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Abstract This paper proposes a novel Ant Colony Optimig |ntroduction
sation algorithm (ACO) tailored for the hierarchical multi

label classification problem of protein function predictio Classification is a well-known data minina task. where the
This problem is a very active research field, given the lar g '

increase in the number of uncharacterised proteins a‘l/aila%%aI Is to learn a relationship between input values and a de-
. . o ; ired output [14]. In essence, a classification problem is de
for analysis and the importance of determining their fun¢- . .
ined by a set of examples, where each example is described

tions in order to improve the current biological knowledgg; redictor attributes and associated with a class at&ibu
Since it is known that a protein can perform more than o b o . )
enerally, it involves two phases. In the first phase, given

function and many protein functional-definition schemes a labelled data set—i.e. a data set consisting of examples
organised in a hierarchical structure, the classificatrobp Wlith a known class value (label)—as an input, a classifica-

lem in this case is an instance of a hierarchical multi-lab, ion model that represents the relationship between predic
problem. In this type of problem, each example may belotﬁr and class attribute values is built. In the second phhse,

to multiple class labels and class labels are organisediin a e . .
erarchi(F:)aI structure—either a tree or a directeg acychplr assification model is used to classify unknown examples—
ycap i.ﬁ). examples with unknown class value.

(DAG) structure. It presents a more complex problem tha o e
conventional flat classification, given that the classifizat [N the vast majority of classification problems addressed
algorithm has to take into account hierarchical relatigmsh in the literature, each example is associated with only one
between class labels and be able to predict multiple cl&48ss value or label and class values are unrelated—ire. the
labels for the same example. The proposed ACO algorittfe no relationships between different class values. Thes k
discovers an ordered list of hierarchical multi-label slfis Of classification problems are usually referred to as flat{no
cation rules. It is evaluated on sixteen challenging biminf hierarchical) single-label problems. On the other hanti-in
matics data sets involving hundreds or thousands of cl@grchical multi-label classification problems, exampiey
labels to be predicted and compared against state-of-tRg-associated to multiple class values at the same time and

art decision tree induction algorithms for hierarchicahinu the class values are organised in a hierarchical struatuge (
label classification. a tree or a directed acyclic graph structure). From a data

mining perspective, hierarchical multi-label classificatis

much more challenging than flat single-label classification

Firstly, it is generally more difficult to discriminate beden
Keywords hierarchical multi-label classificationant classes represented by nodes at the bottom of the hierarchy
colony optimisation protein function prediction than classes represented by nodes at the top of the hierar-
chy, since the number of examples per class tends to be
smaller at lower levels of the hierarchy as opposed to top
levels of the hierarchy. Secondly, class predictions maist s
isfy hierarchical parent-child relationships, since aaraple
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function prediction[2, 6, 9, 28, 38]. The latteris a veryiaet mine positive and negative examples associated with each
research field, given the large increase in the number of whassifier [2, 3, 20, 22]. As discussed in [6], predictingheac
characterised proteins available for analysis and the impolass label individually has several disadvantages, as fol
tance of determining their functions in order to improve thiews. Firstly, it is slow since a classifier needs to be trdime
current biological knowledge. It is important to emphasigénes (wheren is the number of class labels in the hierarchy
that in this context, comprehensible classification medelsexcluding the root label). Secondly, some class labelsicoul
which can be validated by the user—are preferred in orderfotentially have few positive examples in contrast to a much
provide useful insights about the correlation of proteia-fe greater number of negative examples, particularly class la
tures and their functions. Concerning the problem of protebels at deeper levels of the hierarchy. Many classification a
function prediction, the focus of this paper, an examplezto lgorithms have problems with imbalanced class distribgtion
classified corresponds to a protein, predictor attributes c[19]. Thirdly, individual predictions can lead to incorisist
respond to different protein features and the classes-comeerarchical predictions, since parent-child relatiopshoe-
spond to different functions that a protein can performc8intween class labels are not imposed automatically during the
it is known that a protein can perform more than one funtraining. However, more elaborate approaches can correct
tion and function definitions are organised in a hierardhictine individual predictions in order to satisfy hierarchics
structure (e.g. FunCat [34] and Gene Ontology [10] protelationships—e.g. a Bayesian network is used to correct the
functional-definition schemes), the classification prable inconsistent predictions of a set of SVM classifiers in [2].
this case is an instance of a hierarchical multi-label grobl Fourthly, the discovered knowledge identifies relatiopshi

In this paper we propose a novel ant colony classificatitketween predictor attributes and each class label individu
algorithm tailored for the hierarchical multi-label cldiss ally, rather than relationships between predictor attebu
cation problem, extending the ideas of our previbdst- and the class hierarchy as a whole, which could give more
Miner (Hierarchical Classification Ant-Miner) [28] algeri insights into the data.

thm. hAnt-Miner—the first ant colony algorithm for hierar- |4 order to avoid the aforementioned disadvantages of
chical classification to the best of our knowledge—discsve(gea“ng with each class label individually, a few authongeha

a list of classification rules that can predict all classesnfr roposed classification algorithms that discover a sinigie g

a class hierarchy, independently of their level, but has tBﬁl model which is able to predict class labels at any level
limitation of not being able to cope with multi-label datag the hierarchy. Kiritchenko et al. [21] present an apptoac
The proposed algorithm overcomes this limitation and it {§here the hierarchical (possibly multi-label) classificat
evaluated on sixteen bioinformatics data sets, takinganto problem is cast as a multi-label problem by expanding the
count both the predictive accuracy and simplicity (size) @fass label set of an example with all their ancestor class la
the discovered rule list. The evaluation consists in COMP@e|s. Then, a multi-label classification algorithm is apgli
ing the proposed algorithm against state-of-the-art #®tis 1o the modified data set. For some examples, there is still
tree induction algorithms for hierarchical multi-labehss$i- 5 need for a post-processing step to resolve inconsistencie
fication. The data sets employed in this evaluation presgftihe class labels predicted. Rousu et al. [33] presents a
challenging problems for any classification algorithm &s thernel-based algorithm for hierarchical multi-label sias
number of attributes range from 63 to 551, the number g¢ation based on the maximum margin Markov networks
class labels in the class hierarchy ranges from 456 to 4134mework, wherein a post-processing is not required in or-
and each example is associated with more than one clasgji&-to satisfy hierarchical class labels relationships.

bel.
The remainder of this paper is organised as follows. Se?— In general all of the above approaches can be seen as a

tion 2 reviews the related work. Section 3 presents an ov éﬁﬁlt(e?oi(e’tesén;ﬁ(;cgl%gg%cgd tﬂ:issjg?a:gng\ﬂgﬁlsfaglﬁ_
view of the Ant Colony Optimisation metaheuristic and it P y ASP y

applications in data mining’s classification task. The ieta |one_d, comprehensmlllty plays an important role in piote
function prediction. Clare et al. [9] present an adapted ver

of the proposed hierarchical multi-label classificatiogoal - i :
rithm are presented in Section 4. In Section 5, the evalnati®©" Of the well-known C4.5 decision tree algorithm, which
ble to deal with all hierarchical class labels in the data

measure based on Precision-Recall curves used in our experl- . ;
and at the same time. In their approach, a leaf of the de-

iments is presented. Section 6 presents the computatenall. . : e
sults. Finally, Section 7 draws the conclusions of this pap%ISIOn tree predicts a vector Qf boolean values, indicattieg
and presents future research directions. presence/absence of a particular class label. A recent wor_k
by Vens et al. [38] presents three approaches for hierarchi-
cal multi-label classification using the concept of predet
clustering trees (PCT) to induce decision trees for hidtiarc
2 Related Work on Hierarchical Multi-Label Protein cal multi-label problems in the context of protein function
Function Prediction prediction: (1) building a decision tree for each class-indi
vidually; (2) building decision trees in a top-down fashion
Much work on hierarchical classification of protein funcwhere an example can only belong to a cla#sit belongs
tions has been focused on training a classifier for each clésshec’s parent class; (3) building a single decision tree that
label (function) independently, using the hierarchy taedet predicts all classes at once. They evaluated these apg®ach




on twenty-four bioinformatics data sets, from which we have Ant Colony Optimisation algorithms simulate the beha-
selected sixteen to use in this paper, using as protein fur@ur of real ants using a colony of artificial ants, which co-
tional classification schemes the FunCat (tree structumg) aoperate in finding good solutions to optimisation problems.
Gene Ontology (directed acyclic graph structure). Alves EBach artificial ant, representing a simple agent, builds can
al. [1] proposes two versions of Atrtificial Immune Systemdidate solutions to the problem at hand and communicates
(AIS) algorithms for hierarchical multi-label classifi@at indirectly with other artificial ants by means of pheromone
using the Gene Ontology functional-definition scheme. AK&lues. At the same time that ants perform a global search for
are computational systems based on the characteristiceew solutions, the search is guided to better regions of the
mainly the capability of learning and memory—of biologsearch space based on the quality of solutions found so far.
ical immune systems. The algorithm converges to good solutions as a result of the
Holden and Freitas [17] propose a method to improw®llaborative interaction among the ants; an ant prolabili
the performance of top-down hierarchical classificatiom, wtic chooses a trail to follow based on heuristic information
erein a hybrid particle swarm optimisation (PSO) / ant col@énd pheromone values, deposited by previous ants. The in-
ny optimisation (ACO) algorithm is used to select—out dieractive process of building candidate solutions and upda
a set of predefined candidate classification algorithms—timg pheromone values allows an ACO algorithm to converge
best (most accurate) classification algorithm to be usedtapptimal or near-optimal solutions. The main aspects of an
each node of the class hierarchy. This ‘selective’ top-dowkCO algorithm are as follows:
approach is based on a previous work presented in [35], ) )
where the selection of the best algorithm at each node s Problemrepresentation: the problem is mapped to a gra-
done in a greedy fashion, rather than using the PSO/ACO Ph representation that is used by the artificial ants to
algorithm. In Holden and Freitas [18], different ensembles build solutions. Ants perform randomized walks on a
of rules are built for each level of the class hierarchy—gsin  9raphGc = (C,L), where the se€ represents the ver-
the training examples at the level—and a PSO algorithm is tices of the graph and the setrepresent the edges be-
used to optimise the weights used to combine the predictions tWeen the vertices, in order to build solutions. The graph
of different rules in a top-down fashion. While both works ~ Gc represents the problem search space;
are in the context of hierarchical classification, they have building solutions: each ant incrementally builds a can-
been applied to hierarchical single-label classificatieald ~ didate solution by moving through neighbour vertices of
ing with tree-structured class hierarchies. Thereforeyth the graphGc. The vertices to be visited are chosen in
cannot be straightforwardly applied to the data sets used in & stochastic decision process, where the probability of
this paper, which involves hierarchical multi-label ciiss ~ choosing a particular vertex depends on both the amount

cation dealing with both tree-structured and DAG-struetur ~ Of pheromonex) associated with the vertex (or the edge
class hierarchies. leading to the vertex) and a problem dependent heuristic

information (7). Hence, a candidate solution is repre-
sented by a trail in the grapB;
—— — indirect communication: after building a candidate solu-
3 Ant Colony Optimisation tion, an ant evaluates the solution in order to decide how
much pheromone to deposit in the solution’s trail. In gen-
Inspired by the behaviour of natural ant colonies, DOI’igﬁ) an eraL the amount of pheromone deposited is proportiona]
Stutzle [13] have defined an artificial ant colony metateuri  to the quality of the candidate solution. The deposit of
tic that can be applied to solve optimisation problemsechll  pheromone increases the probability that vertices/edges

Ant Colony Optimisation (ACO). The main idea for the def-  ysed in a solution will be used again by different ants.
inition of ACO came from the fact that many ant species,

even with limited visual capabilities or completely blind, ACO algorithms have been successfully applied to sev-
are able to find the shortest path between a food source anal different flat (non-hierarchical) classification plerhbs,

the nest. It was discovered that most of the communicatias reviewed in [15]. The first implementation of an ACO
among individual ants is based on the use of a chemicalgorithm for discovering classification rules, named Ant-
called pheromone, that is dropped on the ground. As aiMiner, was presented in [29] and more recently variations
walk from a food source to the nest, pheromone is depositedre proposed in [25, 26, 27, 28]. Ant-Miner, and conse-
on the ground, creating in this way a pheromone trail ajuentially its variations, combines a traditional macHene
the path used. Shorter paths will be traversed faster and,amging’s sequential covering approach with an ACO-based
consequence, will have stronger pheromone concentrataassification rule induction procedure. The sequentis co
than longer paths over a given period of time. The moeging approach consists of an iterative process of creating
pheromone a path contains, the more attractive it beconmesrule-at-a-time, removing examples from the training se
to be followed by other ants. Hence, as time goes by, margtil there are no uncovered training examples (i.e., ingin
and more ants will prefer the shorter path, which will havexamples not classified by any of the created rules). Follow-
more and more pheromone. In the end, (almost) all ants willy the sequential covering approach, a rule is createdyusin
be following a single path, which usually will represent than ACO procedure at each iteration of the process in Ant-
shorter path between the food source and the nest. Miner.




Despite the Ant-Miner variations for flat classificatiomule list (while loop) and adds a new rule to the rule list
proposed in the literature, extending Ant-Miner to hierawhile the number of uncovered training examples is greater
chical multi-label classification problems is a researgfido than a user-specified maximum value. At each iteration, a
that has not yet been explored by other authors, to the bestwé is created by an ACO procedureegeat-until loop).
our knowledge. In the context of hierarchical and multidab Given that a rule is represented by paths in two different
classification, there are two Ant-Miner variations whick arconstruction graphs (illustrated in Fig. 1), antecedemt an
worthy of mentioning. consequent, two separate colonies are involved in the rule

Chan and Freitas [8] proposed a new ACO algorithmpnstruction procedure. Ants in the antecedent colony cre-
named MuLAM (Multi-Label Ant-Miner), for discovering ate paths on the antecedent construction graph while ants in
multi-label classification rules. In essence, MuLAM differthe consequent colony create paths on the consequent con-
from the original Ant-Miner in three aspects, as followsstruction graph. In order to create a rule, an ant from the
Firstly, a classification rule can predict one or more classitecedent colony is paired with an ant from the consequent
attributes, as in multi-label classification problems aarex colony (the first ant from the antecedent colony is paired
ple can belong to more than one class. Secondly, each itevith the first ant from the consequent colony, and so forth),
tion of MULAM creates a set of rules instead of a single rukgo that the construction of a rule is synchronized between
as in the original Ant-Miner. Thirdly, it uses a pheromonéhe two ant colonies. Therefore, it is a requirement that bot
matrix for each class value and pheromone updates only colonies have the same number of ants. The antecedent and
cur on the matrix of the class values that are present in ttensequent paths are created by probabilistically chgasin
consequent of a rule. In order to cope with multi-label dateertex to be added to the current path (antecedent or conse-
MuLAM employs a criterion to decide whether one or morguent) based on the values of the amount of pheromone (
class values should be predicted by the same rule. associated with edges and problem-dependent heuristic in-

Otero et al. [28] proposed an extension of the flat clas§prmation (7) associated with vertices. There is a restriction
fication Ant-Miner algorithm tailored for hierarchical sla that the antecedent of the rule must cover at least a user-
sification problems, nameaAnt-Miner (Hierarchical Clas- defined minimum number of examples, to avoid overfitting.
sification Ant-Miner), employing a hierarchical rule eval- Once the rule construction procedure has finished, the
uation measure to guide pheromone updating, a heuristites constructed by the ants are pruned to remove irrelevan
information adapted for hierarchical classification, adlwgerms (attribute-value conditions) from their antecedent
as an extended rule representation to allow hierarchicallhich can be regarded as a local search operator—and class
related classes in the consequent of a rule. Howévart- labels from their consequent. Then, pheromone levels are
Miner cannot cope with hierarchical multi-label problemsypdated using the best rule (based on a quality me&3uwe
where an example can be assigned to multiple classes tha&tcurrent iteration and the best-so-far rule (acrosseatii
are not ancestor/decendant of each other. Since in this pajgns) is stored. The rule construction procedure is regzeat
we focus on extending the ideast#nt-Miner into the hier- until a user-specified number of iterations has been reached
archical multi-label classification problem, a more detil or the best-so-far rule is exactly the same in a predefined
overview is presented in Subsection 3.1. number of previous iterations. The best-so-far rule found i
added to the rule list and the covered training examples—i.e
examples that satisfy the rule’'s antecedent conditiong—ar
removed from the training set.

Overall,hAnt-Miner can be regarded as a memetic algo-
rithm [23], in the sense that it combines conventional con-
cepts and methods of the ACO metaheuristic with concepts

nd methods of conventional rule induction algorithms.(e.g
E&e sequential covering and rule pruning procedures),sas di
cussed earlier.

3.1 An Overview of Hierarchical Classification Ant-Miner

The target problem dfAnt-Miner algorithm is the discovery
of hierarchical classification rules in the foifs antecedent
THEN consequent. The antecedent of a rule is compose
by a conjunction of conditions based on predictor attribu
values (e.glength > 25 AND IPR00023 = yes) while the
consequent of a rule is composed by a set of class labels in
potentially different levels of the class hierarchy regper 3.1.1 Hierarchical Rule Evaluation
ancestor/decendant class relationships (e.g., GO:080521
G0:0005244—where GO:0005244 is a subclass of GO:0@knt-Miner uses a variation of the hierarchical accuracy me-
5216).hAnt-Miner divides the rule construction process intasure proposed by [21] in order to evaluate rules consilucte
two different ant colonies, one colony for creating antecgd by ants. Firstly, the set of predicted class laliglsf rule r
of rules and one colony for creating consequent of rules, aistextended with the corresponding ancestor latiel} s
the two colonies work in a cooperative fashion.

In order to discover a list of classification rules, a se-
quential covering approach is employed to cover all (or &' = P U {Uj,cp Ancestors(l) } — lroot , (1)
most all) training examples. Algorithm 1 presents a high-
level pseudocode of the sequential covering procedure enirereAncestors(lj) corresponds to all ancestor class labels
ployed inhAnt-Miner. The procedure starts with an emptyf the class label; and l;o is the root class label of the



Algorithm 1 High-level pseudocode of the sequential covering proeeéuanployed irhAnt-Miner. The rule construction process in
hAnt-Miner involves two separate colonies, one for the ¢ogadf the antecedent of a rule and one for the creation of theequent of a
rule.

input : training examples
output: discovered rule list

1 begin

2 training_set < all training examples,

3 rulelis < 0;

4 while |training_set| > max_uncovered_examples do

5 rul epeg < 0;

6 i—1;

7 repeat

8 rulecurrent < 0;

9 for j «— 1to colony_size do

10 // use separate ant colonies for antecedent and consequent construction
11 rulej < CreateAntecedent () + CreateConsequent();
12 // applies a local search operator

13 Prune(rulej);

14 // updates the reference to the best rule of the iteration
15 if Q(rulej) > Q(rulegyrrent) then

16 | rulecrren < rule;;

17 end

18 j—j+1;

19 end
20 U pdatePheromones(rul ecyrrent );
21 if Q(rulecyrrent) > Q(rulepes) then
22 | rul €pest — rul €current;
23 end
24 i—i+1;
25 until i > max_number _iterations OR Rul eConvergence() ;
26 rulelist < rule_list + rul epeg;
27 training-set — training_set — Covered(rul eyes, training-set);
28 end
29 return rulelis;
30 end

hierarchy. Then, the hierarchical measures of precigiBh ( 3.1.2 Heuristic Information
and recall (IR) are computed as
Antecedent Heuristic Information As in Ant-Miner, the he-
uristic information used in the antecedent constructiapr
~|ANR/] is based on information theory, more specifically, it imesv
hR = 2ies A (2) @measure of the entropy associated with each term (vertex)
S| S| ’ of the graph. The entropy for a terfnis computed as

__|AORY
hP: _ZIES IPI',‘r

where$ is the set of all examples covered by (satisfying the L
rule antecedent of) rule and A; is the set of actual (true) o

class labels of théth example. The hierarchical precisionentmpy(T’S) - kzlfp(lk‘sT) 10g, p(lk| Sr) (4)
(hP) is the average number of true class labels that are pre- B

dicted by ruler divided by the total number of predicte
class labels across the examples covered byrrulee hier-
archical recallR) is the average number of true class labe
that are predicted by rule divided by the total number of : : : : -
true class labels which should have been predicted acress; ass labels. Equation (4) is a direct extension of the kgari

examples covered by ruteFinally, the rule quality measure ction of the original Ant-Miner [29] for flat classificatn
ampie y rurerinally, 9 y into the problem of hierarchical classification. Since the e
Q is defined as a combination of ti® andhR measures

equivalent to the hierarchical E-measure. given b ’ tropy of a termT of the antecedent construction graph varies
q 9 y in the range O< entropy(T) < log,(|L| — 1) (where|L| — 1

is the number of class labels in the class hierarchy without

considering the root class label) and lower entropy values

2-hP-hR (3) are preferred over higher values, the heuristic infornmatio
hP+hR for atermT is computed as

therep(Ik | Sr) is the empirical probability of observing the
gslass labely conditional on having observed termin the
et of training exampleS and |L| is the total number of

Q=hF=
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Fig. 1 Examples of the construction graphs employetiAmt-Miner: in (a) the antecedent construction gragPR005821' and ‘| PRO01693’
are binary attributes, antkhgth’ is a continuous attribute), where the dumnstatt’ vertex is unidirectionally connected to all vertices tal
the association of pheromone values on the edge of the firstdéthe antecedent of a rule; (b) the consequent construgtiaph, which is
defined by the class hierarchy of the problem at hand (in #ée cthe class hierarchy is represented by a subset of the @anlogy’s ion
channel hierarchy).

{1,1.2,1.2.1},{1,1.2,1.2.2} and{1,1.2,1.2.1,1.2.1.3}, re-
) spectively. The set of class labels occurring in all unceser
Nt = log,(|L| - 1) —entropy(T;S), (3)  examples comprise the sgt, 1.2}, which would be the set

whereS is the set of training examples. Equation (5) wilPf Predicted class labels of the default rule.
give a higher probability of being selected to terms with

lower entropy values, which correspond to terms with high
predictive power.

2 A New Ant Colony Algorithm for Hierarchical
Multi-Label Classification

Consequent Heuristic Information The heuristic informa- While analysindhAnt-Miner, we have identified the follow-
tion used in the consequent construction graph is based.ﬁ)

L Slimitations. Firstly, the heuristic information, whidn-
the frequency of training examples for each class labelef tbolves a measure of entropy, usechint-Miner is not very
hierarchy, given by '

suitable for hierarchical classification—i.e. it does raike
into account the hierarchical relationships between ekss
M = TR, (6) AlthoughhAnt-Miner’s entropy measure is calculated throu-
ghout all labels of the class hierarchy (apart from the raot |
where|TR, | is the number of training examples that belonpel), each class label is evaluated individually withoutco
to class labely andly is the k-th class label of the classsidering parent-child relationships between class labels
hierarchyL. Secondly, the rule quality measure is prone to overfit-
ting. Since only the examples covered by the rule are con-
sidered in the rule evaluation, rules with a small coverage
are favoured over more generic rules. For example, consid-
In order to classify a test (unseen) example, rules in the d&sing the class label 1.2.1 with 20 examples and two rules
covered rule list are applied in a sequential order—i.e. thigat have class 1.2.1 as the most specific class label in their
order in which they were discovered. Therefore, a test eoensequent.ule; covering correctly 5 examples out of a to-
ample is classified according to the consequent of the fitat of 5 covered andule, covering correctly 19 examples
rule that covers the example. More precisely, the exampleoist of a total of 20 covered. In this casele; would have a
assigned the class labels predicted by the rule’s consequéigher quality, since all the examples covered by the rude ar
In the situation where no rule in the discovered rule listorrectly classified, tharule,, which misclassifies one ex-
covers the test example, a default rule (a rule with an emptynple, thoughule, covers all but one examples belonging
antecedent) predicting the set of class labels that occurtinclass 1.2.1. One could argue that the rule quality mea-
all uncovered training examples is used to classify the testre ofhAnt-Miner could be easily modified to avoid over-
example. For example, assuming that there are three fitting by evaluating a rule considering all the examples of
covered examplesl, e2 ande3, belonging to class labelsits most specific class. The drawback of this approach is that

3.1.3 Using a Rule List to Classify New Examples



it favours rules predicting class labels at the top of the-hiehas the limitation of not being able to predict unrelatedsla
archy, since the numbers of examples per class are greatdala¢ls—i.e. multiple paths in the class hierarchy. Onedoul
top class levels. This could potentially prevent the discgv argue that the consequent could be represented by multiple
of rules predicting more specific class labels given that thmils in order to be able to predict unrelated class labels,
examples covered by a rule are removed from the trainihgwever it is not clear how to find the optimal combination
set—indeed, this problem was observed in some preliminamyd number of trails to consider without introducing yet an-
experiments. other user-defined parameter.

Thirdly, hAnt-Miner does not support multi-label data A sensible approach is to use the information available
since a single path in the consequent construction graph doom the examples covered by the rule (i.e. examples that
responds to the consequent of a rule. In the case of protsaiisfy the rule antecedent) in order to determine the rule
function prediction, where it is known that a protein can-peconsequent. Therefore, the consequent of a rulemant-
form more than one function, this is an important limitatiorMiner is calculated using a deterministic procedure as fol-

This section presents a new hierarchical multi-label alows. Given the set of exampl&s covered by a rule, the
colony classification algorithm, namédAnt-Miner (Hier- consequent is a vector of lengti(wherem is equal to the
archical Multi-Label Classification Ant-Miner), which i$-a number of class labels in the class hierarchy). The value for
med at overcoming the aforementioned limitations. Whilkeachi-th component of the consequent vector for rulis
hmAnt-Miner shares the same underlying procedure of tiggven by
hAnt-Miner algorithm, presented in Algorithm 1, it differs

from hAnt-Miner in the following aspects: S & labal|

— the consequent of a rule is calculated using a determ|(f§)—nsequent“i - 1S | ’ )
istic procedure based on the examples covered by the
rule, allowing the creation of rules that can predict morghere|S & label;| is the number of examples covered by
than one class label at the same time (multi-label rulegyle r that belong to the-th class of the class hierarchy
Therefore hmAnt-Miner uses a single construction gra{label;). In other words, the consequent of a rule is a vec-
ph in order to create a rule—only the antecedent is refor where eaclirth component is the proportion of covered
resented in the construction graph; examples that belong to tlieh class label.

— the heuristic function is based on the Euclidean distance, According to Equation (7), each position of the conse-
where each example is represented by a vector of claggent vector is a continuous value between 0.0 and 1.0, ra-
membership values in the Euclidean space. By usingher than a presence/absence value of a particular clads lab
distance measure, instead of entropy dsAint-Miner, it As aresult, the value in thieth component of the consequent
is possible to take into account the relationship betweeha rule represents the probability of an example that-satis
class labels given that examples belonging to related (dies its antecedent to belong to the corresponddintclass
cestor/decendant) class labels will be more similar th@fithe hierarchy. Figure 2 illustrates the consequent ofea ru
examples belonging to unrelated class labels. The uselisficovered bynmAnt-Miner; in this example, the predictor
the Euclidean distance was inspired by a similar use aitributes in the antecedent of the rule correspond to amino
the QLus-HMC algorithm for hierarchical multi-label acid ratios from the protein’s sequence and the class labels
classification [38], which is based on the paradigm dfi the consequent of the rule are represented by Gene Ontol-
decision tree induction, rather than rule induction. Notegy terms—the number following the colon of a class label
that the Euclidean distance is used as the heuristic infgt-the consequent corresponds to the probability of predict
mation, as well as in the dynamic discretisation procég the associated class label.
dure of continuous attributes; In order to obtain class label predictions from a rule, it is

— the rule quality is evaluated using a distance-based nmecessary to select a classification threshold. If the vaflue
asure, which is a more suitable evaluation measure fbei-th component is greater than or equal to the classifica-
hierarchical multi-label problems; tion threshold, the corresponderih class label is predicted.

— the pruning procedure is not applied to the consequentMte that the consequents of the rules fulfil the requirement
a rule. The consequent of a rule is (re-)calculated whéer the hierarchical multi-label classification task: (het
its antecedent is modified during pruning, since the sgasses predicted are consistent with the class hierasithy,
of covered examples might have changed. ce the probability of a parent class label is always equal to

or greater than the probability of its children class lap@}

multiple unrelated classes can be predicted accordingeto th
4.1 Multi-Label Rule Consequent examples covered by the rule.

The same deterministic procedure is applied to compute

Recall that the consequent of a rulehiint-Miner is repre- the consequent of the default rule when classifying an un-
sented as a path in the consequent construction graph, whegren example, as described in Subsection 3.1.3, with the dif
atrail is a single path from the root class label towards & |efarence that the uncovered set of examples (i.e., the set of
class label in the class hierarchy. Although the consequemxaimples which is not covered by any rule) is taken into ac-
predicts multiple class labels in a hierarchical structitre count in Equation (7).



IF case s thatitis known that class labels ‘2’ and ‘2.1’ areenor
aa rat pair a h >= 0.053 similar than class labels ‘1" and ‘3’. Hence, it would be ex-
AND aa_rat pair t c >= 0.1055 pected/desired that the entropy measure (or an alternative
AND aa rat pair c w < 0.0695 heuristic information) exploit hierarchical relationphiin
AND aa_rat_pair_a e < 0.2960 order to better reflect the quality of each term in the case of
AND aa rat pair t h >= 0.0275 hierarchical classification problems. Intuitively thixbenes
THEN

even more important when dealing with bigger (in terms of

ggggggiég 8 : 18’288882232 2 : 38 number of class labels and depth) hierarchical structifres.
DO e should be noted that several Ant-Miner variations—as dis-
G00003676:0.50,G00003723:0.50, X S X
: : cussed in [15]—have used a heuristic information based on
G00003824:0.50,G00003887:0.50, : )
o the relatively frequency of the class predicted by the rate (
GO0044464:1.00,G00045053:0.10, the majority class) among all the examples that have a par-
G00045185:0.10,G00046907:0.20, ticular term, which would also present the above limitation
G0O0051234:0.20,G00051235:0.10, hmAnt-Miner employs a distance-based heuristic infor-
G00051649:0.20,G00051651:0.10 mation, which directly incorporates information from the

class hierarchy. More precisely, the heuristic infornratd
_ _ a term corresponds to the variance of the set of examples

. e Dt s e e e i i COVered by the term the set of examples hat satisty the con
rule clorrespond to amino acid ratios from the protein’s sega and dition represented by the term). In order to calculate thie va
the class labels in the consequent of the rule are represbytene ance, the class labels of each example are represented by a
Ontology terms—the number following the colon of a claselabthe numeric vector of lengtm (wherem is the number of class
consequent corresponds to the probability of predictiegetssociated |abels of the hierarchy without considering the root label)
clhass label. Only a subset of the class labels predictedéyulle are Thei-th component of the class label vector of an example
snown. . . .

is equal to 0 or 1 if the correspondent class label is absent or

present, respectively. The distance between class label ve
4.2 Distance-based Heuristic Information tors is defined as the weighted Euclidean distance, given by

According to Subsection 3.1.2, the heuristic information i m
hAnt-Miner involves a measure of entropy, as in the origdistance(vy,vy) = ZW(li) -(VLi—V2;i)?, (8)
nal Ant-Miner. The entropy characterizes the homogeneity i=

of a collection of examples related to the class attribute V@vherew(li) is the weight associated with theh class label,

ues, giving a notion of (im-)purity of the class values’ dist . andy,; are the values of thieth component of the class
bution. The more Qxamples of the Sam,e class the Io_wer 6el vectbrsvl andvy, respectively. Then, the variance of a
value of entropy will be and the ‘purest'is the collection o et of examples is defined as the averaged squared distance

gxamples. It shou!d be noted that in all calculat|0n§ 'nVOIY)etween each example’s class label vector and the set’s mean
ing entropy, the different class labels (values) are mdepeqaSS vector, given by

dently evaluated—i.e. no relationship between class fabe
is taken into account. In the case of Ant-Miner, which is ap-

plied to flat classification problems, the use of the entropy \ST\d_ 2
measure does not present a limitation, since there is no re- kzl istance(vi, V)
lationship between class labels. On the other hand, the saf@dance(Sr) = S5 : 9)

cannot be said fonAnt-Miner, which aims at extracting hi-
erarchical classification rules, derived from data wheee tiwhere Sy is the set of examples covered by a tefmand
class labels are organised in a hierarchical structure. V is the set’s mean class label vector. Finally, the heuristic
To illustrate the limitation of the entropy measure wheififormation of a ternir is given by
used in hierarchical problems, let us consider the follow-
ing example. Given a tree-structured class hierarchy, &her  yarjance,,, — variance(Sy)
labels {1, 2, 3} are children of the root label and labeld)T =
{2.1, 2.2 are children of the ‘2’ label and each class la-
bel has 10 examples. Although the entropy is calculatedwherevarianceax is defined as the sum of the worst and
according to Equation (4)—accross all class labels, the hibest variance values observed across all terms in order to as
archical relationships are not taken into account. Theeefosign values greater than zero to the worst terms, which-other
the entropy of a hypothetical ternPR00023 = yes which  wise would avoid them to be selected by an ant. Note that the
is present in 10 examples of class ‘1’ and in 10 examplbeuristic value is normalised so the smaller the value of the
of class ‘3’ would be the same as of a hypothetical termariance of a ternT the greater its heuristic value becomes.
‘IPR0O0023 = no’ which is present in 10 examples of clas§his is analogous to the use of the entropy measure in Ant-
‘2" and in 10 examples of class ‘2.1'. The drawback in thisiner andhAnt-Miner, where smaller values are preferred

: , (10)
varianCemay



over bigger values since they correspond to a more homog®eshold value for attributg; is the valuev which min-

neous partition (where the great majority of examples klgplomises the variance of botly;(< v) and §; > v) generated

to the same class). partitions of examples fror§, maximising the variance gain
Recall that the distance function in Equation (8) requireslative toSas a result, given by

the definition of a class-specific weight. In Vens et al. [38],

where the proposedi®s-HMC algorithm also uses a vari-

ance measure based on a weighted Euclidean distance, ¥8{lance-gain(y;,v) = variance(S)

eral weighting schemes have been evaluated in the context 1Sy <vl .
of hierarchical multi-label classification. As a result béir B -variance(Sy <v) (12)
findings, the preferred weighting scheme—and the one used
in hmAnt-Miner—is defined as _ |S‘/iSZ|V| -variance(S;>v)
IR where|S;, </ is the total number of examples in the partition
iglw( Pi) y; < Vv (partition of training examples where the attribyte
w(l) =wo- TR (11) has avalue less thad, |S,>y| is the total number of training

examples in the partitioy > v (partition of training exam-
wherewg is set to 0.75 (based on [38P, is the parent class ples where the attributg has a value greater than or equal
label set of the class labelndw(p;) is the weight associ- to v) and|S is the total number of training examples. The
ated with thei-th parent class label of the class labeln values ofvariance(S), variance(S;,-y) andvariance(S;>y)
other words, the weight of a class lalhék the multiplica- are calculated according to Equation (9). The variance gain
tion of thewp weight and the average weight of its parermeasure is calculated for all valueswhich comprises the
class labels. For class labels at the top of the hierarchly (claverage value of each pair of adjacent valjesndvi 1 in
dren of the root label), their weights are setp According the domain of the attributg—computed a$v; +vi11)/2—
to Equation (11), class labels appearing higher in the hiend the valuer with the highest variance gain associated is
archy will have greater weights than class labels appearitthgn selected as the best threshold value.
lower in the hierarchy. Therefore, concerning the weighted Note that the set of training exampl8ssaries accord-
distance function in Equation (8), similarities at highev-l ing to the context of the rule construction process, that is t
els of the hierarchy are more important than similarities aay, the set of training exampl&ds restricted to the set of
lower levels. training examples covered by the current partial rule being
constructed. The only exception to this restriction is when
the current partial rule is empty, thus all training exansple
4.3 Distance-based Discretisation of Continuous Values are used on the evaluation of threshold values. As a result
of this restriction, the choice of a threshold value during t
As discussed in Subsection 4.2, the entropy measure is ngé construction process is tailored to the current caatdid
very suitable for hierarchical multi-label classificatipmob- rule.
lems. Therefore, the entropy-based discretisation proeed  After the selection of the best threshold valye rela-
employed byhAnt-Miner (derived fromcAnt-Miner [26]) tional operator is selected based on the individual vaganc
presents the same limitation of evaluating each of the claggues of the generated partitions, given by
labels individually, not taking into account their relatio
ships. Consequently, the quality of continuous attribthies

eshold values are compromised, which can lead to poor dis- { < if variance(§;<y) < variance(S;>v)

covered rules. operator = _ _ : :
Using the variance measure previously defined in Eg- > if variance(S,<y) > variance(S;v)

uation (9),hmAnt-Miner employs a distance-based discreti- (13)

sation procedure of continuous attributes values in its rul

construction process. Given a continuous attrilputthe ba- According to Equation (13), if the partition of examples

sic idea is to find a threshold value(wherev is a value y; < vhas a lower variance, then the operatar (less-than
in the domain of attributey;) that maximises the varianceoperator) is selected; if the partition of exampjes v has a
gain of both ¢ < v) and §; > v) generated partitions of lower variance, then the operator™(greater-than-or-equal-
examples—i.e. the set of examples which have the valuetofoperator) is selected; ties are broken at random. As can
attributey; less tharv and the set of examples which have thbe noticed, the operator selection has a bias of selectang th
value of the attributg; greater than or equal te—relative more homogeneous partition, given that lower variance val-
to a set of exampleS The distance-based discretisation praies are preferred over higher values. This is analogous to
cedure, dubbed variance-gain discretisation, is dividéal i the bias of the entropy-based discretisatiomaht-Miner,
two steps as follows. where lower entropy values are preferred since they are as-
Lety; be a continuous attribute to undergo the discresociated with the ‘purest’ partition (the partition with neo
sation process anda value in the domain of;. The best examples belonging to the same class).
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At the end of the discretisation process, a term (a triple4 Hierarchical Multi-Label Rule Evaluation
attribute, operator, value) is created to be added to the cur-
rent partial rule (e.gy; < 20) and the rule continues to un-Following a similar approach of using a distance-based mea-
dergo the rule construction process. sure for the discretisation of continuous values, the vaga
ain can be applied to compute a rule quality measure. The
asic idea to evaluate a ruleusing the variance gain mea-
sure is to virtually divide the training s&(whereS corre-

Concerning the computational time complexity of thg
entropy-based discretisation usedhAnt-Miner and the pr-

oposed dist_ange-based discretisatiomlimm-!\/l_iner, _the sponds to the set of all training examples) into two pariio
process of finding a threshold value can be divided into ty, gat of examples covered by the ruks) and the set of

steps. First, both discretisation procedures require ahe s o, » 115165 not covered by the rul¢S.,). Then, the variance
ing of continuous attribute values in order to facilitate thgain of ruler relative toScan be computed as

partition of examples. The time complexity of this step i
O(n-logn), wheren is the number of training examples un-

der consideration. variance_gain(r,S) =variance(S)

In the case of the entropy-based discretisation, the sec- S| _
ond step involves the evaluation of potentiaflycandidate E -variance(§) (14)
threshold values—assuming that each training example has

a different value for the continuous attribute undergoiisy d _ S| -variance(S.,) .
cretisation—overk different class labels. The complexity of ||

this step ig0(n- k), and the total complexity of the entropy-

based discretisation 8(n-logn) + O(n-k). The motivation of using the variance as a rule quality

In the case of the distance-based discretisation, the sgga>ure Is as fC.)HOWS' Firstly, it. can naturally cope with
' ?rarchlcal multi-label data, taking into account thearel

ond step involves the calculation of the mean class la ; AT 3
vector for each partition of training examples. This calc lonships and similarities between class labels. Secoftaly

lation has time complexity 0O(n-K). Furthermore, it in- '2VOUrS rules that partition the training set into a more ho-

volves the calculation of the distance between each exafedeNeous sets of examples. As a result, rules that cover a

ple’s class label vector and the partition mean’s classl labgOre homogeneous set of examples, as well as leaving un-

vector in order to determine the variance of the partition gvered amore homogeneous set of examples (which should

Since each class label vector Hagositions and there are dcilitate the discovery of other rules in the future), are-p
potentiallyn candidate threshold values, the time comple;@rred'
ity of the variance calculation ®(n- k). Given that for each
candidate threshold value, the mean class label vectdngof t
partitions must be recalculated because a partition’s exajng

ple distribution varies according to the threshold valhe, t
gzﬁl. lt'ongfl)cfrg?[lﬁ?(ﬁ%)()f the distance-based discretisaito Since the consequent of a rule is determined as detailed in
' Subsection 4.1hmAnt-Miner does not employ a second co-
Intuitively, if both complexity notations are simplifiedlony in order to construct the consequent of rules. Theegfor
by dropping the common eleme®(n-logn), the entropy- Fhe ruIe_prunmg procedure is S|mpI|f_|ed as follows. The rule
based discretisation growing factor is linear in relation #S submitted to a removal process of its antecedent’s st te
n-k, while the distance-based discretisation growing fact8hd has its consequent re-calculated, since the set ofembver
is quadratic in relation ta- k. Therefore, the distance-base@xamples could change after the removal of the term. The
discretisation is more computationally complex than the efiémoval process is repeated until the quality of the rule de-
ropy-based discretisation. It should be noted that the mumi§reases when its last term is removed or the rule has only
of training example® covered by a rule, and consequenti$ne term leftin the antecedent.
the potential number of candidate threshold values, tamds t Letrulegrex be the rule undergoing the pruning, which
decrease in relation to the number of terms in the antecedéngonsidered the best rule at the beginning of the pruning
of a rule. Hence, the efficiency of the discretisation procgrocedure. At each iteration of the pruning procedure, a can
dure is increased at later stages of the rule construction pdidate rulerule is created by removing the last term of the

cess, since less candidate threshold values have to be evailtecedent of the current bestienes and the consequent
ated. of rulg is computed according to Subsection 4.1. Then, the

quality measurej; for rule is computed. If the quality mea-
sureq is higher than the current best qualifyss, rule sub-
stitutesrul e,eg, cOMpleting an iteration of the pruning pro-
1 This represents the worse case scenario for the discietigab- cedure. ThIS_ procedure is repeated lfmﬂbo‘ﬁ has just one
cedure, and in general, the number of candidate threshdietsras t€rm left on its antecedent or a candidate e does not
smaller than the number of training examples. improve the quality overul epeg (i-€. Opegt > i)-

Simplified Rule Pruning
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5 Evaluation Measure based on Precision-Recall Curves

As mentioned in Subsection 4.1, the consequent of a rule
in hmAnt-Miner is a numeric vector, where each component
of the vector is the probability associated with predicting
particular class label. If theth component value is above a
specified classification threshold, then tkth class label is
predicted; otherwise it is not predicted. Instead of aalily
selecting a classification threshold value—or a set of thres
old values—to evaluate a rule listmAnt-Miner employs a
threshold-independent measure. As discussed by [38], a mo-
tivation for employing an evaluation measure indepengentl
from a classification threshold is that different contextsym
require different threshold settings.

Precision-Recall (PR) curves have been frequently used
in information retrieval [24, 32] and more recently in the
context of hierarchical multi-label classification [38].PR
curve plots a precision value against its recall value. The
precision value corresponds to the number of correct pre-
dictions divided by the total number of predictions; the re-
call value corresponds to the number of correct predictions
divided by the total number of positive examples—i.e., ex-
amples belonging to the predicted class label. One of the
advantages of using PR curves as a performance measure is
its suitability to cope with highly skewed data sets (data se
with a larger amount of negative examples in contrast to a
smaller amount of positive examples) given that the num-
ber of negative examples is not involved to calculate pre-
cision and recall values—i.e. precision and recall measure
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only take into account the number of correct positive predic
tions (true positives), the number of incorrect positive-pr (b)
dictions (false positives) and the number of incorrect neg-
ative predictions (false negative). Therefore, the nunaber
correct negative predictions (true negatives) does nai-infFig. 3 Examples of precision-recall curves: (a) a PR curve showing
ence the evaluation. This is an important characteristie cdhat higher precision values are generally associated|witer recall

. . . e - . values; (b) the shaded area of a PR curve corresponds tostheiader
cerning hierarchical classification since, as previousnm e curve measure.
tioned, classes at the lower levels of the hierarchy haverfew
(positive) examples. Therefore, it is more important to mea )
sure how well a rule predicts the presence of a particular In order to compute the points of a PR curve, and thus
class label (true positive examples) rather than its atesef§@Iculate the area under the curve, we follow an approach
(true negative examples)—independent of whether the pddgscribed in [38]. This approach consists in creating an-ove
tive examples correspond to the majority class or not for tRd PR curve by micro-averaging precision and recall values
given class label. across all class labels for a range of classification thidsho

A PR curve, illustrated in Figure 3, is defined by a seﬁhe averaged precisiofP(ec) and recall Rec) values for a
€

of points, where each point corresponds to a pair of pre&fassification thresholtlis given by

sion and recall values for a particular classification thres

old. Given a classification threshalddecreasing the value — SiTR;

of t from 1.0 to 0.0, different pairs of precision and recalf '€ = m

values are obtained. With higher classification threshale v ’ ’ (15)
ues, fewer class labels are predicted (lower recall valle) w___ 3i TR,

ile the proportion of correct predictions tends to be gneat&ec = TR, + Z NG

(higher precision value). As the classification threshald i 2i TR ! !

decreased, more class labels are predicted (higher retall wherei ranges over all class labels (excluding the root label,
ues) while the proportion of correct prediction tends to dsince it is present in all examplesyanges over all different
crease (lower precision values). Hence, the goal in PR suryeobability values found in the vector of class labels prob-
is to be on the upper-right-corner, which corresponds th higbilities, andTR;, FR; andFN;; are the number of true
precision and recall values. positives, false positives and false negatives foiitieclass
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label at the classification threshdldespectively. The value Table 1 Summary of the data sets used in our experiments. The
of Prec; corresponds to the number of correct class labdlst column (‘data set)) gives the data set name, the secohdrm
predictions divided by the number of class labels predictéd'@nind’) gives the number of training examples, the third col-

. e umn (‘|test’) gives the number of test examples, the forth column
across all class labels for the given classification thrieshq: jagributes) gives the number of attributes and the fifth column

t—i.e., Preq is the proportion of predicted class labels that|classe) gives the number of classes in the class hierarchy.
are correct. The value &ec; corresponds to the number of

correct class labels predictions divided by the total numbe . FunCat _
of class labels should have been predicted across all clé&ig set |training |test |attributes$ classes
labels for the given classification threshale-i.e., Rec; is  cellcycle 2476 1281 77 500
the proportion of the available class labels that are cyrecyerisi 2450 1275 63 500
predicted. A pair oPrec; andRec; values corresponds to agjgen 1587 837 79 462
point of the PR curve. _ expr 2488 1291 551 500
Note that points of the PR curve must be interpolated jscny 2480 1284 173 500
order to approximate the area under the curve, as discu o 1009 582 69 456

in [11]. After determining the points of the PR curve, th

. 2580 1339 478 500
area under the PR curve can be approximated by calculatin 2437 1266 80 500
the trapezoidal areas created between each point. Fitiedly.
evaluation measure is defined as the area under the averaged Gene Ontology
PR curve, denoted as ABRC). data set |training |test |attributes |classes
cellcycle 2473 1278 77 4126
derisi 2447 1272 63 4120
eisen 1583 835 79 3574
6 Computational Results expr 2485 1288 551 4132
gaschl 2477 1281 173 4126
The proposetimAnt-Miner algorithm was compared againPen° 1005 581 69 3128
st three decision tree induction algorithms for hierarahicsed 2568 1332 478 4134
multi-label classification proposed in [38]:.LGs-SC, whi- spo 2434 1263 80 4120

ch consists in inducing a decision tree for each class label i
dividually; CLus-HSC, which consists in inducing decision
trees in a top-down fashion;L@s-HMC, which consists in Table 2 The average number of class labels in the hierarchy and the

inducing a single decision tree that predicts all classlfab@verage number of class labels per example of both FunCaBand
at once. Ontology data sets.

We have selected sixteen bioinformatics data sets from FunCat Gene Ontology
Vens et al. [38], which use two different class hierarchy-str
ctures: tree structure (FunCat data sets) and directediacy@/€r29¢ number of classes 489 3932
graph structure (Gene Ontology data sets). The directed a@yFrage labels per example 8.5 34.2
clic graph (DAG) structure represents a complex hieraethic
organisation, where a particular node of the hierarchy can

have more than one parent, in contrast to only one parent in

tree structures. Table 1 and 2 present details of the data ¥41ich took 151 seconds) for Gene Ontology data ééﬂs‘e ,
used in our experiments. In the experiments conducted $3f@ Sets with a large number of attributes, namely ‘expr
Vens et al. [38], 2/3 of each data set was used for traini?d seq’, are the most time consuming in both FunCat and
and the remaining 1/3 for testing. We have used the saffigne Ontology data sets. _ o
training and testing partitions in our experiments. We compared all algorithms in terms of predictive ac-
A summary of the user-defined parameters, their ge&diracy using a measure derived from precision-recall (PR)

- ‘Minar e curves, more specifically the area under the averaged PR
criptions and correspondent values, usedimAnt-Miner is yyve, denoted as ABRC)—discussed in Section 5. Since

shown in Table 3. We have used the same set of user-defi . : . - :

parameter values in all data sets, which are also consider nt-Miner is a StOCh‘?‘St'C algorlthnhmAnt—er_\e_r. was

standard in the literature [29]; no attempt was made to tuf? 15 times—using a different random seed to initialise the

either parameter value for individual data sets. Tih@ént- search each time—for each data set. Therefore, the value of
F‘&J(PRC) reported for each data set corresponds to the aver-

Miner experiments were performed on a Pentium 4 3.2G : .
processor with 1GB of RAM running Linux. Each run ofide value obtained over 15 runs of the algorithm, followed

hmAnt-Miner took on average 2.62 hours (in the range Ufz The time taken by Cus decision tree induction algorithms is re
0.32 t0 6.24 hours, excluding ‘pheno’ data set which T[O rted in [38], but in that work a cluster was used, so the tieperted
21 seconds) for FunCat data sets anq 12.90 hours (in §hat work cannot be meaningfully compared with the timgoreed
range of 1.90 to 21.80 hours, excluding ‘pheno’ data skt our experiments in a single processor.
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by the standard deviatioraerage + standard deviation). Pairwise comparisons between CLus-HMC/HSC/SCand

For CLUS-SC, Q.us-HSC and Cus-HMC, the AUPRC) hmAnt-Miner: Table 6 presents the summary of all pairwise

value for each data set corresponds to the value obtaimemparisons according to the non-parametric Friedman test

with a single run of the algorithm, since they are determimvith the Holm’s post-hoc test [12, 16] in terms of predictive

istic algorithms. accuracy and classification model size. For each hypothesis
Table 4 shows the AIRRC) value obtained on the tes{pair of algorithms) tested, the adjustpdialue obtained by

set by each algorithm and the induced classification moddIm’s post-hoc testis reported using both FunCat and Gene

size across all data sets used in our experiments, using FOntology data sets (‘Combined’ column), using only FunCat

Cat and Gene Ontology, respectively. Figure 4 illustrategdata sets (‘FunCat’ column) and using only Gene Ontology

sample of precision-recall curves bimAnt-Miner, CLus- data sets (‘Gene Ontology’ column).

HMC, CLus-HSC and Qus-SC for ‘cellcycle’, ‘pheno’ According to Table 6, the pairwise comparisons do not

and ‘seq’ FunCat data sets and ‘seq’, ‘eisen’ and ‘phenshow statistically significant differences at the 0.01 Bign

Gene Ontology data sets. As discussed in Section 5, the clegrce level betwedmmAnt-Miner and GQ.us-HMC, neither

est to the upper-right corner, the better (more accurate) tretweenhmAnt-Miner and GQus-HSC, in terms of both

curve. ForhmAnt-Miner, the classification model size is depredictive accuracy and classification model sia@Ant-

fined as the number of rules discovered; fartuB-HMC, Miner is significantly better than @s-SC in terms of pre-

CLUS-HSC and QCus-SC the model size is defined as théictive accuracy in the combined data sets, and in terms of

number of leaf nodes in the induced decision tree, since eatdssification model size in all of the experiments;us-

path from the root node to a leaf node can be viewed a$dC is significantly better than Ws-HSC in terms of

rule. In this way, the classification model size for both typepredictive accuracy on the FunCat data sets and in terms of

of algorithms represents an overall measure of the complelassification model size on the combined data sets;SC

ity of the model. It should be noted thamAnt-Miner dis- HMC is significantly better than Gs-SC in terms of both

covers a rule list and the order in which rules are organisptedictive accuracy and classification model size in alhef t

is relevant when classifying new examples. Given a new exxperiments.

ample, the prediction of its class labels is made by the first

rule that covers the example, following the order of the rulgmmary: The experiments have shown that the proposed

list—as detailed in Subsection 3.1.3. Therefore, a paitiognant-Miner algorithm is competitive with QUs-HMC—

lar rule is used only if its previous rules do not cover thghe most accurate of thet@s algorithms—in terms of both

example—i.e. if its previous rules have not been used. @fedictive accuracy and classification model size. Additio

the other hand, a decision tree can be converted into a g&} hmaAnt-Miner outperformed Cus-SC in terms of pre-

of rules [30], where the order of rules is not relevant, anlctive accuracy on the combined (both FunCat and Gene

therefore each rule can be individually analysed. Ontology) data sets and it has discovered a much simpler
classification model than@s-SC in all of the experimen-

Comparison of hmAnt-Miner and CLUs-HSC/SCto CLus- IS. We regard our results as promising, especially consider
HMC: Table 5 presents the summary of the comparisolftd that the method of inducing decision trees using predic-
of the Q.us-HMC algorithm—the algorithm with the besttiVe clustering trees (PCT)—which is employed by all varia-
average rank—uwith the remaining algorithms used in ofiP"S of Q-Us algorithms—has been evolving for more than
experiments according to the non-parametric Friedman t88€¢ decade, with early applications in [4, 31] and more re-
with the Holm’s post-hoc test [12, 16] in terms of predic¢ently in the context of hierarchical multi-label classafion
tive accuracy and classification model size. For each aldg- 6 38]- On the other hand, the propodedAnt-Miner is
rithm, the average rank and the adjusiesalue obtained the first ACO algorithm tailored for hierarchical multi-lab
by Holm’s post-hoc test are reported using both FunCat afi@ssification—to the best of our knowledge—and the ap-
Gene Ontology data sets (‘Combined’ column), using onRfication of ACO algorithms for classification is relatiyel
FunCat data sets (‘FunCat’ column) and using only Gefecent [29].
Ontology data sets (‘Gene Ontology’ column)—the lower
the averaged rank, the better the algorithm’s performance
According to Table 5, there are no statistically significarmt Conclusions
differences at the 0.01 significance level betwéeanAnt-
Miner and G.us-HMC, in terms of both predictive accu-This paper has proposed a novel ant colony algorithm tailo-
racy and classification model size in all of the experimentgd for hierarchical multi-label classification, nantedAnt-
CLus-HMC performs significantly better thanLOs-HSC Miner (Hierarchical Multi-Label Classification Ant-Mingr
in terms of predictive accuracy on the FunCat data sets dfxtending on the ideas of our previous hierarchical classifi
in terms of both predictive accuracy and classification rhodeationhAnt-Miner algorithm hmAnt-Miner discovers a sin-
size on the combined (both FunCat and Gene Ontology) dgta global classification model, in the form of an ordered
sets; Qus-HMC performs significantly better thanLOs- list of IF-THEN classification rules, which can predict all
SC in terms of both predictive accuracy and classificati@tass labels from a class hierarchy at once, and examples
model size in all of the experiments. may be assigned to multiple unrelated class labels. In order
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Table 3 Summary of the user-defined parameter values usddrint-Miner for all data sets; no attempt was made to tune ejplagameter
value for individual data sets. The first column (‘paramiggives the parameter name, the second column (‘descnipiiives a short description
and the third column (‘value’) gives the value used in ourezkpents.

parameter description value
max_uncovered_examples maximum number of uncovered examples 10
max_number _iterations maximum number of iterations 1500
rule_convergence number of iterations used to test the rule convergence 10
min_examples_per_rule minimum number of covered examples per rule 10
colony_size number of ants per iteration 30

Table 4 The AU(PRC) value obtained on the test set by each algorithm anatheéd classification model size across all data sets used in
experiments. FohmAnt-Miner, the model size is defined as the number of rulesadisred; for Cus-HMC, CLus-HSC and CQus-SC the
model size is defined as the number of leaf nodes in the dadige, since each path from the root node to a leaf node caielved as a rule.
In the case ohmAnt-Miner, the value of each row represents the averageewatitiained over 15 runs of the algorithm, followed by the dtaid
deviation @verage + standard deviation).

FunCat
data set hmAnt-Miner CLus-HMC CLus-HSC Qus-SC
AU(PRC) size AUPRC) size AUPRC) size AUPRC) size
cellcycle 0.154+ 0.001 28.667 1.623 0.172 24 0.111 4037 0.106 9671
derisi 0.161+ 0.002 19.333+ 1.661 0.175 4 0.094 3520 0.089 7807
eisen 0.18Gt 0.003 19.00Qt 0.981 0.204 29 0.127 2995 0.132 6311
expr 0.175+ 0.002 30.600t 1.466 0.210 12 0.127 4711 0.123 10262
gaschl 0.17% 0.003 24.86A4 1.701 0.205 10 0.106 4761 0.104 10447
pheno 0.162+ 0.001 7.400+ 0.767 0.160 8 0.152 777 0.149 1238
seq 0.18% 0.002 20.067 1.152 0.211 14 0.091 4923 0.095 10443
spo 0.174+ 0.002 15.8006+ 1.172 0.186 6 0.103 3623 0.098 8527
Gene Ontology
data set hmAnt-Miner CLus-HMC CLus-HSC Qus-SC
AU(PRC) size AUPRC) size AUPRC) size AUPRC) size

cellcycle 0.332+ 0.002 35.400t 1.594 0.357 21 0.371 19085 0.252 36260
derisi 0.334+ 0.003 22.533t 1.939 0.355 10 0.349 16693 0.218 31175
eisen 0.376t 0.002 18.20G+ 0.823 0.380 37 0.365 14384 0.270 24844
expr 0.351+ 0.003 28.600t 1.778 0.368 35 0.351 20812 0.249 38313
gaschl 0.356& 0.002 27.933t 0.918 0.371 30 0.351 20070 0.239 37838
pheno 0.33A 0.001 7.133t 0.792 0.337 6 0.416 5691 0.316 6213
seq 0.366+ 0.003 18.06 4 1.016 0.386 15 0.282 21703 0.197 38969
spo 0.341+ 0.003 26.333t 2.520 0.352 14 0.371 15552 0.213 35400

to take into account the information from the class hiergrctierarchical multi-label classification in sixteen bianhat-
hmAnt-Miner employs a distance-based measure in the dgs data sets involving the prediction of protein function,
namic discretisation procedure of continuous attributes awith large numbers of predictor attributes and large number
as a heuristic information in the ACO construction graplof class labels to be predicted. The class hierarchies used i
Thus, the entropy measure usedhitint-Miner is replaced the experiments were structured in a tree (where a class la-
by the distance measure mAnt-Miner, which is a more bel has a single parent, apart from the root label) or in a di-
suitable measure for hierarchical multi-label classifamat rected acyclic graph (where a class label can have multiple
We conducted experiments comparigAnt-Miner ag- parents, apart from the root label) fornmsnAnt-Miner was
ainst state-of-the-art decision tree induction algorgHior competitive in term of both predictive accuracy and simplic
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Table 5 Summary of the comparisons of the. @s-HMC (control) algorithm with the remaining algorithms acding to the non-parametric
Friedman test with the Holm’s post-hoc test [12, 16] in teoh§) predictive accuracy and (ii) classification modelesiEor each algorithm, the
average rank and the adjustedalue obtained by Holm’s post-hoc test are reported usitly BunCat and Gene Ontology data sets (‘Combined’
column), using only FunCat data sets (‘FunCat’ column) asidgionly Gene Ontology data sets (‘Gene Ontology’ colurAn)-value is shown

in bold when the difference in the average ranks of the algms is statistically significant at the 0.01 significanaeldpyom < 0.01), which

in this case represents that the particular algorithm isifségintly worse than the GQs-HMC (control) algorithm.

Algorithm

(i) Predictive Accuracy
CLUs-HMC (control)
hmAnt-Miner
CLus-HSC
CLus-SC

(il) Model Sze
CLUs-HMC (control)
hmAnt-Miner
CLUS-HSC
CLus-SC

Combined

avg. rank PHolm
1.2812 -
2.1875 0.0471
2.6562 0.0052
3.8750 3.9794E-8
1.3125 -
1.6875 0.4113
3.0000 4.3611E-4
4.0000 1.1726E-8

avg. rank

1.1250

1.8750
3.2500
3.7500

1.2500

1.7500
3.0000
4.0000

FunCat

PHolm

0.2453
0.0020
1.4309E-4

0.4386
0.0134
6.1251E-5

Gene Ontology
avg. rank PHolm
1.4375 -
2.5000 0.1995
2.0625 0.3329
4.0000 2.1579E-4
1.3750 -
1.6250 0.6985
3.0000 0.0236
4.0000 1.4309E-4

Table 6 Summary of all pairwise comparisons according to the naaspatric Friedman test with the Holm’s post-hoc test [13,itGerms
of (i) predictive accuracy and (i) classification modelesiFor each hypothesis tested, the adjugte@lue obtained by Holm’s post-hoc test
is reported using both FunCat and Gene Ontology data setenp@ed’ column), using only FunCat data sets (‘FunCatuowoi) and using
only Gene Ontology data sets (‘Gene Ontology’ column)p-#alue is shown in bold when the difference in the averag&saf the first
algorithm and the second algorithm—reported in Table 5-astically significant at the 0.01 significance levplifim < 0.01), which in this

case represents that the first algorithm outperforms thenskeglgorithm.

Hypothesis

(i) Predictive Accuracy
hmAnt-Miner vs. Q.us-HMC
hmAnt-Miner vs. Q.us-HSC
hmAnt-Miner vs. Q.us-SC
CLus-HMC vs. QLus-HSC
CLus-HMC vs. QLus-SC
CLUS-HSCvs. Qus-SC

(if) Model Sze

hmAnt-Miner vs. Q.us-HMC
hmAnt-Miner vs. Q.us-HSC
hmAnt-Miner vs. Q.us-SC
CLus-HMC vs. QLus-HSC
CLus-HMC vs. CLus-SC
CLUS-HSCvs. Qus-SC

Combined
PHolm

0.0942
0.3044
0.0011
0.0104
7.9587E-8
0.0227

0.4113
0.0121
2.0267E-6
8.7221E-4
2.3451E-8
0.0569

FunCat
PHolm

0.4906
0.0995
0.0147
0.0050
2.8618E-4
0.4906

0.4386
0.1584
0.0024
0.0268
1.2250E-4
0.2427

Gene Ontology
PHolm

0.2993
0.6658
0.0805
0.6658
4.3158E-4
0.0134

0.6985
0.0995
0.0012
0.0473
2.8618E-4
0.2427

ity (measured as size of the discovered model). We reganat rule evaluation measures in order to optimise the qual-
these results promising, given thabAnt-Miner is the first ity of the discovered rules. Finally, evaluating other ldrad
ACO algorithm tailored for hierarchical multi-label clds pheromone update strategies—e.g. updating the pheromone

cation, to the best of our knowledge.

based on the quality of a rule list instead of a single rule—is

There are several potential avenues for future resear@l$0 a direction worth further exploration.
Since having a deterministic procedure to determine the con
sequent of rules led to a simplified rule pruning procedure,

where the consequent is not pruned, different variations
the rule pruning procedure could prove to be more effegg
tive. In addition, it would be interesting to investigatéeti-
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Fig. 4 A sample of precision-recall curves bimAnt-Miner, CLus-HMC, CLus-HSC and Qus-SC for (a) ‘cellcycle’, ‘pheno’ and ‘seq’
FunCat data sets and (b) ‘seq’, ‘eisen’ and ‘pheno’ Gene logyadata sets—the closest to the upper-right-corner, ¢iieb(more accurate) the
curve.
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