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Abstract: Efflux by the ATP-binding cassette (ABC) transporters 

affects the pharmacokinetic profile of drugs and it has been 

implicated in drug-drug interactions as well as its major role in 

multi-drug resistance in cancer. It is therefore important for the 

pharmaceutical industry to be able to understand what 

phenomena rule ABC substrate recognition. Considering a high 

degree of substrate overlap between various members of ABC 

transporter family, it is advantageous to employ a multi-label 

classification approach where predictions made for one 

transporter can be used for modeling of the other ABC 

transporters. Here, we present decision tree-based QSAR 

classification models able to simultaneously predict substrates 

and non-substrates for BCRP1, P-gp/MDR1 and MRP1 and 

MRP2, using a dataset of 1493 compounds.  

To this end, two multi-label classification QSAR modelling 

approaches were adopted: Binary Relevance (BR) and 

Classifier Chain (CC). Even though both multi-label models 

yielded similar predictive performances in terms of overall 

accuracies (close to 70%), the CC model overcame the 

problem of skewed performance towards identifying 

substrates compared with non-substrates, which is a 

common problem in the literature. The models were 

thoroughly validated by using external testing, applicability 

domain and activity cliffs characterization. In conclusion, a 

multi-label classification approach is an appropriate 

alternative for the prediction of ABC efflux. 
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1 Introduction 

The drug development process is becoming increasingly 
more expensive over the years, which is partly caused by 
stricter testing demanded by regulatory entities for a drug to 
be accepted into the market. At the same time the reduction 
of animal experimentation has become a priority. As a result 
in silico programs in the pharmaceutical industry play an 
increasingly important role in drug discovery for the financial 
sustainability of a company. 

The ATP-binding cassette (ABC) family is composed (in 
humans) of 48 exclusive membrane exporters that are 
grouped in seven families (ABCA-G) according to gene 
similarity with respect to sequence and organization. They 
transport a wide variety of endogenous and exogenous 
compounds, which range from ions to macromolecules, via 
an ATP-dependent mechanism.[1-2] These transporters are 
highly expressed in a variety of tissues, among which are 
some important distribution barriers that are associated with 
drug absorption and distribution impairment. Some examples 
are the intestinal brush border membrane, the blood-brain 
barrier, and the hepatocytic biliary canalicular membrane.[3] 
The role of membrane transporters in absorption, distribution 
and excretion as well as the possible drug interaction due to 
binding to these transporters indicate the importance of 
membrane transporters to drug discovery and development, 
where about 1/3 of the attrition rate in drug development is 
caused by a poor pharmacokinetic profile.[4] Something as 
simple as a high hepatic clearance can render the use of a 
highly active, non-toxic drug unfeasible due to the need for 
very short dosage periods. Properties like this are often not 
discovered until human trials, which means that any drug 
withdrawals are extremely expensive for the company. In 
silico studies are a promising and inexpensive tool to avoid or 
at least minimize late drug attrition rate. Among these, 

quantitative structure-activity (or property) relationships 
(QSAR) have long been implemented in the drug discovery 
and development process.  

Given the high potential of ABC transporters for 
pharmacoketic impact and also their potential for drug-drug 
interaction, these membrane transporters are one of the most 
important targets that need to be studied during drug 
discovery. In addition, some ABC transporters including the 
Breast Cancer Resistance Protein (BCRP1, ABCG2), P-
glycoprotein (P-gp, MDR1, ABCB1), and the Multidrug 
Resistance-associated Proteins (MRP1-7, ABCC1-6 and 
10)[1] are strongly associated with multi-drug resistance in 
cancer cells given their ability to extrude drugs from the cell.[2] 
QSAR appears to be a particularly well suited method to 
predict ABC transport substrates since it has been shown that 
substrate recognition by the aforementioned ABC members 
relies on global physicochemical profiles rather than following 
the key-and-lock ligand binding model.[2] The potential of 
QSAR to predict ABC transporter substrates during the R&D 
process has already been demonstrated by Desai et al.[5] who 
reported the successful replacement of an in vitro automated 
assay with a QSAR model to predict P-gp substrates in an 
early stage of the drug development pipeline of Eli Lilly. 
Currently, improving the accuracy of QSARs to predict 
(classify) substrates and non-substrates of ABC transporters 
remains a challenge. This is partly due to the multi-specific 
nature of the substrate recognition by these transporters. 
Different ABC family members have shown redundancy in 
terms of substrate recognition and transport,[2, 6] and in order 
to take advantage of this, we suggest a multi-label QSAR 
approach to address the ABC transport as a whole, as 
opposed to the traditional single-label QSAR approach 
looking at each transporter individually.  

In traditional supervised learning, among n training 
instances (compounds in the dataset), each instance 
(compound) is assumed to be associated with a single 
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response (called label). In other words, in a single-label 
classifier, each compound is classed under one label 
(response), e.g. active or inactive. So for each response 
(label), a different classifier is produced which is independent 
from the classifier produced for other labels.[7] However, there 
are cases where instances, due to their complexity, might 
have various simultaneous responses, which is the same as 
saying that an instance is associated to a set of various labels 
rather than just one. This is the case of the ABC transport 
problem, where different compounds are effluxed by different 
types of ABC transporters, and it constitutes a multi-label 
classification problem. So, in this scenario, the machine 
learning algorithm produces a multi-label classifier, which can 
be viewed as a set of single-label classification models, one 
per label (response).[7-8] 

However, one of the big issues in multi-label machine 
learning is that labels can have interdependency between 
them[8]. Correlation between labels potentially holds 
important information about the modelled problem, and 
accounting for this is crucial in facilitating the learning 
algorithm[9]. As a result, the main goal in multi-label machine 
learning is to enable the detection of these relationships. This 
means that the considerable overlap between substrates 
(and inhibitors) of various ABC transporters should be 
exploited from the data mining standpoint to improve the 
model performance. 

Within multi-label classification techniques, one of the 
most widely used problem transformation methods is Binary 
Relevance (BR), which decomposes the multi-label problem 
into a binary problem for each label separately. A regular 
single-label classifier is then applied to predict the 0/1 class 
in every separate label ignoring the information from the 
remaining labels. The separate predictions from all the single-
label classification tasks are finally gathered in one multi-label 
prediction.[8, 10] Consequently, BR has a major drawback by 
assuming label independence. By separating the labels one 
is in fact losing potentially useful information and it leads to a 
situation like predicting impossible coexisting labels in 
practice.[8, 10] An alternative to this is the classifier chain (CC) 
method that is able to address label dependency.[10] In this 
technique, the different labels originating from single-label 
models communicate the learned information to each other, 
in a sequential fashion. 

A multi-label approach has recently been applied to 
classify inhibitors/non-inhibitors of two transporters, P-gp and 
BCRP1 [11], although the authors reported no value in 
accounting for label overlap for the inhibitors of these two 
proteins. Here, we have focused instead on the 
substrates/non substrates of four major ABC transporters, 
namely BCRP1, MDR1/P-gp, MRP1, MRP2, using novel 
multi-label classification methods. The goal was to assess the 
potential value of taking into account the data overlap 
amongst transporters in terms of the predictive accuracy of 
the classifier, as well as finding molecular characteristics that 
are unique to, or those that overlap between the substrates 
of various transporters. The two previously mentioned multi-
label modelling schemes, BR and CC, were employed where 
the only difference between them is the absence or presence 
of communication between transporter models, respectively. 
A comprehensive validation routine including the 
characterization of the applicability domain (AD) and activity 
cliffs (AC) were carried out for the models. The predictive 
performance was analyzed against each model’s applicability 
domain and activity cliff analysis, in the attempt of providing 
a more holistic, in-depth interpretation of the models’ true 
worth. To our knowledge this is the first reported multi-label 
classification model for the prediction of ABC substrates (S) 

and non-substrates (NS), providing insight on transporter 
relationship with regard to binding patterns. 

2 Experimental Section 

2.1 Dataset 

A dataset of 1493 compounds was compiled from the 
substrate data available on the Metrabase database[12] 
(accessed on October 2014) for six ABC transporters: 
BCRP1, MDR1, MRP1, MRP2, MRP3 and MRP4. All 
instances were divided into two classes: substrates and non-
substrates. The collection of SMILES provided was checked 
for repetitions and isomers using ACD Labs, and mixtures 
were removed. Repetitions were merged and, for cases of 
conflicting information, the principle of minimum evidence 
was applied, by which all compounds with at least one case 
of reported substrate property were regarded as potential 
substrates and so, they were classified as substrates. This is 
a valid approach considering that all the initial data collected 
from Metrabase was selected based on quality standards.[12]  
Prior to any modelling or modelling-related task the dataset 
was submitted to a stratification procedure as described by 
Sechidis et al.[13]. The authors show that this procedure leads 
to data subsets with more balanced class label distributions 
in a series of benchmark datasets. That is, this procedure 
maximizes transporters distribution across different data 
partitions. This procedure was implemented in R using the 
provided pseudo-code. Consequently, the dataset was 
divided into training (TR), internal validation (IV) and test (TE) 
set in a proportion of 6:2:2 (895 + 299 + 299 compounds), 
respectively, with similar distribution of substrates and non-
substrates in TR, IV and TE. For larger datasets, i.e. BCRP1, 
MDR1, MRP1 and MRP2 compounds, there was only a 
negligible imbalance of data with the substrate (S) to non-
substrate (NS) ratio of 1.7, 1.3, 1.0 and 1.2, respectively (see 
Figure 1). However, for the transporter classes associated 
with smaller datasets, namely MRP3 and MRP4, the S to NS 
ratio was around 2.5, which led to insufficient number of non-
substrates for modelling and validation. Therefore, these two 
transporters were eliminated and the remaining four 
transporters were investigated. 

2.2 Calculation of Molecular Descriptors.  

Molecular descriptors were calculated using ACD/labs logD 
suite v12.5 and MOE 2013, using the SMILES codes 
retrieved from Metrabase. Using ACD, prior to molecular 
descriptors calculation, all structures were submitted to 
desalting. In MOE, the compounds’ structures were washed 
(counter ions were removed) and minimized. Molecular 
mechanics minimization was initially performed using 
MMFF94x, followed by a second minimization using quantum 
mechanics Self-Consistent Field (SCF), where partial 
charges were assigned using the PM6 Hamiltonian. The PM6 
semi-empirical method was added to MOE as a MOPAC 
2009[14] extension. After descriptor calculation, all external, 
non-variant and mainly zero-valued descriptors (with ≥97% 
zero values) were removed. No single charge-assignment 
method was selected over any other, across homologous 
descriptors, as it has been shown that different charge 
assignment methods have led to variable success in 
modelling different datasets in the past.[15]  This allows a data-
driven selection of charge-related molecular descriptors 
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using PEOE vs PM6 methods, as well as various descriptors 
derived from semiempirical methods, AM1, PM3 and MNDO.

 

 

Figure 1. Schematic summary of transporter overlap represented in the Venn diagram. Below each transporter label are the total 

number of instances (in a square) in the full dataset, and the corresponding amount of substrates and non -substrates. 

2.3 Pre-processing feature selection.  

A total of five feature sets derived from five different feature 
selection techniques were produced for each of the four ABC 
transporters. Five different feature selection methods were 
implemented using the popular data mining tool Weka 3.6: 
three filter methods, namely Genetic Algorithm (GA), Greedy 
Stepwise search (GS) and ReliefF (RfF); and two wrapper 
methods, namely C4.5 Decision Tree-Genetic Algorithm 
(J48-GA) and Random Forest-Greedy Stepwise search (RF-
GS). For detailed information on the functioning of filter and 
wrapper methods please refer to the literature.[16-17] All 
feature selection methods were run using the TR set only. 
Filter methods were implemented with CfsSubsetEval 
attribute evaluator (which selects the subsets of features that 
are highly correlated with the class while having low 
intercorrelation), and wrapper methods were implemented 
with ClassifierSubsetEval (classifier subset evaluator in 
Weka). For the GA method the following 0.8 and 0.01 
crossover and mutation probabilities, and both the population 
and generations size were set to 100, to allow sufficient 
exploration of the feature space. GS and RfF were 
implemented using default settings (with the latter coinciding 
with previously reported settings)[18].  
Within the wrapper methods RF-GS and J48-GA were 
implemented by combining two search algorithms (GS and 
GA), respectively, with two classifiers (RF and J48). In J48-
GA, the settings for the GA feature searcher were the same 
as the ones used for the GA filter method. As for the J48 
classifier within the wrapper, the pruning method was 
optimized by 10-fold cross validation. When applicable, the 
confidence factor was optimized in a range between 0.1 and 
0.5 (with a 0.1 step). All other conditions in J48 were set to 

default values. In the RF-GS method the trees were limited to 
a maximum depth of 3, as the focus is tree number not tree 
depth. The number of trees (ranging from 1 to 25) was 
optimized using the 10-fold cross-validation root-mean 
squared error. 
To minimize local-minima effects that have been particularly 
reported for GA[19], for all feature selection methods 10-fold 
cross validation was repeated 5 times using different random 
seeds, and ranking scores were averaged across the 5 runs. 
The top 20 features were selected from the average ranking.  

2.4 Multi-label QSAR models.  

Each of the five feature sets obtained from the feature 
selection routines were subsequently used to train a J48 
model (Weka 3.6), for each of the labels (transporters). J48 
training used the same parameters as described for the J48-
GA feature selection method mentioned above. These 
models were then tested on an independent internal 
validation (IV) data subset. This corresponds to a total of 20 
experiments testing five different feature sets for each of the 
four ABC transporters. The best feature set for each 
transporter was selected according to the highest Matthews 
correlation coefficient (MCC) and geometric mean between 
sensitivity and specificity (G-mean) in the IV set. 

The best J48 models (using the best feature selection 
conditions) were selected for each of the training sets 
(BCRP1=288, MDR1=580, MRP1=111, MRP2=145). 

The multi-label BR model was obtained by gathering the 
predictions from these four best single-label models into one 
global prediction output. In this case, whenever a new query 
compound needs to be predicted it would be passed through 
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all four ABC models and a set of label predictions would be 
produced. For the multi-label CC model, the schematic 
representation of CC is depicted in Figure 2. The transporters 
were ordered according to descending order of dataset size, 
based on the theoretical expectation that larger datasets will 
have a better chance of providing useful information to 
smaller datasets than the other way around. Accordingly, the 
order of the labels in the classifier chain was P-gp/MDR1 > 
BCRP1 > MRP2 > MRP1. To build the multi-label CC model 
each label (transporter) in the 4-label chain uses the best 
descriptor set previously optimized for the BR model. In 
addition, as it can be seen in Figure 2, each label in the CC 
model uses prediction sets from previously available labels.  
In summary, in the CC model every label (transporter) in the 
chain is trained using the prediction sets from all previous 
labels, along with a set of molecular descriptors (previously 
selected). To illustrate this, label #3 for example, will be 
trained with a set of molecular descriptors as well as class 
predictions for label #1 and #2. 

 

Figure 2. Schematic representation of multi-label classifier 
chain training. 

Overall each transporter was submitted to an independent 

and parallel process of feature selection, model optimization 

and training, and finally testing. All these steps were 

performed in parallel on the same datasets for CC and BR in 

order to: 1) allow comparability between both types of model 

at every level, and 2) assess the value of addressing the 

overlap in the data, by fixing all other conditions in both 

modelling workflows. Throughout the paper the following 

notation <single-label model> - <multi-label model> will be 

used whenever a specific single-label model within the CC or 

the BR models is mentioned.  

2.5 Model validation The single-label performance 

measures used for single-label model assessment are 

defined below [20], where TP, TN, FP and FN stand for the 

numbers of true positives, true negatives, false positives 

and false negatives, respectively. These correspond to 

Sensitivity (SEN), specificity (SPE), Matthew’s 

correlation coefficient (MCC), and the geometric mean 

between SEN and SPE (G-mean).   

 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃𝐸 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑆𝐸𝑁 × 𝑆𝑃𝐸 

 

Several multi-label predictive accuracy measures 

were used, namely the harmonic mean between 

precision and recall (F1), Precision (P) and Recall (R), 

calculated according to Tsoumakas and Katakis [21-22]. 

Hamming Loss (HL) was used solely to monitor the 

impact of each label on the multi-label model’s 

performance, during model building. 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =
1
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1

𝑁
∑

|𝑌𝑖 ∩ 𝑍𝑖|

|𝑌𝑖|

𝑁

𝑖=1

 

In these measures, Yi and Zi correspond to the set of 

observed and predicted labels, respectively, for the i-th 

compound, N corresponds to the number of compounds in 

the dataset, and L corresponds to the number of modelled 

labels. The Δ symbol denotes the symmetric difference 

between two sets of label values (observed and predicted, in 

this case), which is equivalent to the XOR boolean operation.  

As substrates are more frequent than non-substrates in 

all labels, a balanced accuracy (bACC) was used to take into 

account this when assessing predictive performance, which 

consisted of the average G-mean across every label j (which, 

in turn, can be considered as the single-label balanced 

accuracy). To evaluate the balance between substrate and 

non-substrate performances across instances, ΔPR 

measures the average deviation in precision and recall 

between substrates and non-substrates. 

 

𝑏𝐴𝐶𝐶 =
1

𝐿
∑ √𝑆𝐸𝑁𝑗 × 𝑆𝑃𝐸𝑗

𝐿

𝑗=1

 

∆𝑃𝑅 =
(𝑃𝑆 − 𝑃𝑁𝑆) + (𝑅𝑆 − 𝑅𝑁𝑆)

2
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2.6 Applicability Domain  

For any QSAR model, it is necessary to define the domain of 
applicability to ensure its reliability in the prediction of 
properties of external compounds. In this study, the 
applicability domain (AD) of all the single label models used 
in the generation of multi-label BR and CC models were 
characterized. To determine the AD, the distance to the 
model based on the standard deviation (STD) of the predicted 
values (or labels) from the ensemble of various models was 
used, as this has been shown to be the most successful 
method in quantifying predictive reliability across chemical 
space in the data.[23-27] This technique capitalizes on the 
concept that the disparity between predictions computed from 
a group of models (ensemble) is a direct consequence of 
prediction reliability. A small standard deviation will equate to 
highly reliable predictions, whereas a larger value signals 
unreliable predictions. It has been demonstrated that the 
disagreement between models leads to a better separation 
between reliable and unreliable predictions compared to 
traditional structure-based measures.[27] 
In this work, J48 models were developed for 10 random 
samples of training set data, each sample comprising 80% of 
the training set compounds. 

 

𝑆𝑇𝐷 = √
∑(𝑦𝑚 − 𝑦̅)2

𝑁 − 1
 

STD values were calculated for each compound using the 
equation above. Here, 𝑦𝑚 is the class label prediction using 

model m and 𝑦̅ is the average of all prediction outputs for this 
compound by N models. For classification models (which is 

the case here) predictions y take the form of probabilities. By 
setting increasingly larger STD thresholds (with increments of 
0.05), which can also be perceived as increasing distance to 
the model’s reliability core, more compounds become 
included in the model. By performing this kind of scanning 
through the model’s space, one is able to establish a profile 
of reliability as a function of STD. In this case we used % 
correct predictions, the so-called accuracy as our measure of 
reliability.  

 

2.7 Activity cliffs 

To search for possible activity cliffs, the similarities 

between all pairs of compounds were calculated using 

the well-known Tanimoto coefficient (Tc) applied on 1024 

bit Morgan circular fingerprints (equivalent to the 

extended connectivity fingerprints [ECFP], calculated 

using the RDkit module in python), for a radius of 2. 

Following the criteria for activity cliffs used by several 

authors[28-30], we defined as an activity cliff any substance 

that has a different class than the majority class of the 3 

nearest training neighbors, which must all show a Tc > 

0.55 to the analyzed compound. This threshold has been 

reported as a sensible value above which compounds are 

visibly similar.[28-30] 

 

2.8 Visualization of chemical space  

In order to gauge how wide is the chemical space of the 

built models, with relation to the real-world drug chemical 

space, the ABC transporter data was overlaid against the 

DrugBank chemical space. In order to visualize the 

chemical space coverage, t-Distributed Stochastic 

Neighbor Embedding (t-SNE)[31] was chosen as the 

multidimensional scaling technique. This technique is 

one of the most successful in conserving the 

multidimensional structure of the data during its 

projection into a low-dimensional plot.[31] t-SNE was 

employed over a set of 1024 bit Morgan circular 

fingerprints (RDKit equivalent of ECFP), calculated for a 

radius of 2. To compute the t-SNE projection, an 

implementation in python, provided by the developer 

(https://lvdmaaten.github.io/tsne/#implementations), was 

used. 

 

3 Results 

3.1 Multi-label QSAR models  

In this work, the main goal was to model four ABC 

transporters in such a way that allows accounting for possible 

underlying correlations between labels (i.e. transporters). 

Multi-label classification is the appropriate approach to 

achieve this.  By comparing a multi-label method that takes 

into account label interaction (i.e., CC) with an alternative 

method that assumes labels to be independent (i.e. BR) one 

is able determine whether label interaction, in fact, exists. 

Both multi-label classifiers were trained using the best 

features selected by various feature selection methods for 

each transporter, and they differ only in the use of previous 

label predictions as additional features (in the case of CC). 

The rational for the use of multi-label methods was the 

overlap observed in the dataset as can be seen from the 

results of the Chi-squared test measuring the correlations 

between labels (Table 1). These multi-label methods were 

compared in terms of their predictive ability in the 

classification of various ABC transporters’ substrates and 

non-substrates.  

Table 1. Values of the Chi-squared test measuring correlation 
between labels. The smaller the Chi-squared value, the 
stronger the change of true correlation. 

 
MDR1 MRP1 MRP2 

BCRP1 0.001 0.001 <0.001 

MDR1 
 

<0.001 0.679 

MRP1 
  

<0.001 

 

 

Within each multi-label model it is necessary to make 

sure that each one of its single-label models provides a 

reasonable input to the global multi-label model. Firstly, 

we selected the best single-label J48 model for each 

transporter out of a pool of five models obtained from 

various pre-processing feature selection methods. The 

results showed that the GS method led to the best model 

for BCPR1, while J48-GA led to the best models for 

MDR1 and MRP1; and ReliefF led to the best model for 

https://lvdmaaten.github.io/tsne/#implementations
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MRP2 (Supporting Information SI 1). Table 2 shows the 

performance of the best single-label models.  

Secondly, to validate the inclusion of each label, the 

impact of removing a label or the addition of new labels 

on the overall performance of BR and CC models, 

respectively, was assessed by HL, with respect to the IV 

set (Figure 3). Both BR and CC models show a constant 

impact in HL by the presence of all labels, which is 

depicted by a constant HL value as the chain grows, in 

CC, and when different labels are removed in turn, in BR 

(Figure 3). This observation justifies the presence of 

each label in the multi-label models. The same is 

observed in the TE set where no particular label stood 

out in terms of impact on HL performance (Figure 4) 

which means no label is causing degradation of the 

predictive performance. 

Table 2. Test set (TE) performance of the single-label models for individual transporters using the best set of features with (CC) 

or without (BR) the use of the predicted ABC binding class of the preceding transporters in the classifier chain.  

 MDR1  BCRP1  MRP2  MRP1 

 (n=195)  (n=87)  (n=41)  (n=36) 

 

J48-GA 

 

GS  
GS  

pMDR1 

 

RfF  
RfF  

pMDR1 
pBCRP1 

 

J48-GA 

J48-GA 
pMDR1  
pBCRP1  
pMRP2 

G-mean 66.8  76.3 76.7  74.4 74.4  58.9 59.0 

SEN 79.1  84.5% 77.6  69.2 69.2  84.2 74.0 

SPE 56.5  69.0% 75.9  80.0 80.0  41.2 47.1 

MCC 36.6  53.4% 51.4  47.4 47.4  28.3 21.6 

 

  

Figure 3. Impact of each label on the overall performance of the CC and BR models , tested on the IV set. The graph for CC 

depicts the evolution of the model’s performance as labels are being added to the chain, whereas the graph for BR depicts the 

model’s performance when each of the labels is removed, in turn.  
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Figure 4. Impact of each label on the overall predictive TE performance of the CC and BR models. The graph for CC depicts the evolution 

of the model’s performance as labels are being added to the chain, whereas the graph for BR depicts the model’s performance when each 
of the labels is removed, in turn. 

At the multi-label level, Table 3 indicates a good 

performance with an overall F1 of approximately 70% for 

both BR and CC models. The results also show that both 

models performed very similarly, however attention must 

be drawn to the fact that the modelled data is imbalanced 

both at the label level (i.e. some transporters have more 

data than others) and at the class level (i.e. within each 

transporter there is more substrates than non-

substrates). This means that commonly employed 

measures, such as F1, precision and recall, will be 

leveraged by the majority label and the majority class, 

and therefore they are not ideal to assess these 

imbalanced problems. Alternatively, bACC has been 

designed to overcome this issue. Table 3 shows that 

bACC has a higher score for CC. Additionally the CC 

model shows less discrepancy between the ability to 

predict substrates and non-substrates, shown by the 

absolute difference between both with regard to precision 

and recall (ΔPR). This means the CC model achieves the 

best balance in terms of classifying both substrates and 

non-substrates. Moreover, a comparison of single-label 

(individual transporter) models used to develop BR and 

CC (Table 2) shows that the two single-label models that 

include a predicted label as a feature (BCRP1, and 

MRP1) have improved SEN-to-SPE balance, which 

supports the existence of label correlations and the 

advantage of taking them into account when modelling 

ABC transport data by using CC instead of BR. 

Table 3. Summary of performance measures of the final BR and 

CC models in the test set. Underlined font marks the values that 

are better than their direct counterpart models.  

Performance measures BR CC 

F1 69.6 % 69.2 % 

bACC 68.7 % 69.0 % 

Precision 70.4 % 70.0 % 

Recall 70.0 % 69.6 % 

ΔPR 20.6 % 17.4 % 

 

3.2 Molecular descriptors in single-label elements of BR 
and CC 

As it was explained in previous sections, the molecular 

descriptors used in J48 models have been selected by the 

best pre-processing feature selection methods for each 

transporter dataset followed by the embedded J48 feature 

selection. Roughly the same number of molecular descriptors 

was provided to the J48 algorithm for the modelling of each 

transporter, however the number of descriptors used to build 

each tree decreased along the order of the labels in the chain, 

i.e. MDR1, BCRP1, MRP2, and MRP1. Moreover, recall that 

the same set of molecular descriptors was provided to J48 for 

the single-label constituents of the BR and CC models, but 

single-label elements of CC employ additional predictors, i.e. 

the predicted substrate class of the previous transporter(s) in 

the chain. 

Molecular descriptors used in single-label J48 models 

have been presented in the Supporting information SI 2 in the 

form of a series of IF-THEN rules. These have been 

automatically compiled from the tree in Weka’s output using 

a python script and can be easily implemented for further use. 

Given the large number of molecular descriptors incorporated 

in some J48 models, these descriptors can be ranked 

according to the statistical importance and the most important 

molecular descriptors may be identified. Tables 4 and 5 show 

the importance of molecular descriptors in J48 models for 

different transporters in BR and CC models, respectively. 

These molecular descriptors have been described in 

Supporting Information SI 3. In order to calculate the feature 

importance, the molecular descriptors used in the models 

were ranked according to the number of compounds that 

were directly affected by each descriptor at any point of the 

tree. In this way, descriptors selected earlier on for major 

branches of trees are more important than those selected 

later on to classify a smaller number of compounds. Table 5 

shows that the molecular descriptors selected by J48 

algorithm for BCRP1 and MRP1 include a transporter 

substrate class predicted by the previous transporters in the 

chain, and both predicted labels used in both models affected 

more than 50% of the training data (see Table 5).  
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Due to the design of the CC model that placed MDR1 

model as the first label, the single-label MDR1 model used in 

both multi-label BR and CC models is the same, i.e. no 

predicted ABC label was used as a feature in the modelling 

of this transporter. As a result MDR1 descriptors reported in 

Tables 4 and 5 are the same. For BCRP1, a comparison of 

Tables 4 and 5 shows that some of the molecular descriptors 

in the BR model have been replaced by the predicted MDR1 

class as an important feature in the CC model of BCRP1. On 

the other hand, the single label MRP2 model developed by 

J48 did not pick predicted MDR1 or predicted BCRP1 labels, 

and only molecular descriptors were selected as the model 

features. As a result, the top descriptors used in the single 

label MRP2 models within both BR and CC models are the 

same (see Table 4 and 5). For MRP1 models, a comparison 

of Tables 4 and 5 shows that the models developed for CC 

and BR are different, as the predicted MRP2 labels have 

been used in the multi-label MRP1 model built by the CC 

model. The MRP1 model for CC used the predicted MRP2 

label as the second most important feature replacing the 

polar volume.  

 

 

Table 4. Descriptor importance calculated from the relative amount (%N) of compounds classified using every given feature within the 

BR model. See Supporting Information SI 4 for descriptor definitions. 

MDR1 
(J48-GA) 

%N BCRP1 
(GS) 

%N MRP2 
(RfF) 

%N MRP1 
(J48-GA) 

%N 

VDistMa 100 Num_Rings_4 100 ast_violation_ext 100 Q_VSA_POL 100 

FCharge 85 Q_VSA_FPPOS 94 PEOE_VSA_FPNEG 65 vsurf_Wp1 70 

a_nH 80 SlogP_VSA7 82 vsurf_CW2 61 Q_VSA_FPPOS 53 

b_max1len 64 b_ar 68 reactive 54 FCASA+ 38 

PM3_LUMO 63 opr_nring 53 Fi(B) 34 chi1v_C 34 

PEOE_VSA+6 52 a_nF 30 b_rotR 24 b_rotR 30 

SMR_VSA2 45 glob 24 opr_leadlike 16 b_max1len 15 

a_acc 27 a_ICM 23 Q_VSA_FHYD 12 Kier3 14 

b_ar 25 PEOE_VSA-3 22 vsurf_HB2 11   

dens 22 LogD(6.5) 19 Fi(A) 4   

PEOE_VSA-6 20 MNDO_LUMO 18     

Num_Rings_5 16 SMR_VSA4 9     

FCASA- 13 LogD(5.5) 5     

vsurf_Wp5 11 PEOE_VSA-4 3     

vsurf_Wp6 10 PEOE_VSA-1 2     

SlogP 8 vsurf_R 2     

Rule_Of_5 8 LogD(7.4) 2     

PM3_E 8       

MW 3       

vsurf_CW8 2       

PEOE_VSA_NE
G 

2       

Polarizability 2       

 

Table 5. Descriptor importance calculated from the amount of compounds classified using every given feature within the CC model. 
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MDR1 
(J48-GA) 

%N BCRP1 
(GS) 

%N MRP2 
(RfF) 

%N MRP1 
(J48-GA) 

%N 

VDistMa 100 Num_Rings_4 100 ast_violation_ext 100 Q_VSA_POL 100 

FCharge 85 Q_VSA_FPPOS 94 PEOE_VSA_FPNEG 65 pMRP2_RfF 70 

a_nH 80 SlogP_VSA7 82 vsurf_CW2 61 vsurf_D7 46 

b_max1len 64 b_ar 62 reactive 54 b_rotR 30 

PM3_LUMO 63 pMDR1_J48-GA 55 Fi(B) 34 Q_VSA_FPPOS 24 

PEOE_VSA+6 52 opr_nring 48 b_rotR 24 rings 17 

SMR_VSA2 45 glob 46 Q_VSA_FHYD 12 b_max1len 14 

a_acc 27 a_nF 30 vsurf_HB2 11   

b_ar 25 PEOE_VSA-3 22     

dens 22 MNDO_LUMO 21     

PEOE_VSA-6 20 vsurf_CW2 19     

Num_Rings_5 16 LogD(6.5) 19     

FCASA- 13 a_ICM 9     

vsurf_Wp5 11 LogD(5.5) 7     

vsurf_Wp6 10 SMR_VSA4 7     

SlogP 8 a_aro 4     

Rule_Of_5 8 PEOE_VSA-4 3     

PM3_E 8 vsurf_R 2     

MW 3 LogD(7.4) 2     

vsurf_CW8 2       

PEOE_VSA_NEG 2       

Polarizability 2       

 

3.3 Applicability Domain and Activity Cliffs  

Applying the STD method as per Sushko et al.[25], it is 
possible to observe an overall declining trend of accuracy vs 
STD across the majority of the single-label models (Figure 5). 
Exceptions to this trend will be further explored.  

There are two main important aspects to consider for the 
quality of an AD profile, similarity of overall profiles/trends for 
the subsets of data and a decreasing accuracy as the 
chemical space moves away from the model’s core. 
Exploring Figure 5 points to only two cases where the 
requirements above have not been met; these are MDR1-BR 
and MRP2-BR in the IV set. This is not seen for the 
corresponding CC model MRP2-CC (note that MDR1 single-
label model is same in both BR and CC models). There is 
also a mild case of disparity between IV and TE for BCRP1 
(although only at the first iteration of STD increments). While 
this disparity happens for BR, in the CC model all trends start 
in a higher point and tend to decrease with STD (although this 
is not done in a perfectly smooth way, as expected from any 
kind of AD analysis). 

Interestingly, even though MRP2 models show the exact 
same performance statistics at the single-label level (Table 
2), there is a marked difference between the applicability 
domain profiles of its BR and CC single-label models 
developed using a 10-fold bagging ensemble, depicted in 
Figure 5.  

Lastly, it should be noted that, for some labels, the 
increase in accuracy is not significant for smaller STD values. 
This is due to the quality of the trained model that may not 
allow a high level of precision (agreement between the 
ensemble models). Still, even if there is a small gain in 
accuracy at a given threshold, this still entails a decreased 
risk of producing a wrong prediction, and thus the respective 
AD profile is useful in guiding the prediction acceptance. 

Even though this analysis gives insight to a model’s overall 
performance across the data, it is convenient to further 
pinpoint activity cliff regions. Table 6 shows that a 
considerable portion of activity cliffs coincides with 
mispredictions. These can be areas of higher complexity in 
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terms of the structure-property relationship that require more 
compounds and/or better use of molecular descriptors that 
would capture that subtle chemical variation.[32] These can 
also result from unreliable experimental data (i.e., if a 
substrate is incorrectly presented to the learning algorithm as 
a non-substrate, even if it is correctly predicted as substrate 
it will be perceived as a misprediction).[33] 

Recall that three single-label models in the multi-label 
classifier chain could use previous labels as descriptors 
(considering that MDR1, as the first label of the chain, cannot 
use previous label descriptors). The fact that in two out of 
those three models a considerable portion of the activity cliffs 
was associated with mispredictions shows the correlation 
between both. It should be pointed out that in both BCRP1 
models (produced by the BR and CC methods) there were 
two compounds that were mispredicted in the former model 
while being correctly predicted in the latter. 

 

Table 6. Comparison between Activity cliffs (ACs) and 

mispredictions within them – values in brackets are the 

percentage of activity cliff compounds that are 

mispredicted by the models. 

Transporter Number of ACs 

mispredicted 
Number of  ACs 

MDR1 (BR/CC) 9 (50%) 18 

BCRP1 (BR &CC) 4 (40%) 10 

MRP1 (BR & CC) 2 (100%) 2 

MRP2 (BR & CC) 0 2 

 

As an example, Figure 6 depicts the distribution of 

mispredictions (FN and FP) for the BCRP1 BR model 

overlaid with the substrates and non-substrates. It can be 

seen that activity cliffs are mainly located in areas of 

sparse data especially at the extremities of the plot. 

Mispredictions were further analyzed for their 

distribution along the TE set chemical span of each of the 

molecular descriptors used in the various decision trees 

(all distribution graphs are shown in Supporting 

Information SI 5). For all models in BR and CC, 

mispredictions overlap with correct predictions in the TE 

set. Furthermore, it is common to find both mispredicted 

compounds close to the center-values, and correctly 

predicted compounds near data limits (and even outside 

the training range). 
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CC 

  

Figure 5. Applicability domain evaluated with respect to the IV and TE sets . Recall that accuracy has been defined as the % 

correct predictions out of the total amount of predictions that fall within any given threshold (set in the a xis labeled “STD”).

The IV and TE were also analyzed for their 
distribution with respect to the TR chemical span. This 
revealed no apparent trend in terms of misprediction 
concentration in chemical space, with the mispredicted 
compounds often showing scattering centered at the 
median of each descriptor. As a matter of fact, 
mispredicted cases seem to follow the distribution of the 
training set, being more densely located near the median 
and scattering away from it in a somewhat parallel 
manner. Additionally, both in MDR1 and BCRP1 
datasets, despite some compounds being clear outliers 
with respect to certain individual descriptors, as seen in 
Supporting Information SI 4, falling outside the maximum 
range of the training set ([0;1], standardized data) they 
were successfully predicted by their respective models. 
However, these observations were exceptions and, 
overall, the IV sets were found within the maximum range 
of each descriptor in the training set. 

Apart from the applicability domain and activity cliff 
analysis, it is useful to analyze the range of chemical 
diversity covered by the models built, in order to support 
the validity of their future predictions. We achieved this 
by overlaying our datasets with the DrugBank dataset 
using a t-SNE multidimentional scalling projection of the 
Euclidean distances (Figure 7). Considering that 
DrugBank holds the full span of chemical variety in real-
world drug space, this analysis provides a gauge of the 
diversity of our data. Despite the scarcity of data in some 
transporter datasets they were all evenly spread across 
the chemical space of the entire DrugBank dataset (more 
than 6000 instances). This means that the models 
incorporate a wide chemical variety in the training, which 
strengthens their potential usefulness as a predictive 
tool. 
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Figure 6. Mispredictions and activity cliffs of the BCRP1-BR model; Training data were projected into a 2D map using t-SNE, and the 

location reflects the Euclidean distance between ECFP4 fingerprints. The Tc coefficient was not used as a visualization measure as it 

produces plots with very distant points. However, using the Euclidean distance conserves  visually the relative neighborhood of each 
point. Activity Cliffs are marked with a cross; FP: yellow; FN: red; training substrates: black; training non-substrates: white.  

 

 

Figure 7. Chemical space coverage of MDR1/P-gp (A), BCRP1 (B), MRP2 (C) and MRP1 (D) with respect to the DrugBank complete 

dataset. The ABC datasets are represented in red in their respective scatterplots, and DrugBank data is depicted in white. The plots  

result from a t-SNE multidimentional scalling projection of the Euclidean distance calculated from ECFP4 fingerprints. 
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4 Discussion 

4.1 Multi-label QSAR models  

In this work we sought out to build multi-label models using a 
decision tree learner to predict compounds binding to several 
ABC transporters as substrates. The main advantage of using 
decision trees to build a predictive model is that their visual and 
transparent nature allows interpretation of the effects of the 
features on the predicted labels. Furthermore, decision trees 
can cope with different scales in the descriptors and they can 
also handle both continuous and categorical data efficiently and 
robustly.[34] In order to test whether there is a correlation 
between the binding profiles of different ABCs, two types of 
multi-label models (BR and CC) differing only in the ability to 
address overlap between labels were implemented in the 
modeling of ABC substrate recognition. Despite the substrate 
overlap between various members of the ABC transporters 38, 

39, BR and CC yielded very similar predictive performance 
statistics. On the other hand, it is apparent that the predicted 
MDR1 class is favored over molecular descriptors in the 
BCRP1 model, and the predicted MRP2 class is preferred in 
the MRP1 model, as evidenced by the preferential selection of 
these features as one of the top five model features (compare 
BR and CC features in Table 4 and Table 5). There are several 
possible explanations for the lack of a significant improvement 
of CC comparatively to BR (Table 3). The first explanation may 
be that labels have close to no interaction, which means that 
the classifier chain has nothing to capitalize from. However, 
Table 1 shows that all pairs of labels, except one, have a 
significant correlation, so the issue with regard to this 
hypothesis may be the relatively low label density (the 
compound vs label matrix is only 23% populated in the training 
set), which reveals scarcity of multi-label cases (i.e., 
compounds with measured binding in several transporter 
systems). The second explanation may be due to the fact that 
the BR model depends on the individual quality of each single-
label model; while the quality of the CC model depends also on 
the quality of the prediction of the previous labels in the chain. 
In fact, in a CC model every flaw in any given label (transporter) 
will be carried on to the following labels in the chain, as 
opposed to BR, in which the shortcomings of a model have no 
effect on the remaining labels.  

Even though the final overall statistics show no marked 
improvement from accounting for label interaction, focusing 
only on this can give an overly simplistic view. When results are 
analyzed as a whole, there are several evidences of the value 
of using label interaction in the modelling of the ABC QSAR. In 
two of the three single-label models, built by the CC method, 
where previous labels were available, previous label 
information was spontaneously selected by the tree building 
algorithm. Furthermore, this singular change in the entire 
modelling process coincided with more parsimonious models, 
which showed more balanced SEN to SPE ratio. This is a very 
valuable improvement given that this modelling task would 
naturally tend towards higher SEN, brought on by an imbalance 
in the data (high ratio of substrates to non-substrates). Data 
imbalance is known to have yielded poor models in the past[33, 

35], and being able to mitigate this issue without using any type 
of aiding technique (i.e., over-/under-sampling or 
misclassification cost) is notable. Lastly, the presence of 
previous labels allowed establishing a more reliable AD of the 

model. This is observed with MRP2 models, where even though 
both MRP2-CC and MRP2-BR yielded equal predictive 
performance, MRP2-CC allows a better definition of its 
applicability as both external datasets show the same trend of 
accuracy vs STD (Figure 5). As the AD method is insensitive to 
bias and relies solely on precision, low STD scores may happen 
due to a systematic misprediction in all models in the ensemble 
rather than a reliable (correct) prediction. This systematic 
misprediction in low STD area was the case in MRP2-BR. On 
the other hand, the presence of two extra features in MRP2-CC 
(the two previous labels in the chain), which were picked for 3 
of the 10 bagged models, helped overcome the systematic bias 
in modelling MRP2 data. Therefore, MRP2-CC allows 
establishing a threshold of prediction reliability that imitates the 
reliability trend in external data. As a result, these observations 
consist of a proof of concept of the value of using CC for the 
purpose of modelling ABC substrate data.  
Activity cliff analysis was used in this study to identify areas of 
high complexity in the structure-activity data. There was a high 
incidence of mispredictions in the activity cliff areas. 

An analysis of outliers showed a lack of correlation between 
location in descriptor span and misprediction. This is an 
indication that the misprediction rate appears to have no 
connection with the descriptor span coverage by the model.  

The performance of our models has to be evaluated in light 
of the high level of noise in any kind of large transporter dataset. 
Several factors are known to contribute to the considerable 
inter-laboratory and even inter-experimental variability in 
permeability/efflux assays. Some frequently reported examples 
are sensitivity to varied culture protocols and conditions, 
genetic change of MDR1 (and other transporters) leading to 
variable pump functionality, and variable expression levels of 
various ABC transporters and even different additional 
transporters (i.e. Solute Carriers).[36-37] There are also parallel 
metabolizing enzymes and alternative active transport 
systems. The variability is therefore a significant factor within a 
single dataset built from different sources using different cell 
models.[38] As a result, the BR and CC models should be 
evaluated in light of realistic maximum obtainable performance. 
In an ideal scenario a perfect model would correctly classify 
100% of unambiguous cases (correctly belonging to their 
assigned classes), and would correctly classify 50% of 
ambiguous cases (given that probabilistically only 50% are 
actually correctly classified to begin with). Applying this 
reasoning to our dataset translates into a maximum accuracy 
of 98% since our dataset has 61 ambiguous responses (i.e. 
reported as substrate and non-substrate from different sources) 
across 1493 compounds, hence 2% will theoretically be 
mispredicted. However this is a conservative estimate, due to 
the inter-laboratory variations affecting the accuracy of a given 
label in the literature, where the majority of compounds in the 
dataset have only one experimental measurement. It must be 

noted that in the construction of Metrabase, the allocation of 
substrate and non-substrate labels was carried based solely on 
the recommendation of the original literature reference.[12] 
However different literature sources have differing criteria and 
threshold values (in addition to varying experimental 
techniques) for classifying a compound as substrate.[39] A 
threshold of 2 for the efflux ratio is normally used by 
researchers, while the borderline interval is [1.8-2.5].[39] In fact 
a maximum accuracy of 86% has been reported for MDR1 
efflux assays.[39] In an overall appreciation of the feasibility of 
using the models presented here, as a substitute of the gold 
standard cell assays, these models are able to produce valid 
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predictions in 70% of the cases while the Borst cell assay 
(n=91, see Broccatelli et al.[39]) produced usable prediction in 
76% of the cases considering that contradictory replicates 
(n=16) and borderline values (n=6) cannot be used to trustfully 
classify a given compound. 

In this study, even for models that were trained on datasets 
with balanced classes, the specificity is always considerably 
lower than the sensitivity, which means that the models are 
generally more capable of identifying substrates than non-
substrates. However, this is not unprecedented as several 
other works on MDR1 substrate prediction listed in the 
literature[39] have reported the same issue. Comparing the 
results of two previous works where efflux ratios of 2[39] vs 2.5[40] 
have been used as threshold values, models with higher 
threshold values generally lead to lower specificity as expected. 
It can be hypothesized that the main underlying cause for a 
tendency for poor SPE is the fact that some substrates also 
have high passive permeability. This leads to cases of 
substrates that cannot be identified by permeability 
measurement methods (false non-substrates), which will 
translate into spurious data in the non-substrate class.[39] 

To contextualize the potential utility of the CC model 
proposed here, as of 2012, Tsaioun and Kates[41] reported a 
15% increase in phase 2 failures, 50% of which are due to lack 
of efficacy. However, many of these failures are CNS-targeted 
clinical trials where lack of efficacy is caused by an underlying 
failure to permeate the blood brain barrier (BBB). It is safe to 
say that, considering the polyspecificity of MDR1 in addition to 
the presence of a large variety of other ABC exporters on the 
BBB, a large portion of this attrition rate could probably be 
associated to some extent with the efflux of the drugs in 
question. In fact, in retrospect it is possible to identify cases 
where, if our models had been used, it would have been 
possible to avoid very expensive clinical trials through the 
prediction of the substrate ability of different ABC substrates. 
Two examples from our test set are sunitinib and dasatinib, 
both predicted as MDR1 and BCRP1 substrates based on our 
CC and BR models. Sunitinib failed a phase II clinical trial 
(NCT00923117) for the treatment of glioblastoma due to lack of 
efficacy. The probable cause for such late failure was that this 
drug has poor ability to permeate the BBB, which is most likely 
due to MDR1 and BCRP1 efflux.[42] In retrospect, if the models 
herein developed had been applied to sunitinib, it would be 
possible to avoid a failed clinical trial since both BR and CC 
were able to predict this compound as a substrate of both 
transporters. Even if the trial was carried out, the use of a 
predictive model like ours would at the least maximize the 
chances of success with the concomitant administration of an 
inhibitor. A similar scenario was observed for dasatinib, which 
showed no effectivity in a clinical study with 14 patients.[43]  

4.2 Molecular descriptors in the single-label elements of 

the models 

In this investigation we used five pre-processing wrapper 
methods to find the best set of molecular descriptors that can 
produce the most accurate J48 models for the prediction of 
each of the four labels (transporters’ substrates/non-
substrates).  Among the five feature selection methods, J48-
GA features yielded the best results for the majority of single-
label models.  The purpose of using a wrapper rather than a 
filter method is to select a feature set that ideally best copes 
with the classification algorithm’s biases. However, given the 
complex nature of these transporters it is expected that different 
feature-selection methods are best suited for the predictions of 
different labels, and indeed this has been observed in our 
results. 

Common features between transporters could be an indication 
of the degree of shared substrates. MDR1 and MRP1 both 
share the same best feature selection method (J48-GA) and 
there is some degree of feature overlap (around 5 features) 
between them. MDR1 shows the strongest correlation with 
MRP1 (Chi-squared test, p < 0.001, Table 1), and in fact there 
is a considerable amount of common substrates and non-
substrates between them (n=34 and n=12, respectively out of 
61 common compounds). The overlap of substrates between 
various ABC transporters is a well-established phenomenon.[44] 
For instance, it was reported that drug resistance to 
daunorubicin derives from a synergy between MRP1 and 
MDR1 activities.[45]  

The nature of the molecular descriptors incorporated into the 
single label J48 models can be interpreted in order to identify 
the molecular characteristics leading to a compound being 
recognized by a transporter as its substrate (See the 
Supporting Information Table SI 3).  

5 Conclusions 

In conclusion, this work reports two multi-label models for the 
prediction of various ABC transporter substrates and non-
substrates, namely BCRP1, MDR1/P-gp, MRP1 and MRP2. 
The multi-label classifier chain method, which accounts for 
label (transporter) interaction, was compared with the binary 
relevance method, which does not consider interaction. Both 
models showed good predictive power, as expressed by F1 
values (weighted average of precision and recall) and a 
balanced accuracy of approximately 70%. Even though the CC 
model showed no marked improvement in terms of the general 
performance measures, a closer analysis revealed several 
evidences of the benefit of taking into account label interaction. 
Firstly, despite the natural tendency for a relatively poorer 
ability to classify non-substrates (as they are the minority class, 
and are also more prone to containing noisy data), the CC 
model showed more balanced single-label models that 
compromised slightly on SEN (sensitivity) to gain some SPE 
(specificity). This translates into a lower ΔPR measure (average 
deviation in precision and recall) for the CC model, indicative of 
less discrepancy between the ability to predict substrates and 
non-substrates. Secondly, two of the single-label models used 
other predicted labels in preference to the molecular 
descriptors during the CC training, leading to improved SEN to 
SPE balance. Thirdly, the two MRP2 single-label models within 
CC and BR, despite showing the same predictive accuracy 
performance, resulted in two very different applicability domain 
profiles. While MRP2-CC allowed establishing a more reliable 
accuracy vs STD profile, which emulates more closely the 
reliability profile in external data, MRP2-BR was not able to 
achieve this. We hypothesize the presence of previous label 
predictions allowed overcoming a systematic bias in the 
ensemble predictions, as this is the only aspect that changed 
between BR and CC. These observations consist of a proof of 
concept of the utility of addressing transporter overlap when 
modelling a QSAR, and possibly more marked effects could be 
obtained with a more populated matrix of instances vs 
transporters. 

An analysis of the molecular features showed that there is 
some degree of overlap between transporters in terms of the 
molecular features responsible for substrate recognition, which 
supports the multi-label approach from a mechanistic 
standpoint. In particular, features of MDR1 and BCRP1 
substrates have some similarity as both transporter’s 
substrates are bulky and flexible, and contain hydrophobic 
moieties. MDR1 substrates are highly branched, good electron 
acceptors (such as in hydrogen bonds) and contain quaternary 
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ammoniums, while BCRP1 substrates contain large positively 
charged surface, have aromatic rings and may be a non-drug-
like molecule. The correlation of these two transporters is 
evidenced by the fact that the predicted MDR1 label is a very 
useful feature for the classification of BCRP1 transport. On the 
other hand, molecular features of MRP2 and MRP1 substrates 
are also similar in terms of polarity and hydrophilicity of the 
molecular surface. MRP2 substrates may contain reactive 
groups defined as nitrogen, oxygen and sulfur atoms with polar 
negative surface area, while MRP2 substrates are flexible in 
addition to large polar and hydrophilic surface area. 
Furthermore, the predicted MRP2 binding class can be used as 
a significant feature for the prediction of MRP1 transport. MDR1 
and BCRP1 were more associated with explicit aromaticity-
related features, whereas MRP1 and MRP2 where 
predominately more associated with hydrophilicity-related 
properties, which could be tied with the fact that MDR1 and 
MRP2 were used as predictors in both BCRP1 and MRP1 
models respectively. 

Overall, the models revealed to be robust and of acceptable 
predictive performance, especially considering the complexity 
of trying to uncover unspecific mechanisms of substrates 
recognition by the ABC family members. 
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