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Abstract This paper proposes a novel Ant Colony Optimi-
sation algorithm (ACO) tailored for the hierarchical multi-
label classification problem of protein function prediction.
This problem is a very active research field, given the large
increase in the number of uncharacterised proteins available
for analysis and the importance of determining their func-
tions in order to improve the current biological knowledge.
Since it is known that a protein can perform more than one
function and many protein functional-definition schemes are
organised in a hierarchical structure, the classification prob-
lem in this case is an instance of a hierarchical multi-label
problem. In this type of problem, each example may belong
to multiple class labels and class labels are organised in a hi-
erarchical structure—either a tree or a directed acyclic graph
(DAG) structure. It presents a more complex problem than
conventional flat classification, given that the classification
algorithm has to take into account hierarchical relationships
between class labels and be able to predict multiple class
labels for the same example. The proposed ACO algorithm
discovers an ordered list of hierarchical multi-label classifi-
cation rules. It is evaluated on sixteen challenging bioinfor-
matics data sets involving hundreds or thousands of class
labels to be predicted and compared against state-of-the-
art decision tree induction algorithms for hierarchical multi-
label classification.
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1 Introduction

Classification is a well-known data mining task, where the
goal is to learn a relationship between input values and a de-
sired output [14]. In essence, a classification problem is de-
fined by a set of examples, where each example is described
by predictor attributes and associated with a class attribute.
Generally, it involves two phases. In the first phase, given
a labelled data set—i.e. a data set consisting of examples
with a known class value (label)—as an input, a classifica-
tion model that represents the relationship between predic-
tor and class attribute values is built. In the second phase,the
classification model is used to classify unknown examples—
i.e. examples with unknown class value.

In the vast majority of classification problems addressed
in the literature, each example is associated with only one
class value or label and class values are unrelated—i.e. there
are no relationships between different class values. This kind
of classification problems are usually referred to as flat (non-
hierarchical) single-label problems. On the other hand, inhi-
erarchical multi-label classification problems, examplesmay
be associated to multiple class values at the same time and
the class values are organised in a hierarchical structure (e.g.
a tree or a directed acyclic graph structure). From a data
mining perspective, hierarchical multi-label classification is
much more challenging than flat single-label classification.
Firstly, it is generally more difficult to discriminate between
classes represented by nodes at the bottom of the hierarchy
than classes represented by nodes at the top of the hierar-
chy, since the number of examples per class tends to be
smaller at lower levels of the hierarchy as opposed to top
levels of the hierarchy. Secondly, class predictions must sat-
isfy hierarchical parent-child relationships, since an example
associated with a class is automatically associated with all
its ancestors classes. Thirdly, multiple unrelated classes—
i.e. classes which are not involved in ancestor/descendant
relationship—may be predicted at the same time.

There has been an increasing interest in hierarchical cl-
assification, where in general early applications are foundin
text classification [7, 33, 36, 37, 39] and recently in protein
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function prediction [2, 6, 9, 28, 38]. The latter is a very active
research field, given the large increase in the number of un-
characterised proteins available for analysis and the impor-
tance of determining their functions in order to improve the
current biological knowledge. It is important to emphasise
that in this context, comprehensible classification models—
which can be validated by the user—are preferred in order to
provide useful insights about the correlation of protein fea-
tures and their functions. Concerning the problem of protein
function prediction, the focus of this paper, an example to be
classified corresponds to a protein, predictor attributes cor-
respond to different protein features and the classes corre-
spond to different functions that a protein can perform. Since
it is known that a protein can perform more than one func-
tion and function definitions are organised in a hierarchical
structure (e.g. FunCat [34] and Gene Ontology [10] protein
functional-definition schemes), the classification problem in
this case is an instance of a hierarchical multi-label problem.

In this paper we propose a novel ant colony classification
algorithm tailored for the hierarchical multi-label classifi-
cation problem, extending the ideas of our previoushAnt-
Miner (Hierarchical Classification Ant-Miner) [28] algori-
thm. hAnt-Miner—the first ant colony algorithm for hierar-
chical classification to the best of our knowledge—discovers
a list of classification rules that can predict all classes from
a class hierarchy, independently of their level, but has the
limitation of not being able to cope with multi-label data.
The proposed algorithm overcomes this limitation and it is
evaluated on sixteen bioinformatics data sets, taking intoac-
count both the predictive accuracy and simplicity (size) of
the discovered rule list. The evaluation consists in compar-
ing the proposed algorithm against state-of-the-art decision
tree induction algorithms for hierarchical multi-label classi-
fication. The data sets employed in this evaluation present
challenging problems for any classification algorithm as the
number of attributes range from 63 to 551, the number of
class labels in the class hierarchy ranges from 456 to 4134
and each example is associated with more than one class la-
bel.

The remainder of this paper is organised as follows. Sec-
tion 2 reviews the related work. Section 3 presents an over-
view of the Ant Colony Optimisation metaheuristic and its
applications in data mining’s classification task. The details
of the proposed hierarchical multi-label classification algo-
rithm are presented in Section 4. In Section 5, the evaluation
measure based on Precision-Recall curves used in our exper-
iments is presented. Section 6 presents the computational re-
sults. Finally, Section 7 draws the conclusions of this paper
and presents future research directions.

2 Related Work on Hierarchical Multi-Label Protein
Function Prediction

Much work on hierarchical classification of protein func-
tions has been focused on training a classifier for each class
label (function) independently, using the hierarchy to deter-

mine positive and negative examples associated with each
classifier [2, 3, 20, 22]. As discussed in [6], predicting each
class label individually has several disadvantages, as fol-
lows. Firstly, it is slow since a classifier needs to be trained n
times (wheren is the number of class labels in the hierarchy
excluding the root label). Secondly, some class labels could
potentially have few positive examples in contrast to a much
greater number of negative examples, particularly class la-
bels at deeper levels of the hierarchy. Many classification al-
gorithms have problems with imbalanced class distributions
[19]. Thirdly, individual predictions can lead to inconsistent
hierarchical predictions, since parent-child relationships be-
tween class labels are not imposed automatically during the
training. However, more elaborate approaches can correct
the individual predictions in order to satisfy hierarchical re-
lationships—e.g. a Bayesian network is used to correct the
inconsistent predictions of a set of SVM classifiers in [2].
Fourthly, the discovered knowledge identifies relationships
between predictor attributes and each class label individu-
ally, rather than relationships between predictor attributes
and the class hierarchy as a whole, which could give more
insights into the data.

In order to avoid the aforementioned disadvantages of
dealing with each class label individually, a few authors have
proposed classification algorithms that discover a single glo-
bal model which is able to predict class labels at any level
of the hierarchy. Kiritchenko et al. [21] present an approach
where the hierarchical (possibly multi-label) classification
problem is cast as a multi-label problem by expanding the
class label set of an example with all their ancestor class la-
bels. Then, a multi-label classification algorithm is applied
to the modified data set. For some examples, there is still
a need for a post-processing step to resolve inconsistencies
in the class labels predicted. Rousu et al. [33] presents a
kernel-based algorithm for hierarchical multi-label classi-
fication based on the maximum margin Markov networks
framework, wherein a post-processing is not required in or-
der to satisfy hierarchical class labels relationships.

In general all of the above approaches can be seen as a
‘black box’, since the produced classification model cannot
be interpreted and validated by the user. As previously men-
tioned, comprehensibility plays an important role in protein
function prediction. Clare et al. [9] present an adapted ver-
sion of the well-known C4.5 decision tree algorithm, which
is able to deal with all hierarchical class labels in the dataset
at hand at the same time. In their approach, a leaf of the de-
cision tree predicts a vector of boolean values, indicatingthe
presence/absence of a particular class label. A recent work
by Vens et al. [38] presents three approaches for hierarchi-
cal multi-label classification using the concept of predictive
clustering trees (PCT) to induce decision trees for hierarchi-
cal multi-label problems in the context of protein function
prediction: (1) building a decision tree for each class indi-
vidually; (2) building decision trees in a top-down fashion,
where an example can only belong to a classc if it belongs
to thec’s parent class; (3) building a single decision tree that
predicts all classes at once. They evaluated these approaches
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on twenty-four bioinformatics data sets, from which we have
selected sixteen to use in this paper, using as protein func-
tional classification schemes the FunCat (tree structure) and
Gene Ontology (directed acyclic graph structure). Alves et
al. [1] proposes two versions of Artificial Immune Systems
(AIS) algorithms for hierarchical multi-label classification
using the Gene Ontology functional-definition scheme. AIS
are computational systems based on the characteristics—
mainly the capability of learning and memory—of biolog-
ical immune systems.

Holden and Freitas [17] propose a method to improve
the performance of top-down hierarchical classification, wh-
erein a hybrid particle swarm optimisation (PSO) / ant colo-
ny optimisation (ACO) algorithm is used to select—out of
a set of predefined candidate classification algorithms—the
best (most accurate) classification algorithm to be used at
each node of the class hierarchy. This ‘selective’ top-down
approach is based on a previous work presented in [35],
where the selection of the best algorithm at each node is
done in a greedy fashion, rather than using the PSO/ACO
algorithm. In Holden and Freitas [18], different ensembles
of rules are built for each level of the class hierarchy—using
the training examples at the level—and a PSO algorithm is
used to optimise the weights used to combine the predictions
of different rules in a top-down fashion. While both works
are in the context of hierarchical classification, they have
been applied to hierarchical single-label classification deal-
ing with tree-structured class hierarchies. Therefore, they
cannot be straightforwardly applied to the data sets used in
this paper, which involves hierarchical multi-label classifi-
cation dealing with both tree-structured and DAG-structured
class hierarchies.

3 Ant Colony Optimisation

Inspired by the behaviour of natural ant colonies, Dorigo and
Stützle [13] have defined an artificial ant colony metaheuris-
tic that can be applied to solve optimisation problems, called
Ant Colony Optimisation (ACO). The main idea for the def-
inition of ACO came from the fact that many ant species,
even with limited visual capabilities or completely blind,
are able to find the shortest path between a food source and
the nest. It was discovered that most of the communication
among individual ants is based on the use of a chemical,
called pheromone, that is dropped on the ground. As ants
walk from a food source to the nest, pheromone is deposited
on the ground, creating in this way a pheromone trail on
the path used. Shorter paths will be traversed faster and, by
consequence, will have stronger pheromone concentration
than longer paths over a given period of time. The more
pheromone a path contains, the more attractive it becomes
to be followed by other ants. Hence, as time goes by, more
and more ants will prefer the shorter path, which will have
more and more pheromone. In the end, (almost) all ants will
be following a single path, which usually will represent the
shorter path between the food source and the nest.

Ant Colony Optimisation algorithms simulate the beha-
viour of real ants using a colony of artificial ants, which co-
operate in finding good solutions to optimisation problems.
Each artificial ant, representing a simple agent, builds can-
didate solutions to the problem at hand and communicates
indirectly with other artificial ants by means of pheromone
values. At the same time that ants perform a global search for
new solutions, the search is guided to better regions of the
search space based on the quality of solutions found so far.
The algorithm converges to good solutions as a result of the
collaborative interaction among the ants; an ant probabilis-
tic chooses a trail to follow based on heuristic information
and pheromone values, deposited by previous ants. The in-
teractive process of building candidate solutions and updat-
ing pheromone values allows an ACO algorithm to converge
to optimal or near-optimal solutions. The main aspects of an
ACO algorithm are as follows:

– problem representation: the problem is mapped to a gra-
ph representation that is used by the artificial ants to
build solutions. Ants perform randomized walks on a
graphGc = (C,L), where the setC represents the ver-
tices of the graph and the setL represent the edges be-
tween the vertices, in order to build solutions. The graph
Gc represents the problem search space;

– building solutions: each ant incrementally builds a can-
didate solution by moving through neighbour vertices of
the graphGc. The vertices to be visited are chosen in
a stochastic decision process, where the probability of
choosing a particular vertex depends on both the amount
of pheromone (τ) associated with the vertex (or the edge
leading to the vertex) and a problem dependent heuristic
information (η). Hence, a candidate solution is repre-
sented by a trail in the graphGc;

– indirect communication: after building a candidate solu-
tion, an ant evaluates the solution in order to decide how
much pheromone to deposit in the solution’s trail. In gen-
eral, the amount of pheromone deposited is proportional
to the quality of the candidate solution. The deposit of
pheromone increases the probability that vertices/edges
used in a solution will be used again by different ants.

ACO algorithms have been successfully applied to sev-
eral different flat (non-hierarchical) classification problems,
as reviewed in [15]. The first implementation of an ACO
algorithm for discovering classification rules, named Ant-
Miner, was presented in [29] and more recently variations
were proposed in [25, 26, 27, 28]. Ant-Miner, and conse-
quentially its variations, combines a traditional machinele-
arning’s sequential covering approach with an ACO-based
classification rule induction procedure. The sequential cov-
ering approach consists of an iterative process of creating
on-rule-at-a-time, removing examples from the training set
until there are no uncovered training examples (i.e., training
examples not classified by any of the created rules). Follow-
ing the sequential covering approach, a rule is created using
an ACO procedure at each iteration of the process in Ant-
Miner.
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Despite the Ant-Miner variations for flat classification
proposed in the literature, extending Ant-Miner to hierar-
chical multi-label classification problems is a research topic
that has not yet been explored by other authors, to the best of
our knowledge. In the context of hierarchical and multi-label
classification, there are two Ant-Miner variations which are
worthy of mentioning.

Chan and Freitas [8] proposed a new ACO algorithm,
named MuLAM (Multi-Label Ant-Miner), for discovering
multi-label classification rules. In essence, MuLAM differs
from the original Ant-Miner in three aspects, as follows.
Firstly, a classification rule can predict one or more class
attributes, as in multi-label classification problems an exam-
ple can belong to more than one class. Secondly, each itera-
tion of MuLAM creates a set of rules instead of a single rule
as in the original Ant-Miner. Thirdly, it uses a pheromone
matrix for each class value and pheromone updates only oc-
cur on the matrix of the class values that are present in the
consequent of a rule. In order to cope with multi-label data,
MuLAM employs a criterion to decide whether one or more
class values should be predicted by the same rule.

Otero et al. [28] proposed an extension of the flat classi-
fication Ant-Miner algorithm tailored for hierarchical clas-
sification problems, namedhAnt-Miner (Hierarchical Clas-
sification Ant-Miner), employing a hierarchical rule eval-
uation measure to guide pheromone updating, a heuristic
information adapted for hierarchical classification, as well
as an extended rule representation to allow hierarchically-
related classes in the consequent of a rule. However,hAnt-
Miner cannot cope with hierarchical multi-label problems,
where an example can be assigned to multiple classes that
are not ancestor/decendant of each other. Since in this paper
we focus on extending the ideas ofhAnt-Miner into the hier-
archical multi-label classification problem, a more detailed
overview is presented in Subsection 3.1.

3.1 An Overview of Hierarchical Classification Ant-Miner

The target problem ofhAnt-Miner algorithm is the discovery
of hierarchical classification rules in the formIF antecedent
THEN consequent. The antecedent of a rule is composed
by a conjunction of conditions based on predictor attribute
values (e.g.length > 25 AND IPR00023 = yes) while the
consequent of a rule is composed by a set of class labels in
potentially different levels of the class hierarchy respecting
ancestor/decendant class relationships (e.g., GO:0005216,
GO:0005244—where GO:0005244 is a subclass of GO:000-
5216).hAnt-Miner divides the rule construction process into
two different ant colonies, one colony for creating antecedent
of rules and one colony for creating consequent of rules, and
the two colonies work in a cooperative fashion.

In order to discover a list of classification rules, a se-
quential covering approach is employed to cover all (or al-
most all) training examples. Algorithm 1 presents a high-
level pseudocode of the sequential covering procedure em-
ployed inhAnt-Miner. The procedure starts with an empty

rule list (while loop) and adds a new rule to the rule list
while the number of uncovered training examples is greater
than a user-specified maximum value. At each iteration, a
rule is created by an ACO procedure (repeat-until loop).
Given that a rule is represented by paths in two different
construction graphs (illustrated in Fig. 1), antecedent and
consequent, two separate colonies are involved in the rule
construction procedure. Ants in the antecedent colony cre-
ate paths on the antecedent construction graph while ants in
the consequent colony create paths on the consequent con-
struction graph. In order to create a rule, an ant from the
antecedent colony is paired with an ant from the consequent
colony (the first ant from the antecedent colony is paired
with the first ant from the consequent colony, and so forth),
so that the construction of a rule is synchronized between
the two ant colonies. Therefore, it is a requirement that both
colonies have the same number of ants. The antecedent and
consequent paths are created by probabilistically choosing a
vertex to be added to the current path (antecedent or conse-
quent) based on the values of the amount of pheromone (τ)
associated with edges and problem-dependent heuristic in-
formation (η) associated with vertices. There is a restriction
that the antecedent of the rule must cover at least a user-
defined minimum number of examples, to avoid overfitting.

Once the rule construction procedure has finished, the
rules constructed by the ants are pruned to remove irrelevant
terms (attribute-value conditions) from their antecedent—
which can be regarded as a local search operator—and class
labels from their consequent. Then, pheromone levels are
updated using the best rule (based on a quality measureQ) of
the current iteration and the best-so-far rule (across all itera-
tions) is stored. The rule construction procedure is repeated
until a user-specified number of iterations has been reached,
or the best-so-far rule is exactly the same in a predefined
number of previous iterations. The best-so-far rule found is
added to the rule list and the covered training examples—i.e.
examples that satisfy the rule’s antecedent conditions—are
removed from the training set.

Overall,hAnt-Miner can be regarded as a memetic algo-
rithm [23], in the sense that it combines conventional con-
cepts and methods of the ACO metaheuristic with concepts
and methods of conventional rule induction algorithms (e.g.
the sequential covering and rule pruning procedures), as dis-
cussed earlier.

3.1.1 Hierarchical Rule Evaluation

hAnt-Miner uses a variation of the hierarchical accuracy me-
asure proposed by [21] in order to evaluate rules constructed
by ants. Firstly, the set of predicted class labelsPr of rule r
is extended with the corresponding ancestor labels (Pr

′) as

Pr
′ = Pr ∪{∪li∈Pr Ancestors(li)}− lroot , (1)

whereAncestors(li) corresponds to all ancestor class labels
of the class labelli and lroot is the root class label of the
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Algorithm 1 High-level pseudocode of the sequential covering procedure employed inhAnt-Miner. The rule construction process in
hAnt-Miner involves two separate colonies, one for the creation of the antecedent of a rule and one for the creation of the consequent of a
rule.

input : training examples
output: discovered rule list

begin1
training set← all training examples;2
rule list← /0;3
while |training set| > max uncovered examples do4

rulebest ← /0;5
i← 1;6
repeat7

rulecurrent ← /0;8
for j← 1 to colony size do9

// use separate ant colonies for antecedent and consequent construction10

rule j←CreateAntecedent()+CreateConsequent();11
// applies a local search operator12

Prune(rule j);13
// updates the reference to the best rule of the iteration14

if Q(rule j) > Q(rulecurrent) then15
rulecurrent ← rule j;16

end17
j← j +1;18

end19

U pdatePheromones(rulecurrent );20

if Q(rulecurrent) > Q(rulebest) then21
rulebest ← rulecurrent ;22

end23
i← i+1;24

until i≥ max number iterations OR RuleConvergence() ;25
rule list← rule list + rulebest ;26

training set← training set−Covered(rulebest ,training set);27

end28
return rule list;29

end30

hierarchy. Then, the hierarchical measures of precision (hP)
and recall (hR) are computed as

hP =
∑i∈Sr

|Ai∩Pr
′|

|Pr
′|

|Sr|
hR =

∑i∈Sr
|Ai∩Pr

′|
|Ai|

|Sr|
, (2)

whereSr is the set of all examples covered by (satisfying the
rule antecedent of) ruler and Ai is the set of actual (true)
class labels of thei-th example. The hierarchical precision
(hP) is the average number of true class labels that are pre-
dicted by ruler divided by the total number of predicted
class labels across the examples covered by ruler; the hier-
archical recall (hR) is the average number of true class labels
that are predicted by ruler divided by the total number of
true class labels which should have been predicted across the
examples covered by ruler. Finally, the rule quality measure
Q is defined as a combination of thehP andhR measures,
equivalent to the hierarchical F-measure, given by

Q = hF =
2·hP ·hR
hP+hR

. (3)

3.1.2 Heuristic Information

Antecedent Heuristic Information As in Ant-Miner, the he-
uristic information used in the antecedent construction graph
is based on information theory, more specifically, it involves
a measure of the entropy associated with each term (vertex)
of the graph. The entropy for a termT is computed as

entropy(T ;S) =
|L|

∑
k=1

−p(lk |ST ) · log2 p(lk |ST ) , (4)

wherep(lk |ST ) is the empirical probability of observing the
class labellk conditional on having observed termT in the
set of training examplesS and |L| is the total number of
class labels. Equation (4) is a direct extension of the heuristic
function of the original Ant-Miner [29] for flat classification
into the problem of hierarchical classification. Since the en-
tropy of a termT of the antecedent construction graph varies
in the range 0≤ entropy(T ) ≤ log2(|L| −1) (where|L| −1
is the number of class labels in the class hierarchy without
considering the root class label) and lower entropy values
are preferred over higher values, the heuristic information
for a termT is computed as
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(IPR001693 = no)
(IPR005821 = yes)

’start’

(IPR005821 = no)

(length)

(IPR001693 = yes)

(a)

GO:0005215
transporter activity

GO:0015075
ion transporter activity

GO:0005342
organic acid

transporter activity

GO:0005275
amine transporter

activity

GO:0005216
ion channel

activity

GO:0008324
cation transporter

activity

GO:0008509
anion transporter

activity

GO:0046943
carboxylic acid

transporter activity

GO:0015171
amino acid

transporter activity

(b)

Fig. 1 Examples of the construction graphs employed inhAnt-Miner: in (a) the antecedent construction graph (‘IPR005821’ and ‘IPR001693’
are binary attributes, and ‘length’ is a continuous attribute), where the dummy ‘start’ vertex is unidirectionally connected to all vertices to allow
the association of pheromone values on the edge of the first term of the antecedent of a rule; (b) the consequent construction graph, which is
defined by the class hierarchy of the problem at hand (in this case, the class hierarchy is represented by a subset of the Gene Ontology’s ion
channel hierarchy).

ηT = log2(|L|−1)− entropy(T ;S) , (5)

whereS is the set of training examples. Equation (5) will
give a higher probability of being selected to terms with
lower entropy values, which correspond to terms with higher
predictive power.

Consequent Heuristic Information The heuristic informa-
tion used in the consequent construction graph is based on
the frequency of training examples for each class label of the
hierarchy, given by

ηlk = |TRlk | , (6)

where|TRlk | is the number of training examples that belong
to class labellk and lk is the k-th class label of the class
hierarchyL.

3.1.3 Using a Rule List to Classify New Examples

In order to classify a test (unseen) example, rules in the dis-
covered rule list are applied in a sequential order—i.e. the
order in which they were discovered. Therefore, a test ex-
ample is classified according to the consequent of the first
rule that covers the example. More precisely, the example is
assigned the class labels predicted by the rule’s consequent.

In the situation where no rule in the discovered rule list
covers the test example, a default rule (a rule with an empty
antecedent) predicting the set of class labels that occur in
all uncovered training examples is used to classify the test
example. For example, assuming that there are three un-
covered examplese1, e2 ande3, belonging to class labels

{1,1.2,1.2.1}, {1,1.2,1.2.2} and{1,1.2,1.2.1,1.2.1.3}, re-
spectively. The set of class labels occurring in all uncovered
examples comprise the set{1,1.2}, which would be the set
of predicted class labels of the default rule.

4 A New Ant Colony Algorithm for Hierarchical
Multi-Label Classification

While analysinghAnt-Miner, we have identified the follow-
ing limitations. Firstly, the heuristic information, which in-
volves a measure of entropy, used inhAnt-Miner is not very
suitable for hierarchical classification—i.e. it does not take
into account the hierarchical relationships between classes.
AlthoughhAnt-Miner’s entropy measure is calculated throu-
ghout all labels of the class hierarchy (apart from the root la-
bel), each class label is evaluated individually without con-
sidering parent-child relationships between class labels.

Secondly, the rule quality measure is prone to overfit-
ting. Since only the examples covered by the rule are con-
sidered in the rule evaluation, rules with a small coverage
are favoured over more generic rules. For example, consid-
ering the class label 1.2.1 with 20 examples and two rules
that have class 1.2.1 as the most specific class label in their
consequent:rule1 covering correctly 5 examples out of a to-
tal of 5 covered andrule2 covering correctly 19 examples
out of a total of 20 covered. In this case,rule1 would have a
higher quality, since all the examples covered by the rule are
correctly classified, thanrule2, which misclassifies one ex-
ample, thoughrule2 covers all but one examples belonging
to class 1.2.1. One could argue that the rule quality mea-
sure ofhAnt-Miner could be easily modified to avoid over-
fitting by evaluating a rule considering all the examples of
its most specific class. The drawback of this approach is that
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it favours rules predicting class labels at the top of the hier-
archy, since the numbers of examples per class are greater at
top class levels. This could potentially prevent the discovery
of rules predicting more specific class labels given that the
examples covered by a rule are removed from the training
set—indeed, this problem was observed in some preliminary
experiments.

Thirdly, hAnt-Miner does not support multi-label data
since a single path in the consequent construction graph cor-
responds to the consequent of a rule. In the case of protein
function prediction, where it is known that a protein can per-
form more than one function, this is an important limitation.

This section presents a new hierarchical multi-label ant
colony classification algorithm, namedhmAnt-Miner (Hier-
archical Multi-Label Classification Ant-Miner), which is ai-
med at overcoming the aforementioned limitations. While
hmAnt-Miner shares the same underlying procedure of the
hAnt-Miner algorithm, presented in Algorithm 1, it differs
from hAnt-Miner in the following aspects:

– the consequent of a rule is calculated using a determin-
istic procedure based on the examples covered by the
rule, allowing the creation of rules that can predict more
than one class label at the same time (multi-label rules).
Therefore,hmAnt-Miner uses a single construction gra-
ph in order to create a rule—only the antecedent is rep-
resented in the construction graph;

– the heuristic function is based on the Euclidean distance,
where each example is represented by a vector of class
membership values in the Euclidean space. By using a
distance measure, instead of entropy as inhAnt-Miner, it
is possible to take into account the relationship between
class labels given that examples belonging to related (an-
cestor/decendant) class labels will be more similar than
examples belonging to unrelated class labels. The use of
the Euclidean distance was inspired by a similar use in
the CLUS-HMC algorithm for hierarchical multi-label
classification [38], which is based on the paradigm of
decision tree induction, rather than rule induction. Note
that the Euclidean distance is used as the heuristic infor-
mation, as well as in the dynamic discretisation proce-
dure of continuous attributes;

– the rule quality is evaluated using a distance-based me-
asure, which is a more suitable evaluation measure for
hierarchical multi-label problems;

– the pruning procedure is not applied to the consequent of
a rule. The consequent of a rule is (re-)calculated when
its antecedent is modified during pruning, since the set
of covered examples might have changed.

4.1 Multi-Label Rule Consequent

Recall that the consequent of a rule inhAnt-Miner is repre-
sented as a path in the consequent construction graph, where
a trail is a single path from the root class label towards a leaf
class label in the class hierarchy. Although the consequent
predicts multiple class labels in a hierarchical structure, it

has the limitation of not being able to predict unrelated class
labels—i.e. multiple paths in the class hierarchy. One could
argue that the consequent could be represented by multiple
trails in order to be able to predict unrelated class labels,
however it is not clear how to find the optimal combination
and number of trails to consider without introducing yet an-
other user-defined parameter.

A sensible approach is to use the information available
from the examples covered by the rule (i.e. examples that
satisfy the rule antecedent) in order to determine the rule
consequent. Therefore, the consequent of a rule inhmAnt-
Miner is calculated using a deterministic procedure as fol-
lows. Given the set of examplesSr covered by a ruler, the
consequent is a vector of lengthm (wherem is equal to the
number of class labels in the class hierarchy). The value for
eachi-th component of the consequent vector for ruler is
given by

consequentr,i =
|Sr & labeli|
|Sr|

, (7)

where|Sr & labeli| is the number of examples covered by
rule r that belong to thei-th class of the class hierarchy
(labeli). In other words, the consequent of a rule is a vec-
tor where eachi-th component is the proportion of covered
examples that belong to thei-th class label.

According to Equation (7), each position of the conse-
quent vector is a continuous value between 0.0 and 1.0, ra-
ther than a presence/absence value of a particular class label.
As a result, the value in thei-th component of the consequent
of a rule represents the probability of an example that satis-
fies its antecedent to belong to the correspondenti-th class
of the hierarchy. Figure 2 illustrates the consequent of a rule
discovered byhmAnt-Miner; in this example, the predictor
attributes in the antecedent of the rule correspond to amino
acid ratios from the protein’s sequence and the class labels
in the consequent of the rule are represented by Gene Ontol-
ogy terms—the number following the colon of a class label
in the consequent corresponds to the probability of predict-
ing the associated class label.

In order to obtain class label predictions from a rule, it is
necessary to select a classification threshold. If the valueof
the i-th component is greater than or equal to the classifica-
tion threshold, the correspondenti-th class label is predicted.
Note that the consequents of the rules fulfil the requirements
for the hierarchical multi-label classification task: (1) the
classes predicted are consistent with the class hierarchy,sin-
ce the probability of a parent class label is always equal to
or greater than the probability of its children class labels; (2)
multiple unrelated classes can be predicted according to the
examples covered by the rule.

The same deterministic procedure is applied to compute
the consequent of the default rule when classifying an un-
seen example, as described in Subsection 3.1.3, with the dif-
ference that the uncovered set of examples (i.e., the set of
examples which is not covered by any rule) is taken into ac-
count in Equation (7).
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IF

 aa_rat_pair_a_h >= 0.053

 AND aa_rat_pair_t_c >= 0.1055

 AND aa_rat_pair_c_w < 0.0695

 AND aa_rat_pair_a_e < 0.2960

 AND aa_rat_pair_t_h >= 0.0275

THEN

 GO0000226:0.10,GO0000943:0.50,

 GO0001302:0.10,GO0003674:1.00,

 GO0003676:0.50,GO0003723:0.50,

 GO0003824:0.50,GO0003887:0.50,

 ...

 GO0044464:1.00,GO0045053:0.10,

 GO0045185:0.10,GO0046907:0.20,

 GO0051234:0.20,GO0051235:0.10,

 GO0051649:0.20,GO0051651:0.10

Fig. 2 Example of the consequent of a rule discovered byhmAnt-
Miner; in this example, the predictor attributes in the antecedent of the
rule correspond to amino acid ratios from the protein’s sequence and
the class labels in the consequent of the rule are represented by Gene
Ontology terms—the number following the colon of a class label in the
consequent corresponds to the probability of predicting the associated
class label. Only a subset of the class labels predicted by the rule are
shown.

4.2 Distance-based Heuristic Information

According to Subsection 3.1.2, the heuristic information in
hAnt-Miner involves a measure of entropy, as in the origi-
nal Ant-Miner. The entropy characterizes the homogeneity
of a collection of examples related to the class attribute val-
ues, giving a notion of (im-)purity of the class values’ distri-
bution. The more examples of the same class the lower the
value of entropy will be and the ‘purest’ is the collection of
examples. It should be noted that in all calculations involv-
ing entropy, the different class labels (values) are indepen-
dently evaluated—i.e. no relationship between class labels
is taken into account. In the case of Ant-Miner, which is ap-
plied to flat classification problems, the use of the entropy
measure does not present a limitation, since there is no re-
lationship between class labels. On the other hand, the same
cannot be said forhAnt-Miner, which aims at extracting hi-
erarchical classification rules, derived from data where the
class labels are organised in a hierarchical structure.

To illustrate the limitation of the entropy measure when
used in hierarchical problems, let us consider the follow-
ing example. Given a tree-structured class hierarchy, where
labels{1, 2, 3} are children of the root label and labels
{2.1, 2.2} are children of the ‘2’ label and each class la-
bel has 10 examples. Although the entropy is calculated—
according to Equation (4)—accross all class labels, the hier-
archical relationships are not taken into account. Therefore,
the entropy of a hypothetical term ‘IPR00023 = yes’ which
is present in 10 examples of class ‘1’ and in 10 examples
of class ‘3’ would be the same as of a hypothetical term
‘ IPR00023 = no’ which is present in 10 examples of class
‘2’ and in 10 examples of class ‘2.1’. The drawback in this

case is that it is known that class labels ‘2’ and ‘2.1’ are more
similar than class labels ‘1’ and ‘3’. Hence, it would be ex-
pected/desired that the entropy measure (or an alternative
heuristic information) exploit hierarchical relationships in
order to better reflect the quality of each term in the case of
hierarchical classification problems. Intuitively this becomes
even more important when dealing with bigger (in terms of
number of class labels and depth) hierarchical structures.It
should be noted that several Ant-Miner variations—as dis-
cussed in [15]—have used a heuristic information based on
the relatively frequency of the class predicted by the rule (or
the majority class) among all the examples that have a par-
ticular term, which would also present the above limitation.

hmAnt-Miner employs a distance-based heuristic infor-
mation, which directly incorporates information from the
class hierarchy. More precisely, the heuristic information of
a term corresponds to the variance of the set of examples
covered by the term (the set of examples that satisfy the con-
dition represented by the term). In order to calculate the vari-
ance, the class labels of each example are represented by a
numeric vector of lengthm (wherem is the number of class
labels of the hierarchy without considering the root label).
The i-th component of the class label vector of an example
is equal to 0 or 1 if the correspondent class label is absent or
present, respectively. The distance between class label vec-
tors is defined as the weighted Euclidean distance, given by

distance(v1,v2) =

√

m

∑
i=1

w(li) · (v1,i−v2,i)2 , (8)

wherew(li) is the weight associated with thei-th class label,
v1,i andv2,i are the values of thei-th component of the class
label vectorsv1 andv2, respectively. Then, the variance of a
set of examples is defined as the averaged squared distance
between each example’s class label vector and the set’s mean
class vector, given by

variance(ST ) =

|ST |

∑
k=1

distance(vk,v)2

|ST |
, (9)

whereST is the set of examples covered by a termT and
v is the set’s mean class label vector. Finally, the heuristic
information of a termT is given by

ηT =
variancemax− variance(ST )

variancemax
, (10)

wherevariancemax is defined as the sum of the worst and
best variance values observed across all terms in order to as-
sign values greater than zero to the worst terms, which other-
wise would avoid them to be selected by an ant. Note that the
heuristic value is normalised so the smaller the value of the
variance of a termT the greater its heuristic value becomes.
This is analogous to the use of the entropy measure in Ant-
Miner andhAnt-Miner, where smaller values are preferred
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over bigger values since they correspond to a more homoge-
neous partition (where the great majority of examples belong
to the same class).

Recall that the distance function in Equation (8) requires
the definition of a class-specific weight. In Vens et al. [38],
where the proposed CLUS-HMC algorithm also uses a vari-
ance measure based on a weighted Euclidean distance, sev-
eral weighting schemes have been evaluated in the context
of hierarchical multi-label classification. As a result of their
findings, the preferred weighting scheme—and the one used
in hmAnt-Miner—is defined as

w(l) = w0 ·

|Pl |

∑
i=1

w(pi)

|Pl|
, (11)

wherew0 is set to 0.75 (based on [38]),Pl is the parent class
label set of the class labell andw(pi) is the weight associ-
ated with thei-th parent class label of the class labell. In
other words, the weight of a class labell is the multiplica-
tion of thew0 weight and the average weight of its parent
class labels. For class labels at the top of the hierarchy (chil-
dren of the root label), their weights are set tow0. According
to Equation (11), class labels appearing higher in the hier-
archy will have greater weights than class labels appearing
lower in the hierarchy. Therefore, concerning the weighted
distance function in Equation (8), similarities at higher lev-
els of the hierarchy are more important than similarities at
lower levels.

4.3 Distance-based Discretisation of Continuous Values

As discussed in Subsection 4.2, the entropy measure is not
very suitable for hierarchical multi-label classificationprob-
lems. Therefore, the entropy-based discretisation procedure
employed byhAnt-Miner (derived fromcAnt-Miner [26])
presents the same limitation of evaluating each of the class
labels individually, not taking into account their relation-
ships. Consequently, the quality of continuous attributesthr-
eshold values are compromised, which can lead to poor dis-
covered rules.

Using the variance measure previously defined in Eq-
uation (9),hmAnt-Miner employs a distance-based discreti-
sation procedure of continuous attributes values in its rule
construction process. Given a continuous attributeyi, the ba-
sic idea is to find a threshold valuev (wherev is a value
in the domain of attributeyi) that maximises the variance
gain of both (yi < v) and (yi ≥ v) generated partitions of
examples—i.e. the set of examples which have the value of
attributeyi less thanv and the set of examples which have the
value of the attributeyi greater than or equal tov—relative
to a set of examplesS. The distance-based discretisation pro-
cedure, dubbed variance-gain discretisation, is divided into
two steps as follows.

Let yi be a continuous attribute to undergo the discreti-
sation process andv a value in the domain ofyi. The best

threshold value for attributeyi is the valuev which min-
imises the variance of both (yi < v) and (yi ≥ v) generated
partitions of examples fromS, maximising the variance gain
relative toS as a result, given by

variance gain(yi,v) = variance(S)

−
|Syi<v|

|S|
· variance(Syi<v)

−
|Syi≥v|

|S|
· variance(Syi≥v) ,

(12)

where|Syi<v| is the total number of examples in the partition
yi < v (partition of training examples where the attributeyi
has a value less thanv), |Syi≥v| is the total number of training
examples in the partitionyi ≥ v (partition of training exam-
ples where the attributeyi has a value greater than or equal
to v) and |S| is the total number of training examples. The
values ofvariance(S), variance(Syi<v) andvariance(Syi≥v)
are calculated according to Equation (9). The variance gain
measure is calculated for all valuesv, which comprises the
average value of each pair of adjacent valuesvt andvt+1 in
the domain of the attributeyi—computed as(vt +vt+1)/2—
and the valuev with the highest variance gain associated is
then selected as the best threshold value.

Note that the set of training examplesS varies accord-
ing to the context of the rule construction process, that is to
say, the set of training examplesS is restricted to the set of
training examples covered by the current partial rule being
constructed. The only exception to this restriction is when
the current partial rule is empty, thus all training examples
are used on the evaluation of threshold values. As a result
of this restriction, the choice of a threshold value during the
rule construction process is tailored to the current candidate
rule.

After the selection of the best threshold valuev, a rela-
tional operator is selected based on the individual variance
values of the generated partitions, given by

operator =

{

< i f variance(Syi<v) < variance(Syi≥v)

≥ i f variance(Syi<v) > variance(Syi≥v)
.

(13)

According to Equation (13), if the partition of examples
yi < v has a lower variance, then the operator ‘<’ (less-than
operator) is selected; if the partition of examplesyi ≥ v has a
lower variance, then the operator ‘≥’ (greater-than-or-equal-
to operator) is selected; ties are broken at random. As can
be noticed, the operator selection has a bias of selecting the
more homogeneous partition, given that lower variance val-
ues are preferred over higher values. This is analogous to
the bias of the entropy-based discretisation ofhAnt-Miner,
where lower entropy values are preferred since they are as-
sociated with the ‘purest’ partition (the partition with more
examples belonging to the same class).
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At the end of the discretisation process, a term (a triple
attribute, operator, value) is created to be added to the cur-
rent partial rule (e.g.yi < 20) and the rule continues to un-
dergo the rule construction process.

Concerning the computational time complexity of the
entropy-based discretisation used inhAnt-Miner and the pr-
oposed distance-based discretisation inhmAnt-Miner, the
process of finding a threshold value can be divided into two
steps. First, both discretisation procedures require the sort-
ing of continuous attribute values in order to facilitate the
partition of examples. The time complexity of this step is
O(n · logn), wheren is the number of training examples un-
der consideration.

In the case of the entropy-based discretisation, the sec-
ond step involves the evaluation of potentiallyn candidate
threshold values—assuming that each training example has
a different value for the continuous attribute undergoing dis-
cretisation1—overk different class labels. The complexity of
this step isO(n · k), and the total complexity of the entropy-
based discretisation isO(n · logn)+O(n · k).

In the case of the distance-based discretisation, the sec-
ond step involves the calculation of the mean class label
vector for each partition of training examples. This calcu-
lation has time complexity ofO(n · k). Furthermore, it in-
volves the calculation of the distance between each exam-
ple’s class label vector and the partition mean’s class label
vector in order to determine the variance of the partitions.
Since each class label vector hask positions and there are
potentiallyn candidate threshold values, the time complex-
ity of the variance calculation isO(n ·k). Given that for each
candidate threshold value, the mean class label vectors of the
partitions must be recalculated because a partition’s exam-
ple distribution varies according to the threshold value, the
total time complexity of the distance-based discretisation is
O(n · logn)+O([n · k]2).

Intuitively, if both complexity notations are simplified
by dropping the common elementO(n · logn), the entropy-
based discretisation growing factor is linear in relation to
n · k, while the distance-based discretisation growing factor
is quadratic in relation ton · k. Therefore, the distance-based
discretisation is more computationally complex than the ent-
ropy-based discretisation. It should be noted that the number
of training examplesn covered by a rule, and consequently
the potential number of candidate threshold values, tends to
decrease in relation to the number of terms in the antecedent
of a rule. Hence, the efficiency of the discretisation proce-
dure is increased at later stages of the rule construction pro-
cess, since less candidate threshold values have to be evalu-
ated.

1 This represents the worse case scenario for the discretisation pro-
cedure, and in general, the number of candidate threshold values is
smaller than the number of training examples.

4.4 Hierarchical Multi-Label Rule Evaluation

Following a similar approach of using a distance-based mea-
sure for the discretisation of continuous values, the variance
gain can be applied to compute a rule quality measure. The
basic idea to evaluate a ruler using the variance gain mea-
sure is to virtually divide the training setS (whereS corre-
sponds to the set of all training examples) into two partitions:
the set of examples covered by the ruler (Sr) and the set of
examples not covered by the ruler (S¬r). Then, the variance
gain of ruler relative toS can be computed as

variance gain(r,S) =variance(S)

−
|Sr|

|S|
· variance(Sr)

−
|S¬r|

|S|
· variance(S¬r) .

(14)

The motivation of using the variance as a rule quality
measure is as follows. Firstly, it can naturally cope with
hierarchical multi-label data, taking into account the rela-
tionships and similarities between class labels. Secondly, it
favours rules that partition the training set into a more ho-
mogeneous sets of examples. As a result, rules that cover a
more homogeneous set of examples, as well as leaving un-
covered a more homogeneous set of examples (which should
facilitate the discovery of other rules in the future), are pre-
ferred.

4.5 Simplified Rule Pruning

Since the consequent of a rule is determined as detailed in
Subsection 4.1,hmAnt-Miner does not employ a second co-
lony in order to construct the consequent of rules. Therefore,
the rule pruning procedure is simplified as follows. The rule
is submitted to a removal process of its antecedent’s last term
and has its consequent re-calculated, since the set of covered
examples could change after the removal of the term. The
removal process is repeated until the quality of the rule de-
creases when its last term is removed or the rule has only
one term left in the antecedent.

Let rulecurrent be the rule undergoing the pruning, which
is considered the best rule at the beginning of the pruning
procedure. At each iteration of the pruning procedure, a can-
didate rulerulei is created by removing the last term of the
antecedent of the current bestrulebest and the consequent
of rulei is computed according to Subsection 4.1. Then, the
quality measureqi for rulei is computed. If the quality mea-
sureqi is higher than the current best qualityqbest , rulei sub-
stitutesrulebest , completing an iteration of the pruning pro-
cedure. This procedure is repeated untilrulebest has just one
term left on its antecedent or a candidate rulerulei does not
improve the quality overrulebest (i.e. qbest > qi).
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5 Evaluation Measure based on Precision-Recall Curves

As mentioned in Subsection 4.1, the consequent of a rule
in hmAnt-Miner is a numeric vector, where each component
of the vector is the probability associated with predictinga
particular class label. If thei-th component value is above a
specified classification threshold, then thei-th class label is
predicted; otherwise it is not predicted. Instead of arbitrarily
selecting a classification threshold value—or a set of thresh-
old values—to evaluate a rule list,hmAnt-Miner employs a
threshold-independent measure. As discussed by [38], a mo-
tivation for employing an evaluation measure independently
from a classification threshold is that different contexts may
require different threshold settings.

Precision-Recall (PR) curves have been frequently used
in information retrieval [24, 32] and more recently in the
context of hierarchical multi-label classification [38]. APR
curve plots a precision value against its recall value. The
precision value corresponds to the number of correct pre-
dictions divided by the total number of predictions; the re-
call value corresponds to the number of correct predictions
divided by the total number of positive examples—i.e., ex-
amples belonging to the predicted class label. One of the
advantages of using PR curves as a performance measure is
its suitability to cope with highly skewed data sets (data sets
with a larger amount of negative examples in contrast to a
smaller amount of positive examples) given that the num-
ber of negative examples is not involved to calculate pre-
cision and recall values—i.e. precision and recall measures
only take into account the number of correct positive predic-
tions (true positives), the number of incorrect positive pre-
dictions (false positives) and the number of incorrect neg-
ative predictions (false negative). Therefore, the numberof
correct negative predictions (true negatives) does not influ-
ence the evaluation. This is an important characteristic con-
cerning hierarchical classification since, as previously men-
tioned, classes at the lower levels of the hierarchy have fewer
(positive) examples. Therefore, it is more important to mea-
sure how well a rule predicts the presence of a particular
class label (true positive examples) rather than its absence
(true negative examples)—independent of whether the posi-
tive examples correspond to the majority class or not for the
given class label.

A PR curve, illustrated in Figure 3, is defined by a set
of points, where each point corresponds to a pair of preci-
sion and recall values for a particular classification thresh-
old. Given a classification thresholdt, decreasing the value
of t from 1.0 to 0.0, different pairs of precision and recall
values are obtained. With higher classification threshold val-
ues, fewer class labels are predicted (lower recall value) wh-
ile the proportion of correct predictions tends to be greater
(higher precision value). As the classification threshold is
decreased, more class labels are predicted (higher recall val-
ues) while the proportion of correct prediction tends to de-
crease (lower precision values). Hence, the goal in PR curves
is to be on the upper-right-corner, which corresponds to high
precision and recall values.
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Fig. 3 Examples of precision-recall curves: (a) a PR curve showing
that higher precision values are generally associated withlower recall
values; (b) the shaded area of a PR curve corresponds to the area under
the curve measure.

In order to compute the points of a PR curve, and thus
calculate the area under the curve, we follow an approach
described in [38]. This approach consists in creating an over-
all PR curve by micro-averaging precision and recall values
across all class labels for a range of classification thresholds.
The averaged precision (Prec) and recall (Rec) values for a
classification thresholdt is given by

Prect =
∑i T Pt,i

∑i T Pt,i +∑i FPt,i

Rect =
∑i TPt,i

∑i T Pt,i +∑i FNt,i
,

(15)

wherei ranges over all class labels (excluding the root label,
since it is present in all examples),t ranges over all different
probability values found in the vector of class labels prob-
abilities, andTPt,i, FPt,i and FNt,i are the number of true
positives, false positives and false negatives for thei-th class
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label at the classification thresholdt, respectively. The value
of Prect corresponds to the number of correct class labels
predictions divided by the number of class labels predicted
across all class labels for the given classification threshold
t—i.e.,Prect is the proportion of predicted class labels that
are correct. The value ofRect corresponds to the number of
correct class labels predictions divided by the total number
of class labels should have been predicted across all class
labels for the given classification thresholdt—i.e., Rect is
the proportion of the available class labels that are correctly
predicted. A pair ofPrect andRect values corresponds to a
point of the PR curve.

Note that points of the PR curve must be interpolated in
order to approximate the area under the curve, as discussed
in [11]. After determining the points of the PR curve, the
area under the PR curve can be approximated by calculating
the trapezoidal areas created between each point. Finally,the
evaluation measure is defined as the area under the averaged
PR curve, denoted as AU(PRC).

6 Computational Results

The proposedhmAnt-Miner algorithm was compared again-
st three decision tree induction algorithms for hierarchical
multi-label classification proposed in [38]: CLUS-SC, whi-
ch consists in inducing a decision tree for each class label in-
dividually; CLUS-HSC, which consists in inducing decision
trees in a top-down fashion; CLUS-HMC, which consists in
inducing a single decision tree that predicts all class labels
at once.

We have selected sixteen bioinformatics data sets from
Vens et al. [38], which use two different class hierarchy stru-
ctures: tree structure (FunCat data sets) and directed acyclic
graph structure (Gene Ontology data sets). The directed acy-
clic graph (DAG) structure represents a complex hierarchical
organisation, where a particular node of the hierarchy can
have more than one parent, in contrast to only one parent in
tree structures. Table 1 and 2 present details of the data sets
used in our experiments. In the experiments conducted by
Vens et al. [38], 2/3 of each data set was used for training
and the remaining 1/3 for testing. We have used the same
training and testing partitions in our experiments.

A summary of the user-defined parameters, their des-
criptions and correspondent values, used byhmAnt-Miner is
shown in Table 3. We have used the same set of user-defined
parameter values in all data sets, which are also considereda
standard in the literature [29]; no attempt was made to tune
either parameter value for individual data sets. ThehmAnt-
Miner experiments were performed on a Pentium 4 3.2GHz
processor with 1GB of RAM running Linux. Each run of
hmAnt-Miner took on average 2.62 hours (in the range of
0.32 to 6.24 hours, excluding ‘pheno’ data set which took
21 seconds) for FunCat data sets and 12.90 hours (in the
range of 1.90 to 21.80 hours, excluding ‘pheno’ data set

Table 1 Summary of the data sets used in our experiments. The
first column (‘data set’) gives the data set name, the second column
(‘ |training|’) gives the number of training examples, the third col-
umn (‘|test|’) gives the number of test examples, the forth column
(‘ |attributes|’) gives the number of attributes and the fifth column
(‘ |classes|’) gives the number of classes in the class hierarchy.

FunCat

data set |training| |test| |attributes| |classes|

cellcycle 2476 1281 77 500

derisi 2450 1275 63 500

eisen 1587 837 79 462

expr 2488 1291 551 500

gasch1 2480 1284 173 500

pheno 1009 582 69 456

seq 2580 1339 478 500

spo 2437 1266 80 500

Gene Ontology

data set |training| |test| |attributes| |classes|

cellcycle 2473 1278 77 4126

derisi 2447 1272 63 4120

eisen 1583 835 79 3574

expr 2485 1288 551 4132

gasch1 2477 1281 173 4126

pheno 1005 581 69 3128

seq 2568 1332 478 4134

spo 2434 1263 80 4120

Table 2 The average number of class labels in the hierarchy and the
average number of class labels per example of both FunCat andGene
Ontology data sets.

FunCat Gene Ontology

average number of classes 489 3932

average labels per example 8.5 34.2

which took 151 seconds) for Gene Ontology data sets.2 The
data sets with a large number of attributes, namely ‘expr’
and ‘seq’, are the most time consuming in both FunCat and
Gene Ontology data sets.

We compared all algorithms in terms of predictive ac-
curacy using a measure derived from precision-recall (PR)
curves, more specifically the area under the averaged PR
curve, denoted as AU(PRC)—discussed in Section 5. Since
hmAnt-Miner is a stochastic algorithm,hmAnt-Miner was
run 15 times—using a different random seed to initialise the
search each time—for each data set. Therefore, the value of
AU(PRC) reported for each data set corresponds to the aver-
age value obtained over 15 runs of the algorithm, followed

2 The time taken by CLUS decision tree induction algorithms is re-
ported in [38], but in that work a cluster was used, so the timereported
in that work cannot be meaningfully compared with the time reported
for our experiments in a single processor.
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by the standard deviation (average ± standard deviation).
For CLUS-SC, CLUS-HSC and CLUS-HMC, the AU(PRC)
value for each data set corresponds to the value obtained
with a single run of the algorithm, since they are determin-
istic algorithms.

Table 4 shows the AU(PRC) value obtained on the test
set by each algorithm and the induced classification model
size across all data sets used in our experiments, using Fun-
Cat and Gene Ontology, respectively. Figure 4 illustrates a
sample of precision-recall curves ofhmAnt-Miner, CLUS-
HMC, CLUS-HSC and CLUS-SC for ‘cellcycle’, ‘pheno’
and ‘seq’ FunCat data sets and ‘seq’, ‘eisen’ and ‘pheno’
Gene Ontology data sets. As discussed in Section 5, the clos-
est to the upper-right corner, the better (more accurate) the
curve. ForhmAnt-Miner, the classification model size is de-
fined as the number of rules discovered; for CLUS-HMC,
CLUS-HSC and CLUS-SC the model size is defined as the
number of leaf nodes in the induced decision tree, since each
path from the root node to a leaf node can be viewed as a
rule. In this way, the classification model size for both types
of algorithms represents an overall measure of the complex-
ity of the model. It should be noted thathmAnt-Miner dis-
covers a rule list and the order in which rules are organised
is relevant when classifying new examples. Given a new ex-
ample, the prediction of its class labels is made by the first
rule that covers the example, following the order of the rule
list—as detailed in Subsection 3.1.3. Therefore, a particu-
lar rule is used only if its previous rules do not cover the
example—i.e. if its previous rules have not been used. On
the other hand, a decision tree can be converted into a set
of rules [30], where the order of rules is not relevant, and
therefore each rule can be individually analysed.

Comparison of hmAnt-Miner and CLUS-HSC/SCto CLUS-
HMC: Table 5 presents the summary of the comparisons
of the CLUS-HMC algorithm—the algorithm with the best
average rank—with the remaining algorithms used in our
experiments according to the non-parametric Friedman test
with the Holm’s post-hoc test [12, 16] in terms of predic-
tive accuracy and classification model size. For each algo-
rithm, the average rank and the adjustedp-value obtained
by Holm’s post-hoc test are reported using both FunCat and
Gene Ontology data sets (‘Combined’ column), using only
FunCat data sets (‘FunCat’ column) and using only Gene
Ontology data sets (‘Gene Ontology’ column)—the lower
the averaged rank, the better the algorithm’s performance.

According to Table 5, there are no statistically significant
differences at the 0.01 significance level betweenhmAnt-
Miner and CLUS-HMC, in terms of both predictive accu-
racy and classification model size in all of the experiments;
CLUS-HMC performs significantly better than CLUS-HSC
in terms of predictive accuracy on the FunCat data sets and
in terms of both predictive accuracy and classification model
size on the combined (both FunCat and Gene Ontology) data
sets; CLUS-HMC performs significantly better than CLUS-
SC in terms of both predictive accuracy and classification
model size in all of the experiments.

Pairwise comparisons between CLUS-HMC/HSC/SCand
hmAnt-Miner: Table 6 presents the summary of all pairwise
comparisons according to the non-parametric Friedman test
with the Holm’s post-hoc test [12, 16] in terms of predictive
accuracy and classification model size. For each hypothesis
(pair of algorithms) tested, the adjustedp-value obtained by
Holm’s post-hoc test is reported using both FunCat and Gene
Ontology data sets (‘Combined’ column), using only FunCat
data sets (‘FunCat’ column) and using only Gene Ontology
data sets (‘Gene Ontology’ column).

According to Table 6, the pairwise comparisons do not
show statistically significant differences at the 0.01 signifi-
cance level betweenhmAnt-Miner and CLUS-HMC, neither
betweenhmAnt-Miner and CLUS-HSC, in terms of both
predictive accuracy and classification model size;hmAnt-
Miner is significantly better than CLUS-SC in terms of pre-
dictive accuracy in the combined data sets, and in terms of
classification model size in all of the experiments; CLUS-
HMC is significantly better than CLUS-HSC in terms of
predictive accuracy on the FunCat data sets and in terms of
classification model size on the combined data sets; CLUS-
HMC is significantly better than CLUS-SC in terms of both
predictive accuracy and classification model size in all of the
experiments.

Summary: The experiments have shown that the proposed
hmAnt-Miner algorithm is competitive with CLUS-HMC—
the most accurate of the CLUS algorithms—in terms of both
predictive accuracy and classification model size. Addition-
ally, hmAnt-Miner outperformed CLUS-SC in terms of pre-
dictive accuracy on the combined (both FunCat and Gene
Ontology) data sets and it has discovered a much simpler
classification model than CLUS-SC in all of the experimen-
ts. We regard our results as promising, especially consider-
ing that the method of inducing decision trees using predic-
tive clustering trees (PCT)—which is employed by all varia-
tions of CLUS algorithms—has been evolving for more than
one decade, with early applications in [4, 31] and more re-
cently in the context of hierarchical multi-label classification
[5, 6, 38]. On the other hand, the proposedhmAnt-Miner is
the first ACO algorithm tailored for hierarchical multi-label
classification—to the best of our knowledge—and the ap-
plication of ACO algorithms for classification is relatively
recent [29].

7 Conclusions

This paper has proposed a novel ant colony algorithm tailo-
red for hierarchical multi-label classification, namedhmAnt-
Miner (Hierarchical Multi-Label Classification Ant-Miner).
Extending on the ideas of our previous hierarchical classifi-
cationhAnt-Miner algorithm,hmAnt-Miner discovers a sin-
gle global classification model, in the form of an ordered
list of IF-THEN classification rules, which can predict all
class labels from a class hierarchy at once, and examples
may be assigned to multiple unrelated class labels. In order
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Table 3 Summary of the user-defined parameter values used byhmAnt-Miner for all data sets; no attempt was made to tune either parameter
value for individual data sets. The first column (‘parameter’) gives the parameter name, the second column (‘description’) gives a short description
and the third column (‘value’) gives the value used in our experiments.

parameter description value

max uncovered examples maximum number of uncovered examples 10

max number iterations maximum number of iterations 1500

rule convergence number of iterations used to test the rule convergence 10

min examples per rule minimum number of covered examples per rule 10

colony size number of ants per iteration 30

Table 4 The AU(PRC) value obtained on the test set by each algorithm and the induced classification model size across all data sets used inour
experiments. ForhmAnt-Miner, the model size is defined as the number of rules discovered; for CLUS-HMC, CLUS-HSC and CLUS-SC the
model size is defined as the number of leaf nodes in the decision tree, since each path from the root node to a leaf node can be viewed as a rule.
In the case ofhmAnt-Miner, the value of each row represents the average value obtained over 15 runs of the algorithm, followed by the standard
deviation (average ± standard deviation).

FunCat

data set hmAnt-Miner CLUS-HMC CLUS-HSC CLUS-SC

AU(PRC) size AU(PRC) size AU(PRC) size AU(PRC) size

cellcycle 0.154± 0.001 28.667± 1.623 0.172 24 0.111 4037 0.106 9671

derisi 0.161± 0.002 19.333± 1.661 0.175 4 0.094 3520 0.089 7807

eisen 0.180± 0.003 19.000± 0.981 0.204 29 0.127 2995 0.132 6311

expr 0.175± 0.002 30.600± 1.466 0.210 12 0.127 4711 0.123 10262

gasch1 0.175± 0.003 24.867± 1.701 0.205 10 0.106 4761 0.104 10447

pheno 0.162± 0.001 7.400± 0.767 0.160 8 0.152 777 0.149 1238

seq 0.181± 0.002 20.067± 1.152 0.211 14 0.091 4923 0.095 10443

spo 0.174± 0.002 15.800± 1.172 0.186 6 0.103 3623 0.098 8527

Gene Ontology

data set hmAnt-Miner CLUS-HMC CLUS-HSC CLUS-SC

AU(PRC) size AU(PRC) size AU(PRC) size AU(PRC) size

cellcycle 0.332± 0.002 35.400± 1.594 0.357 21 0.371 19085 0.252 36260

derisi 0.334± 0.003 22.533± 1.939 0.355 10 0.349 16693 0.218 31175

eisen 0.376± 0.002 18.200± 0.823 0.380 37 0.365 14384 0.270 24844

expr 0.351± 0.003 28.600± 1.778 0.368 35 0.351 20812 0.249 38313

gasch1 0.356± 0.002 27.933± 0.918 0.371 30 0.351 20070 0.239 37838

pheno 0.337± 0.001 7.133± 0.792 0.337 6 0.416 5691 0.316 6213

seq 0.366± 0.003 18.067± 1.016 0.386 15 0.282 21703 0.197 38969

spo 0.341± 0.003 26.333± 2.520 0.352 14 0.371 15552 0.213 35400

to take into account the information from the class hierarchy,
hmAnt-Miner employs a distance-based measure in the dy-
namic discretisation procedure of continuous attributes and
as a heuristic information in the ACO construction graph.
Thus, the entropy measure used inhAnt-Miner is replaced
by the distance measure inhmAnt-Miner, which is a more
suitable measure for hierarchical multi-label classification.

We conducted experiments comparinghmAnt-Miner ag-
ainst state-of-the-art decision tree induction algorithms for

hierarchical multi-label classification in sixteen bioinformat-
ics data sets involving the prediction of protein function,
with large numbers of predictor attributes and large numbers
of class labels to be predicted. The class hierarchies used in
the experiments were structured in a tree (where a class la-
bel has a single parent, apart from the root label) or in a di-
rected acyclic graph (where a class label can have multiple
parents, apart from the root label) forms.hmAnt-Miner was
competitive in term of both predictive accuracy and simplic-
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Table 5 Summary of the comparisons of the CLUS-HMC (control) algorithm with the remaining algorithms according to the non-parametric
Friedman test with the Holm’s post-hoc test [12, 16] in termsof (i) predictive accuracy and (ii) classification model size. For each algorithm, the
average rank and the adjustedp-value obtained by Holm’s post-hoc test are reported using both FunCat and Gene Ontology data sets (‘Combined’
column), using only FunCat data sets (‘FunCat’ column) and using only Gene Ontology data sets (‘Gene Ontology’ column).A p-value is shown
in bold when the difference in the average ranks of the algorithms is statistically significant at the 0.01 significance level (pHolm ≤ 0.01), which
in this case represents that the particular algorithm is significantly worse than the CLUS-HMC (control) algorithm.

Combined FunCat Gene Ontology

Algorithm avg. rank pHolm avg. rank pHolm avg. rank pHolm

(i) Predictive Accuracy

CLUS-HMC (control) 1.2812 - 1.1250 - 1.4375 -

hmAnt-Miner 2.1875 0.0471 1.8750 0.2453 2.5000 0.1995

CLUS-HSC 2.6562 0.0052 3.2500 0.0020 2.0625 0.3329

CLUS-SC 3.8750 3.9794E-8 3.7500 1.4309E-4 4.0000 2.1579E-4

(ii) Model Size

CLUS-HMC (control) 1.3125 - 1.2500 - 1.3750 -

hmAnt-Miner 1.6875 0.4113 1.7500 0.4386 1.6250 0.6985

CLUS-HSC 3.0000 4.3611E-4 3.0000 0.0134 3.0000 0.0236

CLUS-SC 4.0000 1.1726E-8 4.0000 6.1251E-5 4.0000 1.4309E-4

Table 6 Summary of all pairwise comparisons according to the non-parametric Friedman test with the Holm’s post-hoc test [12, 16] in terms
of (i) predictive accuracy and (ii) classification model size. For each hypothesis tested, the adjustedp-value obtained by Holm’s post-hoc test
is reported using both FunCat and Gene Ontology data sets (‘Combined’ column), using only FunCat data sets (‘FunCat’ column) and using
only Gene Ontology data sets (‘Gene Ontology’ column). Ap-value is shown in bold when the difference in the average ranks of the first
algorithm and the second algorithm—reported in Table 5—is statistically significant at the 0.01 significance level (pHolm ≤ 0.01), which in this
case represents that the first algorithm outperforms the second algorithm.

Combined FunCat Gene Ontology

Hypothesis pHolm pHolm pHolm

(i) Predictive Accuracy

hmAnt-Miner vs. CLUS-HMC 0.0942 0.4906 0.2993

hmAnt-Miner vs. CLUS-HSC 0.3044 0.0995 0.6658

hmAnt-Miner vs. CLUS-SC 0.0011 0.0147 0.0805

CLUS-HMC vs. CLUS-HSC 0.0104 0.0050 0.6658

CLUS-HMC vs. CLUS-SC 7.9587E-8 2.8618E-4 4.3158E-4
CLUS-HSC vs. CLUS-SC 0.0227 0.4906 0.0134

(ii) Model Size

hmAnt-Miner vs. CLUS-HMC 0.4113 0.4386 0.6985

hmAnt-Miner vs. CLUS-HSC 0.0121 0.1584 0.0995

hmAnt-Miner vs. CLUS-SC 2.0267E-6 0.0024 0.0012
CLUS-HMC vs. CLUS-HSC 8.7221E-4 0.0268 0.0473

CLUS-HMC vs. CLUS-SC 2.3451E-8 1.2250E-4 2.8618E-4
CLUS-HSC vs. CLUS-SC 0.0569 0.2427 0.2427

ity (measured as size of the discovered model). We regard
these results promising, given thathmAnt-Miner is the first
ACO algorithm tailored for hierarchical multi-label classifi-
cation, to the best of our knowledge.

There are several potential avenues for future research.
Since having a deterministic procedure to determine the con-
sequent of rules led to a simplified rule pruning procedure,
where the consequent is not pruned, different variations of
the rule pruning procedure could prove to be more effec-
tive. In addition, it would be interesting to investigate differ-

ent rule evaluation measures in order to optimise the qual-
ity of the discovered rules. Finally, evaluating other kinds of
pheromone update strategies—e.g. updating the pheromone
based on the quality of a rule list instead of a single rule—is
also a direction worth further exploration.
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Fig. 4 A sample of precision-recall curves ofhmAnt-Miner, CLUS-HMC, CLUS-HSC and CLUS-SC for (a) ‘cellcycle’, ‘pheno’ and ‘seq’
FunCat data sets and (b) ‘seq’, ‘eisen’ and ‘pheno’ Gene Ontology data sets—the closest to the upper-right-corner, the better (more accurate) the
curve.
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(2008) Decision trees for hierarchical multi-label clas-
sification. Machine Learning 73(2):185–214

39. Wang K, Zhou S, Liew S (1999) Building Hierarchi-
cal Classifiers Using Class Proximity. In: Proceedings
of the 25th VLDB Conference, Morgan Kaufmann, pp
363–374


