
to consider a set of optimal solutions at each iteration.

4.1.1. Individual Encoding

In the proposed GA, each individual represents a candidate subset of se-
lected attributes, out of all original attributes. Each individual consists of
M genes, where M is the number of original attributes in the data being
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mined. Each gene can take on the value 1 or 0, indicating that the corre-
sponding attribute occurs or not (respectively) in the candidate subset of
selected attributes.

4.1.2. Fitness Function

The fitness (evaluation) function measures the quality of a candidate at-
tribute subset represented by an individual. Following the principle of multi-
objective optimization, the fitness of an individual consists of two quality
measures: (a) the error rate of C4.5; and (b) the size of the decision tree
built by C4.5. Both (a) and (b) are computed by running C4.5 with the
individual’s attribute subset only, and by using a hold-out method to es-
timate C4.5’s error rate, as follows. First, the training data is partitioned
into two mutually-exclusive data subsets, the building subset and the vali-
dation subset. Then we run C4.5 using as its training set only the examples
(records) in the building subset. Once the decision tree has been built, it is
used to classify examples in the validation set.

4.1.3. Selection Methods and Genetic Operators

At each generation (iteration) of the GA, the next population of individuals
is formed as follows. First the GA selects all the non-dominated individuals
of the current generation, which are then passed unaltered to the next gen-
eration by elitism26. Elitism is a common procedure in MOGAs. Tt avoids
that non-dominated individuals disappear from the population due to the
stochastic nature of selection operators. However, a maximum number of
elitist individuals has to be fixed to avoid that the next population con-
sist only of elitist individuals, which would prevent the creation of new
individuals, stopping the evolutionary process. This maximum number of
elitist individuals was set to half the population size. If the number of non-
dominated individuals is larger than half the population size, that number
of elitist individuals is chosen by the tie-breaking criterion explained later.

Once elitist reproduction has been performed, the remainder of the next
generation’s population is filled in with new “children” individuals, gener-
ated from “parent” individuals from the current generation. The parent
individuals are chosen by tournament selection with a tournament size of
2. Then children are generated from parents by applying conventional uni-
form crossover and bit-flip mutation. The tournament selection procedure
is adapted for multi-objective search as follows.

The fitness of an individual is a vector with values for two objectives:
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the error rate and decision-tree size associated with the attribute subset
represented by the individual. The selection of the best individual is based
on the concept of Pareto dominance, taking into account the two objectives
to be minimized. Given two individuals I; and I» playing a tournament,
there are two possible situations. The first one is that one of the individuals
dominates the other. In this case the former is selected as the winner of the
tournament.

The second situation is that none of the individuals dominates the other.
In this case, we use the following tie-breaking criterion to determine the
fittest individual. For each of the two individuals I;, i=1,2, the GA com-
putes X; as the number of individuals in the current population that are
dominated by I;, and Y; as the number of individuals in the current popu-
lation that dominate I;. Then the GA selects as the best the individual I;
with the largest value of the formula: X; - Y;. Finally, if I; and I, have the
same value of the formula X; - Y; (which is rarely the case), the tournament
winner is simply chosen at random.

In all our experiments the probabilities of crossover and mutation were
set to 80% and 1%, respectively, which are relatively common values in the
literature. The population size was set to 100 individuals, which evolve for
50 generations. These values were used in all our experiments.

4.2. The Multi-Objective Forward Sequential Selection
Method (MOFSS)

A single-objective optimization and a multi-objective optimization method
differ mainly in the number of optimal solutions that they return. Hence,
the first step to convert the traditional FSS into a multi-objective method
is to make it able to return a set of optimal solutions instead of a single
solution.

This first point was resolved by creating a list of all non-dominated
solutions generated by the MOFSS until the current iteration of the al-
gorithm. This concept of a external list of non-dominated solutions was
inspired by some MOGAs in literature such as SPEA?7, that maintain all
the non-dominated individuals in an external population.

The proposed MOFSS starts as the traditional FSS: a subset of solutions
is created and evaluated. The evaluation of each solution considers both the
error rate and the decision tree size generated by C4.5 during training. As
in the proposed MOGA, the values of these objectives to be minimized are
stored and later used to judge a solution as better or worse than other.
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Each new solution of the current iteration is compared with every other
solution of the current iteration, in order to find all non-dominated solu-
tions in the current iteration. Then the non-dominated solution list, L, is
updated. This update consists in comparing, through the Pareto’s domi-
nance concept, the solutions in the list with the non-dominated solutions of
the current iteration. More precisely, for each non-dominated solution S of
the current iteration, S will be added to the list L only if S is not dominated
by any solution in L. It is also possible that S dominates some solution(s)
in L. In this case those dominated solutions in L are, of course, removed
from L.

The non-dominated solution list is the start point for generating new
candidate solutions. At each iteration, each solution in the current list is
extended with each new attribute (different from the ones that occur in the
current solution), and the process starts again, until no more updates can

3

be made in the non-dominated solution list.

5. Computational Results

Experiments were executed with 18 public-domain, real-world data sets
obtained from the UCI (University of California at Irvine)’s data set
repository?®. The number of examples, attributes and classes of these data
sets is shown in Table 2.

All the experiments were performed with a well-known stratified 10-fold
cross-validation procedure. For each iteration of the cross-validation proce-
dure, once the MOGA /MOFSS run is over we compare the performance of
C4.5 using all the original attributes (the “baseline” solution) with the per-
formance of C4.5 using only the attributes selected by the MOGA /MOFSS.
Recall that the MOGA /MOFSS can be considered successful to the extent
that the attributes subsets selected by it lead to a reduction in the error
rate and size of the tree built by C4.5, by comparison with the use of all
original attributes.

As explained before, the solution for a multi-objective optimization
problem consists of all non-dominated solutions (the Pareto front) found.
Hence, each run of the MOGA outputs the set of all non-dominated so-
lutions (attribute subsets) present in the last generation’s population and
each run of the MOFSS outputs the solutions stored in the non-dominated
solution list in the last iteration. In a real-world application, it would be
left to the user the final choice of the non-dominated solution to be used
in practice. However, in our research-oriented work, involving many differ-



Multi-objective Algorithms for Attribute Selection in Data Mining 11

Table 2. Main characteristics of the data sets used in the experi-

ments
Data Set # examples # attributes # classes
Arrhythmia 269 452 16
Balance-Scale 4 625 3
Bupa 6 345 2
Car 6 1717 4
Crx 15 690 2
Dermatology 34 366 6
Glass 10 214 7
Tonosphere 34 351 2
Iris 4 150 3
Mushroom 22 8124 2
Pima 8 768 2
Promoters 57 106 2
Sick-euthyroid 25 3163 2
Tic tac toe 9 958 2
Vehicle 18 846 4
Votes 16 435 2
Wine 13 178 3
Wisconsin breast-cancer 9 699 2

ent public-domain data sets, no user was available. Hence, we needed to
evaluate the quality of the non-dominated attribute subsets returned by
MOGA /MOFSS in an automatic, data-driven manner. We have done that
in two different ways, reflecting two different (but both valid) perspectives,
as follows.

The first approach to evaluate the set of non-dominated solutions re-
turned by MOGA and MOFSS is called Return All Non-Dominated So-
lutions. The basic idea is that we return all the non-dominated solutions
found by the method, and we compare each of them, one-at-a-time, with the
baseline solution — which consists of the set of all original attributes. Then
we count the number of solutions returned by the MOGA and MOFSS that
dominate or are dominated by the baseline solution, in the Pareto sense —
with respect to the objectives of minimizing error rate and decision-tree
size, as explained above.

The second approach, called Return the “Best” Non-Dominated Solution
consists of selecting a single solution to be returned to the user by using
the tie-breaking criterion described earlier. From a user’s point of view,
this is a practical approach, since the user often wants a single solution.
Moreover, this decision making process makes the solution of the multi-
objective problem complete, following its 3 potential stages of development:
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measurement, search and decision making?®.

There are many ways of setting preferences in a decision making process,
as shown in Coello-Coello??, but we did not follow any of those approaches.
For both MOGA and MOFSS we return the solution in the non-dominated
set of the last generation (or iteration) with the highest value of the tie-
breaking criterion - which is a decision-making criterion tailored for our
algorithms and underlying application. Note that, once the number of so-
lutions that dominates the solutions in the non-dominated set is zero, the
formula of the tie-breaking criterion is reduced to X;. Therefore, instead
of explicit ranking the objectives, we rank the non-dominated solutions ac-
cording the number of individuals they dominate in the last generation.
The solution chosen through this method was compared with the baseline
solution.

There is one caveat when using this criterion in MOFSS. For this algo-
rithm, we recalculate the tie-breaking criterion considering all the solutions
generated in all the iterations of the method. That is, we calculate the
number of solutions that are dominated by each of the solutions in the
non-dominated solution list of the last iteration, considering all solutions
generated by the method. The tie-braking criterion was recalculated be-
cause, for some data sets, the number of solutions in the non-dominated
list at the beginning of the last iteration was small. As a result, few new
solutions were generated in the last iteration. It was not fair to compare
the solutions in that list just with those few solutions generated in the last
generation, because the small number of solutions would lead to a low con-
fidence (from a statistical point of view) in the result. In order to solve this
problem, the tie-breaking criterion is recalculated using all generated solu-
tions since the algorithm starts. There was no need to apply this procedure
to MOGA, because this method has a larger number of solutions in the
last iteration, providing enough solutions for a reliable computation of the
tie-breaking criterion.

5.1. Results for the “Return All Non-Dominated Solutions”
Approach

As explained earlier, the basic idea of this approach is that MOGA and
MOFSS return all non-dominated solutions that they have found, and then
we count the number of solutions returned by each of these methods that
dominate or are dominated by the baseline solution.

Tables 3 and 4 show, respectively, the results found by MOGA and
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MOFSS returning all the non-dominated solutions of the last generation
(or iteration). Hereafter this version of the algorithms is called MOGA-
all and MOFSS-all. In Tables 3 and 4 the second column shows the total
number of solutions found by the method. The numbers after the “+” are
standard deviations. The next columns show the relative frequency of the
found solutions that dominate the baseline solution (column Fy,minate ), the
relative frequency of the found solutions that are dominated by the base-
line solution (column Fyominated) and the relative frequency of the found
solutions that neither dominate nor are dominated by the baseline solution
(column Feuirar)-

Table 3. Results found with MOGA-all
Solutions found with MOGA-all

Data set Total Fdaminate Fdominated Fneutrul
Arrhythmia 3.9 £ 0.54 0.21 0.33 0.46
Balance-Scale 1.0 £ 0.0 0.7 0 0.3
Bupa 6.1 + 0.38 0.31 0 0.69
Car 38.3 +£ 0.76 0.002 0 0.998
Crx 4.55 £+ 0.67 0.56 0.05 0.39
Dermatology 1.11 £ 0.11 0.8 0 0.2
Glass 46.9 £+ 1.03 0 0.06 0.94
Ionosphere 1.14 + 0.14 0.37 0.12 0.5
Iris 4.4+ 0.16 0.8 0.02 0.18
Mushroom 1.9 + 0.18 0.68 0 0.32
Pima 18.3 + 1.15 0.34 0 0.66
Promoters 1.5 + 0.16 0.33 0 0.67
Sick- euthyroid 25.4 £ 0.93 0.02 0.02 0.96
Tic tac toe 16.5 + 1.0 0 0 1
Vehicle 6.1 + 0.76 0.25 0.18 0.57
Votes 26.6 + 1.63 0.6 0 0.4
Wine 4.66 + 1.21 0.48 0.31 0.21
Wisconsin 9.3+ 04 0.5 0.2 0.3

As can be observed in Table 3, there are 6 data sets where the value
of Fiominate 18 greater than 0.5 (shown in bold), which means that more
than 50% of the MOGA-all’s solutions dominated the baseline solution. In
9 out of the 18 data sets, no MOGA-all’s solution was dominated by the
baseline solution. There are only two data sets, namely arrhythmia and
glass, where the value of Fy,minate 1S smaller than the value of Fyominated
(shown in bold), indicating that the MOGA was not successful in these
two data sets. In any case, in these two data sets the difference between
Fiominate and Faominated is relatively small (which is particularly true in
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the case of glass), and the value of Feyrar is greater than the values of
both Fyominate and Faominated-

In summary, in 14 out of the 18 data sets the value of Fiominate 1S
greater than the value of Fyminated, indicating that overall MOGA-all was
successful in the majority of the data sets. MOGA-all was very successful
in 6 data sets, where the value of Fj,minate Was larger than 0.5 and much
greater than the value of Fyominated-

In Table 4, we can see that there are 7 data sets where the value of
Fiominate 18 greater than 0.5 (shown in bold), which means that 50% or more
of the MOFSS-all’s solutions dominated the baseline solution. Remarkably,
there are only two data sets — namely wine and Wisconsin breast cancer
— where the number of MOFSS-all’s solutions dominated by the baseline
solution was greater than zero, and in the case of wine that number is
very close to zero, anyway. There are two data sets where all MOFSS-all’s
solutions are neutral, namely dermatology and mushroom. In summary, in
16 out of the 18 data sets the value of Fjominate iS greater than the value
of Fiominated, indicating that overall MOFSS was successful in the vast
majority of the data sets. MOFSS was very successful in 7 data sets, as
mentioned above.

Table 4. Results found with MOFFS-all
Solutions found with MOFFS-all

Data set Total Fdominate Fdominated Fneutral
Arrhythmia 32.2 + 10.82 0.54 0 0.46
Balance-Scale 1.8 £ 0.2 0.5 0 0.5
Bupa 2.9 +0.31 0.65 0 0.35
Car 4.3 £ 0.33 0.07 0 0.93
Crx 84.1 + 2.05 0.89 0 0.11
Dermatology 76.5 + 10.3 0 0 1
Glass 94.1 + 5.24 0.99 0 0.01
Ionosphere 12.9 + 6.23 0.14 0 0.86
Iris 3.5 + 0.34 0.86 0 0.14
Mushroom 51.9 + 11.88 0 0 1
Pima 11.1 4+ 1.88 0.95 0 0.05
Promoters 66.6 = 12.66 0.27 0 0.73
Sick-euthyroid 50.3 + 6.44 0.1 0 0.9
Tic tac toe 8.1 &+ 1.54 0.11 0 0.89
Vehicle 3.6 + 0.16 0.17 0 0.83
Votes 98.4 £+ 0.37 0.1 0 0.9
Wine 8.3 £ 6.1 0.92 0.01 0.07
Wisconsin 10.1 & 4.76 0.45 0.37 0.18
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5.2. Results for the “Return the ‘Best’ Non-Dominated
Solution” Approach

Tables 5 and 6 show the results obtained by following this approach. These
tables show results for error rate and tree size separately, as usual in the
machine learning and data mining literature. Later in this section we show
results (in Table 7) involving Pareto dominance, which consider the simulta-
neous minimization of error rate and tree size. In Tables 5 and 6 the column
titled C4.5 contains the results for C4.5 ran with the baseline solution (all
original attributes), whereas the columns titled MOGA-1 and MOFSS-1
contain the results for C4.5 ran with the single “best” non-dominated so-
lution found by MOGA and MOFSS, using the criterion for choosing the
“best” solution explained earlier. The figures in the tables are the average
over the 10 iterations of the cross-validation procedure. The values after the
“+” symbol represent the standard deviations, and the figures in bold indi-
cate the smallest error rates/tree sizes obtained among the three methods.
In the columns MOGA-1 and MOFSS-1, the symbol “4+” (“”) denotes
that the results (error rate or tree size) of the corresponding method is
significantly better (worse) than the result obtained with the baseline solu-
tion. The difference in error rate or tree size between the columns MOGA-
1/MOFSS-1 and C4.5 are considered significant if the corresponding error
rate or tree size intervals — taking into account the standard deviations —
do not overlap. The last two lines of Tables 5 and 6 summarize the results
of these tables, indicating in how many data sets MOGA-1/MOFSS-1 ob-
tained a significant win/loss over the baseline solution using C4.5 with all
original attributes.

In Tables 5 and 6, the results of MOFSS-1 for the dataset Arrhythmia
are not available due to the large number of attributes in this data set, 269.
This leads to a too large number of solutions generated along all iterations of
the algorithm, so that re-calculating the tie-breaking criterion considering
all the generated solutions was impractical with the machine used in the
experiments (a dual-PC with 1.1GHz clock rate and 3Gbytes memory).

The results in Table 5 show that MOGA-1 obtained significantly better
error rates than the baseline solution (column “C4.5”) in 8 data sets. In
contrast, the baseline solution obtained significantly better results than
MOGA-1 in just two data sets. MOFSS-1 has not found solutions with
significantly better error rates than the baseline solution in any data set.
On the contrary, it found solutions with significantly worse error rates than
the baseline solution in 7 data sets.
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Table 5. Error rates obtained with C4.5, MOGA-1 and MOFSS-1
Error Rate (%)

Data set C4.5 MOGA-1 MOFSS-1
Arrhythmia 32.93 + 3.11 26.38 £+ 1.47 (+) N/A
Balance-Scale 36.34 + 1.08 28.32 + 0.71 (+) 36.47 + 1.84
Bupa 37.07+£2.99 30.14 + 1.85 (+) 40.85 £ 1.45
Car 7.49 + 0.70  16.65+ 0.4 () 185+ 0.70 (-)
Crx 15.95 4+ 1.43 12.44 + 1.84 15.04 £+ 1.35
Dermatology 6.0 £0.98 2.19 & 0.36 (+) 11.15 + 1.60 (-)
Glass 1.86 + 0.76 1.43 £ 0.73 1.86 + 0.76
Tonosphere 10.2 + 1.25 5.13 + 1.27 (+) 7.98 + 1.37
Tris 6.0 232  2.68 £ 1.1 (+) 6.01 & 2.09
Mushroom 0.0 + 0.0 0.0 + 0.0 0.18 + 0.07 (-)
Pima 26.07 £+ 1.03 23.07 £+ 1.16 28.16 £+ 1.72
Promoters 16.83 + 2.55 11.33 + 1.92 (4+) 33.5 + 6.49 (-)
Sick-euthyroid 2.02 £ 0.12 2.22 + 0.18 2.32 + 0.23
Tic tac toe 15.75 + 1.4 22.65 + 1.19 () 31.19 + 1.69 (-)
Vehicle 26.03 £+ 1.78 23.16 + 1.29 33.74 + 1.78 (-)
Votes 3.2 + 0.91 2.97 £ 0.75 4.57 £+ 0.89
Wine 6.69 + 1.82 0.56 + 0.56 (+) 6.07 + 1.69
Wisconsin 5.28 £+ 0.95 3.84 + 0.67 7.16 £+ 0.77 (-)
Wins over C4.5 - 8 0

Losses over C4.5 - 2 7

As can be observed in Table 6, the tree sizes obtained with the solutions
found by MOGA-1 and MOFSS-1 are significantly better than the ones
obtained with the baseline solution in 15 out of 18 data sets. In the other
three data sets the difference is not significant.

In summary, both MOGA-1 and MOFSS-1 are very successful in finding
solutions that led to a significant reduction in tree size, by comparison with
the baseline solution of all attributes. The solutions found by MOGA-1
were also quite successful in reducing error rate, unlike the solutions found
by MOFSS-1, which unfortunately led to a significant increase in error rate
in a number of data sets. Hence, these results suggest that MOGA-1 has
effectively found a good trade-off between the objectives of minimizing error
rate and tree size, whereas MOFSS-1 minimized tree size at the expense of
increasing error rate in a number of data sets.

Table 7 compares the performance of MOGA-1, MOFSS-1 and C4.5
using all attributes considering both the error rate and the tree size at
the same time, according to the concept of significant Pareto dominance.
This is a modified version of conventional Pareto dominance tailored for the
classification task of data mining, where we want to find solutions that are
not only better, but significantly better, taking into account the standard
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Table 6. Tree sizes obtained with C4.5, MOGA-1 and MOFSS-1
Tree Size (number of nodes)
Data set C4.5 MOGA-1 MOFSS-1
Arrhythmia 80.2 £ 2.1  65.4 + 1.15 (+) N/A
Balance-Scale 41.0 £ 1.29  16.5 + 3.45 (+) 7.5 + 1.5 (+)
Bupa 44.2 + 375 7.4+ 1.36 (+) 11.4 £ 2.78 (+)
Car 165.3 £ 2.79 294 + 5.2 (+) 17.7 + 1.07 (+)
Crx 29.0 £+ 3.65 11.2 + 3.86 (+) 24.6 + 8.27
Dermatology 34.0 £ 1.89  25.2 4+ 0.96 (+) 23.2 + 2.84 (+)
Glass 11.0 £ 0.0 11.0 £ 0.0 11.0 +£ 0.0
Tonosphere 262+ 1.74  13.0 + 1.4 (+) 14.2 + 2.23 (+)
Iris 8.2 4+ 0.44 5.8 + 0.53 (+) 6.0 + 0.68 (+)
Mushroom 32.7+0.67  30.0 + 0.89 (+) 27.2 + 1.76 (+)
Pima 45.0 + 2.89 11.0 £ 2.6 (+) 9.2 + 1.85 (+)
Promoters 23.8 +1.04 11.4 + 2.47 (+) 9.0 + 1.2 (4)
Sick-euthyroid 24.8 + 0.69 11.2 + 1.35 (+) 9.6 £ 0.79 (+)
Tic tac toe 130.3 +4.25 21.1 +4.54 (+)  10.6 + 1.4 (+)
Vehicle 134.0 + 6.17 95 + 3.13 (4) 72.8 + 10.98 (+)
Votes 10.6 £+ 0.26 5.4 + 0.88 (+) 5.6 + 1.07 (+)
Wine 10.2 + 0.68 9.4 + 0.26 8.6 + 0.26 (+)
Wisconsin 28.0 + 2.13 25 £ 3.71 18 + 1.53 (+)
Wins over C4.5 - 15 15
Losses over C4.5 - 0 0
Table 7. Number of significant Pareto

dominance relations

C4.5 MOGA-1 MOFSS-1

C4.5 X 0 0
MOGA-1 14 X 7
MOFSS-1 8 0 X

deviations (as explained earlier for Tables 5 and 6). Hence, each cell of
Table 7 shows the number of data sets in which the solution found by
the method indicated in the table row significantly dominates the solution
found by method indicated in the table column. A solution S; significantly
dominates a solution Sy if and only if:

b Objl(Sl) + Sdl(sl) < Objl(Sg) — Sdl(SQ) and
. nOt[Oij(SQ) + SdQ(Sz) < Objg(Sl) — Sdg(Sl)]

where 0bji(S1) and sd; (S1) denote the average value of objective 1 and the
standard deviation of objective 1 associated with solution Sy, and similarly
for the other variables. Objectivel and objective2 can be instantiated with
error rate and tree size, or vice-versa. For example, in the bupa dataset
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we can say that the solution found by MOGA-1 significantly dominates
the solution found by MOFSS-1 because: (a) In Table 5 MOGA-1’s error
rate plus standard deviation (30.14+1.85) is smaller than MOFSS-1’s error
rate minus standard deviation (40.85-1.45); and (b) concerning the tree size
(Table 6), the condition “not (11.4 + 2.78 < 7.4 - 1.36)” holds. So, both
conditions for significant dominance are satisfied.

As shown in Table 7, the baseline solution (column “C4.5”) did not
significantly dominate the solutions found by MOGA-1 and MOFSS-1 in
any dataset. The best results were obtained by MOGA-1, whose solutions
significantly dominated the baseline solution in 14 out of the 18 datasets
and significantly dominated MOFSS-1’s solutions in 7 data sets. MOFSS-
1 obtained a reasonably good result, significantly dominating the baseline
solution in 8 datasets, but it did not dominate MOGA-1 in any dataset. A
more detailed analysis of these results, at the level of individual data sets,
can be observed later in Tables 8 and 9.

5.3. On the effectiveness of the criterion to choose the
“best” solution

Analyzing the results in Tables 3, 4, 5 and 6 we can evaluate whether the
criterion used to choose a single solution out of all non-dominated ones
(i.e., the criterion used to generate the results of Tables 5 and 6) is really
able to choose the “best” solution for each data set. We can do this ana-
lyzing the dominance relationship (involving the error rate and tree size)
between the single returned solution and the baseline solution. That is,
we can observe whether or not the single solution returned by MOGA-1
and MOFSS-1 dominates, is dominated by, or is neutral with respect to
the baseline solution. Once we have this information, we can compare it
with the corresponding relative frequencies associated with the solutions
found by MOGA-all/MOFSS-all (columns Fyominate; Fdominateds Freutral
of Tables 3 and 4). This comparison is performed in Tables 8 and 9, which
refer to MOGA and MOFSS, respectively. In these two tables the first col-
umn contains the data set names, the next three columns are copied from
the last three columns in Tables 3 and 4, respectively, and the last three
columns are computed from the results in Tables 5 and 6, by applying
the above-explained concept of significant Pareto dominance between the
MOGA-1’s/MOFSS-1’s solution and the baseline solution.

As can be observed in Table 8, there are only 4 data sets in which the
solutions found by MOGA-1 do not dominate the baseline solutions: car,
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Table 8. Performance of MOGA-all versus MOGA-1
Performance of MOGA-all’s Performance of MOGA-1’s

solutions wrt baseline solution wrt baseline solution
solution

Data set Faom Fdom_ed Freut Dom Dom_ed Neut
Arrhythmia 0.21 0.33 0.46 X

Balance-Scale 0.7 0 0.3 X

Bupa 0.31 0 0.69 X

Car 0.002 0 0.998 X
Crx 0.56 0.05 0.39 X

Dermatology 0.8 0 0.2 X

Glass 0 0.06 0.94 X
Tonosphere 0.37 0.12 0.5 X

Iris 0.8 0.02 0.18 X

Mushroom 0.68 0 0.32 X

Pima 0.34 0 0.66 X

Promoters 0.33 0 0.67 X

Sick- euthyroid 0.02 0.02 0.96 X

Tic tac toe 0 0 1 X
Vehicle 0.25 0.18 0.57 X

Votes 0.6 0 0.4 X

Wine 0.48 0.31 0.21 X

‘Wisconsin 0.5 0.2 0.3 X

glass, tic-tac-toe and wisconsin. For these 4 data sets the solutions found by
MOGA-1 were neutral (last column of Table 8), and the value of Fpeytral
was respectively 0.998, 0.94, 1 and 0.3. Therefore, in the first three of those
data sets it was expected that the single solution chosen by MOGA-1 would
be neutral, so that the criterion used for choosing a single solution cannot
be blamed for returning a neutral solution. Only in the wisconsin data set
the criterion did badly, because 50% of the found solutions dominated the
baseline solution but a neutral solution was chosen.

The criterion was very successful, managing to chose a solution that
dominated the baseline, in all the other 14 data sets, even though in 8 of
those data sets less than 50% of the solutions found by MOGA-all domi-
nated the baseline. The effectiveness of the criterion can be observed, for
instance, in arrhythmia and sick-euthyroid. Although in arrhythmia the
value of Fyominated Was quite small (0.21), the solution returned by MOGA-
1 dominated the baseline solution. In sick-euthyroid, 96% of the solutions
found by MOGA-all were neutral, but a solution that dominates the base-
line solution was again returned by MOGA-1. With respect to the effective-
ness of the criterion when used by MOFSS-1, unexpected negative results
were found in 2 data sets of Table 9, namely crx and glass. For both data
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Table 9. Performance of MOFSS-all versus MOFSS-1
Performance of MOFSS-all’s Performance of MOFSS-1’s

solutions wrt baseline solution wrt baseline solution
solution

Data set Fagom Fdom_ed Fheut Dom Dom_ed Neut
Arrhythmia 0.54 0 0.46 - - -
Balance-Scale 0.5 0 0.5 X

Bupa 0.65 0 0.35 X

Car 0.07 0 0.93 X
Crx 0.89 0 0.11 X
Dermatology 0 0 1 X
Glass 0.99 0 0.01 X
Tonosphere 0.14 0 0.86 X

Iris 0.86 0 0.14 X

Mushroom 0 0 1 X
Pima 0.95 0 0.05 X

Promoters 0.27 0 0.73 X
Sick- euthyroid 0.1 0 0.9 X

Tic tac toe 0.11 0 0.89 X
Vehicle 0.17 0 0.83 X
Votes 0.1 0 0.9 X

Wine 0.92 0.01 0.07 X

Wisconsin 0.45 0.37 0.18 X

sets, despite the high values of Fjominate, the solutions chosen by MOFSS-
1 were neutral. The opposite happened in ionosphere, sick-euthyroid and
votes, where Fj,cyirq; had high values, but single solutions better than the
baseline solution were chosen by MOFSS-1.

The relatively large number of neutral solutions chosen by MOFSS-
1 happened because in many data sets the tree size associated with the
solution chosen by MOFSS-1 was smaller than the tree size associated with
the baseline solution, whilst the error rates of the former were larger than
the error rates of the latter.

Overall, the criterion for choosing a single solution was moderately suc-
cessful when used by MOFSS-1, and much more successful when used by
MOGA-1. A possible explanation for this result is that the procedure used
for tailoring the criterion for MOFSS, described earlier, is not working very
well. An improvement in that procedure can be tried in future research.

It is important to note that, remarkably, the criterion for choosing a
single solution did not choose a solution dominated by the baseline solution

in any data set. This result holds for both MOGA-1 and MOFSS-1.
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6. Conclusions and Future Work

This chapter has discussed two multi-objective algorithms for attribute se-
lection in data mining, namely a multi-objective genetic algorithm (MOGA)
and a multi-objective forward sequential selection (MOFSS) method. The
effectiveness of both algorithms was extensively evaluated in 18 real-world
data sets. Two major sets of experiments were performed, as follows.

The first set of experiments compared each of the non-dominated solu-
tions (attribute subsets) found by MOGA and MOFSS with the baseline
solution (consisting of all the original attributes). The comparison aimed
at counting how many of the solutions found by MOGA and MOFSS dom-
inated (in the Pareto sense) or were dominated by the baseline solution, in
terms of classification error rate and decision tree size. Overall, the results
(see Tables 3 and 4) show that both MOGA and MOFSS are successful
in the sense that they return solutions that dominate the baseline solution
much more often than vice-versa.

The second set of experiments consisted of selecting a single “best” so-
lution out of all the non-dominated solutions found by each multi-objective
attribute selection method (MOGA and MOFSS) and then comparing this
solution with the baseline solution. Although this kind of experiment is not
often performed in the multi-objective literature, it is important because
in practice the user often wants a single solution to be suggested by the
system, to relieve him from the cognitive burden and difficult responsibility
of choosing one solution out of all non-dominated solutions.

In order to perform this set of experiments, this work proposed a simple
way to choose a single solution to be returned from the set of non-dominated
solutions generated by MOGA and MOFSS. The effectiveness of the pro-
posed criterion was analyzed by comparing the results of the two different
versions of MOGA and MOFSS, one version returning all non-dominated
solutions (results of the first set of experiments) and another version re-
turning a single chosen non-dominated solution. Despite its simplicity, the
proposed criterion worked well in practice, particularly when used in the
MOGA method. It could be improved when used in the MOFSS method,
as discussed earlier.

In the future we intend to analyze the characteristics of the data sets
where each of the proposed methods obtained its best results, in order to
find patterns that describe the data sets where each method can be applied
with greater success.
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